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Abstract

We study a classical problem in revenue management: quantity-based single-resource
revenue management with no-shows. In this problem, a firm observes a sequence of T
customers requesting a service. Each arrival is drawn independently from a known
distribution of k different types, and the firm needs to decide irrevocably whether to
accept or reject requests in an online fashion. The firm has a capacity of resources B,
and wants to maximize its profit. Each accepted service request yields a type-dependent
revenue and has a type-dependent probability of requiring a resource once all arrivals
have occurred (or, be a no-show). If the number of accepted arrivals that require a
resource at the end of the horizon is greater than B, the firm needs to pay a fixed
compensation for each service request that it cannot fulfill. With a clairvoyant, that
knows all arrivals ahead of time, as a benchmark, we provide an algorithm with a
uniform additive loss bound, i.e., its expected loss is independent of T . This improves
upon prior works achieving Ω(

√
T ) guarantees.
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1 Introduction

We study the canonical (quantity-based) single-resource revenue management problem with
no-shows (SRMNS). In this problem we consider a firm (e.g., airline, restaurant, hotel, rental
car agency) selling multiple products/fares of a single resource (e.g., seats, tables, rooms,
cars) over a known, finite, time horizon of T periods. The firm’s resource capacity B and
the product prices are exogenously set, and the firm’s objective is to maximize the total
profit earned by controlling the availability of the different products over time, i.e., in each
period a customer arrives to purchase a particular product, and the firm decides whether
or not to accept the customer. For each accepted customer it receives a product-dependent
reward. At the end of the time horizon, each accepted customer is a no-show with some
(product-dependent) probability, and thus does not consume any resources. The firm is
allowed to overbook, i.e., it may accept more customers than it has capacity for, but it pays
a fixed compensation (denied-service cost) for every customer that was accepted, shows up,
and cannot be served due to a lack of capacity. We study the usual scaling for this problem
in which the number of customer arrivals T (demand) and the firm’s supply B (supply)
are scaled large while all other parameters remain constant. Our main result is the first
algorithm that achieves a uniform additive loss guarantee relative to a clairvoyant optimal
algorithm that knows the arrivals a priori (sometimes referred to as the hindsight optimum);
uniform additive loss means that the loss is bounded independent of either B or T .1

1.1 Motivation

SRMNS was originally motivated by yield management for airlines for which the single
resource consists of seats in a given cabin on a plane [Rot71]. [TVR06] give an excellent
overview of its history in the airline industry that also helps illustrate the mapping be-
tween the mathematical model and the real-world setting: up until the 1970s the airline
industry was regulated, with commercial airlines offering only two service options: first-class
and coach-class with fares set centrally across carriers by the regulator (Civil Aeronautics
Board). After deregulation airlines introduced new discounted fare classes with specific
requirements/conditions, such as minimum-stay conditions, required round-trip travel, non-
refundability, or the inclusion of a Saturday-night stay to segment demand into different
categories. For example, a Saturday-night stay requirement would tend to filter out business
travelers while not affecting as many leisure travelers. In essence, these requirements and
conditions create different products for the same resource, e.g., a seat in the coach cabin,
such that (i) revenue yields vary by product, and (ii) demand for different products is roughly
independent — the latter assumes, e.g., that leisure travelers are more price-sensitive and
unwilling to pay the higher fare, whereas business travelers are price-insensitive and thus
unwilling to fulfill the requirements to meet the lower fare. Having created such different

1Some papers [VB20, GR20, BW18] refer to this loss as regret, but we avoid that terminology to avoid con-
fusion with other literatures, e.g., the bandit literature [ADL16] that involve a different information/arrival
structure.
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products, the airlines’ real-time decision is whether or not to allow reservations for a particu-
lar product. In practice, when an airline closes a given product to reservations, even though
seats remain available on a flight, then a customer for such products would be quoted a
higher fare based on the products that remain open. As demand is assumed independent
across products, such a customer would not make a reservation for the higher fare, and the
request is effectively rejected. Notice that, assuming independence of demands across fares,
the decision to accept (reject) demand for a specific product is mathematically equivalent to
the decision to have that product be open (closed) to incoming reservation requests. While
originating in the airline industry, overbooking has since been adopted much more widely,
including for lodging [BG96, BM95], rentals cars [GJ97], the restaurant industry [Ope21],
and the nonprofit sector [MV99]. Moreover, the single-resource problem specifically is often
not only used in isolation, but also sometimes appears as a subproblem when solving prob-
lems with more than one resource, i.e., in network revenue management [KTT12]. Thus,
SRMNS is one of the fundamental admission control problems in revenue management.

1.2 Technical challenges and algorithmic techniques

Without no-shows the quantity-based single-leg revenue management problem can be solved
efficiently via dynamic programming: in each period, an optimal decision only requires
knowledge of the remaining capacity and the remaining number of periods. More generally,
when no-show probabilities are equal across products, an optimal decision requires knowing
only the total count of admitted customers, not the respective product requested by each
admitted customer. Thus, in this case as well there is no curse of dimensionality, and a
dynamic program solves the problem efficiently to optimality, as was first shown by [Rot71].
This reflects the requirements of Assumption 4.1 in [TVR06]: (i) no-show probabilities are
the same for all customers, (ii) no-shows are independent across customers, (iii) no-shows are
independent of the time of the reservation, and (iv) denied-service costs are the same across
customers. Though these assumptions help obtain a tractable problem, [TVR06], and later
[GT19a] (see Chapter 3.3 therein), emphasize that (i) and (iv) are restrictive assumptions in
practice. Our work shows how to relax (i) with bounded loss. However, we keep assumption
(iv), i.e., we assume that the denied-service costs are the same across different products;
obtaining bounded loss when loosening (iv) in addition to (i) remains an interesting avenue
for future research.

Though the case with heterogeneous no-show probabilities has been studied extensively,
there are few results with provable guarantees for this problem [DKX19, KTT12]. This is in
contrast to the network revenue management problem without overbooking for which a num-
ber of algorithms with uniform loss guarantees have been developed over the past decade,
and especially in the last few years [JK12, BW18, VB20, SWZ20]. We fill this gap by adapt-
ing the compensated coupling technique of [VB20] (see proof of Theorem 2 and paragraph
thereafter) to derive the first such uniform loss guarantee for a revenue management problem
with overbooking, specifically for SRMNS with heterogeneous no-show probabilities.
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Nonlinear objective

The key technical challenge in adapting the compensated coupling technique lies in the fact
that the denied-service costs for the expected number of no-shows gives rise to a nonlinear
objective. Existing results developing/applying the compensated coupling technique [VB20,
VBG19, FB19] rely on a property that [FB19] refer to as δ-insensitivity: intuitively, this
means that the optimal solution is Lipschitz continuous in the number of arrivals of each type
over the entire horizon; notice that this is a Lipschitz property about the optimal solution
itself, not just its objective. For linear objectives, δ-insensitivity follows from standard results
in linear perturbation analysis [MS87]. In contrast, establishing such a Lipschitz property
directly for our setting is difficult due to the nonlinear objective.

Index policies

Leveraging compensated coupling requires us to take the following detour: instead of bench-
marking directly against the complicated clairvoyant optimal solution, we define a subopti-
mal clairvoyant solution for which we show that it (i) is Lipschitz continuous in the number
of arrivals of each type, and (ii) has bounded loss relative to the clairvoyant optimal solution.
In order to define this solution we take inspiration from the greedy heuristic for the one-
dimensional knapsack problem, which sorts items by their value/weight ratio and includes
items in that order until no further items fit. As the expected “weight” of a customer is
the probability that they will show up, we similarly sort customers by the ratio between
their revenue and their probability of showing up (which we refer to as critical ratio), and
accept customers in that order, i.e., there exists some threshold on the critical ratio such
that all types with critical ratio higher than the threshold are accepted whereas all types
with critical ratio lower than the threshold are rejected. We refer to such a solution as an
index solution as the type indices are, without loss of generality, assumed to be ordered by
critical ratios; for the index that has critical ratio equal to the index policy’s threshold there
is no restriction on how many arrivals should be accepted and we refer to that type as having
the threshold index. The main technical innovations to adapt compensated coupling then
require us to establish that optimal index solutions fulfill (i) and (ii).

Lipschitz continuity and local optimality

For a given type, keeping the number of accepted arrivals constant for all other types,
we can identify the optimal number of arrivals to accept through a marginal analysis. In
particular, we should accept an additional request of that type if the expected compensation
for that arrival (the compensation multiplied by the probability that they show up and the
already accepted arrivals consume all of the capacity) is smaller-equal to the revenue of that
type. The optimal number of arrivals to accept for that type then follows a newsvendor-like
condition — for the case of a single type, [GT19a] show in their Proposition 3.1 that this
locally optimal solution is indeed optimal.2 With heterogeneous types with varying no-show

2Considering only the offline optimal index solution, an added benefit of the newsvendor-like condition
is that it allows us to find the threshold index, as well as the locally optimal number of accepted customers
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probabilities, optimal solutions can be more complicated: accepting an additional customer
of one type may require rejecting some number of customers of another type which in turn
allows for more customers of a third type. . . . In a nutshell, the potential for such loops makes
it hard to either find the globally optimal offline solution or prove δ-insensitivity. In a loal
sense, however, matters are not as complicated: one of our main technical insights (Lemma
2) shows that the locally optimal number of accepted customers of one type is Lipschitz
continuous in the number of accepted customers of a second type (keeping all other types
fixed).

The reasoning above allows us to derive that index solutions fulfill (i) as, roughly speaking,
an increase in the accepted arrivals of one type, only affects the number of arrivals at the
threshold index (other types may be similarly affected in their local optimality, but for all
other types we accept either all or none of the arrivals). To derive (ii) we first show that the
optimal solution almost resembles an index solution (Lemma 5). In particular, the optimal
solution, for all but one type (which would correspond to the threshold index in the index
solution), either accepts all (but a constant number of) arrivals or rejects all (but a constant
number of) arrivals. Combined with the local Lipschitz property applied to the threshold
index, this guarantees that the difference in the number of accepted arrivals between the
clairvoyant optimal and the clairvoyant index solution is bounded by a constant for every
type, implying in particular that the clairvoyant index solution has bounded loss relative to
the clairvoyant optimal.

Instance-dependence

The reasoning in the above paragraphs involve various instance-dependent constants, i.e.,
the Lipschitz continuity and the proximity between the clairvoyant index and the clairvoyant
optimal solution. In particular, these depend on the magnitude of the no-show probabilities,
and the ratio of value and no-show probability. This makes sense intuitively: if one type has
a probability of ε of showing up, then a small decrease in accepted arrivals of another type
(with constant probability of showing up) should intuitively cause the locally optimal number
of the former type to increase by roughly 1/ε — this intuition is driven again by the greedy
Knapsack heuristic that replaces probabilities by expectations. When arrival probabilities
are allowed to be that small, our O(1)-guarantees break down and, in fact, we show formally
in Appendix C that any online policy must incur Ω(

√
T ) loss when no-show probabilities are

allowed to be arbitrarily small. In that same appendix we also show a shortcoming of index
policies specifically: we give an example to illustrate their inability to accurately account for
the trade-off between risk and reward when the critical ratios of two types are close to each
other (and getting closer as the horizon gets longer). We identify an example where a very
simple online policy obtains O(1) loss, whereas even the clairvoyant index policy that knows
the arrivals incurs Ω(

√
T ); intuitively, this is caused by the index policy preferring a type

with infinitesimally larger critical ratio, even though that type introduces significant costs
due to higher variability. For a more detailed discussion of how our guarantees depend on

for that index, through binary search.
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the problem parameters we refer the reader to the paragraphs after Lemma 2 and Lemma 5.

1.3 Related work

Compensated coupling

As we alluded to above, our work is most closely related to the recently introduced com-
pensated coupling technique for online stochastic decision-making problems [VB20, VBG19,
FB19]. The novelty of our work, relative to these, lies in (i) the structural results for SRMNS
that bound the losses incurred in the detour to the index policy, (ii) the extension of the
compensated coupling technique to a nonlinear objective, and (iii) the first uniform loss
guarantees for a dynamic revenue management problem with overbooking. Our work also
relates closely to the following recent results: [AX20, Bra19] prove logarithmic lower bounds
on the optimal loss guarantee when types have values that come from continuous distribu-
tions, e.g., U [0, 1], rather than coming from a finite set. Similarly, [FB19] prove lower bounds
on uniform loss guarantees that are based on the arrival probabilities of each type (when
the latter are not iid). Both of these consider special cases of our setting with overbooking,
and thus apply as well. [VBG19, CLY21] prove uniform loss guarantees for settings where
the arrival probabilities are unknown a priori (but iid), and need to be learned — we believe
that this part of the analysis of [VBG19] would extend to our setting in a straightforward
manner. Finally, it is worth highlighting the work of [AG19], who introduced novel technical
ideas when studying the multisecretary problem with known distribution (equivalent to our
problem without no-shows/overbooking), and thereby initiated much of the recent work in
this space.

Fluid, diffusion, and uniform loss

The OR literature often distinguishes between fluid and diffusion optimal solutions when
proving asymptotic optimality for finite-horizon stochastic control. A solution is optimal
on the fluid scale if its loss grows as o(T ) over a horizon of length T , and optimal on the
diffusion scale if its loss grows as o(

√
T ); of course, a uniform loss guarantees implies both.

For network revenue management (no overbooking), [Coo02] proved the fluid optimality of
a static admission policy that is based on the optimization of a deterministic relaxation;
[RW08] found that resolving that relaxation once at an appropriately selected time, to up-
date the policy, gives the first diffusion optimal algorithm. This was strengthened by [JK12]
who resolve in every period to obtain a uniform loss under a technical non-degeneracy as-
sumptions, and further strengthened by [BW18, VB20, FB19] to hold in the absence of such
an assumption, and without resolving in every period. For problems with overbooking, we
know of no algorithms that are optimal on the diffusion scale, as we discuss next.

Overbooking

Our work adds to the literature on dynamic optimization problems in revenue manage-
ment, and more specifically to the long line of literature on overbooking. [MVR99] describe
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overbooking as having the “longest research history of any of the components of the rev-
enue management problem” since most quantitative research in revenue management before
1972 focused on admission controls for overbooking. Early models of overbooking include
[Bec58, Tho61, Rot71], which all focus on just a single leg. In contrast to most early works,
[Rot71] studied a dynamic problem, not a static one (in the language of [LSJ99]). The
distinction, informally, lies in whether admission levels are statically set initially, or made
continuously over time. The solution of [Rot71] is an optimal dynamic program, but it con-
siders only a single fare. For multiple fares, the Expected Marginal Seat Revenue heuristics
(EMSRa and EMSRb), that are popular in practice to this day, were developed by [Bel87].
Motivated by Littlewood’s rule [Lit72], these heuristics are fundamentally static, yet they
can be applied in a dynamic setting (however, they have no provable guarantees); our use
of the critical ratio of value and no-show probability is motivated by the same ideas (see
Section 2 and Lemma 1). Much more recently, [ABFN13] study the setting with multiple
fares on a single-leg, and cancellations, but assume uniform no-show and cancellation prob-
abilities; their policies do not have any performance guarantees. [ET10] study the network
revenue management problem with only no-shows via a decomposition of the network by
flight legs, before using state aggregation for the single-leg problem, i.e., while studying the
problem with heterogeneous no-show probabilities, they approximate this problem through
one with homogeneous no-show probabilities, without finding provable guarantees for this
approach — in Appendix D we prove that, for the single-leg case, their approximation of
heterogeneous no-show probabilities with homogeneous ones causes a loss of Ω(T ); crucially
this is not a shortcoming of the specific method by which they approximate heterogeneous
no-show probabilities with homogeneous ones, but rather a fundamental limitation of any
such approximation (see Appendix D for details). [KTT12] allows for no-shows in a network
setting, and finds an asymptotically optimal policy that is based on the randomized LP of
[TVR99]. While asymptotically optimal, this approach incurs Ω(

√
T ) loss over a time hori-

zon of length T , whereas ours incurs O(1). Loss guarantees of that magnitude may also be
obtainable using online convex optimization, e.g., as in [AD14]; notably they assume signif-
icantly less structure on the problem than we do, and therefore their problem is harder (in
general, there is a significant body of work on online stochastic allocation problems without
overbooking that aims to achieve sublinear regret with less problem structure, e.g., in the
context of the AdWord problem [AHL12, AHL13]). Finally, [DKX19] study the network rev-
enue management problem with no-shows and cancellations and prove a O(

√
T ) loss over a

time horizon of length T ; they explicitly state as an open question whether O(1) guarantees
are achievable when overbooking is allowed, which we answer in the affirmative. We refer
the interested reader to [GT19b] for an overview of further recent work on overbooking.

Overview of remaining sections

In Section 2, we formally define our model and algorithm. In Section 3 we present our main
result using a compensated coupling proof that requires three new auxiliary results. The main
technical difficulties lie in obtaining these auxiliary results, which we prove in Section 4 and
Appendix A. In Section 5, we complement our analytical results with numerical experiments.
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2 Model

Arrivals

Consider a known finite time horizon of T periods. Every period begins with the arrival
of a type j ∈ [k], where [k] denotes the set {1, . . . , k}. Each arrival is of type j with
probability λj > 0, where

∑
j λj = 1 and arrivals are independent. We denote the vector

of arrivals ~A where At denotes the arrival type in period t, and ~A[t, T ] denotes the last

(T − t+ 1) entries of ~A. We use Nj for the number of arrivals of type j over the entire time
horizon and Nj[t1, t2] for the number of type j arrivals in periods t1, . . . , t2, where t1 < t2.
When future arrivals N [t, T ] need to be estimated in period t, we denote such an estimate

by Ñ f [t].

Objective

There is an initial capacity B. Upon the arrival of each customer, we need to make an
irrevocable decision on whether to accept or reject them. Accepting a customer of type j
generates revenue vj < 1. For an algorithm ALG we denote by xALGj [t] the number of accepted
customers of type j until the end of period t, i.e., in periods 1, . . . , t. Similarly, let ~xALG[t]
denote the k-dimensional vector of accepted customers of each type until the end of period t.
At the end of the time-horizon each accepted customer of type j (independently) consumes
one resource with probability pj ∈ Q, and is a no-show (does not consume any resources)
with probability 1 − pj. The types are ordered such that v1/p1 ≥ v2/p2 ≥ · · · ≥ vk/pk,
where ties are broken in favor of greater value, i.e., if vj/pj = vj+1/pj+1, then vj > vj+1

and pj > pj+1. Since this ratio remains important throughout the paper, we define it as the
critical ratio qj =

vj
pj

of customer type j, and define q̄j = 1− vj
pj

.

In our asymptotic analysis, we assume that all parameters of the customer types are
assumed to be fixed, whereas B and T grow large. The combined required resources (ar-
rivals) at the end of the time horizon are distributed as

∑
j Bin(xALGj [T ], pj), where Bin(x, p)

denotes the binomial distribution with x trials and success probability p. When the ar-
rivals require more than B resources, a type-independent compensation is paid for each
overbooked customer. We normalize the compensation to 1 so the total compensation has
cost (

∑
j Bin(xALGj [T ], pj)−B)+ where (α)+ := max{α, 0}. Thus, the objective is to maximize

E

[∑
j

xALGj [T ]vj −

(∑
j

Bin(xALGj [T ], pj)−B

)+]
.

For any j ∈ [k], we denote by Xj,xALGj [T ] ∼ Bin(xALGj [T ], pj) the binomial random variable
of accepted customers of type j who consume a resource. Moreover, we adopt a shorthand
notation for expected compensation, with

VB(~x) := E

[(∑
j

Xj,xj −B

)+]
.
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Note that we may assume that the critical ratio qj < 1, i.e, q̄j > 0. Customer types j
with qj ≥ 1 should always be accepted even if we had 0 capacity (left) because the expected
compensation is less than the guaranteed value from accepting, and this will indeed be the
case for our policy too. Thus, we focus without loss of generality on types j with qj < 1.

2.1 Algorithm and benchmark policies

We now define four “policies”: the online index policy, the hybrid clairvoyant index ob-
jective, the clairvoyant index objective, and the clairvoyant general objective. The first is
our algorithm, the others provide useful benchmarks in our analysis. All four are based on
deterministic optimization problems that take an estimate Ñ f [t] of future arrivals in period
t to solve

max
~x

∑
j

vj (xj[t− 1] + xj) + VB (~x[t− 1] + ~x) subject to 0 ≤ xj ≤ Ñ f
j [t],∀j (1)

In words, assuming future arrivals Ñ f [t] in periods t, t+ 1, . . . , T and past accepted arrivals
~x[t−1], optimization (1) finds the optimal number ~x to accept of each in periods t, t+1, . . . , T .

Index policies

The first three policies are all index policies, meaning intuitively that if j′ > j, then they
prioritize accepting arrivals of type j over arrivals of type j′. Since we are in an online
setting, this holds only in a forward-looking manner, i.e., it is conditioned on the already
accepted customers. Index solutions in period t, conditioned on past decisions ~x[t − 1], are
defined as follows.

Definition 1. Suppose in period t the remaining arrivals are estimated to be Ñ f [t]. A
solution ~x to (1) is an index solution if it has a threshold index j̃ ∈ [k] such that for

all j < j̃ all future arrivals of type j are accepted, i.e., xj = Ñ f
j [t], and for all j > j̃ no

future arrivals of type j are accepted, i.e., xj = 0. As a convention, we always assume that

when more than one index could be a threshold index, we uniquely define j̃ to be the smallest
possible one, implying that xj̃ > 0 (unless x1 = 0).

Notice that the intuition for an index policy comes from the one-dimensional knapsack LP
in which a customer of type j takes up exactly pj capacity, rather than Bin(1, pj) capacity.
In that case, the critical ratio vj/pj corresponds to the density of value of type j, and the
optimal LP solution is to sort by density and pack users until the knapsack is filled. Similarly,
our index policy in Definition 1 prioritizes customers with higher critical ratio over ones with
lower critical ratios.

Online index policy

The online index policy is formally given in Algorithm 1. Initially, it samples an arrival vector
~A′; this is not the real arrival vector but stems from the same distribution. In period t,

10



Algorithm 1 Online Index Policy

1: Initialize xj[0] = 0 ∀ j
2: Draw arrival vector ~A′ of length T with each coordinate equal to j with probability

(i.i.d.) λj
3: for t = 1, . . . , T do
4: Observe type j of arrival in period t
5: ∀ j′ ∈ [k] set Ñ f

j′ [t] equal to the number of type j′ arrivals in ~A′[t+ 1, T ] + 1{j=j′}

6: Find optimal index solution ~x′ for (1) with inputs Ñ f
j [t] and ~x[t− 1]

7: if x′j ≥ N f
j [t]/2: Accept arrival of type j in period t and set xj[t] = xj[t− 1] + 1

8: else: Reject arrival of type j in period t and set xj[t] = xj[t− 1]
9: Set xj′ [t] = xj′ [t− 1], ∀ j′ 6= j

10: end for

it observes an arrival j′, and uses ~A′ to estimate Ñ f
j [t]. It then solves the optimization

problem (1) with Ñ f
j [t] and its own past decisions ~x[t − 1] as input subject to finding an

index solution. We denote the threshold index of that solution by j̃. In period t it accepts j′

if j′ < j̃ or if j′ = j̃ and xj̃ > Ñ f
j [t]/2, and rejects j′ otherwise. We denote the expected

(over ~A′) objective of the online index policy on an arrival sequence ~A = j1, j2, . . . jT by OBJ ~A.

Hybrid clairvoyant index objective

Consider in period t, with the online index policies’ decision in periods [1, t − 1] the exact
future arrivals N [t, T ], and solve the optimization problem (1) with these arrivals subject to

finding an index solution. The resulting objective in period t, for arrival sequence ~A, is the
hybrid clairvoyant index objective H ~A[t].

Clairvoyant index objective

Consider the hybrid clairvoyant index objective in period 1, i.e., before the online index
policy has made any decisions. Then it solves the optimization problem (1) subject to (i)

the exact arrival sequence ~A, and (ii) the constraint of finding an index solution. In line
with the above, we denote it by H ~A[1].

Clairvoyant general objective

The clairvoyant general objective is based on solving the optimization problem (1) subject

to the exact arrivals Nj; with arrival vector ~A we denote it by ÔPT ~A.

A few remarks are made in order to provide some intuition for the defined policies and
benchmarks. First, for t > 1, H ~A[t] depends on ~A rather than only on ~N because the
decisions of the online index policy in periods 1, . . . , t− 1 are reflected in the value of H ~A[t].

In contrast, H ~A[1] and the clairvoyant general objective ÔPT ~N do not depend on either the
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decisions of the online index policy or the order of arrivals. Second, the clairvoyant general
solution is an optimal solution to (1) but the clairvoyant does not know the realization
of each arrival’s no-show probability. Such a clairvoyant would be way too powerful to
serve as a useful benchmark, as was observed by [DKX19]. Nevertheless, our much weaker
clairvoyant, which knows the realization of the future arrivals, but not the realization of the
no-show probabilities, still provides an upper bound on an optimal algorithm. Finally, it may
seem counter-intuitive for the algorithm to draw a sample ~A′ to estimate Ñ f [t] rather than

just using the expected value thereof. However, this ensures that our estimates for Ñ f [t]
are integral, which simplifies the analysis in light of Bin(xj, pj) not being well-defined for
fractional xj.

2.2 Further notation

We often rely on the Poisson Binomial distribution

PBin(x1, p1; ...;xk, pk),

which consists of xj trials, each with success probability pj, for j ∈ [k]. Note that
∑

j Xj,xj ∼
PBin(x1, p1; ...;xk, pk) based on this definition. As a shorthand notation, forX ∼ PBin(x1, p1; ...;xk, pk),
we denote the compensation given X by WB(X) = (X −B)+ and the expected compensation
by E[WB(X)] = E

[
(X −B)+].

We denote the Cumulative Distribution Function (CDF) of any discrete random variable
X at x by FX(x), the Probability Mass Function (PMF) by P[X = x], and the quantile
function (i.e., the inverse of CDF) by F−1

X (q), where q ∈ [0, 1]. We use the notation P[E]
for the probability of event E. And lastly, we use the standard notation N = 0, 1, 2, ... for
natural numbers, and ej for the k-dimensional canonical unit vector with its jth coordinate
equal to 1 and all other coordinates equal to 0.

3 Main result

Our goal is to prove that the expected additive loss between the online index policy and the

clairvoyant objective can be bounded by a constant M , i.e., E ~A

[
ÔPT ~A − OBJ ~A

]
≤ M .3 To do

so, we derive intermediate benchmarks and bound their expected loss relative to each other.
The most important technical ingredients in our analysis use the following local optimality
condition:

Definition 2. Consider a feasible solution ~x? to (1) with (estimated) future arrivals Ñ f [t]
and past accepted arrivals ~x[t− 1]. We call ~x? locally optimal at j if

x?j = max arg max
xj :0≤xj≤Ñf

j [t]

{
xjvj − E

[(
Xj,xj [t−1]+xj +

∑
n 6=j

Xn,xn[t−1]+x?n −B

)+]}
.

3Throughout this work, we refer to terms as constant if they do not depend on B or T .
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Intuitively, ~x? is locally optimal at j if x?j is the (maximum) optimal number of future
type j customers to accept given acceptance of x?n future customers of type n for each n 6= j.
Because this maximum optimal number of customers is uniquely defined, we observe the
irritating property that there may be global optima, i.e., solutions that yield the highest
possible profit, that do not satisfy our local optimality condition for every type j. Fortu-
nately, for our analysis, there always exists some global optimum that is locally optimal
for every type j. This claim is formalized and proven in Appendix A.1, and it allows us
to compare our solution to a global optimum that fulfills the local optimality condition for
every type. Next, in Lemma 1 we provide an equivalent local optimality condition that is
often easier to apply.

Lemma 1. For a solution ~x? to (1) with (estimated) future arrivals Ñ f [t] and past accepted
arrivals ~x[t− 1], let ~x = ~x[t− 1] + ~x?. Then, ~x? is locally optimal at j if and only if both of
the following conditions are satisfied:

(i) x?j = Ñ f
j [t] or P [

∑
nXn,xn ≥ B] > qj;

(ii) x?j = 0 or P
[∑

n6=j Xn,xn +Xj,xj−1 ≥ B
]
≤ qj.

As noted in the literature review, Lemma 1 bears resemblance to classical results in the
field of revenue management like Littlewood’s rule [Lit72], the ESMR heuristics [Bel87], and
most notably Proposition 3.1 in [GT19a], which is equivalent for the case that k = 1.

In a nutshell, the main analytical advantage of local optimality over global optimality is
that we can derive the following (local) Lipschitz bound on locally optimal solutions. We
apply this repeatedly in our proofs to bound by how much solutions deviate from each other.

Lemma 2. There exists a constant δ ≥ 1 such that for any solution ~x? to (1) with Ñ f [t]
and ~x[t − 1], it is true that if ~x? is locally optimal at j, then ∃l ∈ {0, 1, ..., δ} such that
~x′ = ~x? + ei − lej is locally optimal at j.

We remark that δ is large only when (a) pj is small or (b) the critical ratio of any type is
either close to 0 or close to 1. For (a), it makes sense that δ depends inversely on pj, e.g., when
pj = 1/10, then for every unit of additional capacity one would want to accept (roughly) 10
more arrivals of type j. For (b), δ grows large at the boundary of the critical ratios due to
us resorting to the standard normal distribution for a probability bound (see Section 4.1).
The resulting bound we obtain is based on the inverse of the CDF of the standard normal,
which has a large derivative (only) close to 0 and 1. In our context, assuming pj to be an
actual constant, e.g., in (0.2, 1], this corresponds to types that either have very small value
(so we may want to reject them regardless) or types that have very large value (so we may
want to accept them regardless). Recall also that if the critical ratio was greater than 1 in
our setting, then one should accept an arrival even if one is out of capacity as the revenue
received is greater than the expected compensation to be paid (given the probability of the
customer showing up).

The key motivation for our consideration of index solution and local optimality is that
Lemma 2 provides a strong bound to capture how an optimal index solution changes when
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an additional arrival of some type is accepted. In contrast, for a globally optimal solution,
we do not know how to prove such a bound. Next, armed with these lemmas, we can show
the following two bounds.

Theorem 1. There exists a constant M1 such that for every arrival vector ~A

ÔPT ~A −H ~A[1] ≤M1,

which implies in particular that E ~A

[
ÔPT ~A

]
≤M1 + E ~A [H ~A[1]].

Lemma 3. There exists a constant M2 such that

T∑
t=2

P [H ~A[t− 1]−H ~A[t] > 0] ≤M2.

From these bounds we derive, using compensated coupling [VB20, FB19], the result in
Theorem 2.

Theorem 2. There exists a constant M such that E ~A

[
ÔPT ~A − OBJ ~A

]
≤M .

Proof.

E ~A

[
ÔPT ~A − OBJ ~A

]
≤M1 + E ~A [H ~A[1]− OBJ ~A] (Theorem 1)

= M1 + E ~A

[
T∑
t=2

H ~A[t− 1]−H ~A[t]

]

≤M1 +
T∑
t=2

P [H ~A[t− 1]−H ~A[t] > 0] (?)

≤M1 +M2. (Lemma 3)

For the equality above, observe that we have a telescoping sum in which the first term is
H ~A[1], and the last term is H ~A[T ] = OBJ ~A as (i) the hybrid clairvoyant in period T is bound
to make the same decisions as the algorithm in periods 1, . . . , T − 1 and (ii) the online index
policy makes an optimal decision in period T (when there is no uncertainty about future
periods). The starred inequality holds because any action in one period affects the objective,
through lost revenue or incurred compensation, by at most 1.

Notice that the proof is based on a sample path-wise coupling of the online index policy
and the clairvoyant objective. Then, in each period, when the hybrid clairvoyant loses in
objective due to a decision by the online policy, the technique “compensates” the clairvoyant
for that loss. The expected loss of the online index policy can then be interpreted as the
total compensation paid out to the clairvoyant; this, in turn, can be upper-bounded (using
that the loss/compensation in any period is bounded by 1) by the sum of the probabilities
of having to pay out a compensation.
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4 Proofs of auxiliary results

This section is dedicated to proving the auxiliary results from Section 3, and is organized
as follows: in Section 4.1 we prove Lemma 1 and Lemma 2 in order to characterize locally
optimal solutions and provide a Lipschitz bound for them. Then, in Section 4.2 we prove
Theorem 1 through a series of lemmas: in Lemma 4 we show through an exchange argument
that for i < j any feasible solution improves when a certain number of type j customers
is replaced by a proportionate number of type-i customers (where the proportion is based
on pi, pj). Lemma 5 and 6 apply this result to show that globally optimal solutions are,
in a sense, not too far from being index solutions. As the objective of optimization (1)
is Lipschitz in its solution, Theorem 1 then follows from the globally optimal solution and
the optimal index solution not being too different. Finally, in Section 4.3 we combine the
Lipschitz bound on optimal index solutions with the compensated coupling technique to
uniformly bound the loss of the online index policy relative to the optimal index solution.

4.1 Proof of Lemma 1 and Lemma 2

Proof of Lemma 1

We show both directions by contradiction. First, suppose ~x? fulfills Definition 2, but (i) is
false. Recalling that the lemma defines ~x = ~x[t− 1] + ~x?, we find that

P

[∑
n

Xn,xn ≥ B

]
≤ qj and x?j < Ñ f

j [t].

Then ~x?+ej is feasible because x?j +1 ≤ Ñ f
j [t]; we shall argue that accepting x?j +1 customers

of type j yields no less profit than accepting x?j , which contradicts that ~x? fulfills Definition 2.
We first observe that the increase in revenue for accepting one more type j customer is

vj. To quantify the increase in expected compensation from taking solution ~x? + ej rather
than ~x?, let

∑
nXn,xn denote the Poisson Binomial random variable capturing the number

of customers among ~x = ~x[t− 1] +~x? who consume a resource (see definition in Section 2.2).
Similarly, the random number of customers requiring resources under solution ~x + ej is∑

n 6=j Xn,xn +Xj,xj+1.
To characterize the compensation paid, suppose first that

∑
nXn,xn < B, i.e., the number

of accepted customers among ~x who show up is smaller than the capacity B. Then from
Xj,1 ≤ 1 we also find

∑
n6=j Xn,xn +Xj,xj+1 =

∑
nXn,xn +Xj,1 ≤ B, and no compensation is

paid for the additional type j customer.
If instead

∑
nXn,xn ≥ B, then the additional type j customer decreases the objective by 1

if that customer shows up (with probability pj). Thus, the increase in expected compensation
from an additional type j customer is

VB (~x+ ej)− VB (~x) = P

[∑
n

Xn,xn < B

]
· 0 + P

[∑
n

Xn,xn ≥ B

]
· pj · 1 ≤ qj · pj = vj.
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Notice that the inequality holds when Lemma 1 (i) is false. Thus, ~x? + ej yields at least the
same objective value as ~x? does. Since the solution ~x? is locally optimal at j only if x?j is
the largest number that achieves the highest objective value, ~x? is not locally optimal at j,
which is a contradiction.

Next, we show that Definition 2 implies Lemma 1 (ii). We suppose for sake of contradic-
tion that ~x? is locally optimal at j and (ii) is false. We then show that ~x?− ej must achieve
a higher objective than ~x? to derive a contradiction. First, when (ii) is false, we have

P

[∑
n6=j

Xn,xn +Xj,xj−1 ≥ B

]
> qj and x?j > 0.

Then, ~x?−ej is feasible because x?j−1 ≥ 0. As above, the increase in expected compensation
from taking solution ~x? rather than ~x? − ej is

VB (~x)− VB (~x− ej)

=P

[∑
n6=j

Xn,xn +Xj,xj−1 < B

]
· 0 + P

[∑
n6=j

Xn,xn +Xj,xj−1 ≥ B

]
· pj > vj,

where the inequality holds when (ii) is false. Since the increase in revenue from accepting
x?j rather than x?j − 1 type j customers is vj, ~x

? − ej yields a better objective value than ~x?

does, which contradicts that ~x? is locally optimal at j.
Next we show the other direction, i.e., that ~x? is locally optimal at j if both (i) and (ii)

are satisfied. We again argue by contradiction, and show that if ~x? is not locally optimal at
j, then at least one of (i) and (ii) must be false. Specifically, if ~x? is not locally optimal at
j, then there exists some l 6= 0 such that ~x? + l · ej is locally optimal at j.

If l > 0, we must have x?j < Ñ f
j [t] since otherwise x?j + l > Ñ f

j [t] is infeasible. Since we
showed that ~x? + l · ej being locally optimal at j requires ~x? + l · ej to fulfill condition (ii) of
the lemma,

P

[∑
n6=j

Xn,xn +Xj,xj+l−1 ≥ B

]
≤ qj

holds true. Then, since l ≥ 1,

P

[
k∑

n=1

Xn,xn ≥ B

]
≤ P

[∑
n6=j

Xn,xn +Xj,xj+l−1 ≥ B

]
≤ qj.

Thus, P [
∑

nXn,xn ≥ B] ≤ qj and x?j < Ñ f
j [t], which contradicts (i).

If l < 0, we must have x?j > 0 since otherwise x?j + l < 0 is infeasible. Since we showed
that ~x? + l · ej being locally optimal at j requires ~x? + l · ej to fulfills condition (i) of the
lemma,

P

[∑
n6=j

Xn,xn +Xj,xj+l ≥ B

]
> qj
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holds true. Then, since l ≤ −1,

P

[∑
n6=j

Xn,xn +Xj,xj−1 ≥ B

]
≥ P

[∑
n6=j

Xn,xn +Xj,xj+l ≥ B

]
> qj.

Thus, P
[∑

n6=j Xn,xn +Xj,xj−1 ≥ B
]
> qj and x?j > 0, which contradicts (ii).

Thus, if ~x? is not locally optimal at j, then at least one of (i) and (ii) must be false.

Proof of Lemma 2

Let ~x = ~x[t− 1] + ~x?. Lemma 1 (i) guarantees that

P

[∑
n

Xn,xn ≥ B

]
> qj, or x?j = Ñ f

j [t].

If x?j = Ñ f
j [t], then no additional type j customers may be accepted; otherwise, for any

l ≤ −1,

P

[∑
n6=i,j

Xn,xn +Xi,xi+1 +Xj,xj+|l| ≥ B

]
≥ P

[∑
n

Xn,xn ≥ B

]
> qj

means that the objective value of ~x+ ei + |l| · ej is smaller than that of ~x+ ei + (|l| − 1) · ej.
Thus, l ≥ 0.

We show for each j that there is a constant δj such that l ≤ δj is guaranteed. Then, we
set δ = maxj δj as a constant that fulfills the lemma. To determine δj and prove the lemma,
we first take Claim 1 and Claim 2 below for granted. Recall that q̄j = 1 − vj

pj
from Section

2. We denote for a given constant δ? ≥ 1 and solution ~x:

Y =
∑
n6=j

Xn,xn +Xj,xj+δ? , Z =
∑
n

Xn,xn , and m =
k∑

n=1

xn.

Claim 1. There exist constants δ?j and m0 ∈ Z+ such that

F−1
Y (q̄j)− F−1

Z (q̄j) ≥ 1 (2)

holds whenever m ≥ m0.

Claim 2. If ~x− (δj + 1)ej + ei is a feasible solution to the optimization problem (1), then

P

[∑
n6=i,j

Xn,xn +Xj,xj−δj−1 ≥ B −Xi,xi+1

]
≤ P

[∑
n 6=i,j

Xn,xn +Xj,xj−δj−1 ≥ B − 1−Xi,xi

]
.

17



Now, take δj = 1 + δ?j +m0 with δ?j and m0 from Claim 1. Observe that we only need to
check cases where x?j > δj, because x′j = x?j − l ≥ 0 guarantees l ≤ δj when x?j ≤ δj. Thus,
we below assume that x?j > δj, when showing l ≤ δj.

For solution ~x with x?j > δj, define

Ȳ =
∑
n 6=j

Xn,xn +Xj,xj−1 and Z̄ =
∑
n6=j

Xn,xn +Xj,xj−δ?−1.

In particular, Ȳ is the random variable Y from above, constructed for solution ~x− (δ?+1)ej,
which is guaranteed to be feasible when x?j > δj > 1+δ?. Similarly, Z̄ is the random variable
Z from above, constructed for solution ~x− (δ? + 1)ej. Since∑

n

xn − (δ? + 1) ≥ x?j − (δ? + 1) > m0,

we can apply Claim 1 to Ȳ and Z̄.

We will argue that ∀a ≥ 1 : P
[∑

n 6=i,j Xn,xn +Xi,xi+1 +Xj,xj−δ?−a ≥ B
]
≥ qj to derive a

contradiction from Lemma 1 (i). Lemma 1 (ii) guarantees that, with ~x? locally optimal at
j, x?j > 0,

P
[
Ȳ ≥ B

]
= P

[∑
n6=j

Xn,xn +Xj,xj−1 ≥ B

]
≤ qj,

so we know FȲ (B−1) ≥ q̄j. By inverting the CDF into the quantile function, we equivalently
find that F−1

Ȳ
(q̄j) ≤ B − 1. Then, Claim 1 implies that

F−1
Z̄

(q̄j) ≤ F−1
Ȳ

(q̄j)− 1 ≤ B − 2.

By inverting the quantile function for Z̄ back into the CDF, we find that FZ̄(B − 2) ≥ q̄j.
Thus,

P

[∑
n6=j

Xn,xn +Xj,xj−δ?−1 ≥ B − 1

]
= P

[
Z̄ ≥ B − 1

]
≤ qj.

With Claim 2, we obtain

P

[∑
n 6=i,j

Xn,xn +Xj,xj−δ?−1 ≥ B −Xi,xi+1

]
≤ P

[∑
n6=j

Xn,xn +Xj,xj−δ?−1 ≥ B − 1

]
≤ qj,

and thus

∀a ≥ 1 : P

[∑
n6=i,j

Xn,xn +Xi,xi+1 +Xj,xj−δ?−a ≥ B

]

≤P

[∑
n6=i,j

Xn,xn +Xi,xi+1 +Xj,xj−δ?−1 ≥ B

]

=P

[∑
n6=i,j

Xn,xn +Xj,xj−δ?−1 ≥ B −Xi,xi+1

]
≤ qj.
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It follows from Lemma 1 (i) that ~x′ = ~x? + ei − lej is not locally optimal at j when

x′j ≤ x?j − δ? − 1 < x?j − δj − 1.

Thus, there exists l ≤ δj such that ~x? + ei − lej is locally optimal at j.
We prove Claims 1 and 2 in Appendix A.2.

4.2 Proof of Theorem 1

The proof of Theorem 1 is based on Lemma 2 as well as a second bound. Informally, the
second bound implies that, for large enough T , the optimal policy starts to resemble an
index policy up to constant differences. We deduce that the optimal clairvoyant objective
and the optimal clairvoyant index objective are based on solutions to (1) that have bounded
distance in infinity-norm. Since the objective is Lipschitz, the theorem follows. We formalize
this argument through three lemmas.

Lemma 4. For every i < j there exists a constant Rij such that, for any feasible solutions

~x? +
Rij
pi
· ei and ~x? +

Rij
pj
· ej to optimization problem (1) with N [t, T ] and ~x[t − 1], the

objective of ~x? +
Rij
pi
· ei is always greater than that of ~x? +

Rij
pj
· ej.

We prove Lemma 4 via an exchange argument.
Proof of Lemma 4. For any constant R ∈ Z+ such that R

pi
and R

pj
are both integers,

denote

Xi ∼ Bin

(
R

pi
, pi

)
, Xj ∼ Bin

(
R

pj
, pj

)
.

Since we leave all customers among ~x = ~x? + ~x[t − 1] unchanged, we denote the number of
unchanged customers who consume a resource by random variable

X ∼ PBin (x1, p1; ...;xk, pk) .

To prove the lemma we distinguish between the following cases for i < j. We prove the
Lemma for the first case here, and the second (more complicated) case in Appendix A.3.

(i) qi > qj

(ii) qi = qj and vi > vj

In case (i), the difference in revenue between any feasible solutions ~x?+ R
pi
·ei and ~x?+ R

pj
·ej

is
R

pi
vi −

R

pj
vj =

(
vi
pi
− vj
pj

)
R,

which is positive and scales linearly with R. Thus, to show that a constant R exists such
that the increase in revenue outweighs the increase in compensations, it suffices to verify
that the difference in expected compensation is bounded by o(R).
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Recall that, by definition, E[WB(X)] = E
[
(X −B)+] for random variable X. We show

E [(Xi −Xj)
+] ∈ O

(√
R log(R)

)
to bound the difference in expected compensation as

E[WB(X +Xi)]− E[WB(X +Xj)]

≤
∑
x

P [X = x]E
[
(Xi −Xj)

+|X = x
]

=E
[
(Xi −Xj)

+
]
∈ O

(√
R log(R)

)
Next, for E [(Xi −Xj)

+], we apply a Chernoff bound. Let κ = 2
√
R log(R). Since

E
[
(Xi −Xj)

+
]

≤P [Xi −Xj < κ] · κ+ P [Xi −Xj ≥ κ] · E[(Xi −Xj) |Xi −Xj ≥ κ]

≤P [Xi −Xj < κ] · κ+ P [Xi −Xj ≥ κ] · R
pi
,

it suffices to show P [Xi −Xj ≥ κ] ∈ O
(√

log(R)
R

)
to prove the required bound. For Xi −

Xj ≥ κ to hold, observe that at least one of 1) E1 = {Xi ≥ κ/2}; or 2) E2 = {Xj ≤ κ/2}
must occur, so

P [Xi −Xj ≥ κ] ≤ max (P [E1] ,P [E2]) .

With ε =
√

log(R)
R

a Chernoff bound gives

P [E1] = P
[
Xi ≥ R +

√
R log(R)

]
≤ e−

ε2

2+ε
R = R−

1
2+ε ∈ o

(√
log(R)

R

)
,

and a similar Chernoff bound works for P [E2]. Thus, we find

E
[
(Xi −Xj)

+
]
≤ O

(√
R log(R)

)
.

Therefore, there exists some Rij such that the increase in revenue from replacing
Rij
pj

type j

customers with
Rij
pi

type i customers outweighs the loss in additional compensation, i.e., ~x?+
Rij
pi
· ei yields a better objective than ~x? +

Rij
pj
· ej does, and this completes the first part of

the proof.

Lemma 5. Consider an optimal solution ~x? to the optimization problem (1) with future
arrivals N [t, T ], and past accepted arrivals ~x[t− 1]. Then for every i and j with i < j there
exists a constant Rij such that at least one of the following two is true:

(i) x?i > N [t, T ]−Rij/pi
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(ii) x?j < Rij/pj.

Notice that the constant Rij above is large when types have critical ratios that are close
to each other. We highlight the intuition here and this limitation of the index policy is
further explored in Appendix C.2. Intuitively, we find Rij as the smallest R such that(

vi
pi
− vj
pj

)
R ≥ 2

√
R log(R),

where the left-hand side is the increase in revenue (from replacing R
pi

type i customers

with R
pj

type j customers) and the right-hand side is an upper bound for the increase in

compensation. Thus, Rij roughly scales as 1/
(
vi
pi
− vj

pj

)2

. Notice, though, that our upper

bound of 2
√
R log(R) for the increase in compensation is extremely loose as the expected

number of customers who show up among R
pi

type i customers is in fact the same as that

among R
pj

type j customers.

Proof of Lemma 5. We prove the lemma by constructing a contradiction. Take Rij as
constructed in Lemma 4. For an optimal solution ~x?, if neither (i) nor (ii) is true, i.e.,

x?i ≤ N [t, T ]−Rij/pi and x?j ≥ Rij/pj,

then, ~x? − Rij
pj
· ej +

Rij
pi
· ei is a feasible solution, and from Lemma 4, we know its objective

is greater than that of ~x?, which contradicts the assumption that ~x? is an optimal solution
to (1).

Now we formally compare a globally optimal solution x? with an optimal index solution
x′. Based on Claim 4, we know that there exists a globally optimal solution x? that is locally
optimal for every type j. For the optimal index solution x′, we only assume that it is locally
optimal at its threshold index and it need not be locally optimal at any other index. Since
the index policy is allowed to accept any number of requests at its threshold index, we are
guaranteed that there exists an index solution that is locally optimal at the threshold index.

Lemma 6. Consider an optimal solution ~x? that is locally optimal for every type j, and
an optimal index solution ~x′ that is locally optimal at its threshold index j̃, both for the
optimization problem (1) with arrivals ~N .4 With δ as constructed in Lemma 2, we have

(i)
∑

j

(
x′j − x?j

)+ ≤ kδ
[
1 +

∑
j

(
x?j − x′j

)+
]
,

(ii)
∑

j

(
x?j − x′j

)+ ≤ kδ
∑

j

(
x′j − x?j

)+
.

Proof of Lemma 6 (i). Recall that we have x′j = Nj for every j < j̃, x′j = 0 for every

j > j̃, and x′
j̃
> 0. We start by showing that ~x′ is locally optimal at every j > j̃, and ~x′− ej̃

4We assume without loss of generality that Nj > 0∀j as types j with Nj = 0 cannot be accepted by either
solution.
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is locally optimal at every j < j̃. From Lemma 1 (i), since ~x′ is locally optimal at j̃, we find
that either x′

j̃
= Nj̃, in which case x′

j̃+1
= 0, and

P

[∑
n

Xn,x′n ≥ B

]
> qj̃+1 ≥ qj,∀j > j̃, or P

[∑
n

Xn,x′n ≥ B

]
> qj̃ ≥ qj,∀j > j̃.

Thus, for every j > j̃ both conditions of Lemma 1 are fulfilled with

x′j = 0 and P

[∑
n

Xn,x′n ≥ B

]
> qj,

which implies that ~x′ is locally optimal at all such j.
Moreover, applying Lemma 1 (ii) to j̃, where x′

j̃
> 0, we find for all j < j̃

P

∑
n 6=j̃

Xn,x′n +Xj̃,xj̃−1 ≥ B

 ≤ qj̃ ≤ qj.

Thus, for every j < j̃, we have x′j = Nj and P
[∑

n6=j̃ Xn,x′n +Xj̃,xj̃−1 ≥ B
]
≤ qj, so ~x′ − ej̃

fulfills both conditions of Lemma 1 at every j < j̃, and is thus locally optimal at each such
j.

Next, define ĵ to be either j̃ or j̃ − 1 depending on whether x′
j̃
≥ x?

j̃
or not, to ensure

x′j ≥ x?j for all j ≤ ĵ and x′j ≤ x?j for all j > ĵ — these follow for j < j̃ from x′j = Nj, for

j > j̃ from x′j = 0, and for j = j̃ from the definition of ĵ. Then, to prove Lemma 6 (i), it

suffices to show for j ≤ ĵ

x′j − x?j ≤ δ(1 +
k∑

n=ĵ+1

(x?n − x′n)). (3)

In particular, when this inequality holds true for j = {1, ..., ĵ}, we can sum over j ≤ ĵ to
obtain

∑
j

(
x′j − x?j

)+
=

ĵ∑
n=1

(x′n − x?n)
+ ≤ kδ

1 +
k∑

n=ĵ+1

(x?n − x′n)

 = kδ

[
1 +

∑
j

(
x?j − x′j

)+

]
.

We prove Inequality (3) by contradiction. Specifically, suppose

x′i − x?i > δ

1 +
k∑

n=ĵ+1

(x?n − x′n)


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for some i ≤ ĵ. Then x?i < Ni and we prove that

P

[∑
n

Xn,x?n ≥ B

]
≤ qi, (4)

which contradicts ~x? fulfilling the local optimality conditions from Lemma 1 at i.
We consider two cases

(a) i < ĵ ≤ j̃ or i ≤ ĵ < j̃

(b) i = ĵ = j̃

For Case (a), let m =
∑k

n=ĵ+1(x?n − x′n). We construct a sequence of solutions

~x1, ~x2, ~x3, ..., ~xm+1,

where ~xm+1 has the following properties:

• ~xm+1 is locally optimal at i,

• xm+1
i > x?i ,

• xm+1
j = x′j = Nj ≥ x?j for all j ≤ ĵ such that j 6= i, and

• xm+1
j = x?j for all j > ĵ.

With xm+1
j ≥ x?j∀j we have the first inequality, and with ~xm+1 locally optimal at i and

xm+1
i > 0 we have (Lemma 1 (ii)) the second inequality in

P

[∑
n

Xn,x?n ≥ B

]
≤ P

[∑
n6=i

Xn,xm+1
n

+Xi,xm+1
i −1 ≥ B

]
≤ qi.

Thus, such ~xm+1 implies Inequality (4), i.e., a contradiction to ~x? being locally optimal at i.
We now show how to derive ~xm+1 by inductively constructing ~xh from ~xh−1 where for every
h ∈ {1, 2, ...,m+ 1}, ~xh is locally optimal at i, xhi > x?i + δ(m+ 1− h), and ~xm+1 fulfills the
last two properties above.

Recall that ~x′ − ej̃ is locally optimal at i < j̃, so by Lemma 2 there exists 0 ≤ l1 ≤ δ
such that

~x1 = ~x′ − ej̃ + ej̃ − l1ei = ~x′ − l1ei
is locally optimal at i. Further, since l1 ≤ δ, we know x1

i − x?i > δm. Now, for each
h ∈ {1, 2, ...,m}, we repeat this procedure of adding one customer of type j > ĵ: given
a solution ~xh that is locally optimal at i, Lemma 2 allows us to find the lh+1 such that
~xh+1 = ~xh + ej − lh+1ei is locally optimal at i. Moreover, Lemma 2 guarantees that lh+1 ≤ δ,
i.e., xhi − xh+1

i ≤ δ. Thus, the first two properties are maintained throughout. Since we
have x1

j ≥ x?j for j ≤ ĵ when j 6= i, and we never remove a customer from such j, the third
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property holds, and since we add customers until xhj = x?j for j > ĵ the fourth property
holds. This completes the proof of Case (a).

For Case (b) the sequence of solutions starts at ~x′, not ~x1, because ~x′ is already lo-
cally optimal at i when i = ĵ = j̃. Then, we derive the same contradiction to x′i − x?i >
δ
∑k

n=ĵ+1(x?n − x′n) = δm by constructing ~xm+1 with the properties as above.
The proof of Lemma 6 (ii) is based on a similar argument and is included in Appendix A.4.

Proof of Theorem 1. Consider pmin = minj pj < 1, Rmax = maxi,j:i<j Rij ≥ 1 for Rij as
constructed in Lemma 5, and δ ≥ 1 as constructed in Lemma 2. To prove the theorem we
show

ÔPT ~A −H ~A[1] ≤M1 := δk(k + 2)
Rmax

pmin
,∀ ~A,

and observe that all terms on the right are independent of B and T .
Suppose the clairvoyant general solution, locally optimal at each j, given B and ~A, is ~x?

and a clairvoyant index solution, that is locally optimal at its threshold index j̃, is ~x′. Then

ÔPT ~A −H ~A[1] =

(∑
j

vjx
?
j − VB(~x?)

)
−

(∑
j

vjx
′
j − VB(~x′)

)

=

(∑
j

vj(x
?
j − x′j)

)
+ (VB(~x′)− VB(~x?)) ≤

(∑
j

(x?j − x′j)+

)
+

(∑
j

(x′j − x?j)+

)
.

Notice that the inequality is a seemingly loose bound: it ignores greater revenue for ~x′ from
types j with x′j > x?j , it compensates for every such customer, regardless of whether or not
such compensation would be paid, it rounds up vj to 1 for j with x?j > x′j, and it ignores
the compensation for these types. Nonetheless, it is sufficient for our purposes. We discuss
two main cases based on the threshold index j̃ of ~x′, where we recall that x′j = Nj ≥ x?j for

j < j̃, and x′j = 0 ≤ x?j for j > j̃.

(i) x?j <
Rmax
pmin

,∀j ≥ j̃. Then we consider

(a) x′
j̃
≥ x?

j̃

(b) x′
j̃
< x?

j̃

(ii) Find the largest index j ≥ j̃ such that x?j ≥ Rmax
pmin

, denoted by ĵ. Then we consider

(a) x′
ĵ
≥ x?

ĵ

(b) x′
ĵ
< x?

ĵ

We begin with Case (i.a). Since x′j = Nj ≥ x?j for any j < j̃,

24



∑
j

(x?j − x′j) ≤
k∑
j=j̃

x?j ≤ (k − j̃ + 1)
Rmax

pmin
.

Then we find that

∑
j

(x′j − x?j)+ ≤kδ

1 +
k∑

j=j̃+1

(x?j − x′j)

 (Lemma 6 (i))

≤kδ
[
1 + (k − j̃)Rmax

pmin

]
(Assumption of Case (i.a))

≤δk2Rmax

pmin
.

Thus, in Case (i.a): ÔPT ~A −H ~A[1] ≤ (k − j̃ + 1)
Rmax

pmin
+ δk(k + 1)

Rmax

pmin
≤ δk(k + 2)

Rmax

pmin
.

The arguments for Case (i.b) are similar to those for Case (i.a) and give

∑
j

(x′j − x?j)+ ≤ kδ

1 +
k∑
j=j̃

(x?j − x′j)

 ≤ kδ

[
1 + (k − j̃ + 1)

Rmax

pmin

]
≤ δk(k + 1)

Rmax

pmin
.

Thus, in Case (i): ÔPT ~A −H ~A[1] ≤ (k − j̃ + 1)
Rmax

pmin
+ δk(k + 1)

Rmax

pmin
≤ δk(k + 2)

Rmax

pmin
.

For Case (ii.a) we argue as follows. We know that x′j = 0 ≤ x?j ,∀j > j̃, so for x′
ĵ
≥ x?

ĵ
≥

Rmax
pmin

to hold we must have ĵ = j̃. Moreover, x′j = Nj ≥ x?j , ∀j < ĵ = j̃. Thus,

∑
j

(x?j − x′j)+ ≤
k∑

j=ĵ+1

x?j ≤ (k − ĵ)Rmax

pmin

and
∑
j

(x′j−x?j)+ =

ĵ∑
j=1

(x′j−x?j) ≤ kδ

1 +
k∑

j=ĵ+1

(x?j − x′j)

 ≤ kδ

[
1 + (k − ĵ)Rmax

pmin

]
≤ δk2Rmax

pmin

imply ÔPT ~A −H ~A[1] ≤ (k − ĵ)Rmax

pmin
+ δk2Rmax

pmin
≤ δk(k + 1)

Rmax

pmin
.

In Case (ii.b), we know from Lemma 5 that, if x?
ĵ
≥ Rmax

pmin
, then x?j > Nj − Rmax

pmin
∀j < ĵ.

Thus, x′j − x?j ≤ Rmax
pmin

, ∀j < ĵ, implying

∑
j

(x′j − x?j)+ ≤
ĵ−1∑
j=1

(x′j − x?j) ≤
ĵ−1∑
j=1

Rmax

pmin
≤ (ĵ − 1)

Rmax

pmin
.
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Moreover, with Lemma 6 (ii) implying the second, and Lemma 5 (i) implying the third
inequality in

∑
j

(x?j − x′j)+ ≤
k∑
j=ĵ

(x?j − x′j) ≤ kδ

ĵ−1∑
j=1

(x′j − x?j) ≤ δk2Rmax

pmin
,

we conclude ÔPT ~A −H ~A[1] ≤ δk2Rmax

pmin
+ (ĵ − 1)

Rmax

pmin
≤ δk(k + 1)

Rmax

pmin
.

Thus, in any case, the loss is bounded by δk(k + 2)Rmax
pmin

, independent of B, T and ~A.

4.3 Proof of Lemma 3

The proof of the lemma follows ideas from [VB20, FB19]. Suppose the arrival in period t−1
is of type i, and the online index policy accepts the arrival — the proof is symmetric, but the
notation is more cumbersome, when the arrival is rejected. We denote by ~x? the clairvoyant
index solution in period t− 1 and by ~x′ the solution found by Algorithm 1 in period t− 1,
i.e., ~x? and ~x′ are both optimal index solutions to (1) with past actions ~x[t − 2], but ~x?

is based on the real arrivals, from ~A, in periods t, t + 1, . . . , T whereas ~x′ is based on the
sampled arrivals from ~A′.

Observe first that we must have x′i ≥ Ñ f
i [t − 1]/2 when we are in the case that the

online index policy accepts i in period t − 1 (see Algorithm 1). Now, if x?i > 0, then the
clairvoyant index policy (in period t− 1) still accepts at least one arrival of type i in periods
t− 1, t, . . . , T . But that implies that the clairvoyant index policy objective in period t− 1 is
still achievable in period t. Thus, the online index policy does not incur any loss by accepting
an arrival of type i in period t− 1, and we must have H ~A[t− 1]−H ~A[t] = 0. We derive that
in order to incur a loss when accepting i in period t− 1 it must be the case that x?i = 0 and

x′i ≥ Ñ f
j [t− 1]/2, i.e.,

P [H ~A[t− 1]−H ~A[t] > 0] ≤ P
[
x′i − x?i > Ñ f

i [t− 1]/2− 1
]
. (5)

At the same time, since ~x′ and ~x? are index policies, (i) x?i = 0 and Ni[t−1, T ] ≥ 1 imply

that x?j = 0∀ j ≥ i, and (ii) x′i ≥ Ñ f
i [t− 1]/2 > 0 implies x′j = Ñ f

j [t− 1]∀ j < i. We make
the following claim, which we prove in Appendix A.5.

Claim 3. With ~x′, ~x? as described we have

x′i − x?i ≤ δ

[
i−1∑
j=1

(
x?j − x′j)+

]
.
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The proof of Claim 3 is straightforward from Lemma 2 and included in Appendix A.5.
Combining the claim with the reasoning above we obtain

x′i − x?i ≤ δ

[
i−1∑
j=1

(
x?j − x′j)+

]
(Claim 3)

= δ

[
i−1∑
j=1

(
x?j − Ñ

f
j [t− 1]

)+
]

(ii)

≤ δ

[
i−1∑
j=1

(
Nj[t− 1, T ]− Ñ f

j [t− 1]
)+
]
. (x?j ≤ Nj[t− 1])

Together with (5) this implies that

P
[
H ~A[t− 1]−H ~A[t] > 0

]
≤ P

[
δ

(
i−1∑
j=1

(
Nj[t− 1, T ]− Ñ f

j [t− 1]
)+
)
> Ñ f

i [t− 1]/2− 1

]
.

Let t̄ = T − t. Applying Chernoff bounds to ~N [t− 1] and Ñ f [t− 1] with ε = log(t̄)

λj
√
t̄
, we know

that

with Ej
1 =

{
Nj[t− 1]− λj t̄ ≥ log(t̄)

√
t̄
}

we have P
[
Ej

1

]
≤ e−

ε2λj t̄

2+ε ∈ o
(

1

t̄2

)
,∀j

With Ej
2 =

{
Ñ f
j [t− 1]− λj t̄ ≤ − log(t̄)

√
t̄
}

we have P
[
Ej

2

]
≤ e−

ε2λj t̄

ε ∈ o
(

1

t̄2

)
,∀j

Thus, there exists some constant t1 ∈ Z+ such that P
[
Ej

1

]
,P
[
Ej

2

]
< 1

t̄2
for any t̄ ≥ t1.

A union bound over Ej
1, E

j
2 for all j implies that, for E = ∩j

(
Ej

1 ∪ E
j
2

)c
, we have

P(E) > 1− 2k

t̄2
,∀t̄ ≥ t1.

Next, define t2 ∈ Z+ as the smallest value such that for t̄ ≥ t2

δk2
√
t̄ log(t̄) ≤ λit̄/2− 1− 1

2

√
t̄.

Then, conditioning on event E we find for t̄ ≥ t2 that

δ

[
i−1∑
j=1

(
Nj[t− 1, T ]− Ñ f

j [t− 1]
)+
]
≤ δk2

√
t̄ log(t̄) ≤ λit̄/2−1−1

2

√
t̄ log(t̄) ≤ Ñ f

i [t−1]/2−1,

where the first inequality holds conditioned on E, and the second with t̄ ≥ t2. Let t3 =
max{t1, t2}; then for T − t ≥ t3 we have P [H ~A[t− 1]−H ~A[t] > 0] < 2k

(T−t)2 . We conclude
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the proof with

T∑
t=2

P [H ~A[t− 1]−H ~A[t] > 0]

≤ t3 +

T−t3∑
t=2

P [H ~A[t− 1]−H ~A[t] > 0]

≤ t3 +

T−t3∑
t=2

2k

(T − t)2
≤ t3 +

∞∑
t=1

2k

t2
= t3 + 2k

π2

6

giving a constant bound M2 := t3 + 2k π
2

6
as required.5

5 Numerical results

Our numerical results consist of three parts. In the first part, we compare the optimal
clairvoyant general solution and the optimal clairvoyant index solution for a few instances,
i.e., we focus on the accepted customers rather than the objective. This serves to illustrate
both that (i) index solutions are not optimal in general and (ii) as described in Lemma
5, asymptotically the clairvoyant general and the clairvoyant index policies look “similar”.
Thereafter, in the second part, we focus on the relative performance gaps bounded in The-
orem 1 and Lemma 3. Finally, in the third part we show how, for fixed B and T , the loss
changes when we vary the parameters vi and pi. All figures from this section are included
at the end of this paper.

Optimal solutions

We first observe that the clairvoyant optimal solution is not guaranteed to be an index
solution in all settings, although it “switches” to an index policy as B scales up. This
switching behavior can be intuitively explained by Lemma 5, which shows that, when i < j,
accepting Rij/pi type i customers yields better objective than accepting Rij/pj types j
customers does for some large constant Rij. Thus, when B and T are large, if Rij/pi type i
customers are present, the clairvoyant general policy does not accept more than Rij/pj types
j customers.

We capture this switching behavior in the example below, where we consider a single
sample path based on the following parameters: k = 3, λ1 = 0.3, λ2 = 0.2, λ3 = 0.5. More-
over, the values and no-show probabilities are v1 = 0.044, v2 = 0.1, v3 = 0.06, p1 = 0.2, p2 =
0.5, p3 = 0.3. We test for B ∈ {1, ..., 15} two settings, one in which demand is unconstrained
(T is large), so any number of customers of each type can be accepted, and one in which
T = 5B, so the number of customers accepted is constrained by both the capacity and the

5Notice that different t1, t2 may be needed to capture, through analogous arguments, the case where the
online index policy rejects, rather than accepts, an arrival in period t.
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demand for each type. For each setting, we consider both the clairvoyant general and the
clairvoyant index policy.

In the first setting, we observe a switch from type 2 customers to type 1 customers as
B scales up. Figure 1 shows this switch in the different types of customers accepted by the
clairvoyant general policy. On the other hand, Figure 2 shows that the clairvoyant index
policy accepts only type 1 customers, since those have the highest critical ratio, and demand
is unconstrained in this example.

Figure 1: Switching behavior of the clairvoyant general policy under unconstrained demand.

The second setting captures a similar behavior when demand is constrained. In Figure
3 we show both the demand and the accepted number of requests for each type, as we vary
B. We observe that the clairvoyant general policy in Figure 3 accepts more customers of
type 2 and type 3 customers when B is small, while the clairvoyant index policy in Figure
4, by definition, always accepts the types of customers in the order of their indices. As B
grows larger, the clairvoyant general policy becomes more similar to an index policy, but
sometimes, e.g., with B = 12, it still does not accept all arrivals of type 1 (in line with
Lemma 5).

Performance loss of clairvoyant index policies

We next turn our attention to the performance loss of the clairvoyant index and the online
index policy relative to the clairvoyant general policy. As our results show, both have uni-
formly bounded loss. We consider two experiments below, corresponding to the case with
“switching” behavior (Experiment A) and the case without “switching” behavior (Experi-
ment B). Throughout this part, we show results as a log-log plot, i.e., 1 minus the index
policies’ objective divided by the objective of the clairvoyant general policy. On these plots,
a slope of −1, i.e., relative loss scales as 1/B, indicates a uniform loss guarantee. We include
curves proportional to Θ( 1√

B
) and Θ( 1

B
) to better visualize the different scalings. Further,

given that finding the clairvoyant general solution is computationally expensive (even when
knowing the arrivals) for a large time horizon, we only evaluate the loss relative to the general
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Figure 2: Solution of the clairvoyant index policy under unconstrained demand.

Figure 3: Switching behavior of the clairvoyant general policy with constrained demand.

Figure 4: Solution of the clairvoyant index policy with constrained demand.
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Figure 5: Relative loss of the online and the clairvoyant index policy compared to the clairvoyant
general policy as a benchmark (Experiment A).

Figure 6: Relative loss of the online index policy compared to the clairvoyant index policy as a
benchmark (Experiment A).
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Figure 7: Relative loss of the online and the clairvoyant index policy compared to the clairvoyant
general policy as a benchmark (Experiment B)

clairvoyant for T ≤ 250. However, since we find that the clairvoyant index solution seems to
have (near-)zero loss anyway, we also include comparisons between the online index policy
and the clairvoyant index policy over longer time-horizons.

In Experiment A we have the same parameters as in the first part. Figure 5 displays the
relative loss of the two index policies for T ∈ {25, 50, . . . , 250} where B = T/5. We observe
that the losses of the two policies are uniform as T and B scale up, i.e., the relative loss
of the clairvoyant index policy decreases as 1/T (or even faster). We remark that the loss
of the clairvoyant index solution is so small (indeed, zero after the “switch”, but positive
before) that we need to artificially add a constant to it for it to appear on the log-log plot.
In Figure 6 we compare the clairvoyant index policy to the online index policy for a time
horizon up to T = 750.

In Experiment B we use a different set of parameters in which we have no switching
behavior. We consider k = 3, λ1 = 0.2, λ2 = 0.3, λ3 = 0.5, as well as v1 = 0.6, v2 =
0.4, v3 = 0.3, p1 = p2 = p3 = 0.8. Figure 7 displays the relative loss. Without the switching
behavior the clairvoyant index policy always incurs zero loss, so we add a constant to it for
it to appear on the log-log plot. We evaluate both online and clairvoyant index policies for
T ∈ {15, 10, 15, . . . , 150}, and B = T/3. In Figure 8 we compare the clairvoyant index policy
to the online index policy for a time horizon up to T = 900.

Varying parameters

Finally, we test how the loss bound changes with respect to the other parameters in our
model. In Figure 9 and 10 we assume λ1 = 0.2, λ2 = 0.3, λ3 = 0.5, B = 10, T = 20. Moreover,
in Figure 9 we let v1 = p − 0.1, v2 = p − 0.2, v3 = p − 0.3, where p1 = p2 = p3 = p for p ∈
[0.4, 0.9], and compute the absolute (not relative) loss of the index policies as a function of p.
In Figure 10, we instead assume v1 = v2 = v3 = v and p1 = v+ 0.1, p2 = v+ 0.2, p3 = v+ 0.3
for v ∈ [0.1, 0.6], so that we observe how the relative losses of index policies change with
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Figure 8: Relative loss of the online index policy compared to the clairvoyant index policy as a
benchmark (Experiment B).

Figure 9: Loss of index policies: B = 10, T = 20, v1 = p − 0.1, v2 = p − 0.2, v3 = p − 0.3, where
p1 = p2 = p3 = p for p ∈ [0.4, 0.9]

respect to the revenue per customer. While the experiments show varying loss for the online
clairvoyant index policy as we change these parameters, it is always extremely small relative
to the size of the budget and the overall objective for a maximum relative loss of about 1%
when compared to the clairvoyant general policy.

6 Conclusion

In this work we developed a simple online algorithm for SRMNS with heterogeneous no-show
probabilities. In contrast to previous results, that were only optimal on the fluid scale, our
algorithm is the first that achieves a uniform loss guarantee. Our key technical innovation
is the design of a set of policies, specifically ones based on index solutions, that (i) have
bounded loss relative to the clairvoyant over the entire time horizon, and (ii) change in a
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Figure 10: Loss of Index Policies: Revenue per Customer

tractable manner in each period. In doing so, we are able to leverage the novel compensated
coupling technique of [VB20, FB19] for a problem with overbooking.

Our results extend to capture customer requests with (i) product-dependent (heteroge-
neous) refunds for no-shows (see Appendix B.1), and (ii) different resource requirements (see
Appendix B.2), or (iii) arrivals that are not iid. However, there are other ways in which we
do not know how to extend our results. The most obvious among those would be to extend
our results to a network problem with no-shows, i.e., one with different types of resources.
In this case, one may be able to combine a decomposition approach with our technique
for individual legs to obtain a uniform loss guarantee (potentially under a non-degeneracy
assumption à la [JK12]). Next, it would be interesting to extend our results to capture type-
dependent compensation amounts. This complicates the problem, as it is then non-obvious
that the clairvoyant general solution asymptotically resembles the clairvoyant index solution
— however, again under some technical assumption, it may be possible to derive such a
result.

Finally, the most well-studied extension would be to settings where there are cancellations
in addition to no-shows; unfortunately, traditional models of cancellation do not seem to fit
under the umbrella of compensated coupling techniques, as the objective is not only based
on the action counts, i.e., how often were product requests of each type accepted, but also
on the timing of those actions. Thus, this seems to be the least feasible extension of our
techniques.
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A Omitted Proofs

A.1 Existence of locally optimal global optimum

Claim 4. There exists a globally optimal solution ~x? to (1) with (estimated) future arrivals

Ñ f [t] and past accepted arrivals ~x[t− 1] that is locally optimal for every type j.

Proof of Claim 4. Let ~x? be a globally optimal solution that maximizes
∑

i x
?
i , i.e., there

exists no solution ~x′ with objective as high as that of ~x? and
∑

i x
′
i >

∑
i x

?
i . We prove that

~x? is locally optimal for every type j. Let ~x = ~x[t− 1] + ~x?.
Suppose ~x? is not locally optimal at some i ∈ [k]. We shall show that this implies

x?i < Ñ f
i [t] and P

[∑
n

Xn,xn ≥ B

]
= qi.

Since ~x? is not locally optimal at i, it violates either Lemma 1 (i) or Lemma 1 (ii). If ~x?

violates Lemma 1 (ii), we must have x?i > 0 and P
[∑

n6=iXn,xn +Xi,xi−1 ≥ B
]
> qi. This

leads to the contradiction that

VB (~x)−VB (~x− ei) = P

[∑
n6=i

Xn,xn +Xi,xi−1 < B

]
·0+P

[∑
n6=i

Xn,xn +Xi,xi−1 ≥ B

]
·pi > vi,

which means ~x− ei yields a better objective than ~x does, and ~x? is not a global optimum.
Thus, ~x? must violate Lemma 1 (i), and we have x?i < Ñ f

i [t] and P [
∑

nXn,xn ≥ B] ≤ qi.

In particular, x?i < Ñ f
i [t] and P [

∑
nXn,xn ≥ B] < qi would lead to the contradiction that

VB (~x+ ei)− VB (~x) = P

[∑
n

Xn,xn < B

]
· 0 + P

[∑
n

Xn,xn ≥ B

]
· pi < vi,

which means ~x + ei yields a better objective than ~x does, and ~x? is not a global optimum.
Thus, we must have

x?i < Ñ f
i [t] and P

[∑
n

Xn,xn ≥ B

]
= qi

if the global optimum ~x? is not locally optimal at i.
From P [

∑
nXn,xn ≥ B] = qi we know

VB (~x+ ei)− VB (~x) = P

[∑
n

Xn,xn < B

]
· 0 + P

[∑
n

Xn,xn ≥ B

]
· pi = vi,

which means ~x+ ei yields the same objective as ~x does. Thus, ~x? + ei is a global optimum,
which contradicts the assumption that ~x? maximizes

∑
i x

?
i among globally optimal solutions.
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A.2 Proof of Claims 1 and 2

Proof of Claim 1

Recall that Y =
∑

n6=j Xn,xn +Xj,xj+δ? and Z =
∑

nXn,xn for constant δ?. Then, we denote
the mean of random variable Y and Z as µY and µZ , and denote the standard deviation of
Y and Z as σY and σZ . We compute

µZ = E[Z] = E

[
k∑

n=1

Xn,xn

]
=

k∑
n=1

xnpn,

and similarly µY = E[Y ] = δ?pj +
∑k

n=1 xnpn. Moreover,

σ2
Z = Var[Z] = Var

[
k∑

n=1

Xn,xn

]
=

k∑
n=1

Var [Xn,xn ] =
k∑

n=1

xnpn(1− pn),

and similarly σ2
Y = Var[Y ] = δ?pj(1− pj) +

∑k
n=1 xnpn(1− pn).

Let m =
∑k

n=1 xn denote the total number of customers in solution ~x and label the
customers from 1 to m. That is, we label each individual customer with r ∈ [m] rather
than labelling each customer type with n ∈ [k]. Since the results in this claim depend
only on m (and not on how many customers of each type are in ~x), with a slight abuse
of notation we let m → ∞ when really referring to

∑
n xn → ∞. For r ∈ {1, ...,m}, pick

the rth customer, and denote its type by n ∈ {1, ..., k}; we define the random variable
Zr := Xn,1 − pn = Xn,1 − pr.Then, E[Zr] = 0 for every r and

Z =
m∑
r=1

Zr +
k∑

n=1

xnpn =
m∑
r=1

Zr + µZ .

Similarly, for fixed δ?, we define for r ∈ {1, ...,m+ δ?}, with the rth customer of type n, the
random variables Yr := Xn,1 − pn = Xn,1 − pr, so that E[Yr] = r for every r and

Y =
m+δ?∑
r=1

Yr + δ?pj +
k∑

n=1

xnpn =
m+δ?∑
r=1

Yr + µY .

We normalize Z and Y by defining

Z ′ =
Z − µZ
σZ

=

∑m
r=1 Zr
σZ

, Y ′ =
Y − µY
σY

=

∑m+δ?

r=1 Yr
σY

.

Denote the CDF of standard normal random variable X0 ∼ N (0, 1) by Φ(x),∀x ∈ R. To
identify δ?,m0 that satisfy (2), we resort to the following version of the Berry-Esseen theorem
for independent random variables.
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Proposition 1 (Theorem 2 of Chapter XVI.5 in [Fel57]). Let Jr be independent random
variables such that E [Jr] = 0, E [J2

r ] := σ2
r and E [|J3

r |] := κr. Put s2
m =

∑m
r=1 σ

2
r , gm =∑m

r=1 κr, and denote by J ′ the normalized sum (J1 + ...+ Jm)/sm. Then for all x and m,

|FJ ′(x)− Φ(x)| ≤ 6
gm
s3
m

. (6)

For zero-mean random variables Zr defined above, we compute

gm =
m∑
r=1

E
[∣∣Z3

r

∣∣] =
m∑
r=1

(1− pr)pr
[
(1− pr)2 + p2

r

]
≤

m∑
r=1

(1− pr)pr,

and

s3
m =

(
E
[
Z2
r

])1.5
=

[
m∑
r=1

(1− pr)pr

]1.5

.

Since the Zr constructed above satisfy the conditions in Proposition 1, from (6) we obtain

|FZ′(x)− Φ(x)| ≤ 6
gm
s3
m

≤ 6√∑m
r=1(1− pr)pr

=
6

σZ
.

Similarly, for zero-mean random variables Yr defined above,

|FY ′(x)− Φ(x)| ≤ 6√
δ?pj(1− pj) +

∑m
r=1(1− pr)pr

=
6

σY
.

We assume without loss of generality that q̄j − 6
σY

> 0 and q̄j + 6
σY

< 1, which is always
true for sufficiently large m. With

FY ′(x)− 6

σY
≤ Φ(x),

we know, since Φ(·) is non-decreasing,

Φ−1

(
FY ′(x)− 6

σY

)
≤ Φ−1(Φ(x)) = x = F−1

Y ′ (FY ′(x)) .

Thus, with x = F−1
Y ′ (q̄j) we have

Φ−1

(
q̄j −

6

σY

)
≤ F−1

Y ′ (q̄j)

Similarly, we can show

F−1
Z′ (q̄j) ≤ Φ−1

(
q̄j +

6

σZ

)
.
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Further, the definition of Y ′ gives

F−1
Y ′ (q̄j) =

[
F−1
Y (q̄j)− µY

] 1

σY
,

so F−1
Y (q̄j) = σY F

−1
Y ′ (q̄j) + µY . Similarly, F−1

Z (q̄j) = σZF
−1
Z′ (q̄j) + µZ .

Therefore,

F−1
Y (q̄j)− F−1

Z (q̄j) = σY F
−1
Y ′ (q̄j) + µY −

[
σZF

−1
Z′ (q̄j) + µZ

]
≥σY · Φ−1

(
q̄j −

6

σY

)
+ µY −

[
σZ · Φ−1

(
q̄j +

6

σZ

)
+ µZ

]
= (µY − µZ)︸ ︷︷ ︸

(I)

+ Φ−1

(
q̄j −

6

σY

)
(σY − σZ)︸ ︷︷ ︸

(II)

−
[
Φ−1

(
q̄j +

6

σZ

)
− Φ−1

(
q̄j −

6

σY

)]
σZ︸ ︷︷ ︸

(III)

(7)

Take

δ? =
3 + 12Φ−1′(q̄j)

pj
.

We aim to show that there exists m0 ∈ Z+ such that (7) ≥ 1 is guaranteed for m ≥ m0.
To do so, we show that there exist m1,m2 ∈ Z+ such that the inequality holds true for any
m ≥ m0 = max(m1,m2). Since (I) = δ?pj, we find m1 and m2 that bound (II) and (III),
respectively.

Let w = arg minn pn(1− pn). We know

lim
m→+∞

|σY − σZ | = lim
m→+∞

∣∣∣∣∣∣
√√√√δ?pj(1− pj) +

m∑
r=1

(1− pr)pr −

√√√√ m∑
r=1

(1− pr)pr

∣∣∣∣∣∣
≤ lim

m→+∞

∣∣∣∣∣∣
√√√√δ?pj(1− pj) +

m∑
r=1

(1− pw)pw −

√√√√ m∑
r=1

(1− pw)pw

∣∣∣∣∣∣ = 0,

and thus limm→+∞(σY − σZ) = 0. Similarly, we can show that

lim
m→+∞

σY
σZ

= 1 and lim
m→+∞

σZ
σ2
Y

=
1

σZ
= 0.

To bound (II), we know that Φ−1
(
q̄j − 6

σY

)
is bounded both above and below with

respect to m, and limm→+∞(σY − σZ) = 0. Thus, limm→+∞(II) = 0. This implies in
particular that there exists m1 ∈ Z+ such that (II) ≥ −1 for all m ≥ m1.

To bound (III), we apply Taylor expansion. Pick any ε such that 0 < ε < max(q̄j, qj).

(i) For any ∆ ∈ [0, qj − ε],

Φ−1(q̄j + ∆) = Φ−1(q̄j) + Φ−1′(q̄j) ·∆ + Φ−1′′(a1) ·∆2 (8)

for some a1 ∈ [q̄j, q̄j + ∆]
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(ii) For any ∆ ∈ [q̄j − ε, 0],

Φ−1(q̄j −∆) = Φ−1(q̄j)− Φ−1′(q̄j) ·∆ + Φ−1′′(a2) ·∆2 (9)

for some a2 ∈ [q̄j −∆, q̄j].

Plugging ∆ = 6
σZ

into (8), we obtain

Φ−1(q̄j + ∆) = Φ−1(q̄j) + Φ−1′(q̄j) ·
6

σZ
+ Φ−1′′(a1)

36

σ2
Z

,

where a1 ∈ [q̄j, q̄j + 6
σZ

]. Similarly, for ∆ = 6
σY

, we have

Φ−1(q̄j −∆) = Φ−1(q̄j)− Φ−1′(q̄j) ·
6

σY
+ Φ−1′′(a2)

36

σ2
Y

,

where a2 ∈ [q̄j − 6
σY
, q̄j]. Thus,

(III) =

[
Φ−1

(
q̄j +

6

σZ

)
− Φ−1(q̄j) + Φ−1(q̄j)− Φ−1

(
q̄j −

6

σY

)]
σZ

=

[
Φ−1′(q̄j) ·

6

σZ
+ Φ−1′′(a1)

36

σ2
Z

+ Φ−1′(q̄j) ·
6

σY
− Φ−1′′(a2)

36

σ2
Y

]
σZ

=6Φ−1′(q̄j)

[
1 +

σZ
σY

]
+ 36

[
Φ−1′′(a1)

1

σZ
− Φ−1′′(a2)

σZ
σ2
Y

]
Since Φ−1′′(a1) and Φ−1′′(a2) are both bounded over compact sets,

lim
m→+∞

36

[
Φ−1′′(a1)

1

σZ
− Φ−1′′(a2)

σZ
σ2
Y

]
= 0.

Moreover,

lim
m→+∞

6Φ−1′(q̄j)

[
1 +

σY
σZ

]
= 12Φ−1′(q̄j).

Therefore, limm→+∞(III) = 12Φ−1′(q̄j), which is a constant. Thus, there exists m2 ∈ Z+

such that (III) ≤ 12Φ−1′(q̄j) + 1 for all m ≥ m2. Then, plugging the value of δ? into (7),
we have

F−1
Y (q̄j)− F−1

Z (q̄j) ≥ δ?pj − 1− 12Φ−1′(q̄j)− 1 ≥ 1

for any m ≥ max(m1,m2).

Proof of Claim 2

We denote the events

E1 =

{∑
n 6=i,j

Xn,xn +Xj,xj−δj−1 < B − 1−Xi,xi

}
,
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E2 =

{∑
n 6=i,j

Xn,xn +Xj,xj−δj−1 < B −Xi,xi+1

}
,

which allows us to write the claim as P [Ec
1] ≥ P [Ec

2] . One can equivalently show P [E2] ≥
P [E1], which follows immediately from Xi,xi+1 = Xi,xi +Xi,1 ≤ Xi,xi + 1.

A.3 Proof of Lemma 4 (ii)

In Case (ii), we show that the objective of ~x?+
Rij
pi
·ei is always greater than that of ~x?+

Rij
pj
·ej

for any Rij ∈ Z+ such that
Rij
pi

and
Rij
pj

are both integers. First, the revenue is the same with

~x? +
Rij
pi
· ei and ~x? +

Rij
pj
· ej, since Rij/pi · vi = Rij/pj · vj follows from qi = qj. Second,

we show that the difference in expected compensation, E[WB (X +Xi)]− E[WB (X +Xj)],
is negative.

We apply the following probabilistic bound on binomial random variables.

Proposition 2 (Corollary 4 in [Pin20]). Take any λ ∈ (0,∞), n ∈ N, and denote Yn ∼
Bin (n, λ/n).

(i) If m ≥ 1 + λ, then P [Yn ≥ m] is strictly increasing in n, i.e.,

P [Yn1 ≥ m] < P [Yn2 ≥ m] if n1 < n2.

(ii) If m ≤ λ, then P [Yn ≥ m] is strictly decreasing in n, i.e.,

P [Yn1 ≥ m] > P [Yn2 ≥ m] if n1 < n2.

With Xi ∼ Bin
(
R
pi
, pi

)
, Xj ∼ Bin

(
R
pj
, pj

)
, we can apply this result by setting λ =

Rij, ni = Rij/pi, nj = Rij/pj. Then, we find that for either R′ = Rij or R′ = Rij + 1

FXi(x) = 1− P[Xi ≥ x+ 1] > 1− P[Xj ≥ x+ 1] = FXj(x) when x > R′,

and FXi(x) = 1− P[Xi ≥ x+ 1] ≤ 1− P[Xj ≥ x+ 1] = FXj(x) when x ≤ R′.

To show that the difference in expected compensation is strictly negative, we will prove that

∀a ≥ 0 : E[WB (X +Xi) |X = a] = E
[
(Xi − (B − a))+]

≤ E
[
(Xj − (B − a))+] = E[WB (X +Xj) |X = a],

and the inequality is strict for some a with P [X = a] > 0. We distinguish between three
cases:

(i) E1 = {a : B − a ≤ 0};

(ii) E2 = {a : 0 < B − a ≤ R′};
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(iii) E3 = {a : R′ < B − a}.

Note that we may assume WLOG in this discussion that R′ ≤ B because we define R′ as a
constant that depends only on pi, pj, not on B.

In event E1, there is no capacity left after a customers show up, so

E[WB (X +Xi) |X ∈ E1]− E[WB (X +Xj) |X ∈ E1] = E[Xi]− E[Xj]= R−R = 0.

For events E2 and E3, we first establish a result for any X0 ∼ Bin(n, p), where n ∈ Z+ and
0 < p < 1. Given B ≥ 0,

E[WB (X0)] = E
[
(X0 −B)+

]
=

n∑
x=B+1

(x−B)P [X0 = x] =
n−B∑
x=1

xP [X0 = B + x]

=
n−B∑
x=1

n−B∑
y=x

P [X0 = B + y] =
n−B∑
x=0

(1− FX0(B + x)) =
n∑

x=B

(1− FX0(x)) .

For any a ∈ E2, the remaining capacity is B − a > 0. We plug in

n =
Rij

pi
for E[WB (X +Xi) |X = a] and n =

Rij

pj
for E[WB (X +Xj) |X = a].

Then,

E[WB (X +Xi) |X = a]− E[WB (X +Xj) |X = a]

=

Rij
pi∑

x=B−a

(1− FXi(x))−

Rij
pj∑

x=B−a

(
1− FXj(x)

)
=E[Xi]−

B−a∑
x=0

(1− FXi(x))−

[
E[Xj]−

B−a∑
x=0

(
1− FXj(x)

)]

=
B−a∑
x=0

(
FXi(x)− FXj(x)

)
< 0.

For any a ∈ E3,

E[WB (X +Xi) |X = a]− E[WB (X +Xj) |X = a]

=

Rij
pj∑

x=B−a

(1− FXi(x))−

Rij
pj∑

x=B−a

(
1− FXj(x)

)
=

Rij
pj∑

x=B−a

(
FXj(x)− FXi(x)

)
< 0.

Thus, overall we have
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E[WB (X +Xi)]− E[WB (X +Xj)]

=
∞∑
a=B

P[X = a] [E[WB (X +Xi) |X = a]− E[WB (X +Xj) |X = a]]

+
B−1∑

a=B−R′

P[X = a] [E[WB (X +Xi) |X = a]− E[WB (X +Xj) |X = a]]

+
B−R′−1∑
a=0

P[X = a] [E[WB (X +Xi) |X = a]− E[WB (X +Xj) |X = a]]

<
∞∑
a=B

P[X = a] · 0 +
B−1∑

a=B−R′

P[X = a] · 0 +
B−R′−1∑
a=0

P[X = a] · 0 = 0.

The strict inequality implies that the difference in expected compensation is strictly
negative. This completes the proof of Lemma 4.

A.4 Proof of Lemma 6 (ii)

The proof is almost symmetric to the first part. Instead of Inequality (3), we show

x?j − x′j ≤ δ

ĵ∑
n=1

(x′n − x?n),∀j > ĵ.

Since ~x′ is locally optimal at every i ≥ j̃, we now show that if x?i − x′i > δ
∑ĵ

n=1(x′n− x?n) for

some type i > ĵ, then ~x′ cannot be locally optimal at i, which is a contradiction.

Let m =
∑ĵ

j=1(x′j − x?j). Similar to before, we construct a sequence of solutions

~x1, ~x2, ..., ~xm+1,

all of which are locally optimal at i but vary in the number of customers of other types. Let
~x1 = ~x?, which we know is locally optimal at i. For each h ∈ {1, ...,m}, we add a customer
of type j ≤ ĵ: we start with a solution ~xh that is locally optimal at i, and apply Lemma 2 to
find lh+1 ≤ δ such that solution ~xh+1 = ~xh + ej − lh+1ei is locally optimal at i. After adding

all m =
∑ĵ

n=1(x′n − x?n) customers, we find solution ~xm+1 that satisfies local optimality at i,

xm+1
i > x′i, x

m+1
j = x′j∀j ≤ ĵ, and xm+1

j = x?j ≥ x′j∀j > ĵ.

Now we argue as in the first part: with xm+1
j ≥ x′j∀j we have the first, and with ~xm+1

locally optimal at i (from Lemma 1) the second inequality in

P

[∑
n

Xn,x′n ≥ B

]
≤ P

[∑
n6=i

Xn,xm+1
n

+Xi,xm+1
i −1 ≥ B

]
≤ qi.

Since x′i < Ni this contradicts, by Lemma 1 (i), that ~x′ is locally optimal at i.
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A.5 Proof of Claim 3

Let j̃ be the threshold index of index solution ~x′. Since x′j = Ñ f
j [t − 1]∀ j < i, we know

j̃ ≥ i. From the proof of Lemma 6 we know

(i) If j̃ = i, ~x′ is locally optimal at i

(ii) If j̃ > i, ~x′ − ej̃ is locally optimal at i

In particular, ~x′ − ej̃ is a feasible solution because x′
j̃
≥ 1 is guaranteed for threshold

index j̃ as defined. Here we assume without loss of generality that j̃ > i, and the proof of
(i) follows from the same argument.

For index solution ~x?, similarly, we have threshold index ĵ with x?
ĵ
> 0. Since x?j = 0

for every j ≥ i, we know ĵ < i. Thus, recall from the proof of Lemma 6 that ~x? is locally
optimal at i.

To prove Claim 3, suppose that x′i− x?i > δ
∑i−1

n=1(x?n− x′n). Then x?i < Ni and we derive
a contradiction by showing that

P

[∑
n

Xn,xn[t−2] +
∑
n

Xn,x?n ≥ B

]
≤ qi, (10)

which means that ~x? does not fulfill the local optimality conditions from Lemma 1 (i) at i.
Let m =

∑i−1
n=1(x?n − x′n). We construct a sequence of solutions ~x1, ~x2, ~x3, ..., ~xm+1

where ~xm+1 has the following properties:

• ~xm+1 is locally optimal at i,

• xm+1
i > x?i ,

• xm+1
j ≥ x?j for all j > i, and

• xm+1
j = x?j for all j < i.

Thus,

P

[∑
n

Xn,xn[t−2] +
∑
n

Xn,x?n ≥ B

]
≤ P

[∑
n

Xn,xn[t−2] +
∑
n 6=i

Xn,xm+1
n

+Xi,xm+1
i −1 ≥ B

]
≤ qi,

where the first inequality comes from the fact that xm+1
j ≥ x?j∀j, and the second inequality

comes from the local optimality of ~xm+1 at i (allowing us to apply Lemma 1 (ii)).
Therefore, such ~xm+1 implies Inequality (10), i.e., a contradiction to ~x? being locally

optimal at i. We derive ~xm+1 by inductively constructing ~xh from ~xh−1, where ~xh is locally
optimal at i for every h ∈ {1, 2, ...,m+ 1}, xhi > x?i + δ(m+ 1− h), and ~xm+1 fulfills the last
two properties above.
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Recall that ~x′−ej̃ is locally optimal at i < j̃, so we start the construction from ~x1 = ~x′−ej̃.
Then, for each h ∈ {1, ...,m}, we repeat the procedure of adding one customer of type j < i:
given a solution ~xh that is locally optimal at i, Lemma 2 allows us to find the lh+1 such that

~xh+1 = ~xh + ej − lh+1ei

is locally optimal at i. Moreover, Lemma 2 guarantees that lh+1 ≤ δ, i.e., xhi − xh+1
i ≤ δ.

Thus, the first two properties are maintained throughout. Since we have x1
j ≥ x?j = 0 for

j > i and we never remove a customer from such j, the third property holds. Since we add
customers until xm+1

j = x?j for j < i the fourth property holds. This completes the proof of
Claim 3.

B Model extensions

In this appendix we extend our results in two separate directions: first, we show that type-
dependent refunds for no-shows can be seamlessly incorporated into our results. Next, we
argue that with type-dependent resource demand (as opposed to each arrival requiring just
one unit of resources), our results continue to hold under an additional technical assumption.

B.1 Model with product-dependent refunds for no-show

Consider a model in which a no-show customer of type j is given a refund of 0 ≤ rj < vj.
Define v̄j = vj − rj(1 − pj), which denotes the expected revenue from a customer of type j
in this new model. We show that all results in Section 3 naturally extend to this model by
replacing vj with v̄j in the proof.6

Since vj’s are not used in the proofs of Lemma 2, Lemma 3 and Theorem 2, the only
results in Section 3 that need to be updated are Lemma 1 and Theorem 1.

For Lemma 1, we now define qj =
v̄j
pj

. Then, in Lemma 1 (i), P [
∑

nXn,xn ≥ B] > qi,

by linearity of expectation, still implies that accepting x?i + 1 customers of type i yields less
profit than accepting x?i . A similar argument can be made for Lemma 1 (ii). The formal
proof is exactly the same as in Section 4.1 with this pair of new definitions of qj and v̄j.

For Theorem 1, similarly, by replacing vj with v̄j all analyses on expected revenue still
hold by linearity of expectation.

B.2 Model with Type-dependent Resource Demand

We next consider a model in which a customer of type j demands dj units of capacity, where
dj ∈ Z+. The dj units of resource demand must be served entirely to avoid rejecting the
customer at departure. The compensation for rejecting a customer of type j is proportional
to the resource requirement dj. In particular, since we have assumed that the compensation

6This is a well-known technique, notably mentioned in Section 3.3.2 of [GT19b], for introducing product-
dependent no-show refunds into the model.
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for a customer who demands a single unit of capacity to be 1, here we assume that the
compensation for rejecting a customer of type j is dj.

For our analysis in this part we re-define the critical ratio qj :=
vj
djpj

, and q̄j := 1 − vj
djpj

as its complement accordingly. Assume that the types are ordered such that 1 > q1 > q2 >
. . . > qk. Intuitively, since djpj is the expected units of resource occupied by a customer
of type j, qj captures the expected revenue from a customer of type j per unit of capacity
occupied by him or her. Notice that we now introduced the following technical condition
which we rely on in the proof of Lemma 4 (Ext), and which our results in this appendix
require.

Assumption 1. qi 6= qj for every i 6= j.

As before, the index policy prioritizes customers with higher critical ratio over ones with
lower critical ratios. With this in hand, we are ready to formally generalize the definitions
and results in Section 3.

Definition (Definition 2 (Ext)). Consider a feasible solution ~x? to (1) with (estimated)

future arrivals Ñ f [t] and past accepted arrivals ~x[t− 1]. We call ~x? locally optimal at i if

x?i = max arg max
xi:0≤xi≤Ñf

i [t]

{
xivi − E

[(
diXi,xi[t−1]+xi +

∑
j 6=i

djXj,xj [t−1]+x?j
−B

)+]}
.

With this local optimality condition in hand, we extend Lemma 1 to the case with type-
dependent resource demand.

Lemma (Lemma 1 (Ext)). For a solution ~x? to (1) with (estimated) future arrivals Ñ f [t]
and past accepted arrivals ~x[t− 1], let ~x = ~x[t− 1] + ~x?. Then, ~x? is locally optimal at i if
and only if both of the following conditions are satisfied:

(i) x?i = Ñ f
i [t] or P [

∑
n dnXn,xn ≥ B − di + 1] > qi;

(ii) x?i = 0 or P
[∑

n6=i dnXn,xn + diXi,xi−1 ≥ B − di + 1
]
≤ qi.

The proof of Lemma 1 can be extended to show Lemma 1 (Ext) with minor changes.
Specifically, these changes include multiplying each binomial random variables X by the
corresponding resource requirement, changing B to N − dn + 1 and plugging in the new
definition of qn for all n. In a model with type-dependent resource demand, similar to
the model without, there always exists some global optimum that is locally optimal for
every type j. This follows from an extension of Appendix A.1 with the same changes as in
Lemma 1. Thus, we may again compare our solution to a global optimum that fulfills the
local optimality condition for every type.

The next two results, Lemma 2 (Ext) and Theorem 1 (Ext), continue to hold true as
stated in the main body of the paper, though the proofs require additional work. For clarity
of exposition, we restate the results here and provide proof sketches in Appendix B.2.1 and
Appendix B.2.2, respectively.
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Lemma (Lemma 2 (Ext)). There exists a constant δ ≥ 1 such that for any solution ~x? to

(1) with Ñ f [t] and ~x[t− 1], it is true that if ~x? is locally optimal at j, then ∃l ∈ {0, 1, ..., δ}
such that ~x′ = ~x? + ei − lej is locally optimal at j.

Theorem (Theorem 1 (Ext)). There exists a constant M1 such that

E ~A

[
ÔPT ~A −H ~A[1]

]
≤M1.

We next state the generalization of Lemma 3 to the model with type-dependent resource
requirements; this has the same statement as in the original model. We omit the proof as it
follows the same reasoning as in Section 4.3 with the sole difference being due to constants
changing in the generalizations of our claims and lemmas.

Lemma (Lemma 3 (Ext)). There exists a constant M2 such that

T∑
t=2

P [H ~A[t− 1]−H ~A[t] > 0] ≤M2.

From these bounds we derive, again, using compensated coupling [VB20, FB19], the
result in Theorem 2 (Ext).

Theorem (Theorem 2 (Ext)). There exists a constant M such that E ~A

[
ÔPT ~A − OBJ ~A

]
≤M .

Proof Sketch of Theorem 2 (Ext). We change the starred inequality in the proof of
Theorem 2 to

M1 + E ~A

[
T∑
t=2

H ~A[t− 1]−H ~A[t]

]
≤M1 + dmax

T∑
t=2

P [H ~A[t− 1]−H ~A[t] > 0]

because any action in one period affects the objective, through lost revenue or incurred
compensation, by at most dmax := maxj dj. The other parts of the proof of Theorem 2 (Ext)
remain exactly the same as before.

This concludes all main results in the model with type-dependent resource demand.

B.2.1 Proof of Lemma 2 (Ext)

Since Lemma 2 is built upon Claim 1 and Claim 2, we first provide generalizations of these
claims. We denote for a given constant δ? ≥ 1 and solution ~x:

Y =
∑
n6=j

dnXn,xn + djXj,xj+δ? , Z =
∑
n

dnXn,xn , and m =
k∑

n=1

xn.

Claim (Claim 1 (Ext)). There exist constants δ?j and m0 ∈ Z+ such that

F−1
Y (q̄j)− F−1

Z (q̄j) ≥ di (11)

holds whenever m ≥ m0.
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Claim (Claim 2 (Ext)). If ~x−(δj+1)ej+ei is a feasible solution to the optimization problem
(1), then

P

[∑
n6=i,j

dnXn,xn + djXj,xj−δj−1 ≥ B − dj + 1− diXi,xi+1

]

≤P

[∑
n6=i,j

dnXn,xn + djXj,xj−δj−1 ≥ B − dj + 1− di − diXi,xi

]

Proof Sketch of Claim 1 (Ext). To establish Claim 1 (Ext), we need to scale the equations
accordingly since the random variables are scaled by dn’s.

Specifically, in the proof of Claim 1 (Ext) we now have

µZ = E[Z] =
k∑

n=1

dnxnpn and σ2
Z = Var[Z] =

k∑
n=1

d2
nxnpn(1− pn).

Similarly, µY = E[Y ] = δ?djpj +
∑k

n=1 dnxnpn, and

σ2
Y = Var[Y ] = δ?d2

jpj(1− pj) +
k∑

n=1

d2
nxnpn(1− pn).

Moreover, for fixed δ?, we re-define for r ∈ {1, ...,m + δ?}, where the rth customer is
of type n, the random variable Zr := dn(Xn,1 − pn) = dn(Xn,1 − pr). Then, E[Zr] = 0
for r = 1, . . . ,m and

Z =
m∑
r=1

Zr +
k∑

n=1

dnxnpn =
m∑
r=1

Zr + µZ .

Similarly, we re-define the random variables Yr := dn(Xn,1 − pn) = dn(Xn,1 − pr), so
that E[Yr] = 0 for r = 1, . . . ,m+ δ? and

Y =
m+δ?∑
r=1

Yr + δ?djpj +
k∑

n=1

dnxnpn =
m+δ?∑
r=1

Yr + µY .

Finally, we normalize Z and Y by defining

Z ′ =
Z − µZ
σZ

=

∑m
r=1 Zr
σZ

, Y ′ =
Y − µY
σY

=

∑m+δ?

r=1 Yr
σY

.

Then we can apply Proposition 1 to the re-defined variables and the proof of Claim 1 (Ext)
follows with

δ? =
di + 2 + 12Φ−1′(q̄j)

djpj
.
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Proof Sketch of Claim 2 (Ext). The proof of Claim 2 (Ext) follows the same reasoning
as that of Claim 2 once we observe that

diXi,xi+1 = diXi,xi + diXi,1 ≤ diXi,xi + di.

Proof Sketch of Lemma 2 (Ext). With the extended claims established, the proof of
Lemma 2 requires only minor changes. Specifically, we multiply all binomial random variable
X’s by the corresponding resource requirement, update the local optimality conditions based
on Lemma 1 and change B − 1 to B − di throughout the analysis.

B.2.2 Proof of Theorem 1 (Ext)

For the proof of Theorem 1 (Ext) we let dmax := maxj dj and dmin := minj dj. To establish
the result we first generalize Lemmas 4—6.

Lemma (Lemma 4 (Ext)). For every i < j there exists a constant Rij such that, for any

feasible solutions ~x? +
Rij
dipi
· ei and ~x? +

Rij
djpj
· ej to optimization problem (1) with N [t, T ] and

~x[t− 1], the objective of ~x? +
Rij
dipi
· ei is always greater than that of ~x? +

Rij
djpj
· ej.

Proof Sketch of Lemma 4 (Ext). For any constant R ∈ Z+ such that R
dipi

and R
djpj

are

both integers, denote

Xi ∼ diBin

(
R

dipi
, pi

)
, Xj ∼ djBin

(
R

djpj
, pj

)
.

Since we leave all customers among ~x = ~x? + ~x[t − 1] unchanged, we denote the number of
unchanged customers who consume a resource by a random variable X ∼

∑
n dnXn,xn .

As before, the difference in revenue between any feasible solutions ~x? + R
dipi
· ei and

~x? + R
djpj
· ej is

R

dipi
vi −

R

djpj
vj =

(
vi
dipi
− vj
djpj

)
R ∈ Ω(R).

Then, what is left to show is that

E[WB (X +Xi)]− E[WB (X +Xj)] ≤ E
[
(Xi −Xj)

+
]
∈ O

(√
R log(R)

)
.

This follows with the same application of a Chernoff bound as before, setting

κ = 2 max(di, dj)
√
R log(R).

Putting everything together, we observe that there exists Rij such that the difference in
objective between ~x? + R

dipi
· ei and ~x? + R

djpj
· ej is at least(

vi
dipi
− vj
djpj

)
R−O

(√
R log(R)

)
> 0.
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Lemma (Lemma 5 (Ext)). Consider an optimal solution ~x? to the optimization problem (1)
with future arrivals N [t, T ], and past accepted arrivals ~x[t− 1]. Then for every i and j with
i < j there exists a constant Rij such that at least one of the following two is true:

(i) x?i > N [t, T ]− Rij
dipi

(ii) x?j <
Rij
djpj

.

Proof Sketch of Lemma 5 (Ext). Lemma 5 (Ext) is immediate from Lemma 4 (Ext)

since otherwise we could replace
Rij
djpj

type j customers with
Rij
dipi

type i customers to derive

a contradiction that ~x? is not an optimal solution.

Lemma (Lemma 6 (Ext)). Consider an optimal solution ~x? that is locally optimal for every
type j, and an optimal index solution ~x′ that is locally optimal at its threshold index j̃, both
for the optimization problem (1) with arrivals ~N . With δ as constructed in Lemma 2, we
have

(i)
∑

j

(
x′j − x?j

)+ ≤ kδ
[
2 +

∑
j

(
x?j − x′j

)+
]
,

(ii)
∑

j

(
x?j − x′j

)+ ≤ kδ
[
1 +

∑
j

(
x′j − x?j

)+
]
.

Proof Sketch of Lemma 6 (Ext). We sketch the proof of Lemma 6 (Ext) (ii), and the
proof of Lemma 6 (Ext) (i) follows the same reasoning. We shall show that for every type
j > j̃, we can find an integer l ≤ δ such that ~x′+ lej is locally optimal at j. Then, we follow
the rest of the proof of Lemma 6 (ii) to obtain an upper bound that is a constant kδ larger
than in the original Lemma 6 (ii).

From Lemma 1 (i), since ~x′ is locally optimal at j̃, we find that either x′
j̃

= Nj̃, in which

case x′
j̃+1

= 0, and

P

[∑
n

dnXn,x′n ≥ B − dj̃+1 + 1

]
> qj̃+1, or P

[∑
n

dnXn,x′n ≥ B − dj̃ + 1

]
> qj̃.

Now, for any j > j̃, we will check that

P

[∑
n

dnXn,x′n + djXj,δ ≥ B − dj + 1

]
> qj. (12)

When (12) is satisfied, we know from Lemma 1 that for ~x′+ lej to be locally optimal at j
we must have l ≤ δ. Since qj̃ ≥ qj̃+1 ≥ qj, to show (12), it suffices to show that

P

[∑
n

dnXn,x′n + djXj,δ ≥ B − dj + 1

]

≥max

(
P

[∑
n

dnXn,x′n ≥ B − dj̃+1 + 1

]
,P

[∑
n

dnXn,x′n ≥ B − dj̃ + 1

]) (13)

We prove (13) by discussing two cases:
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(a) dj ≥ max(dj̃, dj̃+1)

(b) dj < dj̃ or dj < dj̃+1

In case (a), we get (13) from

P

[∑
n

dnXn,x′n + djXj,δ ≥ B − dj + 1

]

≥P

[∑
n

dnXn,x′n ≥ B − dj + 1

]

≥max

(
P

[∑
n

dnXn,x′n ≥ B − dj̃+1 + 1

]
,P

[∑
n

dnXn,x′n ≥ B − dj̃ + 1

])

In case (b), let Y =
∑

n dnXn,x′n + djXj,δ and Z =
∑

n dnXn,x′n . From Lemma 2 and
Claim 1 we know

F−1
Y (q̄j)− F−1

Z (q̄j) ≥ dmax > dmax − dmin.

That is,
P [Y ≥ B − dmin + 1] ≥ P [Z ≥ B − dmax + 1] .

Thus,

P

[∑
n

dnXn,x′n + djXj,δ ≥ B − dj + 1

]

≥P

[∑
n

dnXn,x′n + djXj,δ ≥ B − dmin + 1

]

≥P

[∑
n

dnXn,x′n ≥ B − dmax + 1

]

≥max

(
P

[∑
n

dnXn,x′n ≥ B − dj̃+1 + 1

]
,P

[∑
n

dnXn,x′n ≥ B − dj̃ + 1

])
,

which completes the proof of Lemma 6 (Ext).
Note that a similar construction is needed in the proof of Claim 3, affecting only the size

of a constant, and is omitted for brevity.
Proof Sketch of Theorem 1 (Ext). Equipped with Lemma 4 (Ext), Lemma 5 (Ext) and

Lemma 6 (Ext), we can then extend the proof of Theorem 1 to show Theorem 1 (Ext) by
taking

M1 := δk(k + 3) · Rmax

pmindmin
· dmax.
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C Instance-dependence

In this section we analyze the loss of policies in instances where vi, pi are allowed to change
with T . In Appendix C.1 we provide such an instance for which any online policy incurs a
loss of Ω(

√
T ) due to the inherent uncertainty in arrivals. Then, in Appendix C.2 we provide

a different instance where even the clairvoyant index policy, unaffected by the uncertainty
of arrivals, incurs a loss of Ω(

√
T ); the later example highlights a limitation of index policies

when the critical ratio of different types are “too close” to each other.

C.1 Lower bound of loss with instance-dependent parameters

Consider an example with the following three types of customers

λ1 =
1

6
, v1 =

1

2
, p1 = 1

λ2 =
1

3
, v2 =

1√
T
, p2 =

3√
T

λ3 =
1

2
, v3 = 0, p3 = 1.

Moreover, suppose that B = T
6
. The intuition here is that we prefer customers of type

1 over those of type 2 and should never accept a customer of type 3. However, due to the
stochastic nature of the arrivals, we do not know how many type 1 customers arrive and
are thus likely to make mistakes in deciding on how many type 2 customers to accept. For
example, when at least T

6
arrivals of type 1 occur, we would not want to accept any type

2 customers; but when at most T
6
−
√
T arrivals of type 1 occur, we would want to accept

Ω(T ) type 2 customers. More specifically we show that even with full knowledge of the first
T
2

arrivals, the expected loss of any online policy is Ω(
√
T ). We first establish bounds on the

probability of the following events:

• E1 =
{
N2

[
1, T

2

]
≥ T

10

}
∩
{
N2 ≤ 2

5
T
}

: We know that

E
[
N2

[
1,
T

2

]]
=

1

6
T and E[N2] =

1

3
T.

With ε = 6
15

a Chernoff bound gives

P
[
N2

[
1,
T

2

]
≥ T

10

]
≥ 1− e−b1T

for some constant b1 > 0. Similarly we have P
[
N2 ≤ 2

5
T
]
≥ 1−e−b2T for some constant

b2 > 0. Thus, P[E1] ≥ 1− e−c1T for some constant c1 > 0.
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• E2 =
{
N1

[
1, T

2

]
∈
[
T
12
−
√
T , T

12

]}
: Since

P
[
N1

[
1,
T

2

]
≥ T

12
−
√
T

]
= P

N1

[
1, T

2

]
− T

12√
T
2
(1− λ1)λ1

≥ −
√
T√

T
2
(1− λ1)λ1

 = P

N1

[
1, T

2

]
− T

12√
T
2
(1− λ1)λ1

≥ − 1√
(1−λ1)λ1

2


and similarly

P
[
N1

[
1,
T

2

]
≤ T

12

]
= P

N1

[
1, T

2

]
− T

12√
T
2
(1− λ1)λ1

≤ 0

 ,
from the Berry-Esseen Theorem ([Fel57], Chapter XVI.5, Theorem 2), we know that

P
[
N1

[
1,
T

2

]
≥ T

12
−
√
T

]
≥ 1− Φ

− 1√
(1−λ1)λ1

2

− b√
T

and

P
[
N1

[
1,
T

2

]
≤ T

12

]
≥ Φ(0) +

b√
T

for some constant b > 0. Thus, P[E2] ≥ c2 for some constant c2 > 0.

• E3 =
{
N1

[
T
2

+ 1, T
]
≤ T

12
− 2
√
T
}

: Again, from the Berry-Esseen Theorem we know

that P[E3] ≥ c3 for some constant c3 > 0.

• E4 =
{
N1

[
T
2

+ 1, T
]
≥ T

12
+ 2
√
T
}

: P[E4] ≥ c4 for some constant c4 > 0.

We now condition our analyses on the event E1 ∩ E2. Since

P[E1 ∩ E2] =P[E1] + P[E2]− P[E1 ∪ E2]

≥P[E1] + P[E2]− 1

≥c2 − e−c1T ,

to show that the expected loss is Ω(
√
T ) it suffices to show that that is the case conditioned

on E1 ∩ E2. Under E1 ∩ E2, with full knowledge of the first T
2

arrivals, we show that the

expected loss is Ω(
√
T ) no matter the decisions made for the first T

2
arrivals. Specifically, we

distinguish between the following three cases that partition the set of all possible decisions
a policy can make for the first T

2
arrivals:

(i) x1

[
T
2

]
≤ T

12
− 2
√
T

(ii) x1

[
T
2

]
> T

12
− 2
√
T and x2

[
T
2

]
≤ T

20

(iii) x1

[
T
2

]
> T

12
− 2
√
T and x2

[
T
2

]
> T

20
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In case (i), we know from event E3 that with constant probability c3 the number of type
1 arrivals in the last T

2
periods is less than T

12
− 2
√
T . Thus, conditioning on event E3, we

have

N1 = N1

[
1,
T

2

]
+N1

[
T

2
+ 1, T

]
≤ T

12
+
T

12
− 2
√
T = B − 2

√
T ,

so the optimal offline solution in this case should accept all type 1 arrivals and some type 2
arrivals. However, since

x1

[
T

2

]
≤ T

12
− 2
√
T ≤ N1

[
1,
T

2

]
−
√
T ,

in case (i) we accept at least
√
T fewer type 1 customers than would be feasible without having

to pay any compensation (when not accepting any type 2 customers). Thus, even if we accept
all type 2 customers (upper bounded by 2

5
T under E1) without incurring compensation for

any of the type 2 customers that we overbook, the incurred loss from not accepting
√
T

additional type 1 customers is at least

v1

√
T − v2

2

5
T =

1

10

√
T ∈ Ω(

√
T ).

In case (ii), we again condition on E3 and thus have N1 ≤ B − 2
√
T . Since

x2

[
T

2

]
≤ T

20
≤ N2

[
1,
T

2

]
− T

20
,

it is feasible to accept at least T
20

more type 2 customers. The increase in profit from accepting
T
20

additional type 2 customers will be at least

v2
T

20
− E

[(
Bin

(
x2 +

T

20
,

3√
T

)
+ x1 −B

)+
]
,

which is what it would be without including the compensation for the original solution ~x.
Then, we know from x1 ≤ N1 ≤ B − 2

√
T and N2 ≤ 2

5
T that the increase in profit is lower

bounded by

v2
T

20
− E

[(
Bin

(
2

5
T,

3√
T

)
− 2
√
T

)+
]
.
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Further, we derive that

E

[(
Bin

(
2

5
T,

3√
T

)
− 2
√
T

)+
]

≤3

√√
T log(

√
T ) · P

[
Bin

(
2

5
T,

3√
T

)
≤ 2
√
T + 6

√√
T log(

√
T )

]
+

2

5
T · P

[
Bin

(
2

5
T,

3√
T

)
> 2
√
T + 6

√√
T log(

√
T )

]
≤3

√√
T log(

√
T ) + T · P

[
Bin

(
2

5
T,

3√
T

)
> 6

√√
T log(

√
T )

]
≤3

√√
T log(

√
T ) + T ·

√
T
−10

∈O
(√√

T log(
√
T )

)
,

(14)

where the third inequality follows from a Chernoff bound with ε = 5
√

log
√
T√

T
. Thus, the

increase in profit from accepting T
20

additional type 2 customers is lower bounded by

v2
T

20
− E

[(
Bin

(
2

5
T,

3√
T

)
− 2
√
T

)+
]
∈ Ω(

√
T ).

In case (iii) we condition on E4, which happens with constant probability, to bound the
loss as Ω(

√
T ). Conditioning on E4, we have

N1 = N1

[
1,
T

2

]
+N1

[
T

2
+ 1, T

]
≥ T

12
−
√
T +

T

12
+ 2
√
T = B +

√
T .

Observe first that with x1 > N1 − 3
20

√
T ≥ B + 17

20

√
T the type 1 customers by themselves

already cause Ω(
√
T ) loss due to the fact that every type 1 customer accepted, beyond

the first B, is guaranteed to incur compensation. Thus, we aim to show that when x1 ≤
N1− 3

20

√
T then replacing 1

20
T type 2 customers with 3

20

√
T type 1 customers improves profit

by Ω(
√
T ).

Given any solution ~x, replacing 1
20
T type 2 customers with 3

20

√
T type 1 customers

increases the expected compensation by at most

E

[(
x1 +

3

20

√
T −Bin

(
x2 −

1

20
T,

3√
T

)
−B

)+
]
− E

[(
x1 +Bin

(
x2,

3√
T

)
−B

)+
]

≤E

[(
3

20

√
T −Bin

(
x2 −

1

20
T,

3√
T

)
−Bin

(
x2,

3√
T

))+
]
,
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where the inequality follows from E[(a+b)+−(a+c)+] ≤ E[(b−c)+] with a, b, c set respectively

as a = x1−B, b = 3
20

√
T −Bin

(
x2 − 1

20
T, 3√

T

)
, and c = Bin

(
x2,

3√
T

)
. Thus, replacing 1

20
T

type 2 customers with 3
20

√
T type 1 customers improves profit by at least

v1
3

20

√
T − v2

1

20
T − E

[(
3

20

√
T −Bin

(
x2 −

1

20
T,

3√
T

)
−Bin

(
x2,

3√
T

))+
]

=
3

40

√
T − 1

20

√
T − E

[(
3

20

√
T −Bin

(
x2 −

1

20
T,

3√
T

)
−Bin

(
x2,

3√
T

))+
]

≥ 1

40

√
T −O(

√√
T log(

√
T )) ∈ Ω(

√
T ),

where the inequality comes from the same argument as in (14).
This completes all cases of the proof.

C.2 Limitation of the clairvoyant index policy

In this section we provide an instance where even the clairvoyant index policy, with no
uncertainty about arrivals, incurs a loss of Ω(

√
T ). At a high level, this happens because the

index policy is unable to differentiate among types that are “too close” to each other, e.g.,
when the difference in their critical ratio is on the order of 1

T
. Interestingly, the problematic

case is when they are extremely close without being equal; when they are exactly equal, the
second part of Lemma 4 showed that index solutions successfully distinguish between them.

Consider an example with the following two types of customers

λ1 =
1

2
, v1 =

1

4
, p1 =

1

2

λ2 =
1

2
, v1 =

1

2
− 1

T
, p1 = 1.

Moreover, let B = T
6

be an integer. By Chernoff bound, we know that with high proba-
bility we would find

N1 ≥
2

5
T and N2 ≥

T

6
,

so it suffices to show that the clairvoyant index policy incurs Ω(
√
T ) loss under this event.

Since v1

p1
> v2

p2
, ∀T, we know that the offline index policy accepts the type 1 customers

before accepting any type 2 customers. We claim that the clairvoyant index solution is given
by x1 = T

3
and x2 = 0. To see this, observe that by symmetry we have

P
[
Bin

(
T

3
,
1

2

)
≥ T

6

]
= 1/2 =

v1

p1

.

As a result,

P
[
Bin

(
T

3
+ 1,

1

2

)
≥ T

6

]
>
v1

p1
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and

P
[
Bin

(
T

3
− 1,

1

2

)
≥ T

6

]
<
v1

p1

.

Then, by the local optimality condition in Lemma 1 we conclude that x1 = T
3

and x2 = 0 is
locally optimal at type 1. Since x1 < N1, no type 2 customer should be accepted and this
clairvoyant index solution is unique and globally optimal.

Now, a solution that accepts T
6

type 2 customers and no type 1 customers, achieves T
12
− 1

6

revenue with no compensation. Thus, we aim to show that the clairvoyant index solution
(which obtains T

12
revenue) incurs an expected compensation of Ω(

√
T ). Indeed,

E

[(
Bin

(
T

3
,
1

2

)
−B

)+
]

≥
√
T · P

[
Bin

(
T

3
−
√
T ,

1

2

)
−B ≥

√
T

]
=
√
T · P

[
Bin

(
T

3
−
√
T ,

1

2

)
≥ T

6
−
√
T

2
+

3

2

√
T

]
≥
√
T · c ∈ Ω(

√
T )

for some constant c > 0 based on the Berry-Esseen Theorem. This demonstrates that index
solutions may incur Ω(

√
T ) loss, even in the absence of uncertainty, when different types are

too close in their critical ratios.

D Proof of Ω(T ) loss using policy in [ET10]

We first formally define the policy proposed in [ET10] by providing the DLP (Deterministic
Linear Program) and DPD (Dynamic Programming Decomposition) formulations in [ET10]
adapted to our notation. The DLP policy in [ET10] relies on the following deterministic
linear relaxation, where zj stands for the expected number of type j customers to accept
over the course of the planning horizon, and wj for the number of accepted type j customers
to whom the policy plans to deny service.

maximize
k∑
j=1

vjzj −
k∑
j=1

wj

subject to
k∑
j=1

(pjzj − wj) ≤ B,

zj ≤
T∑
t=1

λj,∀j ∈ [k]

wj ≤ pjzj,∀j ∈ [k]
zj, wj ≥ 0,∀j ∈ [k]
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Let Π? be the optimal dual value of the dual variable associated with the first constraint
in the linear program. Then, the DLP policy of [ET10] can be expressed as follows.7

Algorithm 2 DLP Policy in [ET10]

1: Initialize xj[0] = 0 ∀ j
2: for t = 1, . . . , T do
3: Observe type j of arrival in period t
4: if vj ≥ pjΠ

?: Accept arrival of type j in period t and set xj[t] = xj[t− 1] + 1
5: else: Reject arrival of type j in period t and set xj[t] = xj[t− 1]
6: Set xj′ [t] = xj′ [t− 1], ∀ j′ 6= j
7: end for

[ET10] use the DLP policy to derive estimates of the fraction of type j customers among
all accepted customers, which is denoted αj. Specifically, DPD simulates the trajectory of
the DLP policy under M realizations of arrivals. With xmj denoting the number of accepted
type j customers over the entire time horizon in the mth realization, they define

αj =

∑M
m=1 x

m
j∑M

m=1

∑
j′ x

m
j′

.

The DPD policy uses the values of αj for each j to approximate the expected penalty cost.
Specifically, it defines Γ~α(x) as the number of customers who show up, among x accepted
customers, when a fraction αj of the accepted customers is of type j. Mathematically,
Γ~α(x) is the sum of k random variables, the jth of which is Bin(bxαjc , pj) with probability
bxαjc+ 1− xαj and Bin(dxαje , pj) otherwise.8 With this state aggregation technique, the
DPD policy uses the following DP to decide dynamically whether to accept a customer at
time t.

Ut (x)

=
k∑
j=1

λj max{vj + Ut+1(x+ 1), Ut+1(x)},

and UT (x) = −E[(Γ~α(x)−B)+]],

(15)

In this way, it suffices for the program to know the total number of reservations to obtain
the expected penalty cost and the DP becomes computationally tractable. Then, relying on
a solution to (15), [ET10] formulate the DPD policy (see Algorithm 3).

Our main result in this section, Proposition 3, shows that this state aggregation technique
can lead to performance losses of Ω(T ) when the no-show probabilities are heterogeneous

7The sole difference to the policy described by [ET10] is that we replace condition vj ≥ min{pjΠ?, pj} by
vj ≥ pjΠ? using the fact that we made the assumption throughout that

vj
pj
< 1.

8Notice that xαj need not be integer, and consequently, for the binomial random variables to be well-
defined, we decompose xαj into bxαjc and dxαje with appropriately chosen probability.
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across types. Crucially, this result is not driven by the estimation technique used to derive
the αj values, i.e., the simulation of the DLP policy under different trajectories. Instead,
it is based on the aggregation of αj diluting the potentially very different value/demand
requirement of customers with different no-show probabilities. For example, and this is
what the proposition is based on, a customer class with small value and very high no-show
probability can be preferable to one with high value and very small no-show probability.
While our class of index policies appropriately trades off values and no-show probabilities,
the DPD policy always prefers the higher-value customers. Finally, it is worth noting that the
numerical results of [ET10] do not display this problem as they are based on homogeneous
no-show probabilities across classes (in which case the state aggregation is not required in
the first place).

Algorithm 3 DPD Policy in [ET10]

1: Initialize xj[0] = 0 ∀ j
2: for t = 1, . . . , T do
3: Observe type j of arrival in period t Ifvj ≥ Ut+1(

∑
j xj[t−1])−Ut+1(

∑
j xj[t−1]+1):

Accept arrival of type j in period t and set xj[t] = xj[t− 1] + 1
4: else: Reject arrival of type j in period t and set xj[t] = xj[t− 1]
5: Set xj′ [t] = xj′ [t− 1], ∀ j′ 6= j
6: end for

Proposition 3. When the no-show probabilities p1, . . . , pk are not all equal, then the loss of
Algorithm 3 can be of order Ω(T ).

Proof. Consider two fare classes, type 1 and type 2. Each type 1 customer generates
a revenue of r per customer and shows up with probability p1 = 1; each type 2 customer
generates a revenue of ε per customer and shows up with probability p2 = 0. There is a
penalty cost of 1 for each denied customer, and 1 > 1

2
= r > ε > 0. To analyze the asymptotic

loss in this set-up, we assume B = T
2
. At each period t, an incoming customer is of type 1

with probability 4
5

and of type 2 with probability 1
5
. Recall that we use Nj for the number

of arrivals of type j over the entire time horizon.
From p2Π? = 0 < ε we know the DLP Policy would always accept types 2 customers.

Depending on the relative values of r, p1, and Π? we are in one of the following two cases:

(a) r < p1Π?

(b) r ≥ p1Π?

In case (a), the DLP policy accepts only type 2 customers, which yields α1 = 0 and
α2 = 1. The DPD policy then solves for (15) assuming that no accepted customers would
show up, which leads itself to accept all customers. Since E[N1] = 4

5
T > 3

4
T , it is trivial to

show by Chernoff bound that P
[
N1 ≥ 3

4
T
]
≥ 1−e−Θ(T ). Conditioned on the high-probability

event that N1 ≥ 3
4
T , both the DPD policy and the offline optimal solution accept all type 2
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customers. However, the offline optimal solution only accepts B type 1 customers, while the
DPD policy accepts at least 3

4
T − B = 1

4
T more type 1 customers than the offline optimal

solution does, all of whom show up and receive a compensation, which leads to an expected
loss of Ω(T ).

We next show that in case (b) the loss of Algorithm 3 is also of order Ω(T ).9 First, we
derive a high probability bound on the value of αj’s arising from the DLP policy. Denote
the number of type j customers accepted by DLP over the entire time horizon by x̄j. Since
vj ≥ pjΠ

?,∀j in case (b), the DLP policy simply accepts all customers. Then, by Chernoff
bound we know with probability at least 1− e−Θ(T ) we have, with ε1 = 1

38
, ε2 = 1

19
, that

x̄1 ∈
[(

4

5
− ε1

)
T,

(
4

5
+ ε2

)
T

]
and x̄2 ∈

[(
1

5
− ε1

)
T,

(
1

5
+ ε2

)
T

]
.

Thus, we obtain α1 = x̄1

x̄1+x̄2
∈
[

7
10
, 9

10

]
with probability greater than 1 − e−Θ(T ). DPD then

assumes that a fixed portion, αj, of all accepted customers are of type j (and thus shows
up with probability pj), and solves (15). Specifically, DPD solves the following fictional
problem:

• Each arrival of type 1 has value r and each arrival of type 2 has value ε

• At departure, a fraction α1 of customers show up

Note that the objective of the fictional problem given accepted customers ~x is either

rx1 + εx2 − (d(x1 + x2)α1e −B)+ or rx1 + εx2 − (b(x1 + x2)α1c −B)+

with probability depending on the fractional part of (x1 + x2)α1. To simplify the arithmetic
we assume instead, without loss of generality, that the objective is deterministically

I(~x) := rx1 + εx2 − ((x1 + x2)α1 −B)+ .

This changes the objective by at most 1 and thus does not affect our asymptotic analyses.
In contrast, in the real problem, with p1 = 1 and p2 = 0, the objective with accepted

customers ~x is
R(~x) := rx1 + εx2 − (x1 −B)+.

Given an arrival vector ~A, we denote the solutions, on ~A, to the fictional problem based on
the DPD policy by ~xDPD, the offline optimal solution to the fictional problem by ~xfic and
the offline optimal solution to the real problem by ~xreal — notice that to avoid lengthy case
distinctions we assume that ~xfic can be fractional. Our goal is to show

E ~A[R(~xreal)−R(~xDPD)] ∈ Ω(T ).

In the rest of the proof we show

9While we restrict ourselves here to the αj ’s arising from the DLP policy, the arguments extend to prove
that the loss of Algorithm 3 is of order Ω(T ) for any estimates of αj ’s.
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(i) E ~A[R(~xreal)−R(~xfic)] ∈ Ω(T ),

(ii) E ~A[|R(~xfic)−R(~xDPD)|] ∈ o(T ).

Assuming both of the statements above are true, we know

E ~A[R(~xreal)−R(~xDPD)] ∈ Ω(T )± o(T ) = Ω(T ).

We shall make use of the event that

E :=

{
N1 ≥

3

4
T,N2 ≥

T

24
and α1 ∈

[
7

10
,

9

10

]}
.

In particular, since E[N1] = 4
5
T > 3

4
T , it is trivial to show by Chernoff bound that

P
[
N1 ≥ 3

4
T
]
≥ 1 − e−Θ(T ). Similarly, P

[
N2 ≥ T

24

]
≥ 1 − e−Θ(T ). That is, event E hap-

pens with probability greater than 1 − e−Θ(T ). All arguments from now on are conditioned
on event E.

Step 1: Proof of (i)

We first show that E ~A[R(~xreal)−R(~xfic)|E] ∈ Ω(T ). Conditioning on event E, we know that

R(~xreal) = N2ε+ min(N1, B)r = N2ε+Br

given the realized arrival vector ~A, where xreal1 = B and xreal2 = N2 ≥ T
24

.
For ~xfic, note that customers of type 1 are strictly preferred over customers of type 2

in the fictional problem since r > ε and the two types are otherwise equivalent. Thus,
it is optimal to accept all type 1 customers before accepting any type 2 customer in the
fictional problem. Next, observe that, under event E with α1 ≥ 7

10
> 1

2
= r, ~xfic accepts

at most B
α1

customers in total. This is because additional customers increase the objective

by, at most, r − α1 < 0. We can similarly argue that ~xfic accepts at least B
α1

customers in

total, i.e., it accepts exactly B
α1

customers. Since we also know that N1 >
B
α1

and that type 1

customers are preferred over type 2 customers, we obtain xfic1 = B
α1
< N1 and xfic2 = 0.

Therefore, the number of rejected type 2 customers in ~xfic is N2 ≥ T
24

, and the loss
of R(~xfic) from rejecting type 2 customers is at least T

24
ε. Moreover, ~xreal accepts exactly B

type 1 customers (under E), whereas ~xfic accepts at least B of them. With p1 = 1, each
accepted type 1 customer, beyond the first B, only decreases the real objective function R(·);
as a result, we find that

E ~A[R(~xreal)−R(~xfic)|E] ≥ T

24
ε = Ω(T ).

Finally, since P[Ec] ≤ e−Θ(T ), we obtain

E ~A[R(~xreal)−R(~xfic)] ≥ Ω(T ) · P[E] + 0 · (1− P[E]) = Ω(T ).
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Step 2: Proof of (ii)

Since we know that each accepted customer leads to at most an additional revenue of 1 or
compensation of 1, we have

E ~A[|R(~xfic)−R(~xDPD)|] ≤ E ~A

[
k‖~xfic − ~xDPD‖∞

]
.

Thus, to prove (ii), it suffices to show that E ~A

[
‖~xfic − ~xDPD‖∞

]
∈ o(T ). We will prove

this as follows: we first argue that the DPD policy obtains O(1) expected loss relative
to ~xfic to the fictional problem with objective I(·). We then use Markov’s inequality to
obtain a coarse probabilistic bound on the DPD policy having Ω(

√
T log(T )) loss. Next,

we assume (see Equation (16)) that whenever ~xDPD has small loss, under I(·), relative
to ~xfic, the two solutions must be close together. Worded differently: ~xDPD cannot have
small loss with respect to I(·) without being close to ~xfic. We conclude the proof by first
using our probabilistic bound on ~xDPD having large loss, and then proving the statement in
Equation (16).

Now, from Theorem 2.1 of [FB19] we know there exists10 an online algorithm with solution
~xonline to the fictional problem such that E ~A

[
I(~xfic)− I(~xonline)

]
∈ O(1). Since the DPD

policy provides the optimal online solution to the fictional problem, we then obtain

E ~A

[
I(~xfic)− I(~xDPD)

]
≤ E ~A

[
I(~xfic)− I(~xonline)

]
∈ O(1),

i.e., there exists a constant M > 0 such that

E ~A

[
I(~xfic)− I(~xDPD)

]
≤M.

We then apply Markov’s inequality to find that

P
[
I(~xfic)− I(~xDPD) ≥

√
T log(T )

∣∣∣E] · P[E] ≤
E ~A

[
I(~xfic)− I(~xDPD)|E

]
P[E]√

T log(T )
,

which in turn can be bounded as

E ~A

[
I(~xfic)− I(~xDPD)|E

]
· P[E]√

T log(T )
≤
E ~A

[
I(~xfic)− I(~xDPD)

]√
T log(T )

≤ M√
T log(T )

.

That is,

P[I(~xfic)− I(~xDPD) ≥
√
T log(T )|E] ≤ M√

T log(T )P[E]
.

We shall show that there exists a constant c1 > 0 such that

‖~xfic − ~xDPD‖∞ ≥ c1

√
T log(T ) implies I(~xfic)− I(~xDPD) ≥

√
T log(T ). (16)

10Since I(~x) is deterministically a linear objective, we apply Theorem 2.1 of [FB19] instead of Theorem 2
of our paper.
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From that follows the first inequality in

P
[
‖~xfic − ~xDPD‖∞ ≥ c1

√
T log(T )|E

]
≤P
[
I(~xfic)− I(~xDPD) ≥

√
T log(T )|E

]
≤ M√

T log(T )P[E]
.

Then, assuming (16), we obtain

E ~A

[
‖~xfic − ~xDPD‖∞

]
≤E ~A

[
‖~xfic − ~xDPD‖∞

∣∣E] · P[E] + T (1− P[E])

≤(c1

√
T log(T ) · P[‖~xfic − ~xDPD‖∞ < c1

√
T log(T )|E]

+ T · P[‖~xfic − ~xDPD‖∞ ≥ c1

√
T log(T )|E])P[E] + o(1)

≤c1

√
T log(T ) +M

√
T

log(T )
+ o(1)

∈o(T )

as required.
Now, to show (16), recall from step 1 that we have xfic1 = B

α1
< N1, x

fic
2 = 0. We

assume for simplicity that B
α1
∈ Z to avoid a length case distinction between xDPD1 +xDPD2 =⌊

B
α1

⌋
and xDPD1 + xDPD2 =

⌈
B
α1

⌉
. We now show that xDPD1 + xDPD2 = B

α1
, i.e., DPD also

accepts B
α1

customers in total. Under event E, since r < α1, an additional customer would

not be accepted by the DPD policy when xDPD1 + xDPD2 ≥ B
α1
. Similarly, under event E

we know the optimal online policy would always accept all of the last
⌊
a
α1

⌋
arrivals when

B−(xDPD1 +xDPD2 )α1 = a > 0. Thus, xDPD1 +xDPD2 ≥ B
α1

, i.e., xDPD1 +xDPD2 = B
α1

= xfic1 +xfic2 .

Now, take c1 = 1
r−ε . We know from

xDPD1 + xDPD2 =
B

α1

= xfic1 + xfic2 and ‖~xfic − ~xDPD‖∞ ≥ c1

√
T log(T )

that
xfic1 − xDPD1 ≥ c1

√
T log(T ) and xDPD2 − xfic2 ≥ c1

√
T log(T ).

Then,
I(~xfic)− I(~xDPD) ≥ c1

√
T log(T )(r − ε) ≥

√
T log(T ),

which completes the proof of (ii).
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