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Efficient, Fair, and Incentive-Compatible

Healthcare Rationing

Haris Aziz† Florian Brandl‡

Rationing of healthcare resources has emerged as an important issue, which has

been discussed by medical experts, policy-makers, and the general public. We con-

sider a rationing problem where medical units are to be allocated to patients. Each

unit is reserved for one of several categories and each category has a priority ranking

of the patients. We present an allocation rule that respects the priorities, complies

with the eligibility requirements, allocates the largest feasible number of units, and

does not incentivize agents to hide that they qualify through a category. The rule

characterizes all possible allocations that satisfy the first three properties and is

polynomial-time computable.

Keywords: Allocation under priorities, healthcare rationing, assignment maxi-

mization.

1 Introduction

The COVID-19 pandemic has emerged as one of the major challenges the world has faced. It

resulted in a frantic race to produce the most effective and safe vaccine to stem the devastating

effects of the pandemic. While the creation, testing, and approval of vaccines proceeded at an

unprecedented pace, the initial scarcity posed the question of how to distribute them efficiently

and fairly. The same problem arises for other scarce or costly healthcare resources such as ven-

tilators and antiviral treatments. One approach for allocating resources is to assign patients to

priority groups, which capture how much a patient needs treatment. For example, three priority

groups that have been highlighted by medical practitioners and policy-makers are health care

workers, other essential workers and people in high-transmission settings, and people with medi-

cal vulnerabilities associated with poorer COVID-19 outcomes (Persad et al., 2020; Truog et al.,

2020). Other concerns that have been discussed include racial equity (Bruce and Tallman, 2021).

†UNSW Sydney and Data61 CSIRO, Australia, haris.aziz@unsw.edu.au
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It is however not enough to identify priority groups. There is also a need to algorithmically

and transparently make allocation decisions (Emanuel et al., 2020; WHO, 2020) based on the

priorities. In a New York Times article, the issue has been referred to as one of the hardest

decisions health organizations need to make (Fink, 2020). Since the decisions need to be justified

to the public, they must be aligned with ethical guidelines, such as respecting the priorities

among the patients. These decisions are not straightforward, especially when a patient is eligible

for more than one category. In that case, the decision of which category is used to serve a patient

can have compounding effects on what categories other agents can use. A competing objective

is allocating the resources efficiently in the sense that they have maximum social benefit. For

example, no medical unit should be left unallocated. Thus, the following fundamental question

arises.

How should we allocate scarce medical resources fairly and efficiently while taking

into account various ethical principles and priority groups?

The problem of health care rationing has recently been formally studied by market designers.

Pathak, Sönmez, Ünver, and Yenmez (2020) were among the first to frame the problem as a

two-sided matching problem in which patients are on one side and the resources units are on

the other side. In doing so, they linked the healthcare rationing problem with the rich field of

two-sided matching (Roth and Sotomayor, 1990). Pathak et al. suggested dividing the units

into different reserve categories, each with its own priority ranking of the patients. The cate-

gories and the category-specific priorities represent the ethical principles and guidelines that a

policy-maker may wish to implement.1 For example, a category for senior people may have an

age-specific priority ranking that puts the eldest citizens first. Having a holistic framework that

considers different types of priorities has been termed important in healthcare rationing.2 The

approach of Pathak et al. has been recommended or adopted by various organizations including

the NASEM (National Academies of Sciences, Engineering, and Medicine) Framework for Equi-

table Vaccine Allocation (NASEM-National Academies of Sciences, Engineering, and Medicine,

2020) and has been endorsed in medical circles (Persad et al., 2020; Sönmez et al., 2020). The

approach has been covered widely in the media, including the New York Times and the Wash-

ington Post.3

For their two-sided matching formulation, Pathak et al. (2020) proposed a solution for

the problem. One of their key insights was that running the Deferred Acceptance algo-

rithm (Gale and Shapley, 1962; Roth, 2008) on the underlying problem satisfies basic relevant

axioms (eligibility compliance, respect of priorities, and non-wastefulness). They also showed

1See for example, the book by Bognar and Hirose (2014) on the ethics of healthcare rationing that discusses

many of these principles.
2In a report issued by the Deeble Institute for Health Policy Research, Martin (2015) writes that “To establish

robust healthcare rationing in Australia, decision-makers need to acknowledge the various implicit and explicit

priorities that influence the process and develop a decision-making tool that incorporates them.”
3https://www.covid19reservesystem.org/media
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when all the category priorities are consistent with a global baseline priority, their Smart Re-

serves algorithm computes a maximum size matching satisfying the basic axioms. The Smart

Reserves algorithm makes careful decisions about which category should be availed by which

patient to achieve the maximum size property. However, the general problem with general het-

erogeneous priorities has not been addressed in the literature. Allowing heterogeneous priorities

for categories seems to be very much in the spirit of incorporating different ethical values. For

example, one would expect the priority ordering for old people to be very different from a pri-

ority ordering for front-line workers which would favor energetic medical professionals.4 In this

paper, we set out to address this issue and answer the following research problem.

For healthcare rationing with heterogeneous priorities, how should we allocate re-

sources in a fair, economically efficient, strategyproof, and computationally tractable

way?

Contribution We consider the healthcare rationing with heterogeneous priorities. First we

highlight that naively ascribing strict preferences over the categories to the agents can have

adverse effects on the efficiency of the outcome when patients are eligible for multiple categories.

If the eligibility requirements are treated as hard constraints, it leads to inefficient allocation

of resources. If the eligibility requirements are treated as soft constraints, then the outcome

does not allocate the resources optimally to the highest priority patients, thereby undermining

important ethical principles.

Our first contribution is introducing the Reverse Rejecting (REV ) rule, which

(i) complies with the eligibility requirements,

(ii) respects the priorities of the categories (for each category, patients of higher priority are

served first),

(iii) yields a maximum size matching (one that allocates the largest feasible number of units

to eligible patients),

(iv) is non-wasteful (no unit is unused but could be used by some eligible patient),

(v) is strategyproof (does not incentivize agents to under-report the categories they qualify

for), and

(vi) is strongly polynomial-time computable.

We prove that the REV rule characterizes all outcomes that satisfy the first three properties.5

We show how the REV rule can be extended to a more general rule called the Smart Reverse

4Even in other contexts such as immigration, where rationing policies are applied, respecting heterogeneous

priorities can be important. For example, if a country has a quota for admitting engineers, the top engineering

applicant who satisfies basic eligibility requirements may have a good case to be issued a visa.
5In a preliminary version of the paper, we proposed a different rule that satisfies the above properties. It

requires solving as maximum weight matching of a corresponding graph. However, it does not characterize

all outcomes that satisfy the first three properties.
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Rejecting (S–REV ) rule, which processes given numbers of unreserved units first and last and

which incorporates the additional goal of allocating the largest feasible number of units from

a designated subset of categories called preferential categories. The S–REV rule satisfies a

new axiom we call order preservation, which is parameterized by how many unreserved units

are processed first and last. Moreover, it generalizes two well-known reserves rules—over-and-

above and minimum-guarantees (Galanter, 1961, 1984)—that are understood in the context of

preferential categories having consistent priorities. Finally, we discuss how our algorithms and

their properties extend to the case where the reservations are treated as soft reservations.

Our algorithm immediately applies to the school choice problem in which students are only

interested in being matched to one of their acceptable schools. It also applies to hiring settings

in which applicants are interested in one of the positions, and each of the departments has its

own priorities. Lastly, it applies to many other rationing scenarios, such as the allocation of

limited slots at public events or visas to immigration applicants.

2 Related Work

The paper is related to an active area of research on matching with distributional constraints

(see, e.g., Kojima, 2019; Aziz et al., 2021). One general class of distributional constraints that

have been examined in matching market design pertains to common quotas over institutions

such as hospitals (Kamada and Kojima, 2015, 2017; Biró et al., 2010; Goto et al., 2016).

Within the umbrella of work on matching with distributional constraints, particularly relevant

to healthcare rationing is the literature on school choice with diversity constraints and reserve

systems (Hafalir et al., 2013; Ehlers et al., 2014; Echenique and Yenmez, 2015; Kurata et al.,

2017; Aygün and Turhan, 2020; Aygün and Bó, 2020; Aziz et al., 2020; Gonczarowski et al.,

2019; Dur et al., 2018, 2020). Categories in healthcare rationing correspond to affirmative

action types in school choice. For a brief survey, we suggest the book chapter by Heo (2019).

Except for the special case in which students have exactly one type (see, e.g., Ehlers et al.,

2014), most of the approaches do not achieve diversity goals optimally, whereas for the health-

care rationing problem we consider, we aim to find matchings that maximize the number of units

allocated to eligible patients. Ahmed et al. (2017), Dickerson et al. (2019), and Ahmadi et al.

(2020) consider optimisation approaches for diverse matchings, but their objective and models

are different.

Pathak et al. (2020) were the first to frame a rationing problem with category priorities as a

two-sided matching problem in which agents are simply interested in a unit of resource and the

resources are reserved for different categories. They show that artificially enforcing strict pref-

erences of the agents over the categories and running the Deferred Acceptance algorithm results

in desirable outcomes for the rationing problem. They note, however, that this approach may

lead to matchings that are not Pareto optimal. They then proposed to use the smart reserves

approach of Sönmez and Yenmez (2020) for the restricted problem when all the preferential

categories have consistent priorities. Our results can be viewed as simultaneously achieving
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the key axioms of the two approaches of Pathak et al. (2020). Firstly, we propose a new al-

gorithm that achieves the same key axiomatic properties for heterogeneous priorities as the

algorithms of Sönmez and Yenmez (2020) and Pathak et al. (2020) for homogeneous priorities.

Secondly, our algorithm has an important advantage over the Deferred Acceptance formulation

of Pathak et al. (2020) for the case of heterogeneous priorities as our approach additionally

achieves the important property of maximality of size. It additionally satisfies a property called

maximality in beneficiary assignment, which requires that the maximum number of units from

the set of ‘preferential’ categories are used. Pathak et al. (2020) design a flexible feature of

their Smart Reserves rule that gives agents a designated number of unreserved units before the

other units are processed. By doing so, they elegantly capture two extreme approaches within

their class that have wide-spread appeal. The first approach is based on minimum-guarantees

that specifies the minimum number of units that are kept for a particular agent group. The

second approach is over-and-above; it sets aside the specified number of units for an agent

group and only uses them once all the unreserved units are allocated (for which the agent group

is eligible as well).6 Our S–REV rule achieves these features even for the case of heteroge-

neous priorities. In follow-up work, Grigoryan (2020) considers optimisation approaches for

variants of the problem but does not present any polynomial-time algorithm or consider incen-

tive issues. In contrast to the papers on healthcare rationing discussed above, we also consider

strategyproofness aspects and show that our rule complies with them.

In this paper, we attempt to compute what are essentially maximum size stable match-

ings. The problem of computing such matchings is NP-hard if both sides have strict pref-

erences/priorities (Biró et al., 2010). In our problem, the agents essentially have dichoto-

mous preferences (categories they are/are not eligible for) and, hence, we are able to obtain

a polynomial-time algorithm for the problem.

Furthermore, our rules are strategyproof. In contrast, for other two-sided matching settings,

it is known that maximizing the number of matched individuals results in incentive and fairness

impossibilities (see, e.g., Afacan et al., 2020; Krysta et al., 2014). Computing outcomes that

match as many agents as possible, has also been examined in related but different contexts (see,

e.g., Aziz, 2018; Andersson and Ehlers, 2016; Abraham et al., 2007; Bogomolnaia and Moulin,

2015).

3 Model

We adopt the model of Pathak et al. (2020) with one generalization: we allow the categories’

priorities over agents to be weak rather than strict. There are q identical and indivisible units of

some resource, a finite set C of categories, and a set N of agents with |N | = n. Each category

c has a quota qc ∈ N with
∑

c∈C qc = q and a priority ranking %c, which is a preorder on

N ∪ {∅}. An agent i is eligible for category c if i ≻c ∅. We denote by Nc the set of agents

6Both the “minimum-guarantees” and “over-and-above” approaches have been discussed in the context of reserves

systems in India (see, e.g., Galanter (1961, 1984)).
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who are eligible for c. We say that I = (N,C, (%c)c∈C , (qc)c∈C) is an instance (of the rationing

problem). We will write (%c) and (qc) for the profile of priorities and quotas in the sequel. We

also consider a baseline ordering ≻π, which can be an arbitrary permutation of the agents. It

could be interpreted as a global scale measuring the need for treatment.

A matching µ : N → C ∪ {∅} is a function that maps each agent to a category or to ∅ and

satisfies the capacity constraints: for each c ∈ C, |µ−1(c)| ≤ qc. For an agent i ∈ N , µ(i) = ∅

means that i is unmatched (that is, does not receive any unit) and µ(i) = c means that i receives

a unit reserved for category c. When convenient, we will identify a matching µ with the set of

agent-category pairs {{i, µ(i)} : µ(i) 6= ∅}.7

We introduce four axioms in the context of allocating medical units that are well-grounded

in practice. For further motivation of these axioms, we recommend the detailed discussions by

Pathak et al. (2020).

The first axiom requires matchings to comply with the eligibility requirements. It specifies

that a patient should only take a unit of a category for which the patient is eligible. For example,

a young person should not take a unit from the units reserved for elderly people.

Definition 1 (Compliance with eligibility requirements). A matching µ complies with eligibility

requirements if for any i ∈ N and c ∈ C, µ(i) = c implies i ≻c ∅.

The second axiom concerns the respect of priorities of categories. It rules out that a patient

is matched to a unit of some category c while some other agent with a higher priority for c is

unmatched.

Definition 2 (Respect of priorities). A matching µ respects priorities if for any i, j ∈ N and

c ∈ C, µ(i) = c and µ(j) = ∅ implies j 6≻c i. If there exist i, j ∈ N and c ∈ C with µ(i) = c,

µ(j) = ∅, and j ≻c i, we say that j has justified envy towards i for category c.

An astute reader who is familiar with the theory of stable matchings will immediately realize

that the axiom “respect of priorities” is equivalent to justified envy-freeness in the context of

school-choice matchings (Abdulkadiroğlu and Sönmez, 2003).

Next, non-wastefulness requires that if an agent is unmatched despite being eligible for a

category, then all units reserved for that category are matched to other agents.

Definition 3 (Non-wastefulness). A matching µ is non-wasteful if for any i ∈ N and c ∈ C,

i ≻c ∅ and µ(i) = ∅ implies |µ−1(c)| = qc.

Not all non-wasteful matchings allocate the same number of units. In particular, some may

not allocate as many units as possible. A stronger efficiency notion prescribes that the number

of allocated units is maximal subject to compliance with the eligibility requirements.

Definition 4 (Maximum size matching). A matching µ is a maximum size matching if it has

maximum size among all matchings complying with the eligibility requirements.

7In graph theoretic terms, µ is a b-matching because multiple edges in µ can be adjacent to a category c.
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1

2

3

c1

c2

qc2=1

2 ≻c1 3 ≻c1 ∅ ≻c1 1

qc1=1

2 ≻c2 ∅ ≻c2 1 ≻c2 3

Figure 1: The instance I described in Example 1. The reservation graph BI on the left has

an edge from i to c if i is eligible for c. The priority rankings of the categories are

depicted on the right.

These four axioms capture the first guideline put forth in the report by the Na-

tional Academies of Sciences, Engineering, and Medicine: “ensure that allocation maxi-

mizes benefit to patients, mitigates inequities and disparities, and adheres to ethical prin-

ciples” (NASEM-National Academies of Sciences, Engineering, and Medicine, 2020, page 69).

Requiring matchings to be of maximum size is aligned with the principle to “gain the best value

we possibly can from the expenditure of that resource” (Dawson et al., 2020).

It will be useful to associate a graph BI , called a reservation graph, with an instance I.

BI = (N ∪ C,E) is a bipartite graph with an edge from i to c if i is eligible for c. That is,

E = {{i, c} : i ≻c ∅}. If G is any graph, we denote by ms(G) the number of edges in a maximum

size matching of G.

The following example illustrates the definitions above.

Example 1. Suppose there are three agents and two categories with one reserved unit each.

N = {1, 2, 3}, C = {c1, c2}, qc1 = 1, qc2 = 1.

The priority ranking of c1 is 2 ≻c1 3 ≻c1 ∅ ≻c1 1 and the priority ranking of c2 is 2 ≻c2 ∅ ≻c2

1 ≻c2 3. Figure 1 illustrates this instance I of the rationing problem.

Note that agent 1 is not eligible for any category, agent 2 is eligible for c1 and c2, and agent

3 is eligible only for c1. Thus, the following matchings comply with the eligibility requirements.

µ1 = ∅ µ2 = {{2, c1}} µ3 = {{2, c2}}

µ4 = {{3, c1}} µ5 = {{2, c2}, {3, c1}}

All of these matchings except for µ4 respect priorities. Only µ2 and µ5 are non-wasteful. The

only maximum size matching is µ5.

We are interested in allocation rules, which, for each instance, return a matching.

Definition 5 (Allocation rule). An allocation rule maps every instance I to a matching for I.

We say that an allocation rule f satisfies one of the axioms in Definitions 1 to 4 if f(I) satisfies

the axiom for all instances I. Moreover, we define a notion of strategyproofness for allocation

rules. Note that all units are identical and agents have no preferences over the category of the
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unit they receive. However, they may have an incentive to hide being eligible for a category, or,

more generally, to aim for a lower priority for some category.8

Formalizing strategyproofness requires the following definition. Let (%c) and (%′
c) be priority

profiles and i ∈ N . We say agent i’s priority decreases from (%c) to (%′
c) if for all j, k 6= i and

c ∈ C,

j %c k ←→ j %′
c k

j %c i −→ j %′
c i and j ≻c i −→ j ≻′

c i

That is, the priority rankings over agents other than i are the same in both profiles and i

can only move down in the priority rankings from (%c) to (%′
c). We also say that i’s priority

decreases from I = (N,C, (%c), (qc)) to I ′ = (N,C, (%′
c), (qc)). Strategyproofness requires that

if i is unmatched for I, then i is also unmatched for I ′.

Definition 6 (Strategyproofness). An allocation rule f is strategyproof if f(I)(i) = ∅ implies

f(I ′)(i) = ∅ whenever i’s priority decreases from I to I ′.

In particular, with a strategyproof allocation rule, agents cannot benefit from hiding that

they are eligible for a category.9

An allocation rule is non-bossy if no unmatched agent can decrease her priority to change the

set of matched agents. Combined with the other axioms, this property turns out to be fairly

demanding. Thus, we weaken it by requiring only that no unmatched agent can decrease her

priority and thereby change which of the agents lower in the baseline ordering are matched.

Definition 7 (Weak non-bossiness). An allocation rule f is weakly non-bossy if f(I)(i) = ∅

implies that any j with i ≻π j is matched in f(I) if and only if j is matched in f(I ′) whenever

i’s priority decreases from I to I ′.

4 Issues with Breaking Ties and Applying the Deferred Acceptance

Algorithm

Pathak et al. (2020) showed that if one artificially introduces (strict) preferences for the agents

over the categories they are eligible for and applies the Deferred Acceptance algorithm to the

resulting two-sided matching problem, the resulting matching complies with the eligibility re-

quirements, respects priorities, and is non-wasteful (Pathak et al., 2020, Theorem 2). They

state the algorithmic implications of their result.

“Not only is this result a second characterization of matchings that satisfy our three

basic axioms, it also provides a concrete procedure to calculate all such matchings.”

8In the context of school choice, lowering oneself in the priority ranking of a school is akin to students deliberately

under-performing in an entrance exam.
9This restricted version of strategyproofness under which agents do not have an incentive to hide their eligible

categories, has been referred to as incentive-compatibility by Aygün and Bó (2020).
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Although considering all possible artificial preferences and running the Deferred Acceptance

algorithm gives all the matchings satisfying the three axioms, it is computationally expensive

to consider |C|!n different preference profiles. Moreover, not every preference profile leads to a

compelling outcome even if the categories have strict priorities. For example, some preference

profiles—like the one in the following example—lead to matchings that are not of maximum

size.10

Example 2. Consider the instance in Example 1. Suppose we run the Deferred Acceptance

algorithm assuming all agents prefer c1 to c2 to c3. Assuming agents can only be matched to

categories they are eligible for (compliance with eligibility requirements), the resulting matching

is µ2 = {{2, c1}}. This matching is however not the most efficient use of the resources because it

is possible to allocate all units while still satisfying the axioms in Definitions 1 to 3 by choosing

µ5 = {{3, c1}, {2, c2}}.

Hence, artificially introducing preferences of agents and running the Deferred Acceptance

algorithm can lead to inefficient allocations. Even if we ignore computational concerns and can

assign preferences to agents so that the matching selected by the Deferred Acceptance algorithm

is of maximum size and respects priorities, it is not clear whether such a rule is strategyproof

in the above sense. We propose a rule that circumvents both issues.

5 The Reverse Rejecting Rule

The Reverse Rejecting Rule (REV ) considers the agents in order of the baseline ordering ≻π

from lowest to highest priority. It rejects an agent if the agents who have not been rejected thus

far can form a maximum size matching (among matchings in the reservation graph) for which

none of the rejected agents has justified envy towards a matched agent. The second constraint

is implemented by removing those edges from the reservation graph BI that may cause justified

envy by rejected agents. That is, if agent i is rejected, we cannot allow any agent j to be

matched to a category c if i ≻c j, and so remove the edge {j, c} from BI . More generally, if R

is the set of rejected agents, B−R
I = ((N \R) ∪C,E) with

E = {{j, c} : j ≻c ∅ and there is no i ∈ R such that i ≻c j}

is the corresponding reduced reservation graph. Note that if R ⊃ R′, then B−R
I is a subgraph

of B−R′

I . In particular, B−R
I is a subgraph of BI . The REV rule then works as follows:

Let the set of rejected agents R be empty at the start and consider the agents in order

of the baseline ordering ≻π from lowest to highest priority. When considering agent

i, add i to the rejected agents R if and only if ms(B
−(R∪{i})
I ) = ms(BI). After the

last agent has been considered, let RI be the final set of rejected agents and choose

a maximum size matching of the reduced reservation graph B
−RI

I .

10The issue is also evident from the discussion by Pathak et al. (2020) where they point out that sequential

treatment of categories may not give a maximum size matching.
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1

2

3

4

c1

c2

qc2=1

qc1=1

(a) BI

1

2

3

c1

c2

qc2=1

qc1=1

(b) B
−{4}
I

1

2 c1

c2

qc2=1

qc1=1

(c) B
−{3,4}
I

1

3

c1

c2

qc2=1

qc1=1

(d) B
−{2,4}
I

3

c1

c2

qc2=1

qc1=1

(e) B
−{1,2,4}
I

Figure 2: Graphs for the instance I in Example 3.

The methodology of the REV rule is different from the horizontal envelop rule of

Sönmez and Yenmez (2020) and the Smart Reserves rule of Pathak et al. (2020). In contrast to

iteratively or instantly selecting agents that will be matched, the REV rule goes in the reverse

order of the baseline ordering and decides which agents to reject. More importantly, the REV

rule works for heterogeneous priorities.

Example 3 (Illustration of the REV rule). Consider an instance with

N = {1, 2, 3, 4}, C = {c1, c2}, qc1 = qc2 = 1

The priorities are 1 ≻c1 4 ≻c1 2 ≻c1 ∅ and 1 ≻c2 3 ≻c2 ∅. For 1 ≻π 2 ≻π 3 ≻π 4, let us simulate

the REV rule. The reservation graph BI is depicted in Figure 2a. It has a maximum size

matching of size 2. First agent 4 is considered. Since the graph B
−{4}
I depicted in Figure 2b

admits a matching of size 2, agent 4 is placed in R. Next, agent 3 is considered and not placed

in R since the graph B
−{3,4}
I depicted in Figure 2c does not admit a matching of size 2. The

graph B
−{2,4}
I depicted in Figure 2d admits a matching of size 2. Hence, agent 2 is placed in R.

Lastly, since B
−{1,2,4}
I depicted in Figure 2e does not admit a matching of size 2, agent 1 is not

placed in R. The final outcome is a maximum size matching of the graph B
−{2,4}
I as depicted

in Figure 2d.

Theorem 1 (Properties of the REV rule). The REV rule

(i) complies with eligibility requirements,

(ii) respects priorities,
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(iii) returns a matching of maximum size among feasible matchings,

(iv) is weakly non-bossy,

(v) is strategyproof, and

(vi) can be computed in strongly polynomial time.

Proof. (i) Compliance with eligibility requirements. The outcome is a matching of B
−RI

I ,

which is a subgraph of BI . Any edge {i, c} of BI is such that i ≻c ∅. Therefore the

outcome satisfies eligibility requirements.

(ii) Respect of priorities. Let µ be the matching returned by the REV rule for the instance

I. First, we claim that µ provides no justified envy for any agent in RI . If j ∈ RI , i ∈ N ,

and c ∈ C with µ(i) = c and j ≻c i, then {i, c} was deleted from the reservation graph

when rejecting j and is thus not an edge of B−RI

I . Since µ is a matching of B−R
I , it does

not match i to c.

Second, we show that µ matches all agents in N \ RI . In particular, no agent in N \ RI

can have (justified) envy. Assume for contradiction that |µ| < n− |RI |. This means that

ms(B
−(RI∪{i})
I ) < ms(BI) = ms(B−RI

I ) = |µ| for all i ∈ N \RI . Among all maximum size

matchings of B−RI

I , let µ′ be one that is Pareto optimal with respect to the priorities. If

there were i, j ∈ N \RI so that j has justified envy towards i in µ′ (µ′(i) = c, µ′(j) = ∅, and

j ≻c i), then the matching µ′ \ {{i, c}} ∪ {{j, c}} would Pareto dominate µ′ with respect

to the priorities, which cannot be. Thus, µ′ respect priorities, so that for j ∈ N \RI with

µ′(j) = ∅, µ′ is a matching of B−(RI∪{j})
I . It follows that ms(B

−(RI∪{j})
I ) = ms(B−RI

I ),

which contradicts that the REV rule rejects none of the agents in N \RI .

(iii) Maximum size matching. The returned matching is by construction a matching of size

ms(BI) and hence of maximum size among all matching complying with the eligibility

requirements.

(iv) Weak non-bossiness. For simplicity, suppose the baseline ordering ≻π is 1 ≻π 2 ≻π · · · ≻π

n. Let i ∈ N , I, I ′ be instances so that i’s priority decreases from I to I ′. Assume that

i is unmatched in REV (I). Note that ms(BI) = ms(BI′) since the edge set of BI′ is a

subset of the edge set of BI and REV (I) does not match i. Let Ri
I = {j ∈ RI : i ≻π j} be

the agents who are unmatched in REV (I) and are lower in the baseline ordering than i.

Define Ri
I′ similarly. We need to show that Ri

I = Ri
I′ . To this end, we prove by induction

that j ∈ Ri
I if and only if j ∈ Ri

I′ for j = n to i+ 1

The base case is trivial since the set of rejected agents is the empty set at the start of the

algorithm under both instances I and I ′.

For the induction step, let j > i and suppose j′ ∈ Ri
I if and only if j′ ∈ Ri

I′ for j′ =

n to j + 1. We prove that j ∈ Ri
I if and only if j ∈ Ri

I′ . Denote by R the set of

rejected agents at the beginning of the round where agent j is considered. Note that
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R = Ri
I ∩ {j + 1, . . . , n} = RI ∩ {j + 1, . . . , n}. If j ∈ Ri

I , this is because there exists

a matching µ of B−(R∪{j})
I with |µ| = ms(BI). Since RI ∩ {j, . . . , n} ⊂ R ∪ {j}, µ does

not match any agent in RI ∩ {j, . . . , n}. Since i is unmatched in REV (I), it follows that

i ∈ RI , and we can assume that µ does not match i. Now consider B
−(R∪{j})
I′ . For each

k ∈ N \ (R∪{j} ∪ {i}) and c ∈ C, {k, c} is an edge of B−(R∪{j})
I if and only if {k, c} is an

edge of B−(R∪{j})
I′ since the priorities for all agents other than i are the same in I and I ′.

It follows that µ is also a feasible matching of B−(R∪{j})
I′ . Therefore j ∈ Ri

I′ .

For the other direction, suppose j ∈ Ri
I′ . Hence, there exists a matching µ of B−(R∪{j})

I′

with |µ| = ms(BI′) = ms(BI). As above, for each k ∈ N \(R∪{j}∪{i}) and c ∈ C, {k, c}

is an edge of B−(R∪{j})
I if and only if {k, c} is an edge of B−(R∪{j})

I′ . For i and any c ∈ C,

note that if {i, c} is an edge of B−(R∩{j})
I′ , then {i, c} is an edge of B−(R∪{j})

I . Hence µ is

also a feasible matching of B−(R∪{j})
I . Thus, j ∈ Ri

I′ .

This completes the proof that Ri
I = Ri

I′ . We remark that the argument above breaks

down for agents j with j ≻π i since if i ∈ S, not all edges of B−S
I′ are also edges of B−S

I .

(v) Strategyproofness. Suppose agent i’s priority decreases from I to I ′ and i is unmatched

in REV (I). As shown in the proof for respect of priorities, this is equivalent to i ∈ RI .

We prove that i ∈ RI′ . By the proof of weak non-bossiness above, Ri
I = Ri

I′ . Since

i ∈ RI , it follows that ms(B
−(Ri

I
∪{i})

I ) = ms(BI). Note that B
−(Ri

I
∪{i})

I is a subgraph

of B
−(Ri

I′
∪{i})

I′ since Ri
I = Ri

I′ and i’s priority decreases from I to I ′. It follows that

ms(B
−(Ri

I′
∪{i})

I′ ) = ms(B
−(Ri

I∪{i})
I ) = ms(BI). Therefore i ∈ RI′ .

(vi) Polynomial time computability. The rule makes at most n calls to computing a maximum

size matching of the underlying reservation graphs thus runs in strongly polynomial time.

Remark 1 (The REV rule is not non-bossy). Consider an instance with

N = {1, 2, 3, 4}, C = {c1, c2}, qc1 = qc2 = 1

The priorities are 1 ≻c1 4 ≻c1 2 ≻c1 ∅ and 1 ≻c2 3 ≻c2 ∅. For 1 ≻π 2 ≻π 3 ≻π 4, the REV

rule yields the matching µ = {{1, c1}, {3, c2}}. If agent 4 reports that they are not eligible for

c1, agent 2 moves to the second equivalence class in the priority order of c1 and the REV rule

yields the matching µ′ = {{1, c2}, {2, c1}}. Since µ 6= µ′, the REV rule violates non-bossiness.

Remark 2 (Relation to school choice). Theorem 1 can be rephrased in the context of

school choice (see, e.g., Abdulkadiroğlu and Sönmez, 2003). Agents correspond to students

and categories correspond to schools. Each student finds a subset of schools acceptable and is

indifferent between all acceptable schools. The schools have priorities over the students. Then,

Theorem 1 reads as follows.

Theorem. Consider the school choice problem where the students partition the schools into ac-

ceptable and unacceptable schools. Then, there is an allocation rule that only matches students

12



to acceptable schools, admits no justified envy, is non-wasteful, matches the maximal feasible

number of students, and is strategyproof for students.

Note that among the matchings that comply with the eligibility requirements, respect priori-

ties, and have maximum size among feasible matchings, the REV rule returns one that matches

the set of agents that is maximal according to the upward lexicographic ordering on subsets of

agents induced by the baseline ordering. Hence, the outcome of the REV rule depends heavily

on the baseline ordering. We show that in fact, every matching satisfying these three properties

is an outcome of the REV rule for some baseline ordering. Thus, these properties characterize

all possible outcomes of the REV rule.

Theorem 2 (Characterization of REV outcomes). A matching complies with the eligibility

requirements, respects priorities, and has maximum size among feasible matchings if and only

if it is a possible outcome of the REV rule for some baseline ordering.

Proof. Consider a matching µ with the three properties. Suppose it matches the set of agents

S ⊆ N . Our first claim is that µ is feasible matching of B−(N\S)
I . Since µ satisfies the eligibility

requirements, it is a matching of the graph BI constrained to the vertex set S ∪ C. Since µ

respects priorities, there exists no edge {i, c} ∈ µ such that j ≻c i for some j ∈ N \S. Therefore,

it follows that µ is a matching of B−(N\S)
I .

Now consider a baseline ordering ≻π such that i ≻π j for all i ∈ S and j ∈ N\S. We claim that

RI = N \S. Since |µ| = ms(BI) by assumption and µ is a matching of B−(N\S)
I as shown above,

it follows that N \S ⊂ RI . The inclusion cannot be strict since then ms(B−RI

I ) < |µ| = ms(BI).

Thus, RI = N \ S. Since µ is a maximum size matching of B−(N\S)
I , it is a possible outcome of

the REV rule.

The converse follows from Theorem 1.

6 Treating Reserved and Unreserved Units Asymmetrically

We have thus far treated all categories symmetrically. Now we designate one category cu ∈ C

as the unreserved category. All agents are eligible for the unreserved category and the priority

ranking for the unreserved category equals the baseline ordering ≻π. We refer to the units

reserved for the unreserved category as unreserved units and call the remaining categories

preferential categories. The set of preferential categories is denoted by Cp. There are two reasons

for introducing the unreserved category. Firstly, we want to consider maximum beneficiary

assignments, which maximize the number of agents matched to preferential categories.11

Definition 8 (Maximum beneficiary assignment). A matching µ is a maximum beneficiary

assignment if it maximizes the number of agents matched to a preferential category.

11In our context, the combination of maximum beneficiary assignment and non-wastefulness implies maximum

size.
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Secondly, in various reserves problems, unreserved units are treated in special ways such as

being allocated later or earlier. We discuss both of these issues.

We observe that applying the REV rule to the preferential categories Cp and then allocating

the unreserved units among the unmatched agents, say, according to the baseline ordering,

yields a maximum beneficiary assignment.

6.1 Order Preservation

Certain policy goals may require allocating a designated number of unreserved units before

allocating the units reserved for preferential categories. For example, the rationale for the

“over-and-above” reserve approach is that agents first get a bite at the designated unreserved

units before they utilize the preferential category units for which they are eligible. By contrast,

the “minimum-guarantees” reserve approach first assigns agents to preferential categories and

then matches the remaining agents to the unreserved units. We first define minimum-guarantees

and over-and-above reservation rules (Galanter, 1984, Chapter 13, Part B) when the agents are

eligible for at most one preferential category and all categories have priorities that are consistent

with the baseline ordering in the sense that the agents that are eligible for a category are ranked

according to the baseline ordering.12

Minimum-guarantee Consider the agents in the order of the baseline ordering. For each agent,

match her to a preferential category if (i) the agent is eligible for a preferential category and

(ii) not all units reserved for this category have been allocated. Otherwise match the agent to

the unreserved category if an unreserved unit remains.13

Over-and-Above Consider the agents in the order of the baseline ordering. For each agent i,

match her to the unreserved category only if (i) an unreserved unit remains and (ii) if agent i

is eligible for some preferential category, say, c, then there still are at least qc agents from Nc

other than i who are unmatched. Then, fill up the preferential categories as follows: for each

c ∈ Cp, the min{qc, |Nc|} highest priority unmatched agents are given one unit each from c.

We present an example adapted from the book of Galanter (1984) to illustrate the difference

between the minimum-guarantees and the over-and-above approach.14

12Galanter (1961, 1984) was one of the first to study the differences between the minimum-guarantees and

over-and-above reservation rules in depth.
13There is another version of the minimum-guarantees rule called the Partha method that gives an equivalent

outcome but operates differently as an algorithm. In the Partha method, the units are allocated according to

the baseline ordering (“merit”) and preferential reservation is only enforced if the reserves are not maximally

used (Galanter, 1984).
14Galanter (1984) studied minimum-guarantees and over-and-above in the context of job allocation in India where

the baseline ordering represents the merit ranking and the preferential categories are historically disadvantaged

groups. He observes that the minimum-guarantees rule “insures that the amount of effective reservation is

somehow commensurate with the backwardness that inspired it.” On the other hand, he observes that the

minimum-guarantees rule may “overstate the effective amount of reservation” especially if the disadvantaged

groups are doing well enough on merit (page 461).
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Example 4. Consider the case where N = {1, 2, 3, 4}, C = {c, cu}, qc = qcu = 1, Nc = {1, 4},

and 1 ≻π 2 ≻π 3 ≻π 4. The outcome of the minimum-guarantees rule is that agent 1 and

2 are selected and the matching is {{1, c}, {2, cu}}. The outcome of the over-and-above rule

is that agents 1 and 4 are selected and the matching is {{1, cu}, {4, c}}. In the example, the

minimum-guarantees rule coincides with the rule that solely uses the baseline ordering. On

the other hand, the over-and-above rule provides additional representation of agents from the

preferential category c.

We note that the minimum-guarantees approach allocates the unreserved units at the end

whereas the over-and-above approach allocates the unreserved units first. We now explicitly

distinguish between unreserved units that are processed earlier and later. To be precise, let

C = Cp ∪ {c
1
u, c

2
u}, where c1u represents the unreserved units to be treated first and c2u the

unreserved units to be treated at the end. We view c1u and c2u as subcategories of the unreserved

category cu and the qcu slots for cu as being partitioned into qc1u slots for c1u and qc2u slots for

c2u. Hence, qc1u + qc2u = qcu and ≻c1u
= ≻c1u

= ≻π. If an agent is matched to c1u or c2u, we say that

she receives an unreserved unit.

Pathak et al. (2020) formulated a family of rules, called Smart Reserves rules, that allow

agents to be eligible for multiple preferential categories and generalize the minimum-guarantee

and over-and-above rules to this case. In this section, we capture these approaches via an

axiom for matchings called order preservation and then propose a new rule that also works

for heterogeneous priorities. Order preservation is parametrized by the number of unreserved

units that are placed in category c1u and c2u. It captures the idea that there is an order of the

categories (c1u, Cp, and then c2u) and no two agents should be able to swap their matches so that

eligibility requirements are not violated, and an earlier category gets a higher priority agent

after the swap.

Definition 9 (Order preservation). Consider a matching µ of agents to categories in Cp ∪

{c1u, c
2
u}. We say that µ is order preserving (with respect to c1u and c2u) for baseline ordering ≻π

if for any two agents i, j ∈ N ,

(i) µ(i) ∈ Cp ∪ {c
2
u}, i ≻µ(j) j, and j is eligible for category µ(i) implies µ(j) 6= c1u, and

(ii) µ(j) ∈ Cp ∪ {c
1
u}, i ≻µ(j) j, and i is eligible for category µ(j) implies µ(i) 6= c2u.

15

There are two extreme ways unreserved units can be treated under order preservation. The

first is if qc1u = 0 and qc2u = qcu. The other is if qc1u = qcu and qc2u = 0. The conceptual con-

tribution of Definition 9 is that instead of describing over-and-above and minimum-guarantees

rules as consequences of certain sequential allocation methods, order preservation captures a

key property of their resulting matchings. It is formulated so that it allows for heterogeneous

priorities or agents being eligible for multiple categories.

15It follows from i ≻µ(j) j that i is eligible for category µ(j). We state it explicitly in (ii) to maintain the

symmetry with (i).
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We collect some of the properties of the minimum-guarantees rule and the over-and-above rule

when each agent is eligible for at most one preferential category and categories have consistent

priorities. These properties characterize the minimum-guarantees rule for the corresponding

notion of order-preservation.

Proposition 1 (Properties of minimum-guarantees and over-and-above). Assume each agent is

eligible for at most one preferential category and all categories have consistent priorities. Then,

the outcome of the minimum-guarantees (over-and-above) rule

(i) complies with the eligibility requirements,

(ii) is a maximum beneficiary assignment,

(iii) respects priorities,

(iv) is non-wasteful, and

(v) satisfies order preservation for qc1u = 0 and qc2u = qcu (qc1u = qcu and qc2u = 0).

Moreover, the outcome of the minimum-guarantees rule is the unique matching satisfying (i)

to (v) with qc1u = 0 and qc2u = qcu.

Proof. First consider the minimum-guarantees rule. It complies with the eligibility requirements

and is non-wasteful. It also yields a maximum beneficiary assignment because for each pref-

erential category, the maximum possible number of agents is matched. The unreserved units

are matched later to the unmatched agents. Therefore, the matching respects priorities and

satisfies order preservation for qc1u = 0 and qc2u = qcu .

We prove that there is exactly one matching satisfying (i) to (v) with qc1u = 0 and qc2u = qcu.

Hence, the outcome of the minimum-guarantees rule is the unique such matching. Suppose

for contradiction there are two such matchings µ′ and µ′′. Since each agent is eligible for at

most one category in Cp and µ′ and µ′′ satisfy maximum beneficiary assignment, it follows that

|µ′(c)| = |µ′′(c)| for all c ∈ Cp. We prove that for either of µ′ and µ′′, the agents matched to

c ∈ Cp are the min{qc, |Nc|} highest priority eligible agents for c. Suppose this is not the case

for µ′. Then, there exist i, j ∈ Nc such that µ′(j) = c, µ′(i) 6= c, and i ≻c j. If µ′(i) = ∅,

then µ′ does not respect priorities. If µ′(i) = c2u, then µ′ does not satisfy order preservation as

i and j can swap their matches without violating eligibility requirements. We have established

that for each c ∈ Cp, µ′(c) = µ′′(c). Respect of priorities, non-wastefulness, and the fact that

every agent is eligible for c2u imply that the agents matched to c2u for either of µ′ and µ′′ are the

highest priority agents who are not matched to categories in Cp. Hence, µ′(c2u) = µ′′(c2u).

Now consider the over-and-above rule. It complies with the eligibility requirements and is

non-wasteful. It also yields a maximum beneficiary assignment because for each preferential

category, the maximum possible number of agents are matched. The unreserved units are

matched to the highest priority agents possible subject to enabling a maximum beneficiary

assignment. Therefore, the matching respects priorities and satisfies order preservation for

qc1u = qcu and qc2u = 0.
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Remark 3 (Non-uniqueness of over-and-above). The outcome of the over-and-above rule

is not necessarily the unique matching satisfying (i) to (v) with qc1u = qcu and qc2u = 0. Let

N = {1, 2, 3, 4} and C = {c1u, c1, c2} with each category having capacity 1. Suppose the priorities

are 1 ≻c1u
2 ≻c1u

3 ≻c1u
4 ≻c1u

∅, 1 ≻c1 3 ≻c1 ∅, and 2 ≻c2 4 ≻c2 ∅. Then, the outcome of the

over and above rule is {{1, c1u}, {3, c1}, {2, c2}}. Another matching that satisfies the properties

is {{2, c1u}, {1, c1}, {4, c2}}.

6.2 Smart Reverse Rejecting Rule

The Smart Reserves rule of Pathak et al. (2020) gives agents the unreserved units from c1u as

long as the set of remaining agents can be matched to get a maximum beneficiary assignment.

Whereas the REV rule is not equipped to handle unreserved categories, the Smart Reserves

rule is not designed to handle heterogeneous priorities. The ideas of both approaches can be

combined to obtain a Smart Reverse Rejecting (S–REV ) rule. It first determines which agents

get an unreserved unit from c1u, then allocates the units reserved for preferential categories to the

remaining agents using the REV rule, and gives the c2u units to the remaining agents according

to the baseline ordering. More precisely, the S–REV rule works as follows:

Let the set of agents to be given unreserved units from c1u, N1, be empty at the start

and consider the agents in order of the baseline ordering ≻π from highest to lowest

priority. When agent i is considered, add i to N1 if N1 contains fewer than qc1u

agents and the agents the agents in N \ (N1 ∪ {i}) can form a maximum beneficiary

assignment. After the last agent has been considered, give each agent in N1 an

unreserved unit from c1u. Use the REV rule to allocate the units reserved for the

preferential categories Cp to the remaining agents. Lastly, give the unreserved units

from c2u to the remaining agents in order of the baseline ordering from highest to

lowest priority.

We show that the S–REV rule preserves the properties of the REV rule while allowing to

treat reserved and unreserved units asymmetrically. Table 1 summarizes the properties of the

S–REV rule, the Smart Reserves rule, and the approach based on the Deferred Acceptance

algorithm described in Section 4.

Theorem 3 (Properties of the S–REV rule). The S–REV rule

(i) complies with eligibility requirements,

(ii) yields a maximum beneficiary assignment,

(iii) respects priorities,

(iv) is strategyproof,

(v) is weakly non-bossy,
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S–REV Smart Reserves DA

compliance with eligibility requirements X X X

maximum beneficiary assignment X X –

respect of priorities X X∗ X

strategyproofness X n/a X

weak non-bossiness X n/a X

order preservation X X∗ –

polynomial-time computability X X X

Table 1: Properties satisfied by the S–REV rule, the Smart Reserves rule of Pathak et al.

(2020), and the Deferred Acceptance algorithm described in Section 4. An asterisk

indicates that the property holds if priorities are strict and consistent with the baseline

ordering. N/a indicates that the rule assumes homogenous priorities but the property

allows for changes in the priorities that may result in inhomogeneous priorities.

(vi) satisfies order preservation, and

(vii) is polynomial-time computable.

Proof. (i) and (ii) are clear by construction. Note that a maximum beneficiary assignment is

a maximum size matching of agent to all categories in C = Cp ∪ {c
1
u, c

2
u} since every agent is

eligible for c1u and c2u.

(iii) We first prove that no unmatched agent can have justified envy for an agent matched to

c1u. Suppose an unmatched agent i has higher baseline priority than an agent j matched to c1u.

Then, i would have been considered before j when determining which agents get units from c1u.

The chosen matching shows that neither i nor the agents in N1 (at the time i was considered)

are needed a form a maximum beneficiary assignment. Hence, i would have been added to N1

and received a unit from c1u, which is a contradiction.

Second, no unmatched agent can have justified envy towards an agent matched to c2u because

each unmatched agent comes later in the baseline ordering than each agent matched to c2u.

Finally, no unmatched agent can have justified envy towards an agent matched to a category

in Cp as this would contradict the fact that the REV rule respects priorities.

(iv) We show that if an agent i is unmatched under the S–REV rule, she cannot misreport

to get matched. We first show that agent i cannot misreport to get matched to u1c . Each time

an agent j is added to N1, it is because the agents in N \ (N1 ∪ {j}) can be matched to Cp to

obtain a maximum beneficiary assignment. Since i is not matched under truthful reporting, i

is not needed to obtain a maximum beneficiary assignment even if she reports all her eligible

categories, which implies that i is not needed to obtain a maximum beneficiary assignment if she

reports a strict subset of her eligible categories. Hence, i cannot affect the selection of agents

preceding her in the baseline ordering that are added to N1 and hence matched to c1u. Since i

18



was not matched to u1c , it means that when i was considered to be added to N1, the qc1u units

of c1u had already been used up. Therefore, i could not have manipulated her priorities with

respect to Cp to get one of them.

We have shown that i cannot affect the set N1, that is, which agents are matched to c1u. So

we suppose that agents matched to u1c are already fixed. Since the REV rule is strategyproof,

agent i cannot get matched to a category in Cp by misreporting.

The remaining case is that, by misreporting, agent i affects the set of agents who are not

matched to a category in Cp∪{c
1
u} and, hence, compete with i to be matched to c2u. We observe

the following:

1. Since agent i is not matched to a category in Cp and the REV rule yields a maximum

size matching, agent i cannot affect the number of agents matched to categories in Cp.

2. Since the REV rule is weakly non-bossy, the set of agents lower in the baseline ordering

who compete to be matched to c2u is unchanged under a misreport by i.

The above two facts imply that under a misreport by i, the number of agents with a higher

baseline ordering than i who are not matched to a category in Cp ∪ {c
1
u} and hence compete to

be matched to c2u does not change. Therefore, under any misreport, agent i is not matched to

c2u.

(v) Consider an agent i who is unmatched under the S–REV rule. By the proof of (iv), it

follows that i cannot affect

1. the set of agents who are matched to c1u,

2. the number of agents with higher baseline ordering who are not matched to a category in

Cp ∪ {c
1
u}, and

3. the set of agents with lower baseline ordering who are not matched to a category in

Cp ∪ {c
1
u}.

Under a truthful report, agent i is unmatched and only agents with higher baseline ordering are

matched to c2u. Hence, it follows that a misreport of agent i does not affect the set of agents

with lower baseline ordering who are matched to c2u.

(vi) Consider a matching µ returned by the S–REV rule. Suppose it does not satisfy order

preservation. Then there exist two agents i, j ∈ N such that one of the following holds:

(i) µ(i) = c1u, µ(j) 6= c1u, j ≻µ(i) i, and i is eligible for category µ(j).

(ii) µ(j) = c2u, µ(i) ∈ Cp ∪ {c
1
u}, j ≻µ(i) i, and j is eligible for category µ(i).

We first consider the violation of the first type: µ(i) = c1u, µ(j) 6= c1u, j ≻π i, and i is eligible for

category µ(j). We examine the step at which i is considered when determining which agents get

units from c1u. Since µ(i) = c1u, agent i is added to N1. Thus, a maximum beneficiary assignment

of the agents in N \ (N1 ∪ {i}) exists. One such matching is µ. The matching µ′ obtained from
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µ by swapping the matches of i and j is a maximum beneficiary assignment (since i is eligible

for µ(j)) for the agents in N \ (N1 ∪ {j}). Since j ≻π i and N1 weakly increases in every step,

N1 cannot have been larger when the algorithm considered agent j. Hence, at this earlier step,

µ′ was also a maximum beneficiary assignment for agents in N \ (N1 ∪ {j}). But the existence

of such a matching is the condition for adding j to N1, which contradicts that µ(j) 6= c1u.

Next we consider a violation of the second type: µ(j) = c2u, µ(i) ∈ Cp ∪ {c
1
i }, j ≻π i, and

j is eligible for category µ(i). Since a violation of the first type cannot happen, we may assume

that µ(i) ∈ Cp. But since j is not matched to a category in Cp, this implies that the REV rule

does not respect priorities, a contradiction.

(vii) When agents are added iteratively to N1, the algorithm requires checking if there exists a

maximum beneficiary assignment of agents in N \(N1∪{i}). This can be checked in polynomial

time by algorithms for computing a maximum size b-matching. Once N1 is fixed, we call the

REV rule, which we have already shown to be polynomial-time computable. After that the

remaining units can be allocated in linear-time by going down the baseline ordering.

Remark 4 (Soft reserves). We assumed that only matchings that satisfy the eligibility

requirements are feasible. The disadvantage of this approach is that some preferential category

units may not be utilized even though some agents are unmatched. If we do not impose eligibility

requirements as hard constraints, the setting is referred to as the case of “soft reserves”. In

that case, we can first compute a matching that complies with the eligibility requirements

using the S–REV rule. If the resulting matching leaves some units from Cp unassigned, we

allocate those to unmachted agents in order of the baseline ordering. Assuming the preferential

categories’ priorities over ineligible agents are consistent with the baseline ordering, the resulting

rule satisfies all the properties in Theorem 3 except for “hard” compliance with the eligibility

requirements. The argument for strategyproofness is similar to the proof of Theorem 3(iv). (By

misreporting, an agent cannot affect the number of agents with higher baseline order who are

unmatched.)
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