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Abstract

We design novel mechanisms for welfare-maximization in two-sided markets. That is,
there are buyers willing to purchase items and sellers holding items initially, both acting
rationally and strategically in order to maximize utility. Our mechanisms are designed based
on a powerful correspondence between two-sided markets and prophet inequalities. They
satisfy individual rationality, dominant-strategy incentive compatibility, budget-balance con-
straints and give constant-factor approximations to the optimal social welfare.

We improve previous results in several settings: Our main focus is on matroid double
auctions, where the set of buyers who obtain an item needs to be independent in a matroid.
We construct two mechanisms, the first being a 1/3-approximation of the optimal social
welfare satisfying strong budget-balance and requiring the agents to trade in a customized
order, the second being a 1/2-approximation, weakly budget-balanced and able to deal
with online arrival determined by an adversary. In addition, we construct constant-factor
approximations in two-sided markets when buyers need to fulfill a knapsack constraint. Also,
in combinatorial double auctions, where buyers have valuation functions over item bundles
instead of being interested in only one item, using similar techniques, we design a mechanism
which is a 1/2-approximation of the optimal social welfare, strongly budget-balanced and
can deal with online arrival of agents in an adversarial order.
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1 Introduction

Mechanisms for allocation problems in one-sided markets have been studied for decades. The
goal is to allocate items to agents in order to maximize either the revenue of the auctioneer
or the social welfare. In this setting, a fundamental assumption is that all items are initially
held by the auctioneer who does not have any value for any of them. Various different auctions
and allocation procedures for one-sided markets have been developed, such as VCG [Groves,
1973, Vickrey, 1961, Clarke, 1971], posted-prices mechanisms (as e.g. in Chawla et al. [2010],
Dütting et al. [2017]) and many other auction formats.

In a related but different setting, items are held by strategic sellers initially. That is, each
seller has a valuation over her bundle of items and acts rationally with the goal to maximize
utility. Examples are widely spread, as to mention stock exchanges, ad auctions or online
marketplaces such as ebay. In the context of mechanism design, this imposes the following task:
construct a mechanism which specifies trades between buyers and sellers and determine suitable
prices for each trade with the objective of maximizing the overall social welfare.

Standard requirements for mechanisms are individual rationality (IR) and dominant strategy
incentive compatibility (DSIC). The former means that it cannot be harmful for any agent to
participate in the mechanism—the latter that reporting preferences truthfully is a dominant
strategy for any agent, no matter what other agents report. Furthermore, as one cannot assume
that there is a superior authority funding beneficial trades in two-sided markets, an additional
natural requirement is budget balance. Its stronger version, strong budget balance (SBB), means
that the mechanism can neither subsidize trades nor is allowed to extract money from trades.
In other words, this requires that all money which is spent by buyers is transferred to sellers.
The weaker form, weak budget balance (WBB), only requires the first property, namely that
subsidizing trades is prohibited, but the mechanism is allowed to extract money from trades.

Unfortunately, in their seminal work from 1983, Myerson and Satterthwaite [1983] showed
that no mechanism can simultaneously be individually rational, incentive compatible, budget
balanced and optimize social welfare1. This result is a sharp contrast to one-sided markets where
optimal results are possible [Vickrey, 1961, Myerson, 1981]. As a consequence, approximating
the optimal social welfare becomes a natural challenge. Even further, trying to approximate
the optimal social welfare with a rather simple mechanism which can be easily understood by
all participants may be an even more desirable goal.

Probably the most fundamental problem is bilateral trade (see e.g. Myerson and Satterthwaite
[1983], Blumrosen and Dobzinski [2016], Kang and Vondrák [2018]). There is one seller holding
one indivisible item and one buyer. In more general double auctions, there might be multiple
buyers, multiple sellers, multiple items, and complex combinatorial constraints. In matroid dou-
ble auctions (see e.g. Dütting et al. [2014], Colini-Baldeschi et al. [2016]), each seller initially
holds one of m identical items, each buyer wants to purchase at most one of them and the
set of buyers who receive an item needs to be an independent set in a matroid. In combina-
torial double auctions, there are k sellers holding m heterogeneous items and the agents have
combinatorial valuation functions over item bundles (see e.g. Blumrosen and Dobzinski [2014],
Colini-Baldeschi et al. [2020]). In knapsack double auctions, the matroid constraint over the set
of buyers is replaced by a knapsack constraint (see e.g. Dütting et al. [2014]). That is, each
buyer has a weight and we need to select buyers in a way such that the sum of weights does not
exceed a certain capacity. In any of the settings, agents are assumed to maximize their (quasi-
linear) utilities. It is a standard assumption in this context to assume a Bayesian setting: All
agents have privately known valuation functions over item bundles. These valuation functions
are drawn independently from (possibly different) publicly known distributions.

1The original result from Myerson and Satterthwaite is for bilateral trade instances, i.e. one seller holding one
item and one buyer. They show that even individual rationality and (Bayesian) incentive compatibility cannot
be combined with achieving the optimal ex-post social welfare.
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1.1 Bilateral Trade via Prophet Inequalities

For bilateral trade, there is a very simple mechanism template: Let vs denote the seller’s value
and vb denote the buyer’s value for the item. Both are drawn independently from some proba-
bility distributions. Fix a price p and trade the item if and only if vb ≥ p ≥ vs. Among others,
Blumrosen and Dobzinski [2014, 2016] and Gerstgrasser et al. [2019] set p to be the median of
the seller’s distribution which recovers an expected welfare of at least 1

2 · E [max{vs, vb}], so it
is a 1

2 -approximation.
This simple mechanism can also be interpreted as a sequential posted-prices mechanism with

price p, the mechanism first asks seller s if she would like to keep or try selling the item for
price p. Afterwards, buyer b may purchase the item for price p if the seller accepted a trade.
This setting is conceptually similar to posting a price p in a one-sided market with two buyers.
The only difference is that if both values are below p the seller keeps the item whereas in the
one-sided market it is assumed to be discarded.

Due to this correspondence, we can easily lower-bound the social welfare via prophet inequal-
ities, originally introduced by Krengel and Sucheston [1977, 1978] and Samuel-Cahn [1984]. In
particular, one can also recover half of the optimal social welfare as follows: Instead of applying
a pricing strategy via quantiles, one could also use a balanced price p = 1

2 · E [max{vs, vb}].
A proof of the approximation guarantee directly follows by the above considerations (see Ap-
pendix A for details) via standard prophet inequality results [Kleinberg and Weinberg, 2012,
Feldman et al., 2015] for n = 2.

The observation immediately raises the question whether all problems in two-sided markets
can be solved via posted-prices mechanisms and prophet inequalities in such a straightforward
way. We might interpret sellers as buyers, consider them first and ask which items they would
like to keep, afterwards offer the remaining items to buyers. Unfortunately, this brings about a
number of issues. First and foremost, budget balance is not guaranteed because the payments
by the buyers will usually not match what we promise the sellers.

In this paper, we demonstrate that nonetheless the pricing and proof strategies from prophet
inequalities give us powerful tools to design mechanisms in two-sided markets. With these, we
are able to design mechanisms which obtain improved approximation guarantees concerning
social welfare.

1.2 Our Results

Based on the technique of balanced prices [Kleinberg and Weinberg, 2012, Dütting et al., 2017],
we design mechanisms for two-sided markets. All our mechanisms are DSIC and IR for all agents;
they fulfill different variants of budget balance.

Our main results are two mechanisms for double auctions with a matroid constraint over
the set of buyers. The first mechanism (Section 3) is strongly budget-balanced and a 1/3-
approximation with respect to the optimal social welfare. It relies on balanced prices used to
obtain matroid prophet inequalities [Kleinberg and Weinberg, 2012]. As these prices change
based on previous decisions, our mechanism has to carefully choose the order in which agents
are offered trades.

The second mechanism (Section 4) is only weakly budget-balanced but the approximation
guarantee improves to a 1/2-fraction of the optimal social welfare. Another advantage is that
the order can be arbitrary. That is, this mechanism can also deal with online arrival of agents
where the order can be chosen by an adversary. The adversary may even adapt the order
depending on the agents and realizations before. The best results for this setting so far were
approximation ratios of 1/16 by Colini-Baldeschi et al. [2016] and 1/(3 +

√
3) by Dütting et al.

[2020]2.

2We note that the setting in Dütting et al. [2020] is different from ours as they construct mechanisms with
limited sample-based knowledge of the distributions. Still, their results were the best known so far, also for the
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Furthermore, we develop a mechanism for combinatorial double auctions (Section 5), which
is derived from the result by Feldman et al. [2015] in one-sided markets. Our mechanism is
truthful in two different settings. On the one hand, we assume that each seller holds one item
initially and that buyers have fractionally subadditive valuation functions over item bundles.
On the other hand, we can allow sellers to hold multiple heterogeneous items and all agents
to have additive valuation functions. The mechanism is DSIC, IR, strongly budget-balanced
and can handle online adversarial arrivals of buyers. The mechanism’s approximation ratio
is 1/2 with respect to the optimal social welfare. By this, we improve the factor of 1/6 in
Colini-Baldeschi et al. [2020] and the bounds obtained by Dütting et al. [2020], who are able to
show a bound of 1/3 for unit-supply sellers and buyers with fractionally subadditive valuation
functions. In contrast to our results, they require agents to be allowed to trade in any order
whereas our results for combinatorial double auctions still hold when agents arrive online and
the order is determined by an adversary.

Finally, we can design two mechanisms for knapsack double auctions where the set of buyers
who receive an item needs to be feasible with respect to a knapsack constraint, sellers bring
identical items to the market and buyers have unit-demand valuations. We obtain a strongly
budget-balanced mechanism in Section 6, which considers agents online in a customized order
leading to a competitive ratio of 1/10. On the other hand, we improve this guarantee to 1/7 by
a weakly budget-balanced mechanism for online adversarial arrival order in Section 7.

Budget-Bal. Approx. Trading Order Previous Best

Matroid DA: Strong 1/3 Offline 1/16 a and

Weak 1/2 Online Adv. 1/(3 +
√
3) b

Combinatorial DA:
XOS + Unit-Supply Strong 1/2 Online Adv. 1/6 c and
Additive + Additive Strong 1/2 Online Adv. 1/3 b

Knapsack DA: Strong 1/10 Online Custom.
Weak 1/7 Online Adv.

Table 1: Our state-of-the-art approximation guarantees for mechanisms in matroid, combina-
torial and knapsack double auctions. Concerning the previous best results, ’a’ can be found
in Colini-Baldeschi et al. [2016], ’b’ in Dütting et al. [2020] and ’c’ in Colini-Baldeschi et al.
[2020].

Observe that for the settings with online adversarial arrival order of buyers, the approxima-
tion ratio of 1/2 (as in matroid double auctions and combinatorial double auctions) matches a
tight upper bound as soon as there are at least two buyers, which corresponds to the commonly
known instance for prophet inequalities (see Section 4). This, of course, does not apply to
bilateral trades, for which deriving the optimal approximation ratio is still an open problem.

As a side remark, when only having sample-based access instead of full knowledge of the
distribution, in one-sided environments it is known that Poly(n,m, ǫ−1) samples from every
distribution suffice to lose only an additive O(nǫ)-term [Dütting et al., 2017]. These guarantees
for balanced pricing carry over to the two-sided market setting. For details concerning the
techniques on sample-based access, we refer to the respective sections in Feldman et al. [2015]
and Dütting et al. [2017].

1.3 Our Techniques

The idea behind balanced prices in one-sided markets [Kleinberg and Weinberg, 2012, Feldman et al.,
2015, Dütting et al., 2017] is that they are low enough so that the agents can afford the items
they are allocated in the social optimum (which means they have high utility). At the same

setting with complete knowledge of the distributions.
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time, they should be high enough so that the revenue covers the loss in social welfare due to
allocations not in line with the social optimum.

In two-sided markets, in order to propose trades we use prices that are again low enough
and high enough. On the one hand, agents may have values exceeding the prices and hence,
either keep items (as sellers) or purchase items (as buyers). On the other hand, prices should
be high enough so that once an agent keeps or buys an item, we can ensure that her value is
sufficiently large to cover the loss in social welfare by allocating the item.

Our proofs concerning the approximation guarantees mimic the spirit of revenue and utility
based-ones in one-sided markets: we split the contribution to welfare of each agent into the
base value, defined by the price of the proposed trade, and surplus, which is the amount by how
much the agent’s value exceeds the price. Afterwards, we bound each quantity separately. As
a matter of fact, it does not play a key role which agent purchases or keeps which item—since
any irrevocably allocated item ensures a sufficient contribution to welfare via its price. This
is a sharp contrast to mechanisms in which the output allocation plays a key role in order to
obtain a specific approximation guarantee.

Sequential posted-prices mechanisms in one-sided markets are DSIC by design as we only
offer any agent the possibility to purchase items at most once. When extending these concepts
to two-sided markets, an additional major challenge is to fulfill the budget-balance constraint.
As illustrated above, a straightforward generalization of the prophet inequality techniques might
not be possible as it may lack money in trades. To overcome these problems, one would like to
consider agents multiple times for trades. Nonetheless, truthfulness constraints may get violated
if we offer one agent more than one trade.

In order to obtain both, budget-balance and dominant strategy incentive compatibility, our
mechanisms carefully choose when deciding to propose which trade between which agents at
which price. In particular, if we offer different prices to one seller, they should not increase over
time because otherwise the seller might strategically wait for a higher price and by this, reject
earlier trades.

1.4 Paper Organization

The paper is structured as follows: In Section 2, we give basic definitions and notation. In
Section 3, we state our mechanism for matroid double auctions which satisfies strong budget
balance with a proof for the approximation guarantee in the simplified full information setting.
The proof for the general incomplete information setting is given in Appendix B. In Section 4,
we give our mechanism for matroid double auctions which satisfies weak budget balance for
any online adversarial arrival order of agents. The proof for the competitive ratio can be found
in Appendix C. In Section 5, we consider the case of combinatorial double auctions, state our
mechanism and give a high-level reduction to prophet inequalities. The formal proof of the
competitive ratio which is highly related to the proof of the corresponding prophet inequality
for XOS-valuation functions can be found in Appendix D. In Section 6, we consider knapsack
double auctions with strong budget balance and give a proof for the approximation guarantee. In
Section 7, we state our mechanism for knapsack double auctions which admits online adversarial
arrival of agents and is weakly budget-balanced. The proof for the competitive ratio can be
found in Appendix E. Final remarks and questions for future research can be found in Section 8.

1.5 Related Work

Two-sided markets have been studied for a long time, including the mentioned impossibility
result by Myerson and Satterthwaite [1983] and pioneering work on trade-reduction mecha-
nisms and their generalizations as e.g. considered in McAfee [1992], Dütting et al. [2014],
Babaioff and Walsh [2003], Babaioff and Nisan [2004]. Only much more recently, worst-case
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approximation ratios have been considered. There has been a lot of progress on improv-
ing the guarantees for bilateral trade [among others: Blumrosen and Dobzinski, 2014, 2016,
Kang and Vondrák, 2018, Gerstgrasser et al., 2019]. However, determining the optimal guar-
antee is still an open problem.

Most relevant to our work are the ones of Colini-Baldeschi et al. [2016] and Colini-Baldeschi et al.
[2020], which derive mechanisms for matroid and combinatorial double auctions in Bayesian
settings. Colini-Baldeschi et al. [2016] focus on matroid double auctions, designing mecha-
nisms with pricing strategies based on quantiles, whereas our approach uses balanced prices.
Colini-Baldeschi et al. [2020] consider combinatorial double auctions using very similar prices
as ours. However, the analysis is different as their proofs rely on case distinctions where
our proofs use charging arguments from balanced prices. Another important contribution of
Colini-Baldeschi et al. [2020] is the introduction and discussion of direct-trade budget-balance,
which we also adopt in this paper. Dütting et al. [2020] consider the same constraints. Besides
giving improved approximation guarantees, they change the fundamental assumption of the
Bayesian setting: They design mechanisms given only sample-based access to the underlying
distribution.

There is also a line of work using different objective functions in two-sided markets, most
prominently gain from trade [Blumrosen and Mizrahi, 2016, Brustle et al., 2017, Colini-Baldeschi et al.,
2017, Babaioff et al., 2018, Segal-Halevi et al., 2016, Feldman and Gonen, 2018, Segal-Halevi et al.,
2016, Cai et al., 2020]. In this setting, only the increase in welfare by transferring items from
sellers to buyers is measured. An α-approximation with respect to gain from trade is also an α-
approximation with respect to social welfare but not vice versa. Indeed, Blumrosen and Dobzinski
[2016] and Blumrosen and Mizrahi [2016] show that approximating the gain from trade is harder
than social welfare: There is no DISC, IR and SBB mechanism which can achieve a constant
factor approximation to the optimal gain from trade. Babaioff et al. [2020] tackle the question
by how many buyers and sellers the size of the two-sided market needs to be increased in order
to recover the optimal gain from trade from the original market, mirroring the seminal work of
Bulow and Klemperer [1996]. Another interesting objective function is the profit of the sellers
in two-sided markets as considered by Cai and Zhao [2019].

Prophet inequalities date back even to the 1970s [Krengel and Sucheston, 1977, 1978, Samuel-Cahn,
1984]. Hajiaghayi et al. [2007] and Chawla et al. [2010] introduced their use in algorithmic
mechanism design for one-sided markets. They mainly have two applications: On the one hand,
they can be interpreted as posted-price mechanisms for welfare maximization with multiple
buyers. On the other hand, they provide a useful tool to approximate revenue for one buyer
with multiple items. Most relevant to our approach is the concept of balanced prices as applied
by Kleinberg and Weinberg [2012] and Dütting and Kleinberg [2015] for settings with matroid
constraints, in Feldman et al. [2015] for combinatorial auctions and in Dütting et al. [2017] as a
generalized version of both. For a more detailed overview on prophet inequalities in the context
of posted-prices mechanisms, we refer to Lucier’s excellent survey [Lucier, 2017].

2 Preliminaries

We consider the following setup for two-sided markets: There is a set of n buyers B, a set of k
sellers S and a set of m items M . We assume that B ∩ S = ∅, so any agent can either act as a
buyer or a seller. Before running any (reallocation) mechanism, the set of items is initially held
by the sellers. We denote by Il the set of items which is hold by seller l initially and call the
vector (I1, . . . , Ik) the initial allocation. Note that the sets Il are pairwise disjoint, i.e. for any
two sellers l 6= l′ we have Il ∩ Il′ = ∅, and further all items are allocated to some seller before
running our mechanism, i.e.

⋃
l∈S Il = M .

Any agent i ∈ B ∪ S has a privately known valuation function vi : 2
M → R≥0. For T ⊆M , we

denote by vi(T ) the value of agent i for being allocated item bundle T . Any seller l is assumed to
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have only positive value for items in her initial bundle Il, i.e. for any seller l ∈ S and T ⊆M it
holds that vl(T ) = vl(T ∩ Il). Valuation functions are always non-negative and bounded for any
bundle as well as monotone and normalized, i.e. vi(T ) ≤ vi(T

′) for T ⊆ T ′ ⊆M and vi(∅) = 0.
We consider a Bayesian setting where each agent i’s valuation function is drawn independently
from a publicly known, not necessarily identical probability distribution Di, that is, Di is a
probability distribution over the space of valuation functions Vi. We denote by D = ×i∈B∪SDi

the joint probability distribution of the space of all agents’ valuation functions V = ×i∈B∪SVi

and refer to v as a valuation profile which consists of one valuation function per agent.
An allocation X = (Xi)i∈B∪S is a vector of item bundles such that agent i is allocated bundle
Xi and for two agents i 6= i′, we have Xi ∩Xi′ = ∅. The social welfare of an allocation X given
valuation profile v is defined as v(X) :=

∑
i∈B∪S vi(Xi). Concerning feasibility, as said, any

seller l ∈ S can only receive items in her initial allocation, i.e. Xl ⊆ Il for any l ∈ S.

Mechanisms and their properties

A (direct revelation) mechanism takes as input a vector of valuation functions which are reported
by agents. Agents can report any possible valuation in their space of valuation functions Vi,
not necessarily their true one. A mechanism outputs an allocation of items to agents X as
well as payments P. For buyers, payments are negative meaning that they pay money to the
mechanism whereas for sellers, payments are positive as they receive money.

Agents are assumed to maximize utility. Fixing a valuation profile v, an allocation X and
payments P, the (quasi-linear) utility of buyer i for being allocated bundle Xi ⊆M is given by
ui(Xi) = vi(Xi) − Pi whereas the utility for seller l who remains with bundle Xl ⊆ Il is given
by ul(Xl) = vl(Xl) + Pl.

Our mechanisms are designed to fulfill the following desirable constraints:

• Dominant Strategy Incentive Compatibility (DSIC): It is a dominant strategy for every
agent to report her true valuation independent of the other agents’ behavior.

• Individual Rationality (IR): When playing this dominant strategy, no agent decreases her
utility by participating in the mechanism. So, for buyers vi(Xi) − Pi ≥ 0 and for sellers
vl(Xl) + Pl ≥ vl(Il).

• Weak/Strong Budget Balance (WBB/SBB): The money received by sellers is at most/equals

the payments made by buyers, i.e.
∑

i∈B Pi

(=)

≥ ∑
l∈S Pl.

Concerning budget-balance, Colini-Baldeschi et al. [2020] showed a weakness in the original
definition of strong budget-balance as cross subsidizing trades with already received money is
not prohibited as long as the sum of payments is equal for buyers and sellers3. The stronger
notion of direct-trade weak/strong budget balance (DWBB/DSBB) requires that the outcome
of the mechanism can be obtained by a composition of bilateral trades where in each trade an
item is reallocated from seller l to buyer i, payments are transferred from some buyer i to some
seller l and each item may only be traded at most once [Colini-Baldeschi et al., 2020]. If the
buyer’s payment exceeds the seller’s receiving, the mechanism is DWBB, if payments in each of
these bilateral trades are equal for buyers and sellers, we refer to DSBB.
A truthful mechanism outputting allocation X is an α-approximation to the optimal social
welfare if Ev [v(X)] ≥ α ·Ev [maxX∗ v(X∗)]. In the case of online arrival of agents, we may use
α-approximation and α-competitive interchangeably.

3Colini-Baldeschi et al. [2020] argue that turning a WBB into an SBB mechanism is rather easy with a small
loss in the approximation guarantee as one can simply draw one seller uniformly at random and give all the
surplus money in the WBB mechanism to this seller.
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3 Matroid Double Auctions and Strong Budget-Balance

Our first mechanism is for double auctions where the set of n buyers B is equipped with a
matroid4 constraint. That is, there is a matroid MB = (B,IB) and the set of buyers who
receive an item in the mechanism needs to be an independent set in the matroid MB . For
this section, we assume buyers to be unit-demand5 and sellers to be unit-supply, i.e. every
seller initially holds a single, indivisible item and hence k = m. Items are identical, meaning
that vi(T ) only depends on the size of T , so agents only care if they get an item or not. Our
mechanism requires an offline setting in which buyers and sellers can trade in any order which
will be determined during the mechanism. In particular, we assume that we can pick one buyer
and one seller in any step out of the remaining ones and offer a trade at some price to both
agents. Further, we simplify notation in this section. As the valuation function of any agent
boils down to a single value that the agent has for being allocated an item, a valuation profile
v can now be interpreted as a |B ∪ S|-dimensional vector over the non-negative real numbers
in which each entry corresponds to the value of an agent for being allocated an item. We
denote this value by vi. Further, as sellers are unit-supply, there is a one-to-one correspondence
between sellers and items allowing to denote a seller as well as the corresponding item by j.

The Mechanism

Our mechanism is stated in Algorithm 1 and formally described below. The intuition behind is as
follows: We consider a relaxation of the expected optimal social welfare to Ev [v (OPTB(v))] +

Ev

[∑
j∈S vj

]
, where OPTB(v) is the optimal choice when restricting to the set of buyers. That

is, in our relaxation, each item can be counted twice: It will contribute to the first term by being
assigned to a buyer while in the second term it is assumed that the seller keeps it. Now, the
pricing for a trade between buyer i and seller j needs to ensure that the mechanism recovers a
suitable fraction in both terms. In particular, once a trade occurs, the price for this trade covers
the loss of both, the seller and the buyer, in the relaxed optimal social welfare. In addition,
the remaining share of the social welfare is covered by the surplus. By the choice of the order
in which trades are offered, one can ensure that prices are monotone for a fixed seller which is
crucial concerning truthfulness and budget-balance.

Throughout the algorithm, we maintain a set of agents A = AB ∪ AS who are irrevocably
allocated an item. The set AB contains all buyers who receive an item, so we require AB ∈ IB.
The set AS contains all sellers who irrevocably keep their item. Additionally, in the set MSELL

we store all sellers who may still be considered for a possible trade, meaning that we have
neither decided to trade their item nor that they keep it. Analogously, the set MBUY denotes
the set of buyers who have not been considered for a trade yet. In other words, any agent can
be listed in one of three different stages throughout our mechanism: all agents in MBUY and
MSELL are pending, meaning that each of these agent can be considered for a trade. As we offer
trades to agents, agents may either remain pending, we may irrevocably allocate an item to the
agent or the agent may be irrevocably discarded for holding an item after the mechanism.

We maintain buyer-specific thresholds pi and seller-specific thresholds pj , which roughly
speaking represent how much the two terms in the relaxation of the optimum, Ev [v (OPTB(v))]

and Ev

[∑
j∈S vj

]
, are harmed by a trade between j and i. The price for a trade between seller

j and buyer i will then be defined as pi,j = constant · (pi + pj). By this, we ensure that once an
item is irrevocably allocated, the value of the agent who gets the item is high enough to cover

4A matroid M = (Λ, I) over ground set Λ with non-empty set system I ⊆ 2Λ is defined via the following
properties. For two subsets X ⊆ Y of Λ with Y ∈ I, also X ∈ I. And for X,Y ∈ I with |X| < |Y | there is a
y ∈ Y \X such that X ∪ {y} ∈ I. We call sets in I independent.

5A valuation function is called unit-demand if vi(T ) = maxj∈T vi({j}).
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ALGORITHM 1: Mechanism for Matroid Double Auctions with Strong Budget Balance

Result: Set A of agents to get an item with A ∩B ∈ IB and |A| = |S|
AB ←− ∅ AS ←− ∅ r ←− |S| MSELL ←− S MBUY ←− B
while MBUY 6= ∅ and MSELL 6= ∅ do

recompute the thresholds pi(AB, r) and pj(AB , r) with respect to current AB , r, MSELL and
MBUY

j ∈ argminj′∈MSELL
pj′(AB , r); i ∈ argmaxi′∈MBUY

pi′(AB, r)
if AB ∪ {i} /∈ IB or |AB ∪ {i}| > r then

MBUY ←−MBUY \ {i}
go to next iteration

p←− pi,j (AB , r)
if vj > p then

AS ←− AS ∪ {j}; MSELL ←−MSELL \ {j}; r←− r − 1
if vj ≤ p then

MBUY ←−MBUY \ {i}
if vi > p then

AB ←− AB ∪ {i}; MSELL ←−MSELL \ {j}
return A := AB ∪ AS ∪MSELL

the welfare loss in both terms of the relaxed optimal social welfare. In every iteration, among
all buyers i ∈MBUY that can still be added, we consider the one with the largest threshold pi.
We try to match her to the seller j ∈ MSELL with the smallest threshold6 pj. To this end, we
first ask seller j if she wants to sell or keep her item for a price of pi,j. If she wants to keep
her item, we remove seller j from the set of available sellers. Otherwise, i.e. if seller j considers
selling her item, we ask buyer i if she wants to buy the item for price pi,j. If buyer i agrees, the
item is transferred from j to i, both are removed from the set of available agents, i is irrevocably
allocated an item, j is irrevocably discarded for holding an item and i pays pi,j to seller j. Else,
buyer i is removed from the set of available buyers and irrevocably discarded. Then we move
to the next iteration, in which we consider a different pair for trading.

The Pricing

First, by construction, our mechanism never offers trades to buyers who cannot be feasibly
added to AB. Hence, the mechanism ensures that the set of buyers AB who receive an item
in our mechanism is an independent set in the matroid, i.e. AB ∈ IB. Additionally, we
do not promise items to agents once all items are irrevocably allocated. The price for any
feasible trade is calculated in an agent-specific way extending the method of balanced thresholds
by Kleinberg and Weinberg [2012] and balanced prices by Dütting et al. [2017] to two-sided
markets.

Recall that AB contains all buyers who receive an item and AS contains all sellers who
irrevocably keep their item. By r we denote the number of items which may be allocated to
buyers in total, i.e. which are not irrevocably kept by a seller, so r = |S|− |AS |. Observe that r
is decreasing in our mechanism every time a seller decides to irrevocably keep her item. Given
the matroid over the set of buyers, we need to ensure that we do not pick more than r buyers
in our mechanism.

Fixing a valuation profile v, we let OPTB(v|AB , r) ∈ argmaxB′⊆B\AB ,B′∪AB∈IB,|B′∪AB |≤r

∑
i∈B′ vi.

That is, OPTB(v|AB , r) denotes the following allocation. Assume that we are only allowed to
assign items to buyers (not to sellers) and we have already allocated items to buyers in AB

and at most r items can be allocated to buyers in total. Then OPTB(v|AB , r) is the alloca-
tion that maximizes the welfare increase. The value of this partial allocation is denoted by
v (OPTB(v|AB , r)). Further, we define OPTB(v) = OPTB(v|∅, |S|) to be the optimal alloca-
tion of items to buyers.

6Break ties arbitrarily, but always in the same way.

9



The threshold of buyer i is defined with respect to the current state of AB and the number
of items r. For a fixed valuation profile v, let

pi(AB , r,v) = v (OPTB(v|AB , r))− v (OPTB(v|AB ∪ {i}, r))

if AB ∪ {i} ∈ IB and |AB ∪ {i}| ≤ r. So, pi(AB , r,v) is the difference in welfare which we can
achieve by allocating r items to buyers given we have already allocated items to buyers in AB

and AB ∪{i} respectively. To simplify notation, we define pi(AB , r,v) =∞ if AB ∪{i} 6∈ IB or
|AB ∪ {i}| > r.

Based on this, define buyer i’s threshold as

pi(AB , r) = Eṽ∼D [pi(AB , r, ṽ)] .

For a seller j, we set the seller-specific threshold to

pj = Eṽj∼Dj
[ṽj ]

which is simply the expected value of the distribution of seller j’s value for an item. Now, fix a
buyer-seller-pair (i, j) which is available for trading and denote the price for a trade between i
and j by

pi,j(AB , r) :=
1

3
(pi(AB , r) + pj) :=

1

3

(
Eṽ∼D [pi(AB , r, ṽ)] +Eṽj∼Dj

[ṽj ]
)

.

Properties of Our Mechanism

Note that our mechanism ensures that the final allocation is a feasible solution with respect
to the matroid constraint on the buyers’ side as we discard any buyer who cannot be added
feasibly to the set of allocated agents. Further, we do not allocate more than |S| items in total
among all agents in our allocation process.

Theorem 1. The mechanism for matroid double auctions is DSBB, DSIC and IR for all buyers
and sellers and a 1

3-approximation to the optimal social welfare.

By construction, Mechanism 1 consists of several bilateral trades, where an item is transfered
from seller j to buyer i and a price of pi,j is paid by buyer i, received by seller j, so the mechanism
satisfies DSBB.
We offer any buyer the possibility to participate in a trade at most once, so DSIC and IR for
buyers follows directly. Also IR for sellers is rather simple as we ask seller j every time if she
would like to participate in a trade for a given price. In order to show DSIC for sellers, we have
to exploit the order in which trades are offered. By this choice, prices offered to a fixed seller
are only non-increasing as the mechanism evolves. As a consequence, selling the item as early
as possible is only beneficial for a seller (if she would like to sell the item at all). Truthfulness
follows as misreporting the value for an item might allow or block unfavorable trades.

In order to illustrate the proof concerning the approximation guarantee, we give a proof for
the simplified full information setting. That is, the value vi of an agent is not a random variable
anymore, but rather deterministic. The general case with incomplete information can be found
in Appendix B. In the full information setting, the price for a feasible trade between buyer i
and seller j simplifies to 1

3 (v(OPTB(v|AB,ij , rij))− v(OPTB(v|AB,ij ∪ {i}, rij)) + vj), where
AB,ij and rij are the states of AB and r as we consider buyer i and seller j for a trade. First,
note that any agent who keeps or purchases an item has a value exceeding some price. So for
any agent i ∈ A, there is a price Pi which agent i’s value did exceed when we added i to A. For
sellers to which we did not offer any trade in our mechanism, we set Pi to zero as they keep
their items anyway; for buyers who cannot be feasibly added to our set of chosen agents, we set
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Pi to infinity. We split the social welfare achieved by our mechanism in two parts, calling them
base value and surplus: ∑

i∈A

vi =
∑

i∈A

Pi +
∑

i∈A

(vi − Pi)

Now, we bound each of these quantities separately.
When irrevocably allocating an item during the offer of a trade to buyer-seller-pair (i, j), either
the seller keeps the item or the buyer purchases it. In the first case, we reduce r by one, in
the second, we add i to AB . In order to bound the loss incurred by a seller keeping her item,
observe that

v(OPTB(v|AB,ij , rij))− v(OPTB(v|AB,ij ∪ {i}, rij))
≥ v(OPTB(v|AB,ij , rij))− v(OPTB(v|AB,ij , rij − 1)) .

As prices in the next iteration are computed with respect to rij − 1 and AB,ij , the loss
in the buyers’ optimal welfare when allocating an item to a seller is bounded by the buyer’s
contribution to the price. Summing the prices which we offered to agents in AB ∪AS combined
with this bound leads to a telescopic sum over the buyers’ thresholds in the prices. Therefore,
we can derive a bound of

∑

i∈A

Pi ≥
1

3
v(OPTB(v)) −

1

3
v(OPTB(v|AB , r)) +

1

3

∑

j∈S\MSELL

vj (1)

for the base value.
Concerning the surplus, we consider buyers and sellers separately. For the sellers, note

that any seller who remains in MSELL after the mechanism keeps her item. Therefore, the
contribution to the surplus is vj for any j ∈MSELL. In the incomplete information setting, this
turns out to be much more involved and a more sophisticated argument needs to be applied.
As a consequence, we are only able to bound the sellers’ surplus from below via

∑

i∈AS∪MSELL

(vi − Pi) ≥
2

3

∑

j∈MSELL

vj −
1

3
v(OPTB(v|AB , r)) . (2)

For the buyers, we note that the prices for a fixed buyer are only non-decreasing as the allocation
process evolves (see Lemma 7 which is a generalized version of a lemma in Kleinberg and Weinberg
[2012, Lemma 3]). Further, any buyer to which we offer a trade gets an item if her value exceeds
her price. Using this, we can bound the surplus of any buyer i to which we proposed a trade
via

(vi − Pi)
+ = (vi − pi,ji(AB,iji , riji))

+ ≥ (vi − pi,ji(AB , r))
+ ≥

(
vi − min

j∈MSELL

pi,j(AB , r)

)+

where we denote by ji the seller which is matched to buyer i. Now, we consider all buyers
which are in OPTB(v|AB , r). Any of these buyers could have purchased an item if her value
had exceeded the price. To see this, note that AB ∪ OPTB(v|AB , r) needs to be independent.
Further, if OPTB(v|AB , r) 6= ∅, we have that r > 0 and so there are still items available after
running the mechanism. As a consequence, any agent i ∈ OPTB(v|AB , r) has a surplus of
(vi − Pi)

+ which is positive only if i ∈ AB after running the mechanism. For a buyer who does
not exceed her price, this is zero as is her contribution to the surplus. Summing the surplus of
all these buyers implies a lower bound on the overall buyers’ surplus of

∑

i∈AB

(vi − Pi) ≥
∑

i∈OPTB(v|AB ,r)

(vi−Pi)
+ ≥

∑

i∈OPTB(v|AB,r)

vi−
∑

i∈OPTB(v|AB ,r)

min
j∈MSELL

pi,j(AB , r) .
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Having a closer look at the sum of prices, we can apply a proposition from Kleinberg and Weinberg
[2012, Proposition 2] on the buyers’ contribution in order to derive a suitable bound:

∑

i∈OPTB(v|AB,r)

min
j∈MSELL

pi,j(AB , r) ≤
1

3

(
v(OPTB(v|AB , r)) + |MSELL| · min

j∈MSELL

vj

)

≤ 1

3


v(OPTB(v|AB , r)) +

∑

j∈MSELL

vj


 .

And so we get ∑

i∈AB

(vi − Pi) ≥
2

3
v(OPTB(v|AB , r))−

1

3

∑

j∈MSELL

vj .

Hence, in combination with (2), we can lower-bound the overall surplus of all agents via

∑

i∈A

(vi − Pi) ≥
2

3

∑

j∈MSELL

vj −
1

3
v(OPTB(v|AB , r)) +

2

3
v(OPTB(v|AB , r))−

1

3

∑

j∈MSELL

vj

=
1

3

∑

j∈MSELL

vj +
1

3
v(OPTB(v|AB , r)) . (3)

Adding base value (1) and surplus of all buyers and sellers (3) proves the claim as v(OPTB(v))+∑
j∈S vj ≥ v(OPT(v)).

4 Matroid Double Auctions with Weak Budget-Balance and

Online Arrival

We consider matroid constraints like in Section 3. So, we have a set of n buyers B and the buyers
who receive an item need to form an independent set inMB = (B,IB), buyers have unit-demand
valuation functions and sellers are unit-supply, each initially equipped with exactly one identical
item, hence k = m. In contrast to Section 3, our mechanism allows buyers to arrive online with
an adversary specifying the order. The adversary may even adapt the choices depending on
the set of already considered agents and their valuations. Again, we simplify notation in this
section by interpreting v as the |B ∪ S|-dimensional vector over the non-negative real numbers
in which each entry corresponds to the value of an agent for being allocated an item denoted
by vi. Also, we denote the seller as well as the corresponding item by j.

The Mechanism

Let AB be the set of buyers who receive an item, hence AB ∈ IB . Further, AS denotes the set
of sellers who decide to keep the item irrevocably. In addition, we define a set A′ = A′

B ∪ A′
S ,

which is the set of agents that we eventually used to set the prices. We first go through all the
sellers asking whether seller j wants to irrevocably keep her item or try selling it knowing that
she will receive at most an amount of pj (in case we sell the item). Afterwards, we go through
all buyers in any order. When buyer i arrives, we match i to an arbitrary seller who still tries
selling her item (if available).

For this buyer-seller pair, we propose the following trade: Buyer i pays the specific price
pi but seller j only receives min {pi, Tj}, where Tj is the lowest price that we have ever offered
to seller j up to this point. If seller j does not agree, she irrevocably keeps the item from this
point onwards; j is added to A but i is added to A′. Otherwise, if buyer i does not agree, she
is irrevocably discarded. Seller j might get matched again but the price offered to her can only
decrease.
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ALGORITHM 2: Mechanism for Matroid Double Auctions with Online Arrival
Result: Set A = AB ∪ AS of agents to get an item with AB ⊆ B, AB ∈ IB, AS ⊆ S and |A| = |S|
A←− ∅ ; A′ ←− ∅ ; MSELL ←− ∅; T = (0, . . . , 0), where T is a vector of zeros of size
|S|

for j ∈ S do

if vj ≥ pj then
A←− A ∪ {j}; A′ ←− A′ ∪ {j}

if vj < pj then
MSELL ←−MSELL ∪ {j}; Tj ←− pj

for i ∈ B do

if MSELL 6= ∅ then
select j ∈MSELL arbitrarily

if pi ≥ Tj then

if vi ≥ pi then
A←− A ∪ {i}; A′ ←− A′ ∪ {i}; MSELL ←−MSELL \ {j}
buyer i pays pi to the mechanism and seller j receives Tj

if pi < Tj then

if vj ≥ pi then
A←− A ∪ {j}; A′ ←− A′ ∪ {i}; MSELL ←−MSELL \ {j}

if vj < pi then
Tj ←− pi
if vi ≥ pi then

A←− A ∪ {i}; A′ ←− A′ ∪ {i}; MSELL ←−MSELL \ {j}
buyer i pays pi to the mechanism and seller j receives Tj

return A ∪MSELL

Note that this mechanism does not require any specified order in which we process the
agents—even further, the matching which we consider for possible trades can be arbitrary, even
determined by an adversary. This is a sharp contrast to Section 3, where we consider buyer-seller
pairs in a tailored way.

The Pricing

The key to setting the prices is the set A′ = A′
B ∪ A′

S with A′
B ⊆ B and A′

S ⊆ S, which is
maintained in addition to the sets AB and AS . The idea is that for agents in A′ the respective
agent-specific price can be charged to someone in our mechanism. For a buyer i ∈ A′, this
can mean that the buyer herself received an item and paid for it or that the corresponding
seller decided to keep the item. We calculate prices with respect to the set A′ in the spirit
of the pricing schemes of matroid prophet inequalities by Kleinberg and Weinberg [2012] and
Dütting et al. [2017].

In more detail, concerning the buyers, we set prices to infinity if there are no items available
anymore or if buyer i cannot be added to A′

B , i.e. pi(A
′) =∞ if A′

B ∪ {i} /∈ IB or MSELL = ∅.
In particular, this pricing only affects the buyers and will never occur as long as we go through
the sellers (in the first for-loop) in our mechanism. Hence, for sellers, there will always be a
finite seller-specific price.

Now, for any agent who can be feasibly added to A′ (i.e. all sellers and all buyers in
cases different to the ones mentioned above), we compute prices in the following way. Fix a
valuation profile v and denote by OPT(v|X) the set of agents who receive an item in an optimal
allocation given that we have already irrevocably allocated items to agents in X. In contrast to
the mechanism in Section 3, the optimum is now computed over all agents, not only over the
set of buyers. The value of this partial allocation is denoted by v (OPT(v|X)), that is, the sum
over the value vi of all agents i who receive an item. Further, define OPT(v) = OPT(v|∅).
Denote by Ai and A′

i the state of set A and A′ after processing agent i and let

pi(A
′
i−1,v) = v

(
OPT(v|A′

i−1)
)
− v

(
OPT(v|A′

i−1 ∪ {i})
)

.
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For any seller and all buyers such that A′
B;i−1 ∪ {i} ∈ IB, as long as there are items remaining,

the price for agent i is computed as

pi(A
′
i−1) =

1

2
Eṽ∼D

[
pi(A

′
i−1, ṽ)

]
.

This way of setting prices also ensures feasibility with respect to the matroid constraint,
meaning that AB ∈ IB. The reason is that A′

B ⊇ AB at all times as every time we add a buyer
to AB , the buyer is also added to A′

B . We even have A′
B ∈ IB because buyers have infinite

prices as soon as they cannot be feasibly added to A′.

Properties of Our Mechanism

Theorem 2. The mechanism for matroid double auctions is DWBB, DSIC and IR for all
buyers and sellers and 1

2-competitive with respect to the optimal social welfare.

The full proof is deferred to Appendix C. To give a sketch, observe that DWBB is obtained
via the price comparison of our mechanism: either a trade between some seller j and some buyer
i happens at price pi, or buyer i pays pi ≥ Tj to the mechanism whereas seller j only receives
Tj . The difference pi − Tj is extracted and never used again.

Satisfying DSIC and IR for buyers can be seen easily as we only offer a trade to any buyer
at most once. Also IR for sellers follows naturally. In order to obtain DSIC for sellers, the key
observation is that the amount of money which we may pay to seller j is only non-increasing
in the allocation process. Hence, as a seller, if you want to sell you item, you want to do so as
early as possible.

In order to prove the desired competitive ratio, we split the contribution to the overall
welfare into base value and surplus as follows. At the point in time when an agent is added
to the set A, this agent is offered some price and her value exceeds this price. The part of the
agent’s value below this price is the base value, the part above the surplus. We bound each
quantity separately and consider the sum over all agents afterwards.

The base value is a telescoping sum covering 1
2E [v (OPT(v))]− 1

2E [v (OPT(v|A′))]. Con-
cerning the surplus, we need a few observations: Note that any seller will keep her item when
the value exceeds the initial price. Any buyer who is not in A′ \A and whose value exceeds her
price will purchase an item. Further, agent-specific prices are only non-decreasing: once offered
a trade to agent i at price pi implies that if we were to consider i later in the mechanism, pi
would be at least as high as before. Therefore, we can lower bound the surplus of any agent
using an increased price: the price which we could offer to this agent after running the mecha-
nism. By using properties of matroids to find a suitable upper bound on the prices, we bound
the overall surplus via 1

2E [v (OPT(v|A′)] from below. Adding the lower bounds for surplus and
base value proves the result.

Upper bound on the Approximation Guarantee

Concerning upper bounds, we extend the commonly known instance from prophet inequalities7

to two-sided markets: We consider a single seller with one item whose value for the item is zero
and two buyers where buyer 1’s value for the item is v1 = 1 and the second buyer has value v2
which is equal to 1

ǫ with probability ǫ and 0 else. Applying the results for prophet inequalities
in two-sided environments implies the following: If the mechanism for double auctions cannot
control the order in which to process the buyers, a competitive ratio of 1

2 is tight if there are
at least two buyers. In particular, any mechanism for double auctions which allows buyers to
arrive online with an adversary determining the order cannot achieve more than half of the

7The instance for prophet inequalities shows that a competitive ratio of 1
2
is optimal if the order of agents is

determined adversarially.
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expected optimal social welfare. By this considerations, also our competitive ratios of Section
5 are tight. We remark that this bound does only apply if there are at least two buyers, so the
case of bilateral trade is excluded.

5 Combinatorial Double Auctions with Strong Budget-Balance

In combinatorial double auctions, we assume that there is a set of n buyers B, a set of k sellers
S and a set of m possibly heterogeneous items M . Our goal is to reallocate the items among
the agents by a suitable sequential posted-prices mechanism. To this end, we compute a static
and anonymous8 item price pj for every j ∈M . Our mechanism is robust concerning the arrival
order of buyers: We can assume buyers to arrive online with adversarial order. Even further,
our mechanism can also handle an adaptive adversary who can in each round present one of the
remaining agents depending on the allocation we have computed so far.

The Mechanism

Our mechanism is stated in Algorithm 3 and works as follows: Given static and anonymous
item prices pj , we first ask any seller l which of her items in Il she would like to keep if we may
give her pj in exchange and which items she would like to try selling for a price of pj. After this,
we have a set of available items MSELL which we try to sell to the buyers now. Therefore, we
consider buyers sequentially. As a buyer arrives, we ask her which bundle of available items she
would like to purchase. We give this bundle to buyer i and buyer i pays the respective prices
to any seller from whom she gets an item. After running the mechanism, all items which are
unallocated are returned to their corresponding sellers.

Using static and anonymous item prices allows us to treat sellers as buyers in a one-sided
allocation problem. Therefore, first, we go through the sellers asking which subset of items each
would like to sell. In a one-sided market, this corresponds to buyers purchasing exactly the
bundles of items which any seller would like to keep. Afterwards, we process the buyers one-by-
one and ask which of the remaining items each would like to buy. Overall, by the use of static
and anonymous item prices, the results concerning the approximation guarantee via prophet
inequalities from Feldman et al. [2015] directly carry over to combinatorial double auctions.

The pricing

We restrict the class of valuation functions for both, buyers and sellers, to valuations which can
be represented by fractionally subadditive (also called XOS) functions.9 In order to compute
suitable prices, we mimic the pricing approach from Feldman et al. [2015] and Dütting et al.
[2017] and apply this to two-sided markets. Let ALG be an algorithm which allocates all
items among the agents. We assume that ALG can only allocate items to sellers which are
in their initial bundle. Fix a valuation profile v and denote by Y := (Yi)i∈B∪S the allocation
of ALG under valuation profile v. As any valuation function vi satisfies the XOS-property,
there are additive functions ai for any i ∈ B ∪ S such that vi(T ) ≥ ai(T ) for any T ⊆ M and
vi(Yi) = ai(Yi). For any j ∈ Yi, denote by SWj(v) := ai({j}) which you can interpret as the
contribution of item j to the overall social welfare given valuation profile v. In other words,
for fixed valuation profile v, we consider the allocation Y, the additive set function ai which

8Prices which do not depend on the partial allocation are called static. Prices are called anonymous if they
do not depend on the identity of the agent under consideration.

9A set function a : 2M → R≥0 is additive if and only if there are numbers c1, . . . , cm ∈ R≥0 such that for any
T ⊆ M we have a(T ) =

∑
j∈T

cj . A set function v : 2M → R≥0 is fractionally subadditive (also called XOS) if and
only if there are additive set functions a1, . . . , at such that for every T ⊆ M we have v(T ) = maxi≤t ai(T ). Note
that the class of XOS valuation functions contains many other classes, such as submodular, gross-substitutes,
unit-demand or additive valuation functions.
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ALGORITHM 3: Mechanism for Combinatorial Double Auctions
Result: Allocation X = (Xi)i∈B∪S of items to agents such that for any seller l we have Xl ⊆ Il

and
⋃

i∈B∪S Xi =
⋃

l∈S Il = M

Xi ←− ∅ for all i ∈ B ∪ S MSELL ←− ∅
for l ∈ S do

Show prices pj for each item j ∈ Il to seller l
Ask seller l which items she wants to keep or try selling
Xl ←− {j ∈ Il : seller l wants to keep item j}
MSELL ←−MSELL ∪ {j ∈ Il : seller l tries selling item j}

for i ∈ B do
Show prices pj for each item j ∈MSELL to buyer i
Ask buyer i which items she wants to buy
Xi ←− {j ∈MSELL : buyer i wants to buy item j}
MSELL ←−MSELL \Xi

Buyer i pays
∑

j∈Xi
pj

Any seller with j ∈ Il for some j ∈ Xi receives pj and item j is traded to buyer i
for l ∈ S do

Xl ←− Xl ∪ (MSELL ∩ Il)
return X

represents vi(Yi) and evaluate ai only for a single item j ∈ Yi.
Now, we compute the price for item j as

pj =
1

2
Eṽ∼D [SWj(ṽ)] .

Observe that these prices are static and anonymous item prices for any item j ∈ M . Further,
note that for ALG we have multiple choices: if we do not care about computational issues, we
could e.g. use an algorithm OPT which computes an optimal allocation with respect to social
welfare.

Properties of Our Mechanism

We consider two different settings for the chosen classes of valuation functions for buyers and
sellers. First, we restrict to the case of unit-supply sellers, i.e. each seller bringing one non-
identical item to the market. For buyers, we assume XOS-valuation functions. Note that the
valuation functions for sellers can also be represented by fractionally subadditive functions and
hence, in order to prove the competitive ratio, we can apply Lemma 15 which allows to state
the following theorem.

Theorem 3. The mechanism for combinatorial double auctions with unit-supply sellers and
buyers having XOS-valuation functions is DSBB, DSIC and IR for all buyers and sellers and
1
2-competitive with respect to the optimal social welfare for any online adversarial arrival order
of agents.

For our second result, we assume buyers and sellers to have additive valuation functions.
Note that this allows sellers to bring more than one item to the market. Since any additive
valuation function can trivially be represented by a fractionally subadditive one, we can again
apply Lemma 15 and hence, state the following theorem.

Theorem 4. The mechanism for combinatorial double auctions with buyers and sellers having
additive valuation functions is DSBB, DSIC and IR for all buyers and sellers and 1

2 -competitive
with respect to the optimal social welfare for any online adversarial arrival order of agents.

Concerning the proof of these theorems, observe the following: In the case of unit-supply
sellers, seller l is holding one item j initially. Therefore, seller l maximizes utility by keeping
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the item if vl({j}) ≥ pj and trying to sell the item else. Hence, we can interpret seller l as a
buyer who buys item j if her value exceeds the price. Also, when considering additive seller
valuations combined with additive buyer valuations, we can argue in the following way: Any
seller has a value vl({j}) for any j ∈ Il and hence, we can rewrite the utility of seller l as∑

j∈Xl
vl({j}) +

∑
j∈Il\Xl

pj. Since all buyers also have additive valuations, some buyer i will
buy an available item j if and only if vi({j}) > pj. In the case that for all buyers vi({j}) < pj,
the item is returned to the seller anyway. Hence, it is a dominant strategy to try selling all
item for which vl({j}) ≤ pj and keeping the items with vl({j}) > pj in order to maximize
utility. Therefore, the seller is deciding on her items in the same way as a buyer who is facing
the items in set Il. As a consequence, the competitive ratio directly follows by an application
of the results from Feldman et al. [2015]: Interpret the sellers as buyers which are considered
first, offer each to keep any item in Xl and sell the remaining afterwards to all buyers via a
sequential posted-prices mechanism. Thus, the competitive ratio from Feldman et al. [2015]
directly carries over to our setting. For the sake of completeness, a formal proof of Theorems 3
and 4 is given in Appendix D.

6 Knapsack Double Auctions with Strong Budget-Balance and

Online Customized Arrival

In contrast to Sections 3 and 4 where we considered a Matroid constraint on the set of buyers,
we now work in a setting with a Knapsack constraint. That is, each of the n buyers has a weight
wi ∈ [0, 1]. The set of buyers AB who are allocated an item after our mechanism needs to satisfy∑

i∈AB
wi ≤ 1. Again, we assume buyers to be unit-demand and sellers to be unit-supply each

bringing exactly one identical item to the market, hence k = m. Notation is simplified by
interpreting v as the |B ∪ S|-dimensional vector with non-negative real entries in which each
entry vi corresponds to the value of an agent for being allocated an item. Also, we denote by j
the seller as well as the corresponding item.

The Mechanism

First of all, note that if k = 1, i.e. there is only one seller bringing one item to the market,
we can simply run our mechanism from Section 5 in order to get a 1/2-competitive mechanism
which is DSBB, DSIC and IR. Hence, we will restrict to the case of k ≥ 2 in the following.
Further, we start by a restriction to the case of wi ≤ 1

2 for all buyers i ∈ B. The general case
will be discussed at the end of this section.

ALGORITHM 4: Mechanism for Knapsack Double Auctions with Strong Budget-Balance

Result: Set A = AB ∪ AS of agents to get an item with AB ⊆ B,
∑

i∈AB
wi ≤ 1, AS ⊆ S and

|A| = |S|
A←− ∅ ; W ←− 0; i←− 1; j ←− 1
while i ≤ n and j ≤ k do

if W + w∗

i > 1 then
i←− i+ 1

if W + w∗

i ≤ 1 then

if vj ≥ pi then
A←− A ∪ {j}; W ←−W + w∗

i ; j ←− j + 1
if vj < pi then

if vi ≥ pi then
A←− A ∪ {i}; W ←−W + w∗

i ; j ←− j + 1
transfer item from seller j to buyer i for price pi

i←− i+ 1
return A ∪ {j′ ∈ S : j ≤ j′ ≤ k}
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We state our mechanism in Algorithm 4 and give a quick description: We sort buyers
in a way such that w1 ≥ w2 ≥ · · · ≥ wn, compute artificial weights w∗

i for any buyer via
w∗
i := max

(
wi;

1
k

)
and let the buyer-specific price be

pi :=
2

7
· w∗

i ·Eṽ [ṽ (OPT(ṽ))] ,

where OPT(ṽ) denotes the optimal allocation of all items among all agents such that the set of
selected buyers satisfies the knapsack constraint. We choose ṽ to be drawn independently from
the same distribution as v. Further, we initialize W = 0 which will be our variable controlling
feasibility with respect to w∗

i . In particular, if for some buyer i we have W + w∗
i > 1, we will

not consider buyer i for a trade. In the other case, i.e. that buyer i’s artificial weight w∗
i can

feasibly be added to W , we first ask the current seller j if she wants to keep or try selling the
item for price pi. If she considers selling, we ask buyer i if she wants to purchase the item.

Feasibility Considerations

We need to compute a feasible allocation A, i.e. the set AB = A ∩ B needs to be feasible with
respect to the knapsack constraint. In our mechanism, we instead compute an allocation with
respect to the artificial weights w∗

i . To see that this is also feasible with respect to the initial
weights wi, observe that we always ensure W + w∗

i ≤ 1 for any buyer i to which we propose
a trade. Since wi ≤ w∗

i for any buyer i and we add w∗
i to W any time an item is irrevocably

allocated, we ensure
∑

i∈AB
wi ≤

∑
i∈AB

w∗
i ≤ 1. Further, every time an item is allocated, we

add some w∗
i to W . Since any w∗

i ≥ 1
k , we do never allocate more than k items in total.

Properties of Our Mechanism

Theorem 5. The mechanism for knapsack double auctions is DSBB, DSIC and IR for all
buyers and sellers and 1

7 -competitive with respect to the optimal social welfare if all buyers’
weights are no larger than half of the total capacity.

The generalized version without restrictions on the weights can be achieved in the same way
with a small loss in the approximation guarantee.

Theorem 6. There is a mechanism for knapsack double auctions which is DSBB, DSIC and
IR for all buyers and sellers and 1

10-competitive with respect to the optimal social welfare.

We split the proof of Theorem 5 in the two following lemmas.

Lemma 1. The mechanism for knapsack double auctions where no buyers demands more than
half of the total capacity satisfies DSBB. Further, it is DSIC and IR for all buyers and sellers
when ordering buyers such that w1 ≥ w2 ≥ · · · ≥ wn.

Proof. Again, the arguments for DSBB, IR and DSIC for buyers follow in similar ways as in the
previous sections. Concerning DSIC for sellers, note that we sorted buyers by non-increasing
weight. Hence, the price for trades is non-increasing in the ongoing process. As a consequence,
as a seller, you would like to sell your item as early as possible (if you want to sell it at all).
Therefore, reporting a lower valuation might end in a trade at some price lower than your actual
value. On the other hand, reporting a higher valuation may block a possibly beneficial trade.
Overall, misreporting does not increase the seller’s utility compared to truth-telling.

Lemma 2. The mechanism for knapsack double auctions where no buyers demands more than
half of the total capacity is 1

7 -competitive with respect to the optimal social welfare when ordering
buyers such that w1 ≥ w2 ≥ · · · ≥ wn.
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Proof. The set of agents who receive an item A depends on v, so we denote by A(v) the set A
under valuation profile v. Also W depends on v, so in the same way we denote by W (v) the
value of W under valuation profile v. We want to compare Ev [v(A(v))] to Ev [v(OPT(v))].
To this end, again, we split the welfare of our algorithm into two parts, the base value and the
surplus, and bound each quantity separately. The base value is thereby defined as follows: let
agent i receive an item in our mechanism, i.e. i ∈ A. Any buyer who gets an item has paid her
buyer-specific price for an item. Any seller who decided to keep her item was asked to keep it
for some buyer-specific price. The part of any agent’s value which is below this price is denoted
the base value. The surplus is the part of any agent’s value above this threshold if it exists,
otherwise it is zero.

Base Value: Our base part of the social welfare is defined via the prices. Summing over all
agents in A(v), we can compute the following. In particular, we sum over all prices for which
either a buyer purchased an item or a seller irrevocably kept it.

Ev


 ∑

i∈A(v)

pi


 =

2

7
Eṽ [ṽ (OPT(ṽ))] ·Ev [W (v)] ≥ 2

7
Eṽ [ṽ (OPT(ṽ))] · 1

2
Prv

[
W (v) ≥ 1

2

]
.

Surplus: We consider buyers and sellers separately and combine their respective contribu-
tions to the surplus afterwards.

Sellers: We observe that a seller j might be matched to some buyer i in the mechanism.
Denote by ij the first buyer that seller j is matched to and let ij =⊥ and w∗

ij
= 0 if seller

j is never matched to a buyer. Note that this initial matching is independent of seller j’s
value. Further, prices are only non-increasing in the ongoing process. Thus, we can bound the
expected surplus of seller j by the use of v and v′ being independent and identically distributed
combined with linearity of expectation to get

Ev

[
surplusj

]
≥ Ev

[(
vj − pij

)+] ≥ Ev,v′

[(
vj − pij

)+ · 1W((v′j ,v−j))≤ 1
2
· 1j∈OPT((vj ,v′

−j))

]

= Ev,v′

[(
v′j − pij

)+ · 1W (v)≤ 1
2
· 1j∈OPT(v′)

]
.

Buyers: When considering the buyers, we first argue which circumstances need to be fulfilled
such that buyer i gets an item in our mechanism. First, buyer i’s value needs to exceed her
price pi. Second, there needs to be a time step t such that Wt +w∗

i ≤ 1, where Wt denotes the
value of W at time step t. Third, there needs to exist a seller j such that vj ≤ pi as otherwise,
there will be no item available for buyer i. We make use of the following observation: Buyer i
is never asked to purchase an item until we either can offer her an item for price pi or buyer i
becomes infeasible with respect toW and w∗

i . Therefore, everything happening before this event
is independent of buyer i’s value. Hence, when considering the value of W on a hallucinated
valuation profile v′i drawn independently from the same distribution as vi, we get the following:
if W ((v′i, v−i)) ≤ 1

2 , i.e. the value of W on valuation profile (v′i, v−i) is at most 1
2 after running

the mechanism, then buyer i could be feasibly added at the end of the mechanism. As W is
only non-decreasing, buyer i could have also been feasibly added at time t. Using this, we can
bound the surplus of buyer i via

surplusi ≥ (vi − pi)
+ · 1W((v′i,v−i))≤ 1

2
≥ (vi − pi)

+ · 1W((v′i,v−i))≤ 1
2
· 1i∈OPT((vi,v′

−i))
.

Again, using linearity of expectation as well as exploiting that v′ and v are independent
and identically distributed, we get

Ev [surplusi] ≥ Ev,v′

[(
v′i − pi

)+ · 1W (v)≤ 1
2
· 1i∈OPT(v′)

]
.
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Combination: Summing over all buyers and sellers, we can combine the two bounds. We
denote by qv := Prv

[
W (v) ≤ 1

2

]
.

∑

i∈B∪S

Ev [surplusi] ≥
∑

i∈B

Ev,v′

[(
v′i − pi

)+ · 1W (v)≤ 1
2
· 1i∈OPT(v′)

]

+
∑

j∈S

Ev,v′

[(
v′j − pij

)+ · 1W (v)≤ 1
2
· 1j∈OPT(v′)

]

= qv ·


Ev′


 ∑

i∈OPT(v′)∩B

(
v′i − pi

)+

+Ev′


 ∑

j∈OPT(v′)∩S

(
v′j − pij

)+





≥ qv ·


Ev′

[
v′

(
OPT(v′)

)]
−Ev′


 ∑

i∈OPT(v′)∩B

pi


−Ev′


 ∑

j∈OPT(v′)∩S

pij






Again, for the first equality we use that v and v′ are independent and the respective terms
each only depend on one of the two. In order to bound the sums of prices, we note that also
OPT is restricted with a total capacity of one as well as OPT can also not allocate more than
k items, so ∑

i∈OPT(v′)∩B

w∗
i ≤

∑

i∈OPT(v′)∩B

wi +
∑

i∈OPT(v′)∩B

1

k
≤ 1 + 1 = 2 .

Further, by the definition of ij , we get that

∑

j∈OPT(v′)∩S

w∗
ij ≤

∑

j∈S

w∗
ij ≤ 1

as we do not tentatively match a buyer and a seller if W + w∗
i exceeds one.

Therefore, we can bound the overall surplus by

Ev

[ ∑

i∈B∪S

surplusi

]
≥ Prv

[
W (v) ≤ 1

2

]
·
(
1− 3 · 2

7

)
Eṽ [ṽ (OPT(ṽ))] .

Summing the base value and the surplus proves our claim as we can exploit that v, v′ and
ṽ are independent and identically distributed.

In order to extend this to the general case in Theorem 6 when wi ∈ [0, 1] instead of wi ≤ 1/2,
we split the set of buyers in high- and low-weighted ones and run our constructed mechanism
on the latter - for the former, we now use the DSBB-mechanism for matroids from Section 3.
High-weights buyers are the ones with wi >

1
2 , low-weighted ones satisfy wi ≤ 1

2 . Observe that
in an instance of high-weighted buyers, we can allocate at most one item which corresponds to
a 1-uniform matroid constraint over the set of buyers. Concerning the use of the mechanism for
matroid double auctions, note that we do not need to insist on a offline order of buyers now. We
can rather fix the arrival sequence of buyers beforehand as we consider the 1-uniform matroid
over all buyers. This implies that all buyers face the same take-it-or-leave-it buyer-respective
contribution to the prices and hence allow easier arguments concerning the properties of the
mechanism from Section 3. By this construction, we can formulate Theorem 6.

7 Knapsack Double Auctions with Weak Budget-Balance and

Online Arrival

Again, we work in a setting with a Knapsack constraint, so each of the n buyers has a weight
wi ∈ [0, 1] with the constraint that

∑
i∈AB

wi ≤ 1, buyers have unit-demand valuations and
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sellers are unit-supply each bringing exactly one identical item to the market, hence k = m.
Our mechanism can handle online adversarial arrival orders of agents - even with an (adaptive)
adversary specifying the order. Notation is simplified by interpreting v as the |B∪S|-dimensional
vector with non-negative real entries in which each entry vi corresponds to the value of an agent
for being allocated an item. Also, we overload notation and denote the seller as well as the
corresponding item by j.

The Mechanism

As in Section 6, note that if k = 1, i.e. there is only one seller bringing one item to the market,
we can simply run our mechanism from Section 5 in order to get a 1/2-competitive mechanism
which is DSBB, DSIC and IR. Hence, we will only consider the case of k ≥ 2 in the following.
Further, we start by restricting weights to the case of wi ≤ 1

2 for all buyers i ∈ B. The general
case will be discussed in Appendix E.

ALGORITHM 5: Mechanism for Knapsack Double Auctions with Online Adversarial Arrival

Result: Set A = AB ∪ AS of agents to get an item with AB ⊆ B,
∑

i∈AB
wi ≤ 1, AS ⊆ S and

|A| = |S|
A←− ∅ ; MSELL ←− ∅
for j ∈ S do

if vj ≥ pj then
A←− A ∪ {j}

if vj < pj then
MSELL ←−MSELL ∪ {j}

for i ∈ B do

if
∑

i′∈A w∗

i′ ≤ 1− w∗

i then

if vi ≥ pi then
A←− A ∪ {i};
pick one j ∈MSELL, transfer item from j to i, i pays pi to mechanism, j receives pj;
MSELL ←−MSELL \ {j}

A←− A ∪MSELL

We state our mechanism in Algorithm 5 and give a quick description: We compute artificial
weights w∗

i for any buyer and seller in the following way: for all buyers, set w∗
i := max

(
wi;

1
k

)

and for all sellers, let w∗
j := 1

k . For any agent, i.e. any buyer and seller, we set the agent-specific
price to be

pi :=
2

5
· w∗

i ·Eṽ [ṽ (OPT(ṽ))] ,

where OPT(ṽ) denotes the optimal allocation of all items among all agents such that the set
of selected buyers satisfies the knapsack constraint. We choose ṽ to be drawn independently
from the same distribution as v. Now, we first go through all sellers asking each if she wants to
keep or try selling the item if we might pay an amount of pj to her later-on. Afterwards, we go
through all buyers, asking each of them if she wants to purchase an item for price pi if buyer i
can be feasibly added to the chosen set of agents with respect to the artificial weights w∗

i .

Feasibility Considerations

Arguing about the feasibility of our solution, we can proceed similar to Section 6, as we again
compute a feasible allocation with respect to the artificial weights w∗

i . To see that this is also
feasible with respect to the initial weights wi, note that we ensure 1 ≥

∑
i∈A w∗

i ≥
∑

i∈AB
w∗
i ≥∑

i∈AB
wi throughout our mechanism. Further, we need to ensure that we do not allocate more

than k items in total. This is mirrored by the fact that w∗
i ≥ 1

k for any agent i and, as we do
not allocate items if

∑
i∈Aw∗

i > 1, we get that |A| = k ·∑i∈A
1
k ≤ k ·∑i∈Aw∗

i ≤ k.
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Properties of Our Mechanism

Theorem 7. The mechanism for knapsack double auctions is DWBB, DSIC and IR for all
buyers and sellers and 1

5 -competitive with respect to the optimal social welfare if all buyers’
weights are no larger than half of the total capacity.

The proof can be found in Appendix E as well as a proof for the generalized version:

Theorem 8. There is a mechanism for knapsack double auctions which is DWBB, DSIC and
IR for all buyers and sellers and 1

7-competitive with respect to the optimal social welfare for any
adversarial online arrival order of agents.

8 Conclusion and Open Problems

As we have shown, understanding one-sided markets properly also allows to design truthful
mechanisms in two-sided environments. Somewhat surprisingly, also guarantees on the com-
petitive ratios for mechanisms carry over despite the fact that optimal social welfare cannot
be attained in two-sided markets. These results lead to a couple of open questions for future
research.

Our first mechanism is strongly budget-balanced, but requires agents to be carefully se-
lected for trades (offline arrival). In contrast, relaxing the budget-balance constraint and allow-
ing weakly budget-balanced mechanisms enables the construction of a mechanism for matroid
double auctions which can deal with adversarial online arrival of buyers. It is an interesting
goal to combine the best of these two results and design a (posted-prices) mechanism which
is strongly budget-balanced but also a 1/2-approximation and possibly also able to deal with
adversarial online arrival of agents. In the online setting, no mechanism will be better than a
1/2-approximation. How close can one get to this?

Our results concerning combinatorial double auctions hold for unit-supply sellers paired
with buyers with fractionally subadditive valuation functions and in settings when all agents
have additive valuation functions. Obtaining results with the same approximation guarantee,
budget-balance and incentive compatibility constraints for buyers and sellers with XOS valua-
tion functions would be a very desirable result. Colini-Baldeschi et al. [2020] already developed
a mechanism which is Bayesian incentive-compatible when combining additive sellers and buy-
ers with XOS valuations. But still, the question remains open if there is a mechanism which is
DSIC.

One could also try to further improve beyond approximation factors of 1/2 by considering
agents in a suitable order. It is known that for bilateral trade instances we can obtain an approx-
imation guarantee of 1 − 1/e and even better [Blumrosen and Dobzinski, 2016]. As a natural
challenge, is a generalization of this guarantee to matroid and combinatorial double auctions
possible? To this end, a useful approach could be to extend the posted pricing techniques from
Ehsani et al. [2018] or Correa et al. [2017], which assume that agents arrive in random order,
to two-sided markets in the spirit of our extension of prophet inequalities to two-sided markets.
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A Appendix: Bilateral Trade via balanced prices

In order to give a better understanding on how to apply prophet inequality techniques in two-
sided markets, we prove the approximation guarantee for bilateral trade instances by the use of
balances prices.

In bilateral trades, there is one seller, initially equipped with one item and one buyer. Let
vs denote the seller’s value and vb denote the buyer’s value for the item. Both are drawn
independently from some (not necessarily identical) probability distributions.

Our mechanism works as follows: Fix price p = 1
2 ·E [max{vs, vb}] and trade the item if and

only if vb ≥ p ≥ vs. We interpret this mechanism as a sequential posted-prices mechanism with
price p as follows: First, ask the seller s if she would like to keep or try selling the item for price
p. Afterwards, buyer b may buy the item for price p if the seller herself wanted to sell the item.
Our mechanism is DSIC, IR and SBB by design. Concerning the approximation guarantee, we
can state the following proposition.

Proposition 1. The bilateral trade mechanism with p = 1
2 ·E [max{vs, vb}] is a 1

2-approximation
to the optimal social welfare.

We give a proof applying the ideas from prophet inequalities.

Proof. We distinguish several cases: the mechanism extracts social welfare if the item is either
allocated as vs > p (the seller initially keeps the item), vb ≥ p ≥ vs (a trade occurs), or vb < p
and vs < p (both agents’ values do not exceed the price, so the item remains at the seller).
Observe that the social welfare achieved by the first two cases is clearly a lower bound on the
overall social welfare achieved by the mechanism. In other words, we only consider contributions
to social welfare if at least one of the agents exceeds price p.

We begin by splitting the social welfare achieved by the mechanism in base value and surplus.

For the base value, observe that if there exists i ∈ {b, s} with vi ≥ p, we get a contribution
to social welfare of p (actually, we get p + (vi − p), but the second summand is considered in
the surplus). Hence,

Ev [Base Value(v)] = Prv [There exists i ∈ {b, s} with vi ≥ p] · p .

For the surplus, we first argue about the contribution of the seller, afterwards about the
buyer. Note that the seller may keep the item initially if vs ≥ p. As a consequence, we can
extract a surplus of vs − p if this is non-negative. In other words, we get (vs − p)+ as a surplus
from seller s. Buyer b can buy the item if the seller did initially agree selling, i.e. vs < p and if
her value vb ≥ p exceeds the price. Hence, we get (vb − p)+ 1vs<p as a surplus. Observe that vs
and vb are independent and hence, taking the expectation over v, we can bound the expected
surplus of buyer b via

Ev [surplusb(v)] ≥ Ev

[
(vb − p)+ 1vs<p

]
= Ev

[
(vb − p)+

]
·Pr [vs < p] .

Now, observe that 1 ≥ Pr [vs < p] ≥ Pr [vs < p, vb < p], which allows to bound the sum of
the seller’s and buyer’s surplus as

Ev [Surplus(v)] = Ev [surpluss(v)] +Ev [surplusb(v)]

≥
(
Ev

[
(vs − p)+

]
+Ev

[
(vb − p)+

])
·Pr [vs < p, vb < p] .

Now, use that (vs − p)+ + (vb − p)+ ≥ maxi∈{s,b} (vi − p)+ ≥ max{vs, vb} − p. Further, by
our choice of p, we get that

Ev [Surplus(v)] ≥ Ev [max{vs, vb} − p] ·Pr [vs < p, vb < p] = p ·Pr [vs < p, vb < p] .

26



Combining base value and surplus, we get

Ev [Base Value(v)] +Ev [Surplus(v)]

≥ p · (Prv [There exists i ∈ {b, s} with vi ≥ p] +Pr [vs < p, vb < p])

= p · 1

=
1

2
·E [max{vs, vb}] .
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B Appendix: Matroid Double Auctions and strong budget-

balance

In this section, we give a complete proof of Theorem 1. We split the proof into the two following
lemmas.

Lemma 3. Mechanism 1 for matroid double auctions satisfies DSBB. Further, it is DSIC and
IR for all buyers and sellers.

Proof. We first argue that our mechanism is DSBB. Afterwards, concerning DSIC and IR, we
consider buyers and sellers separately.

• DSBB : By construction, the mechanism consists of bilateral trades where an item is moved
from one seller to one buyer and in exchange, money is transfered from this buyer to the
corresponding seller. Any time an item is traded between a buyer i and a seller j, we
ensure that this trade happens for some fixed price pi,j.

• IR - buyers: Any buyer has the possibility to reject buying an item if her value does not
exceed her price. Hence, it is not harmful to participate in the mechanism.

• IR - sellers: Any seller holding an item is asked if she wants to keep her item if we give
her an amount of pi,j for some i in exchange. She could keep her item, so also for sellers,
participating is not harmful.

• DSIC - buyers: Any buyer is asked at most once in our mechanism if she wants to buy
an item for some price which only depends on her probability distribution, but not on her
private realization. She can either accept the price and buy an item or reject it. In any
case, truth-telling is a dominant strategy for any buyer in order to maximize utility.

• DSIC - sellers: Fix seller j. By construction, the prices which we offer to seller j are only
non-increasing in the ongoing process. To see this, note that AB and r do not change
as long as we consider seller j for a trade. Therefore, the thresholds pi(AB , r) are non-
increasing as we ask (possibly) more and more buyers to trade with seller j. Hence, as
a seller, you want to sell your item as early as possible (if you want to sell it at all).
Therefore, reporting a lower valuation might end in a trade at some price lower than your
actual value. On the other hand, reporting a higher valuation may block a trade which
would be beneficial for the seller. Overall, misreporting does not increase the seller’s
utility compared to truth-telling.

Lemma 4. Mechanism 1 for matroid double auctions is a 1
3-approximation of the optimal social

welfare.

Proof. We start by a quick reformulation of the prices. Assume, we introduced a counter t
starting at zero which increases by 1 in every iteration of the while-loop as soon as a buyer or a
seller accepts a price. Every time the counter increases, one item is allocated irrevocably: Either
the sellers decides to keep the item or a trade occurs and the item is allocated to the current
buyer. Denote by AB,t the state of set AB (similarly with AS,t for AS etc.) as the counter shows
t (i.e. t items are already allocated) and as before, if AB,t ∪ {i} ∈ IB and |AB,t ∪ {i}| ≤ rt, let

pi,j(AB,t, rt) =
1

3

(
Eṽ∼D [pi(AB,t, rt, ṽ)] +Eṽj∼Dj

[ṽj ]
)

be the price for buyer-seller-pair (i, j). Otherwise, as already mentioned, we will not consider
buyer i and set any price pi,j for trades offered to buyer i to infinity. Note that this formulation
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is equivalent to our initial definition of the prices but rather allows to refer to the t-th irrevo-
cably allocated item.
The set of agents who receive an item A depends on v, so we denote by A(v) the set A under
valuation profile v (the same for AB,t(v) and AS,t(v) etc.). We want to compare Ev [v(A(v))]
to Ev [v(OPT(v))]. To this end, we split the welfare of our algorithm into two parts, the base
value and the surplus, and bound each quantity separately. (When thinking about one-sided
markets, this corresponds to revenue and utility of buyers.) The base value is thereby defined
as follows: let agent i receive an item in our mechanism, i.e. i ∈ A. Any buyer who gets an item
has paid some price for the item. Any seller who decided to keep her item was asked to keep
it for some specific price. The part of agent i’s value which is below this price is denoted the
base value. The surplus is the part of agent i’s value above this threshold if it exists, otherwise
it is zero. There might be sellers who are left unconsidered in our mechanism, i.e. we did never
ask them if they would like to participate in a trade. These sellers keep their item without any
contribution to the base value in our calculations. All their value is considered in the surplus.

Base Value: As said, all buyers and sellers who are irrevocably allocated an item (i.e.
which are in A before adding the remaining sellers) have a value which exceeds some price.
For any agent i, denote this price by Pi. Further, every time the counter t increases, we are
allocating an item irrevocably in our mechanism.

As a first step, we need to argue about the two different scenarios which can occur in our
mechanism as an item is allocated after offering a trade to buyer i and seller j with counter t.
On the one hand, a trade may occur and buyer i is allocated seller j’s item. In this scenario, the
prices in the next iteration(s) with counter t+1 are computed with respect to AB,t+1 = AB,t∪{i}
and rt+1 = rt. In addition, seller j is not available for a trade anymore. On the other hand,
seller j may keep the item, so we compute prices at counter t+1 with respect to AB,t+1 = AB,t

and rt+1 = rt − 1. Note that our prices are adapted to mirror the first scenario. Taking the
expectation over the inequality from Lemma 5, we see that the impact of the second scenario
(i.e. a seller keeping the item) can be bounded by the loss of the first one concerning the optimal
social welfare.

Fixing a valuation profile v and summing over all agents in A(v) in the order that they were
added to A is equivalent to summing over all steps in which we increased the counter t. Denote
by it and jt the buyer and seller considered in this particular time step.

This allows to compute the following by a telescopic sum argument:

∑

i∈AB(v)∪AS(v)

Pi =
∑

t

1

3

(
Eṽ∼D [pit(AB,t, rt, ṽ)] +Eṽjt∼Djt

[ṽjt ]
)

=
1

3

∑

t

(
Eṽ [ṽ (OPTB(ṽ|AB,t, rt))− ṽ (OPTB(ṽ|AB,t ∪ {it}, rt))] +Eṽjt∼Djt

[ṽjt]
)

(⋆)

≥ 1

3
(Eṽ [ṽ (OPTB(ṽ)]−Eṽ [ṽ (OPTB(ṽ|AB(v), r(v))) ]) +

1

3

∑

t

Eṽjt∼Djt
[ṽjt ]

To see why the last inequality (⋆) holds, we use Lemma 5. Consider the step with counter
t. If buyer it gets the item, we argued that AB,t+1 = AB,t ∪{it} and hence, the sum telescopes.
On the other hand, if seller jt decided to keep the item, we note that by Lemma 5,

Eṽ [ṽ (OPTB(ṽ|AB,t, rt))− ṽ (OPTB(ṽ|AB,t ∪ {it}, rt))]
≥ Eṽ [ṽ (OPTB(ṽ|AB,t, rt))− ṽ (OPTB(ṽ|AB,t, rt − 1))]
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and again, the sum telescopes since the prices in the next step are computed with respect to
rt − 1.

Further, denote by MSELL(v) the set MSELL after running our mechanism with valuation
profile v. Note that any seller who is not in MSELL(v) either participated in a trade or irrevo-
cably kept the item during our mechanism. Therefore,

∑

t

Eṽjt∼Djt
[ṽjt] =

∑

j∈S\MSELL(v)

Eṽj∼Dj
[ṽj] .

Taking the expectation over all valuation profiles v, exploiting linearity of expectation and using
that ṽ ∼ D, we get:

Ev


 ∑

i∈AB(v)∪AS (v)

Pi


 ≥ 1

3
Ev [v (OPTB(v))]−

1

3
Ev,ṽ [ṽ (OPTB(ṽ|AB(v), r(v)))] +

1

3
Ev,ṽ


 ∑

j∈S\MSELL(v)

ṽj




Surplus: The part of the welfare which is not covered by the base value is captured in the
surplus. In order to talk about the surplus of any agent who receives an item, we split the set
of agents and examine buyers and sellers separately.

Sellers: Fix seller j. Note that any seller who exceeds a price which we offered keeps her
item. By construction of our mechanism, seller j is matched to some buyer(s) in the mechanism
and asked if she would like to keep or try selling the item for price pi,j. Let ij denote the first
buyer to which j is matched in the mechanism. This matching is independent of seller j’s actual
valuation since it only depends on the prices for seller j and buyer ij . In the case that ij does
not exist (i.e. seller j was never offered a trade), we can simply set ij =⊥ and pij ,j = 0 and
apply the same argument. The last price offered to seller j is Pj (maybe 0 if seller j was never
offered a trade) and let the counter show t at this point.
Note that the prices which we offered to seller j cannot have increased in the process. Hence,
the last price Pj which we offered to seller j is clearly upper bounded by the first price pij ,j
which we offered to j. Further, by Lemma 6, the price for the trade between j and ij is only
non-decreasing compared to offering a trade between buyer ij and seller j later in the process
again. Therefore, we can bound the surplus of seller j as follows.

(vj − Pj)
+ ≥

(
vj − pij ,j(AB,t(v), rt)

)+ ≥
(
vj − pij ,j(AB((v

′
j ,v−j)), r((v

′
j ,v−j)))

)+

≥
(
vj − pij ,j(AB((v

′
j ,v−j)), r((v

′
j ,v−j)))

)+ · 1j∈MSELL(v
′
j ,v−j)

Taking expectations on both sides and exploiting that v and v′ are independent and iden-
tically distributed allows the following:

Ev

[
(vj − Pj)

+] ≥ Ev,v′

[(
vj − pij ,j(AB((v

′
j ,v−j)), r((v

′
j ,v−j)))

)+ · 1j∈MSELL(v
′
j ,v−j)

]

= Ev,v′

[(
v′j − pij ,j(AB(v), r(v))

)+ · 1j∈MSELL(v)

]

Next, we can sum over all sellers and use linearity of expectation to obtain the following:

30



∑

j∈S

Ev

[
(vj − Pj)

+] ≥ Ev,v′


∑

j∈S

(
v′j − pij ,j(AB(v), r(v))

)+ · 1j∈MSELL(v)




= Ev,v′


 ∑

j∈MSELL(v)

(
v′j − pij ,j(AB(v), r(v))

)+



≥ Ev,v′


 ∑

j∈MSELL(v)

v′j


−Ev


 ∑

j∈MSELL(v)

pij ,j(AB(v), r(v))




Let us pause for a moment and consider the sum over the prices. First of all, note that by
construction of our mechanism, at most one seller j∗ ∈ MSELL(v) is offered (maybe multiple
times) a trade at all. Therefore, any other seller j satisfies that ij =⊥ and hence for all sellers
except j∗, we can set pij ,j = 0.
Having a look at the seller j∗ ∈ MSELL(v) who is offered a trade (if j∗ exists), the price for a
trade between j∗ and ij∗ was well-defined in the iteration that j∗ and ij∗ were considered for
a trade. Note that AB and r did not change after this iteration anymore, so if ij∗ could be
feasibly added to AB at the step we offered a trade, she also can be feasibly added to AB after
the mechanism. Therefore, combining the price given by

pij∗ ,j∗(AB(v), r(v)) =
1

3

(
Eṽ∼D

[
pij∗ (AB(v), r(v), ṽ)

]
+Eṽj∗∼Dj∗

[ṽj∗]
)

with

pij∗ (AB(v), r(v), ṽ) = ṽ (OPTB(ṽ|AB(v), r(v))) − ṽ (OPTB(ṽ|AB(v) ∪ {ij∗}, r(v)))
≤ ṽ (OPTB(ṽ|AB(v), r(v)))

allows to bound the sum of prices as follows:

Ev


 ∑

j∈MSELL(v)

pij ,j(AB(v), r(v))


 ≤ 1

3
Ev,ṽ [ṽ (OPTB(ṽ|AB(v), r(v)))] +

1

3
Ev

[
Eṽj∗∼Dj∗

[ṽj∗]
]

≤ 1

3
Ev,ṽ [ṽ (OPTB(ṽ|AB(v), r(v)))] +

1

3
Ev,ṽ


 ∑

j∈MSELL(v)

ṽj




Now, we use that v, v′ and ṽ are independent and identically distributed. Therefore, we
can bound the surplus of all sellers by the following expression:

∑

j∈S

Ev

[
(vj − Pj)

+] ≥ Ev,v′


 ∑

j∈MSELL(v)

v′j


−Ev


 ∑

j∈MSELL(v)

pij ,j(AB(v), r(v))




≥ 2

3
Ev,v′


 ∑

j∈MSELL(v)

v′j


− 1

3
Ev,ṽ [ṽ (OPTB(ṽ|AB(v), r(v)))]

(4)

Buyers: First, observe that initially, all buyers can be feasibly added to AB . During the
mechanism, buyers may become infeasible at some point in time. Once a buyer cannot be
feasibly added anymore, this buyer will remain infeasible for the remainder of the mechanism.
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On the other hand, if a buyer can be feasibly added at some point in time, she could also be
feasibly added at any time before. During our mechanism, we offer trades to all buyers except
of those who did become infeasible on the way. Any of the buyers to which we offer a trade
for a finite price gets an item if her value exceeds the offered price. As a consequence, we are
allowed to consider (vi − Pi)

+ as the contribution to the surplus for all buyers. Define Pi for
buyer i to be infinity if buyer i was not offered a trade in our mechanism due to the fact that
buyer i became infeasible. In the same way, if pi,j(AB , r) is not well-defined for a buyer due to
the fact that this buyer did become infeasible, we defined the price to be infinity. This directly
implies a zero contribution to the surplus, so we do not need to focus on these buyers anymore
in our considerations. Otherwise, as before, Pi denotes the price which we offered to buyer i.
Note that by Lemma 7, the prices which are propose to buyer i are non-decreasing as the
allocation process proceeds. As said, any buyer who is offered a trade and exceeds her price
gets an item in our mechanism. Note that the price which we offered to buyer i only depends
on the sellers and all buyers which did arrive before i. In particular, being offered a trade and
its price are independent of buyer i’s value. As a consequence, for all buyers which are offered
trades, we are allowed to calculate the following, where jt denotes the seller which is matched
to buyer i in round t, i.e. in the round in which buyer i receives an item (if she does).

(vi − Pi)
+ = (vi − pi,jt(AB,t(v), rt))

+ ≥
(
vi − min

j∈MSELL((v
′
i,v−i))

pi,j(AB((v
′
i,v−i)), r((v

′
i,v−i)))

)+

≥
(
vi − min

j∈MSELL((v
′
i,v−i))

pi,j(AB((v
′
i,v−i)), r((v

′
i,v−i)))

)+

· 1i∈OPTB((vi,v′
−i)|AB((v′i,v−i)), r((v′i,v−i)))

Note that if MSELL((v
′
i,v−i)) is empty, then the minimum is taken over the empty set and

we do not consider buyer i anymore as in this case buyer i cannot be feasibly added to AB.
Taking expectations on both sides and exploiting that v and v′ are independent and identically
distributed allows the following:

Ev

[
(vi − Pi)

+] ≥ Ev,v′

[(
vi − min

j∈MSELL((v
′
i,v−i))

pi,j(AB((v
′
i,v−i)), r((v

′
i,v−i)))

)+

te ............. · 1i∈OPTB((vi,v′
−i)|AB((v′i,v−i)), r((v′i,v−i)))

]

= Ev,v′

[(
v′i − min

j∈MSELL(v)
pi,j(AB(v), r(v))

)+

· 1i∈OPTB(v′|AB(v), r(v))

]

Now, taking the sum over all buyers, we get

.....
∑

i∈B

Ev

[
(vi − Pi)

+]

≥ Ev,v′

[∑

i∈B

(
v′i − min

j∈MSELL(v)
pi,j(AB(v), r(v))

)+

· 1i∈OPTB(v′|AB(v), r(v))

]

= Ev,v′


 ∑

i∈OPTB(v′|AB(v), r(v))

(
v′i − min

j∈MSELL(v)
pi,j(AB(v), r(v))

)+



≥ Ev,v′


 ∑

i∈OPTB(v′|AB(v), r(v))

v′i


−Ev,v′


 ∑

i∈OPTB(v′|AB(v), r(v))

min
j∈MSELL(v)

pi,j(AB(v), r(v))




= Ev,v′

[
v′

(
OPTB

(
v′| AB(v), r(v)

))]
−Ev,v′


 ∑

i∈OPTB(v′|AB(v), r(v))

min
j∈MSELL(v)

pi,j(AB(v), r(v))
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Let us take a closer look at the sum over the prices. Using Lemma 8, we can upper bound
the prices as follows:

.....Ev,v′


 ∑

i∈OPTB(v′|AB(v), r(v))

min
j∈MSELL(v)

pi,j(AB(v), r(v))




=
1

3
Ev,v′


 ∑

i∈OPTB(v′|AB(v), r(v))

Eṽ [pi(AB(v), r(v), ṽ)]


+

1

3
Ev

[
|MSELL(v)| · min

j∈MSELL(v)
Eṽ [ṽj ]

]

≤ 1

3
Ev,v′

[
v′

(
OPTB

(
v′| AB(v), r(v)

))]
+

1

3
Ev,ṽ


 ∑

j∈MSELL(v)

ṽj




Overall, the surplus of all buyers can be bounded as follows:

∑

i∈B

Ev

[
(vi − Pi)

+] ≥ 2

3
Ev,v′

[
v′

(
OPTB

(
v′| AB(v), r(v)

))]
− 1

3
Ev,ṽ


 ∑

j∈MSELL(v)

ṽj


 (5)

Combination: Having discussed the surplus of buyers and sellers separately, we combine the
two bounds in order to bound the total surplus of our mechanism by summing over all buyers
and sellers. Therefore, we sum inequalities (4) and (5) and use that v, v′ and ṽ are independent
and identically distributed.

Ev

[ ∑

i∈B∪S

(vi − Pi)
+

]
≥ 2

3
Ev,v′


 ∑

j∈MSELL(v)

v′j


− 1

3
Ev,v′

[
v′

(
OPTB(v

′|AB(v), r(v))
)]

+
2

3
Ev,v′

[
v′

(
OPTB

(
v′| AB(v), r(v)

))]
− 1

3
Ev,v′


 ∑

j∈MSELL(v)

v′j




=
1

3
Ev,v′

[
v′

(
OPTB

(
v′| AB(v), r(v)

))]
+

1

3
Ev,v′


 ∑

j∈MSELL(v)

v′j




Combining Base Value and Surplus:
Adding base value and surplus and again, using that v, v′ and ṽ are independent and

identically distributed, we can lower bound the social welfare of our mechanism by

Ev [Base Value] +Ev [Surplus] ≥
1

3
Ev [v (OPTB(v))]−

1

3
Ev,ṽ [ṽ (OPTB(ṽ|AB(v), r(v)))]

te+
1

3
Ev,ṽ


 ∑

j∈S\MSELL(v)

ṽj


+

1

3
Ev,v′

[
v′

(
OPTB

(
v′| AB(v), r(v)

))]

te+
1

3
Ev,v′


 ∑

j∈MSELL(v)

v′j




=
1

3
Ev [v (OPTB(v))] +

1

3
Ev


∑

j∈S

vj
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We can conclude as Ev [v (OPTB(v))]+Ev

[∑
j∈S vj

]
= Ev

[
v (OPTB(v)) +

∑
j∈S vj

]
and for

each valuation profile v, we have that v (OPTB(v))+
∑

j∈S vj is an upper bound on the optimal
social welfare which can be achieved by allocating the items among all agents.

In order to conclude the proof of Theorem 1, we show the remaining lemmas. First, we aim
for a bound of pi(AB , r,v) = v (OPTB(v|AB , r)) − v (OPTB(v|AB ∪ {i}, r)) with respect to a
change in r instead of adding i to the set AB .

Lemma 5. Fix any buyer i and a valuation profile v. Let AB and r be such that AB ∪{i} ∈ IB
and |AB ∪ {i}| ≤ r. Then

v (OPTB(v|AB , r))−v (OPTB(v|AB ∪ {i}, r)) ≥ v (OPTB(v|AB , r))−v (OPTB(v|AB , r − 1)) .

Proof. We argue that v (OPTB(v|AB ∪ {i}, r)) ≤ v (OPTB(v|AB , r − 1)) which immediately
proves the claim. Note that any possible choice of agents for OPTB(v|AB ∪ {i}, r) is also a
feasible choice for OPTB(v|AB , r − 1) and hence, the claim follows.

Second, we show that prices are only non-decreasing in the ongoing process.

Lemma 6. Fix buyer i and seller j. Let the price for trading between buyer i and j be pi,j(X, r)
for some set of remaining sellers MSELL. Then we have

pi,j(X, r) ≤ pi,j(X
′, r′)

for any superset of allocated agents X ′ ⊇ X and r′ ≤ r.

Before proving the lemma, note that this means that for a fixed buyer-seller-pair (i, j), the
prices which we consider in our mechanism are only non-decreasing as the process evolves.

Proof. First, if a buyer is infeasible with respect to X and r, she also is with respect to X ′ and
r′, trivially implying the claim. Also if she could be feasibly added with respect to X and r,
but not to X ′ with r′, the claim is trivial. Therefore, it remains to consider the case where both
sides of the inequality are finite. So let us consider X,X ′ and r, r′ such that i can feasibly be
added and let j ∈MSELL. By definition,

pi,j(X, r) =
1

3

(
Eṽ∼D [pi(X, r, ṽ)] +Eṽj∼Dj

[ṽj]
)

.

Note that X, r and i only occur in the first summand whereas j only appears in the second
one. Since the second summand is equal for both, pi,j(X, r) and pi,j(X

′, r′), we can reduce the
problem to showing that the inequality holds for the first summand. We show the inequality
pointwise for any v and conclude by taking the expectation. Therefore, fix a valuation profile
v. We show that

pi(X, r,v) = v (OPTB(v|X, r)) − v (OPTB(v|X ∪ {i}, r))
(1)

≤ v
(
OPTB(v|X, r′)

)
− v

(
OPTB(v|X ∪ {i}, r′)

)

(2)

≤ v
(
OPTB(v|X ′, r′)

)
− v

(
OPTB(v|X ′ ∪ {i}, r′)

)
= pi(X

′, r′,v) .

To show inequality (1), we first use that the basis OPTB(v|X, r′) can be chosen to be a subset
of OPTB(v|X, r). To see this, denote by {b1, . . . , bm} the basis OPTB(v|X, r) in decreasing
order of weights. We show that there is an m′ such that {b1, . . . , bm′} is equal to OPTB(v|X, r′),
wherem′ is chosen in a way that |X∪{b1, . . . , bm′}| ≤ r′ and that X∪{b1, . . . , bm′} has maximum
size with respect to this property (i.e. either we have equality or r′ is larger than the cardinality
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of any independent set - in the latter case, we can just choose a basis without considering r′).

Assume there is a set {b′1, . . . , b′m′} such that
∑m′

k=1 vb′k >
∑m′

k=1 vbk , so {b1, . . . , bm′} would
not be a maximum weight basis with respect to X and r′. We know that {b′1, . . . , b′m′} also
needs to be independent with respect to X and r and further m′ ≤ m. Therefore, there are
m−m′ elements in {b1, . . . , bm} which we can add to {b′1, . . . , b′m′} in order to get a basis in the
matroid with respect to X and r. Denote these m − m′ elements with bπ1 , . . . , bπm−m′ . Note

that
∑m−m′

k=1 vbπk ≥
∑m

k=m′+1 vbk . Combining this with the sum from above leads to

m′∑

k=1

vb′
k
+

m−m′∑

k=1

vbπk ≥
m′∑

k=1

vb′
k
+

m∑

k=m′+1

vbk >

m′∑

k=1

vbk +

m∑

k=m′+1

vbk =

m∑

k=1

vbk ,

which is a contradiction to the fact that {b1, . . . , bm} is a maximum weight basis in the matroid
given X truncated by r.

Having this, we can argue about the impact of adding i toX on {b1, . . . , bm} and {b1, . . . , bm′}
respectively. Consider two parallel executions of the Greedy algorithm computing OPTB(v|X, r)
and OPTB(v|X∪{i}, r). The first Greedy will compute {b1, . . . , bm} whereas the second Greedy
will choose exactly the same elements except for an element bi for which {b1, . . . , bi} ∪ {i} con-
tains a circuit. Therefore, the difference on the left-hand side of inequality (1) is equal to vbi .
Applying the same argument for the difference on the right-hand side of inequality (1), there
is an element bi′ which is chosen in the first Greedy execution but not in the second one as
{b1, . . . , bi′} ∪ {i} contains a circuit in the matroid contracted with X and truncated with r′.
Therefore, the difference on the right-hand side is equal to vbi′ . We argue that bi′ cannot be
later than bi in the basis {b1, . . . , bm} which allows us to conclude as elements in b1, . . . , bm are
sorted by weight in decreasing order.
We show the claim by contradiction, so assume that bi′ is an element after bi and bi′ is the first
element such that X∪{b1, . . . , bi′}∪{i} contains a circuit in the matroid truncated with r′. Now,
bi′ is later than bi, so X∪{b1, . . . , bi′}∪{i} is a superset of Y := X∪{b1, . . . , bi}∪{i}. Note that
|Y | ≤ |X∪{b1, . . . , bi′}∪{i}| ≤ r′. By assumption on bi, X∪{b1, . . . , bi}∪{i} contains a circuit in
the matroid truncated with r and hence also needs to contain a circuit in the matroid truncated
with r′, so either bi′ is not the first element in {b1, . . . , bm′} which leads to a circuit with i or bi′

is before bi in the order of the basis. In the first case, apply the same argument again, in the
second case, we showed the desired contradiction. Since there are only finitely many elements,
the iterative application of the argument will terminate and hence, we proved the first inequality.

To see that inequality (2) holds, we consider the matroidM truncated to rank r′. Denote
this matroid byMr′ . Expressed differently, this is the intersection of the matroidM with the r′-
uniform matroid defined on the same ground set. Using Lemma 3 from Kleinberg and Weinberg
[2012], the function fr′(Y ) = v(OPTB(v| Y, r′)) is submodular in Y where now OPTB(v|Y, r′)
is a maximum weight basis in the matroidMr′ . This implies inequality (2).

Next, we consider a fixed buyer i. Note that by the order in which we approach the sellers,
pricing buyer i is equivalent to choosing the cheapest current seller out of all available ones and
compute the price with respect to the current AB and r. In other words, as buyer i arrives, the
price we offer is minj∈T pi,j(AB , r), where T denotes the set of available sellers.

Lemma 7. (Non-decreasing prices for buyers) Fix any buyer i. Then for any T ′ ⊆ T ⊆ S,
A′

B ⊇ AB and r′ ≤ r, we have

min
j∈T

pi,j(AB , r) ≤ min
j∈T ′

pi,j(A
′
B , r

′) .
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As a short remark, we never delete agents from the set AB in our mechanism. Further, the
number r never increases and sellers are only removed from MSELL and never added. Therefore,
in other words, Lemma 7 states that for any fixed buyer i, the prices are non-decreasing as the
allocation process proceeds.

Proof. Observe that the minimum over T contains at least any possible seller j ∈ T ′. Hence the
minimum on the left is taken over a superset of T ′. Therefore, the claim follows by applying
Lemma 6, i.e. pi,j(AB , r) is non-decreasing with respect to adding agents to AB and decreasing
the number r.

In order to show that

Ev,v′


 ∑

i∈OPTB(v′|AB(v), r(v))

Eṽ [pi(AB(v), r(v), ṽ)]


 ≤ Ev,v′

[
v′

(
OPTB

(
v′| AB(v), r(v)

))]

we make use of a proposition from Kleinberg and Weinberg [2012]. Adapted to our setting, we
consider the matroidMr which is the matroid over the set of buyersMB truncated to rank r
(recall the construction by intersectingMB with the r-uniform matroid over the same ground
set which is again a matroid). Denote by Ir the independent sets inMr. We apply Proposition
2 from Kleinberg and Weinberg [2012] to our setting.

Lemma 8. [adapted version of Kleinberg and Weinberg, 2012, Proposition 2] Fix valuation
profile ṽ and r and let AB ∈ Ir. For any from AB disjoint set V ∈ Ir with AB ∪ V ∈ Ir, it
holds ∑

i∈V

pi(AB , r, ṽ) ≤ ṽ (OPTB(ṽ|AB , r) .

Setting V = OPTB (v′| AB(v), r(v)) as well as AB = AB(v), we get the desired inequality
pointwise for any fixed v and v′. Hence, we can conclude by taking the expectation on both
sides, using linearity and the fact that ṽ and v′ are independent and identically distributed.
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C Appendix: Matroid Double Auctions with weak budget-balance

and online arrival

We split the proof of Theorem 2 in the two following lemmas. Note that we did not make any
assumption on the order in which we process the agents within the set of buyers and sellers. In
particular, the order in which we process agents in any of the two classes (i.e. buyers or sellers)
could be chosen adversarially.

Lemma 9. Mechanism 2 for matroid double auctions satisfies DWBB. Further, it is DSIC and
IR for all buyers and sellers for any online adversarial order in which buyers and sellers are
processed.

Proof. It is easy to see that the mechanism is IR for buyers and sellers. Further, it is also DSIC
for buyers as any buyer is offered a trade at most once. In addition, for sellers, the maximum
amount of money Tj we might give to seller j if we sell her item is non-increasing as the process
continues. Hence, the mechanism is also DSIC for sellers.

Concerning DWBB, observe that any time we trade between a buyer and a seller, we ensure
that pi ≥ Tj i.e. the money which is put into the market by buyer i is sufficient to pay Tj to
seller j. As the difference in money pi − Tj (possibly 0) is never used in our mechanism again,
we ensure DWBB.

Lemma 10. Mechanism 2 for matroid double auctions is 1
2-competitive with respect to the

optimal social welfare for any online adversarial order of buyers.

Proof. The set of agents who receive an item A depends on v, so we denote by A(v) and
A′(v) the sets A and A′ under valuation profile v. We want to compare Ev [v(A(v))] to
Ev [v(OPT(v))]. To this end, again, we split the welfare of our algorithm into two parts, the
base value and the surplus, and bound each quantity separately. The base value is thereby
defined as follows: let agent i receive an item in our mechanism, i.e. i ∈ A. Any buyer who
gets an item has paid her agent-specific price for an item. Any seller who decided to keep her
item was asked to keep it for her agent-specific price or for the buyer-specific price she was
matched to. The part of any agent i’s value which is below this price is denoted the base value.
The surplus is the part of any agent i’s value above this threshold if it exists, otherwise it is zero.

Base Value: Our base part of the social welfare is defined via the prices. Note that all
agents who are irrevocably allocated an item (i.e. which are in A before adding the remaining
sellers) have a value which exceeds her agent-specific price, except for sellers j ∈ A \ A′ whose
value for an item exceeds the price of the corresponding buyer. Denote this final price by Pi for
agent i. For any seller j ∈ A \A′, the corresponding buyer is stored in A′ \A, so we can replace
the seller and the buyer when summing the base value of all agents who get an item. Fixing a
valuation profile v and summing over all agents in A(v) in the order that they were added to
A, we can compute the following by a telescopic sum argument:

∑

i∈A(v)

Pi =
∑

i∈A′(v)

pi(A
′
i−1(v)) =

1

2

∑

i∈A′(v)

Eṽ

[
pi(A

′
i−1(v), ṽ)

]

=
1

2

∑

i∈A′(v)

Eṽ

[
ṽ
(
OPT(ṽ|A′

i−1(v))
)
− ṽ

(
OPT(ṽ|A′

i−1(v) ∪ {i})
)]

=
1

2

(
Eṽ [ṽ (OPT(ṽ)]−Eṽ

[
ṽ
(
OPT(ṽ|A′(v))

) ])

Taking the expectation over all valuation profiles v, exploiting linearity of expectation and using
that ṽ ∼ D, we get:

37



Ev


 ∑

i∈A(v)

Pi


 =

1

2
Ev [v (OPT(v)]− 1

2
Ev,ṽ

[
ṽ
(
OPT(ṽ|A′(v))

)]

Surplus: We start with two observations which will be helpful later.
First of all, agent-specific prices are non-decreasing: For a fixed agent i, it holds that pi(A

′
i−1) ≤

pi(A
′
i′) for any step i′ > i, so in particular it holds

pi(A
′
i−1) ≤ pi(A

′) .

To see this we use a reduction of our setting to the one-sided case and apply a lemma from
Dütting et al. [2017] which refers to Kleinberg and Weinberg [2012]. More on this below.

Second of all, we will interrupt for a moment and focus on the set A′(v) \ A(v). This set
contains all buyers whose agent-specific price was paid by a seller, i.e. the seller decided to keep
the item for price pi. Hence, any buyer i ∈ A′(v)\A(v) does not get an item in the end, so their
surplus is necessarily zero. Note that by construction, any agent i ∈ A′(v)\A(v) is a buyer. We
observe that any other agent i /∈ A′(v) \ A(v) whose value vi exceeds her corresponding price
gets an item in our mechanism. Additionally, there might be some sellers keeping their items in
the end and some sellers keeping items for buyer-specific prices later in the process, but we will
not take these contributions to the surplus into account. Overall, any agent i /∈ A′(v) \ A(v)
had the chance to obtain an item in our process if her value exceeded her price.
Next, we want to observe why a buyer i is in A′(v)\A(v). Having a closer look at our algorithm,
we see that buyer i is in A′(v) \ A(v) if and only if her buyer-specific price pi, the value vj of
seller j (the seller who is matched to i once she entered the market) and the lowest price Tj

offered to seller j satisfy
pi < Tj and pi ≤ vj .

In particular, the decision whether buyer i is in A′(v) \ A(v) does not depend on her value
vi at all. So, for any deviation of buyer i to v′i, buyer i would end up in A′(v) \ A(v) in the
same cases as she would with valuation vi. Therefore, i ∈ A′(v) \ A(v) holds if and only if
i ∈ A′((v′i,v−i)) \ A((v′i,v−i)).

Further, any agent who is already contained in the set A′(v) cannot be added to the set
A′(v) afterwards once more. Hence, i ∈ A′(v) implies i /∈ OPT(w|A′(v)) for any valuation pro-
file w. Expressed as an implication in the other direction, i ∈ OPT(w|A′(v)) implies i /∈ A′(v)
and in particular, i ∈ OPT(w|A′(v)) implies i /∈ A′(v) \ A(v). Combining this with the above
observation, any agent i ∈ OPT(w|A′(v)) has a considerable surplus if she exceeds her price.

We can now consider the surplus of an agent i. Let v′ ∼ D be an independently sampled
valuation profile. Now, the price for agent i depends on A′

i−1(v). But A′
i−1 only depends

on agents 1, . . . , i − 1, so in particular we could replace vi by v′i and use that prices are non-
decreasing for any fixed agent. Combining this with the above observations, we can bound the
surplus of agent i from below as follows:

surplusi ≥
(
vi − pi(A

′
i−1(v))

)+
1i/∈A′(v)\A(v)

=
(
vi − pi(A

′
i−1(v))

)+
1i/∈A′((v′i,v−i))\A((v′i ,v−i))

≥
(
vi − pi(A

′((v′i,v−i))
)+

1i/∈A′((v′i,v−i))\A((v′i,v−i))

≥
(
vi − pi(A

′((v′i,v−i))
)+

1i/∈A′((v′i,v−i))\A((v′i,v−i))1i∈OPT((vi,v′
−i)| A′((v′i,v−i)))

=
(
vi − pi(A

′((v′i,v−i))
)+

1i∈OPT((vi,v′
−i)| A′((v′i,v−i)))
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Taking expectations on both sides and exploiting that v and v′ are independent and iden-
tically distributed leads to the following:

Ev

[(
vi − pi(A

′
i−1(v))

)+
1i/∈A′(v)\A(v)

]
≥ Ev,v′

[(
vi − pi(A

′((v′i,v−i))
)+

1i∈OPT((vi,v′
−i)| A′((v′i,v−i)))

]

= Ev,v′

[(
v′i − pi(A

′(v))
)+

1i∈OPT(v′| A′(v))

]

Summing over all agents (i.e. buyers and sellers), we can lower bound the overall surplus:

Ev


 ∑

i∈A(v)

(vi − Pi)
+


 ≥ Ev

[ ∑

i∈B∪S

(
vi − pi(A

′
i−1(v))

)+
1i/∈A′(v)\A(v)

]

≥ Ev,v′


 ∑

i∈OPT(v′| A′(v))

(
v′i − pi(A

′(v))
)+




≥ Ev,v′


 ∑

i∈OPT(v′| A′(v))

v′i


−Ev,v′


 ∑

i∈OPT(v′| A′(v))

pi(A
′(v))




= Ev,v′

[
v′

(
OPT

(
v′| A′(v)

))]
−Ev,v′


 ∑

i∈OPT(v′| A′(v))

pi(A
′(v))




≥ 1

2
Ev,v′

[
v′

(
OPT

(
v′| A′(v)

))]

The last inequality follows by boundingEv,v′

[∑
i∈OPT(v′| A′(v)) pi(A

′(v))
]
≤ 1

2Ev,v′ [v′ (OPT(v′| A′(v)))]

which we prove below.

Summing the base value and the surplus proves our claim as we can exploit that v′ and ṽ

are independent and identically distributed.

In order to conclude, we need to prove two remaining facts: first, agent-specific prices are
non-decreasing, second, we need to show that

Ev,v′


 ∑

i∈OPT(v′| A′(v))

pi(A
′(v))


 ≤ 1

2
Ev,v′

[
v′

(
OPT

(
v′| A′(v)

))]
.

A different view on our prices

Our prices ensure that the set of buyers AB who receive an item in our mechanism is an
independent set in the matroid, i.e. AB ∈ IB . Additionally, we ensure that we do not promise
items to agents once all items are allocated irrevocably. As we are optimizing over a set of
agents which is partially (on the buyers’ side) equipped with a matroid constraint, we start by
extending this to an equivalent setting with a matroid over the whole set of agents, i.e. the
ground set of this extended matroid is B ∪ S. Afterwards, we show a correspondence of our
prices to the ones in Kleinberg and Weinberg [2012] and Dütting et al. [2017] respectively. This
allows to exploit the properties for the prices in one sided-markets.

There is the matroidMB = (B,IB) over the set of buyers. On the sellers’ side we construct
an artificial matroid by considering the |S|-uniform matroid over the set of sellers, denoted by

MS = (S,IS). Afterwards, we consider the union of the two matroids M̂ = (B ∪ S,J ), where
a set I = IB ∪ IS is now independent, if IB ∈ IB and IS ∈ IS. In order to mirror the feasibility
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constraint of having only |S| items, we intersect M̂ with the |S|-uniform matroid over B ∪ S
and denote this matroid by M. Observe that by construction, M is again a matroid. As a
consequence, we can relate all feasible allocations with respect to MB to independent sets in
the extended matroidM.

Concerning our pricing scheme, first, observe that we calculated prices with respect to the
set A′ by setting pi = ∞ if A′

B ∪ {i} /∈ IB or if all items are irrevocably allocated. This
corresponds to sets which are not independent in the extended matroidM over the ground set
B ∪ S. A finite price for i (in case i can feasibly be added to A′) can also be interpreted in
the extended matroid M: If A′ ∪ {i} ∈ I, the price for agent i is computed to be pi(A

′
i−1).

Hence, we ensure that OPT(v) ∈ I and also X ∪OPT(v|X) ∈ I for any X ∈ I. Note that in
particular, the matroidM combines the feasibility constraints for buyers and the constraint of
having |S| items. As a consequence, computing prices with respect to M is equivalent to our
pricing strategy from Section 4.

Properties of Prices

Looking at our optimization problem and in particular on the prices from the viewpoint of the
matroid M, we can use Lemma E.2 in Dütting et al. [2017] to show that agent-specific prices
are non-decreasing for any fixed agent i.

Lemma 11. [Dütting et al., 2017, Lemma E.2] Consider any independent sets X,Y ∈ I with
X ⊆ Y . Then, for any agent i, we have

pi(X) ≤ pi(Y ) .

Having that agent-specific prices are only non-decreasing, it remains to show that

Ev,v′


 ∑

i∈OPT(v′| A′(v))

pi(A
′(v))


 ≤ 1

2
Ev,v′

[
v′

(
OPT

(
v′| A′(v)

))]

in order to conclude. Again, we use the matroidM as constructed above and apply a proposition
from Kleinberg and Weinberg [2012].

Lemma 12. [Kleinberg and Weinberg, 2012, Proposition 2] Fix valuation profile ṽ and let
A′ ∈ I. For any disjoint set V ∈ I with A′ ∪ V ∈ I, it holds

∑

i∈V

pi(A
′, ṽ) ≤ ṽ

(
OPT(ṽ|A′

)
.

Setting V = OPT(v′| A′(v)) as well as A′ = A′(v), we get the desired inequality pointwise
for any fixed v and v′. Hence, we can conclude by taking the expectation and using that ṽ and
v′ are independent and identically distributed.
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D Appendix: Combinatorial Double Auctions with strong budget-

balance

In order to prove Theorems 3 and 4, we provide the following lemmas. We start with the DSBB,
DSIC and IR properties of our mechanism and conclude by proving the competitive ratio.

Lemma 13. The mechanism for combinatorial double auctions with unit-supply sellers and
buyers having XOS-valuation functions is DSBB, DSIC and IR for all buyers and sellers. The
agents’ arrival order can be chosen adversarially.

Proof. By construction, the mechanism consists of bilateral trades where an item is moved from
one seller to one buyer and in exchange, a static and anonymous item price is transfered from
this buyer to the corresponding seller. Hence, we satisfy DSBB. In addition, IR is also satisfied
as any agent can withdraw. The mechanism is further DSIC for buyers as any buyer is asked
once in our mechanism which bundle she wants to purchase. As seller l only has one item and
we offer her a price of pj for the item, the mechanism is also DSIC for sellers.

Lemma 14. The mechanism for combinatorial double auctions with buyers and sellers having
additive valuation functions is DSBB, DSIC and IR for all buyers and sellers, where the agents’
arrival order can be chosen adversarially.

Proof. Concerning DSBB, IR and DSIC for buyers, we can copy the arguments from Lemma
13. Also, the mechanism is DSIC for sellers: By additivity, any seller has a value vl({j}) for any
j ∈ Il and hence, we can rewrite the utility as

∑
j∈Xl

vl({j})+
∑

j∈Il\Xl
pj. Since all buyers also

have additive valuations, some buyer i will buy an available item j if and only if vi({j}) > pj.
In the case that for all buyers vi({j}) < pj, the item is returned to the seller anyway. Hence, it
is a dominant strategy to try selling all item for which vl({j}) ≤ pj and keeping the items with
vl({j}) > pj in order to maximize utility.

In order to conclude, we show a lemma bounding the competitive ratio of our mechanism
with respect to the social welfare of the algorithm ALG. As said, ALG can either be an optimal
mechanism, leading to the desired 1

2 -competitive mechanism with respect to the optimal welfare,
or ALG can be chosen to be any other approximation algorithm for the optimal social welfare
which allocates all items. In the latter case, an α-approximation algorithm ALG leads to an
α
2 -competitive mechanism.

Lemma 15. The mechanism for combinatorial double auctions is 1
2-competitive with respect to

the social welfare of ALG for any (possibly adversarial) arrival order of buyers and sellers when
buyers have valuation functions which can be represented by fractionally subadditive functions
and sellers are unit-supply or both have additive valuation functions over item bundles.

Proof. In order to show the desired competitive ratio, we mimic the techniques from Feldman et al.
[2015] and Dütting et al. [2017]. Therefore, we split the contribution to social welfare into base
value and surplus and bound each quantity separately.
Before we start, note that our mechanism consists of three phases. First, we ask all sellers
which items should be sold and which they would like to keep. Afterwards, in the second phase,
we ask all buyers which items they would like to buy. In the last phase, all unsold items are
returned to the corresponding sellers. Note that the last phase only increases the welfare of
our mechanism compared to a mechanism which would stop after the second phase and dispose
all unallocated items. We do not consider the increase in welfare in the third phase and argue
about the welfare which we have already achieved after the second phase. This is a lower bound
on the overall social welfare of our mechanism.
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Base Value: Note that any item which is irrevocably allocated in the first two phases of
the mechanism is allocated to an agent who has an item-specific value at least as high as the
item price. Denote by A the set of irrevocably allocated items after the second phase, i.e. all
items which are allocated before the last for-loop in the mechanism where we return unallocated
items to their corresponding sellers. Note that A depends on the valuation profile v. We write
A(v) in order to specify this dependence here. Therefore, we can state the base value as

Ev [Base Value(v)] =
∑

j∈M

Prv [j ∈ A(v)] · pj .

Surplus: For the surplus, we split the set of agents in buyers and sellers and consider them
separately. Note that the sets (Yi)i∈B∪S depend on the valuation profile v. Hence, we write
Yi(v) for the bundle of items which are allocated to agent i under valuation profile v. Note
that ALG can only allocate items to seller l which are in Il, i.e. only items which seller l holds
at the beginning of the mechanism.

Sellers: Fix seller l. If l is holding one item j initially, then seller l irrevocably keeps the
item if vl({j}) ≥ pj. Therefore, seller l has a considerable surplus if (vl({j}) − pj)

+ ≥ 0. The
same argument extends to the case of additive valuation functions, as seller l will initially keep
all items for which vl({j}) ≥ pj in order to maximize utility (see Lemma 14). Counting the
surplus of seller l only for items in Yl

(
(vl,v

′
−l)

)
is a feasible lower bound for the surplus of seller

l in our mechanism. Here, v′ ∼ D denotes an independent sample. Hence, for seller l, we can
bound the surplus via

Ev [surplusl(v)] ≥ Ev,v′




∑

j∈Yl((vl,v′
−l

))

(
SWj

(
(vl,v

′
−l)

)
− pj

)+

 = Ev′


 ∑

j∈Yl(v′)

(
SWj

(
v′
)
− pj

)+

 .

We used that v and v′ are independent and identically distributed. Additionally, we are
able to rewrite vl (Yl (v)) as described in Section 5 via the additive set function al and the
contribution to social welfare SWj (v).

Buyers: Fix buyer i. Extending the notation from above, denote by Ai(v) the set of
irrevocably allocated items as agent i is considered in the mechanism. Note that the set Ai

does not depend on vi but only on the agents which were considered before i. Hence, Ai(v) =
Ai ((v

′
i,v−i)) for any other valuation v′i of buyer i. Buyer i could purchase the set Yi

(
(vi,v

′
−i)

)
\

Ai ((v
′
i,v−i)). As buyer i maximizes utility, the utility which buyer i obtains must be at least

as high as the utility when purchasing Yi

(
(vi,v

′
−i)

)
\ Ai ((v

′
i,v−i)). As the utility of buyer i is

captured in the surplus, we can bound the surplus of buyer i as follows:

Ev [surplusi(v)] ≥ Ev,v′




∑

j∈Yi((vi,v′
−i))\Ai((v′i,v−i))

(
SWj

(
(vi,v

′
−i)

)
− pj

)+



= Ev,v′


 ∑

j∈Yi(v′)\Ai(v)

(
SWj(v

′)− pj
)+




Combination: Next, we sum over all buyers and sellers. Further, we use that once an item is
irrevocably allocated, it remains so until the end of the mechanism, hence Ai(v) ⊆ A(v) for any
agent i and any valuation profile v. In order to simplify notation, note that Al(v)∩Il = ∅ as we
ask seller l which items she wants to keep or try selling. As Yl ⊆ Il, we know that Yl \Al(v) = Yl

as seller l arrives.
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Ev

[ ∑

i∈B∪S

surplusi(v)

]
≥ Ev,v′


 ∑

i∈B∪S

∑

j∈M

(
SWj(v

′)− pj
)+ · 1j∈Yi(v′) · 1j /∈Ai(v)




≥
∑

j∈M

∑

i∈B∪S

Ev,v′

[(
SWj(v

′)− pj
)+ · 1j∈Yi(v′) · 1j /∈A(v)

]

≥
∑

j∈M

Prv [j /∈ A (v)] ·Ev′

[ ∑

i∈B∪S

(
SWj(v

′)− pj
)
· 1j∈Yi(v′)

]

=
∑

j∈M

Prv [j /∈ A (v)] · pj

Combining Base Value and Surplus: Adding base value and surplus together, we get
the desired bound:

Ev [Base Value(v)] +Ev

[ ∑

i∈B∪S

surplusi(v)

]
≥

∑

j∈M

(Prv [j ∈ A (v)] +Prv [j /∈ A (v)]) · pj

=
∑

j∈M

pj =
1

2
Ev

[ ∑

i∈B∪S

vi(Yi)

]

As a consequence, by using an optimal algorithm for ALG, our mechanism is 1
2 -competitive

with respect to the optimal social welfare.
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E Appendix: Knapsack Double Auctions with weak budget-

balance

We split the proof of Theorem 7 in the two following lemmas.

Lemma 16. Mechanism 5 for knapsack double auctions where no buyers demands more than
half of the total capacity satisfies DWBB. Further, it is DSIC and IR for all buyers and sellers
for any online adversarial order in which buyers and sellers are processed.

Proof. Our mechanism is DWBB, as by construction, the mechanism consists of bilateral trades
where an item is traded from one seller to one buyer. For any seller j we have that w∗

j ≤ w∗
i for

all buyers i, and hence pj ≤ pi for any buyer-seller pair i, j. The buyer pays pi to the mechanism
and the seller receives pj, so we get DWBB. IR follows naturally, DSIC from the fact that any
agent is asked at most once in our mechanism.

Lemma 17. Mechanism 5 for knapsack double auctions where no buyers demands more than
half of the total capacity is 1

5-competitive with respect to the optimal social welfare for any online
adversarial order of buyers and sellers.

Proof. The set of agents who receive an item A depends on v, so we denote by A(v) the set A
under valuation profile v. We want to compare Ev [v(A(v))] to Ev [v(OPT(v))]. To this end,
again, we split the welfare of our algorithm into two parts, the base value and the surplus, and
bound each quantity separately. The base value is thereby defined as follows: let agent i receive
an item in our mechanism, i.e. i ∈ A. Any buyer who gets an item has paid her agent-specific
price for an item. Any seller who decided to keep her item was asked to keep it for her seller-
specific price. The part of any agent i’s value which is below this price is denoted the base value.
The surplus is the part of any agent i’s value above this threshold if it exists, otherwise it is zero.

Base Value: Our base part of the social welfare is defined via the prices. Summing over
all agents in A(v), we can compute the following:

Ev


 ∑

i∈A(v)

pi


 =

2

5
Eṽ [ṽ (OPT(ṽ))] ·Ev


 ∑

i∈A(v)

w∗
i


 ≥ 2

5
Eṽ [ṽ (OPT(ṽ))] · 1

2
Prv


 ∑

i∈A(v)

w∗
i ≥

1

2


 .

Surplus: We consider buyers and sellers separately and combine their respective contribu-
tions to the surplus afterwards.

Sellers: Note that any seller whose value exceeds her corresponding price can keep the item,
so

surplusj ≥ (vj − pj)
+ ≥ (vj − pj)

+ · 1∑
i′∈A((v′j ,v−j))

w∗
i′
≤ 1

2
· 1j∈OPT((vj ,v′

−j))
.

Now, we use that v and v′ are independent and identically distributed combined with linearity
of expectation to get

Ev

[
surplusj

]
≥ Ev

[
(vj − pj)

+] ≥ Ev,v′

[(
v′j − pj

)+ · 1∑
i′∈A(v) w

∗
i′
≤ 1

2
· 1j∈OPT(v′)

]
.

Buyers: Concerning the buyers, note that buyer i gets an item if buyer i’s value exceeds her
price and if the sum of the weights of agents in A does allow i to be added. That is, denote by
Ai−1 the set of accepted agents A after processing buyer i−1. Then, we ensure∑i′∈Ai−1(v)

w∗
i′ ≤

1−w∗
i . Note that Ai−1 does not depend on buyer i, so in particular Ai−1(v) = Ai−1 ((v

′
i,v−i)).

Further, a even stronger condition is that
∑

i′∈A((v′i,v−i)) w
∗
i′ ≤ 1

2 as we did assume that k ≥ 2

and wi ≤ 1
2 . Therefore, we can bound

surplusi ≥ (vi − pi)
+ ·1∑

i′∈A((v′i,v−i))
w∗

i′
≤ 1

2
≥ (vi − pi)

+ ·1∑
i′∈A((v′i,v−i))

w∗
i′
≤ 1

2
·1i∈OPT((vi,v′

−i))
.
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Again, using linearity of expectation as well as choosing v′i and vi to be independent and
identically distributed, we get

Ev [surplusi] ≥ Ev,v′

[(
v′i − pi

)+ · 1∑
i′∈A(v) w

∗
i′
≤ 1

2
· 1i∈OPT(v′)

]
.

Combination: Summing over all buyers and sellers, we can combine the two bounds:

Ev

[ ∑

i∈B∪S

surplusi

]
≥

∑

i∈B∪S

Ev,v′

[(
v′i − pi

)+ · 1∑
i′∈A(v) w

∗
i′
≤ 1

2
· 1i∈OPT(v′)

]

= Prv


 ∑

i′∈A(v)

w∗
i′ ≤

1

2


 · Ev′


 ∑

i∈OPT(v′)

(
v′i − pi

)+



≥ Prv


 ∑

i′∈A(v)

w∗
i′ ≤

1

2


 ·


Ev′

[
v′

(
OPT(v′)

)]
−Ev′


 ∑

i∈OPT(v′)

pi






To get the equality, note that v and v′ are independent and the respective terms each only
depend on one of the two. Now, in order to bound the sum of prices, we calculate

Ev′


 ∑

i∈OPT(v′)

pi


 =

2

5
Eṽ [ṽ (OPT(ṽ))] ·Ev′


 ∑

i∈OPT(v′)

w∗
i


 .

We use that we can bound w∗
i = max(wi,

1
k ) ≤ wi +

1
k on the buyers’ side as well as w∗

i = 1
k for

all sellers to get

∑

i∈OPT(v′)

w∗
i ≤

∑

i∈OPT(v′)∩B

wi +
∑

i∈OPT(v′)

1

k
≤ 1 + 1 = 2

as the sum over the weights of all buyers in any feasible allocation is upper bounded by 1 and
further, we cannot allocate more than k items in any feasible allocation, so |OPT(v′)| ≤ k.
Therefore, we can bound the overall surplus by

Ev

[ ∑

i∈B∪S

surplusi

]
≥ Prv


 ∑

i′∈A(v)

w∗
i′ ≤

1

2


 ·

(
1− 4

5

)
Eṽ [ṽ (OPT(ṽ))] .

Summing the base value and the surplus proves our claim as we can exploit that v, v′ and
ṽ are independent and identically distributed.

In order to extend this to the general case when wi ∈ [0, 1] instead of wi ≤ 1/2, we can run
the following procedure: Split the set of buyers in those with wi ≤ 1

2 and those with wi >
1
2 . If

we only consider the former buyers for trades, we know that our mechanism gives a 1
5 -fraction of

the optimal social welfare. When restricting to the case of the latter buyers, the weights ensure
that we can only allow at most one trade. Therefore, the setting simplifies to the matroid
setting with the 1-uniform matroid over the set of buyers for which we can extract half of the
optimal social welfare using our mechanism from Section 4. Overall, estimating the expected
welfare of each of the two options and selecting the better one will lead to a mechanism which
always obtains at least a 1

7 -fraction of the optimal social welfare. Therefore, we can formulate
Theorem 8.
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