
A OMITTED PROOFS IN SECTION 3 AND SECTION 4.2
Proof of Lemma 3.2. The first inequality follows from Fact 3.1, item 1. For the second, let

𝑎1 < 𝑎2 < · · · < 𝑎𝑚 be all the values of 𝑔(𝑥) when 𝑥 ∈ V and let 𝑎0 be a negative number arbitrarily

close to 0. We have:

E
𝑥∼D

[
(𝑔(𝑥))2

]
=

∑
𝑥 ∈V

𝑓 (𝑥) · (𝑔(𝑥))2

=

𝑚∑
𝑖=1

𝑎2𝑖 · Pr
𝑥∼D
(𝑔(𝑥) = 𝑎𝑖 )

=

𝑚∑
𝑖=1

𝑎2𝑖 ·
(
Pr

𝑥∼D
(𝑔(𝑥) > 𝑎𝑖−1) − Pr

𝑥∼D
(𝑔(𝑥) > 𝑎𝑖 )

)
= 𝑎2

0
+

𝑚∑
𝑖=1

(
𝑎2𝑖 − 𝑎2𝑖−1

)
· Pr
𝑥∼D
(𝑔(𝑥) ≥ 𝑎𝑖 ).

Using the identity 𝑥2 − 𝑦2 = (𝑥 + 𝑦) (𝑥 − 𝑦), we get:

E
𝑥∼D

[
(𝑔(𝑥))2

]
≤ 𝑎2

0
+

𝑚∑
𝑖=1

(𝑎𝑖 − 𝑎𝑖−1) · 2𝑎𝑖 · Pr
𝑥∼D
(𝑔(𝑥) ≥ 𝑎𝑖 )

≤ 𝑎2
0
+ 2 ·

(
max

𝑥 ∈V
𝑔(𝑥) · Pr

𝑦∼D
(𝑔(𝑦) ≥ 𝑔(𝑥))

)
·

𝑚∑
𝑖=1

(𝑎𝑖 − 𝑎𝑖−1)

≤ 𝑎2
0
+ 2 ·

(
max

𝑥 ∈V
𝑔(𝑥) · Pr

𝑦∼D
(𝑔(𝑦) ≥ 𝑔(𝑥))

)
·
(
max

𝑥 ∈V
𝑔(𝑥) − 𝑎0

)
.

The lemma follows as 𝑎0 < 0 was arbitrary. □

Proof of Lemma 3.4. As 𝑥 ≤ 𝑥 ′, Algorithm 1 did not set the value of �̃� 𝑗 (𝑥 ′) after setting the

value of �̃� 𝑗 (𝑥). Using this and Line 5 of Algorithm 1, we get that it is sufficient to show that the value

𝑎(𝑦∗) cannot increase between two consecutive iterations of the While loop. To this end, consider

two consecutive iterations and let 𝑥1, 𝑦
∗
1
, 𝑎1 (·) and 𝑥2, 𝑦∗2, 𝑎2 (·) be the values of the corresponding

variables in the first and the second iteration respectively and note that 𝑦∗
2
≤ 𝑥2 < 𝑦∗

1
≤ 𝑥1.

By our choice of 𝑦∗
1
in Line 4 in the first iteration, we have that 𝑎1 (𝑦∗1) ≥ 𝑎1 (𝑦∗2). Extending using

Line 3, we get:

𝑎1 (𝑦∗1) ≥ 𝑎1 (𝑦∗2) =
∑

𝑦′∈[𝑦∗
2
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′) · 𝜑 𝑗 (𝑦 ′)∑
𝑦′∈[𝑦∗

2
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)

=

∑
𝑦′∈[𝑦∗

2
,𝑥2 ]∩V𝑗

𝑓𝑗 (𝑦 ′)∑
𝑦′∈[𝑦∗

2
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)
· 𝑎2 (𝑦∗2) +

∑
𝑦′∈[𝑦∗

1
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)∑
𝑦′∈[𝑦∗

2
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)
· 𝑎1 (𝑦∗1).

It follows that 𝑎1 (𝑦∗1) ≥ 𝑎2 (𝑦∗2), as desired. □

Proof of Lemma 3.5. Let 𝑥1, 𝑦
∗
1
, 𝑎1 (·) be the values of the corresponding variables in the iteration

when the value of �̃� 𝑗 (𝑥) is set. Observe that 𝑦∗1 ≤ 𝑥 ≤ 𝑥1. If 𝑥 = 𝑥1, we simply have:

�̃� 𝑗 (𝑥) = 𝑎1 (𝑦∗1) =
∑

𝑦′∈[𝑦∗
1
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′) · 𝜑 𝑗 (𝑦 ′)∑
𝑦′∈[𝑦∗

1
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)
≤

∑
𝑦′∈[𝑦∗

1
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′) · 𝑥∑
𝑦′∈[𝑦∗

1
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)
= 𝑥,

where the penultimate step uses 𝜑 (𝑦 ′) ≤ 𝑦 ′ ≤ 𝑥1 = 𝑥 by Definition 3.3. Otherwise, we have 𝑥 < 𝑥1.

Define 𝑥 ′ ∈ V𝑗 to be the smallest such that 𝑥 < 𝑥 ′ and observe that 𝑥 ′ ≤ 𝑥1. By our choice of 𝑦∗
1
in



Line 4, we have:

𝑎1 (𝑦∗1) ≥ 𝑎1 (𝑥 ′)

=

∑
𝑦′∈[𝑥 ′,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′) · 𝜑 𝑗 (𝑦 ′)∑
𝑦′∈[𝑥 ′,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)

= 𝑎1 (𝑦∗1) ·
∑

𝑦′∈[𝑦∗
1
,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)∑
𝑦′∈[𝑥 ′,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)
−

∑
𝑦′∈[𝑦∗

1
,𝑥 ]∩V𝑗

𝑓𝑗 (𝑦 ′) · 𝜑 𝑗 (𝑦 ′)∑
𝑦′∈[𝑦∗

1
,𝑥 ]∩V𝑗

𝑓𝑗 (𝑦 ′)
·
∑

𝑦′∈[𝑦∗
1
,𝑥 ]∩V𝑗

𝑓𝑗 (𝑦 ′)∑
𝑦′∈[𝑥 ′,𝑥1 ]∩V𝑗

𝑓𝑗 (𝑦 ′)
.

Rearranging, we get:

�̃� 𝑗 (𝑥) = 𝑎1 (𝑦∗1) ≤
∑

𝑦′∈[𝑦∗
1
,𝑥 ]∩V𝑗

𝑓𝑗 (𝑦 ′) · 𝜑 𝑗 (𝑦 ′)∑
𝑦′∈[𝑦∗

1
,𝑥 ]∩V𝑗

𝑓𝑗 (𝑦 ′)
≤

∑
𝑦′∈[𝑦∗

1
,𝑥 ]∩V𝑗

𝑓𝑗 (𝑦 ′) · 𝑥∑
𝑦′∈[𝑦∗

1
,𝑥 ]∩V𝑗

𝑓𝑗 (𝑦 ′)
= 𝑥,

using 𝜑 (𝑦 ′) ≤ 𝑦 ′ ≤ 𝑥 by Definition 3.3 in the penultimate step. □

Proof of Lemma 4.6. We omit the subscript 𝑋 ∼ 𝐷𝑘
to keep the notation concise. Observe that

we have Pr(tb(𝑋 ) = 𝑖) = 1

𝑘
by symmetry and also that:

Pr

(
max

𝑖′
𝑥𝑖′ = 𝑠

)
=

(
Pr

𝑥∼𝐷
(𝑥 ≤ 𝑠)

)𝑘
−

(
Pr

𝑥∼𝐷
(𝑥 < 𝑠)

)𝑘
.

This means that it is sufficient to show that:

Pr

(
max

𝑖′
𝑥𝑖′ = 𝑠 ∧ tb(𝑋 ) = 𝑖

)
=

1

𝑘
·
((

Pr

𝑥∼𝐷
(𝑥 ≤ 𝑠)

)𝑘
−

(
Pr

𝑥∼𝐷
(𝑥 < 𝑠)

)𝑘 )
.

We show this by considering all possible values of argmax𝑖′ 𝑥𝑖′ . We have:

Pr

(
max

𝑖′
𝑥𝑖′ = 𝑠 ∧ tb(𝑋 ) = 𝑖

)
=

∑
𝑆 ∋𝑖

Pr

(
max

𝑖′
𝑥𝑖′ = 𝑠 ∧ tb(𝑋 ) = 𝑖 ∧ argmax

𝑖′
𝑥𝑖′ = 𝑆

)
=

∑
𝑆 ∋𝑖

1

|𝑆 | · Pr
(
max

𝑖′
𝑥𝑖′ = 𝑠 ∧ argmax

𝑖′
𝑥𝑖′ = 𝑆

)
. (Equation 9)

We can calculate the term on the right:

Pr

(
max

𝑖′
𝑥𝑖′ = 𝑠 ∧ tb(𝑋 ) = 𝑖

)
=

∑
𝑆 ∋𝑖

1

|𝑆 | ·
(
Pr

𝑥∼𝐷
(𝑥 = 𝑠)

) |𝑆 |
·
(
Pr

𝑥∼𝐷
(𝑥 < 𝑠)

)𝑘−|𝑆 |
=

𝑘∑
𝑘′=1

1

𝑘 ′
·
(
𝑘 − 1
𝑘 ′ − 1

)
·
(
Pr

𝑥∼𝐷
(𝑥 = 𝑠)

)𝑘′
·
(
Pr

𝑥∼𝐷
(𝑥 < 𝑠)

)𝑘−𝑘′
=

𝑘∑
𝑘′=1

1

𝑘
·
(
𝑘

𝑘 ′

)
·
(
Pr

𝑥∼𝐷
(𝑥 = 𝑠)

)𝑘′
·
(
Pr

𝑥∼𝐷
(𝑥 < 𝑠)

)𝑘−𝑘′
.

The Binomial theorem (𝑎 + 𝑏)𝑛 =
∑𝑛

𝑖=0

(
𝑛
𝑖

)
𝑎𝑖𝑏𝑛−𝑖 then gives:

Pr

(
max

𝑖′
𝑥𝑖′ = 𝑠 ∧ tb(𝑋 ) = 𝑖

)
=

1

𝑘
·
((

Pr

𝑥∼𝐷
(𝑥 ≤ 𝑠)

)𝑘
−

(
Pr

𝑥∼𝐷
(𝑥 < 𝑠)

)𝑘 )
.

□



B SOME LOWER BOUNDS ON SRev(·)
In this section, we analyze the revenue of some auctions that sell the items separately. By definition,

the revenue of any such auction is a lower bound for SRev(·). All lemmas in this section are for a

fixed auction setting (𝑛,𝑚,D) (see Section 3).

Lemma B.1 (VCG with reserves). Fix item 𝑗 ∈ [𝑚]. For all 𝑥 ≥ 0, it holds that:∑
𝑣∈V𝑛

𝑓 ∗ (𝑣) · 𝑥 · 1
(
max(𝑣) | 𝑗 ≥ 𝑥

)
≤ SRev𝑗 (𝑛).

Proof. Consider the auction that sells item 𝑗 through a VCG auction with reserve 𝑥 . Namely,

it solicits bits 𝑣𝑖, 𝑗 for item 𝑗 for each bidder 𝑖 ∈ [𝑚] and proceeds as follows: If the highest bid is

at least 𝑥 , then allocate this item to the highest bidder for a price equal to the maximum of 𝑥 and

the second highest bid. Otherwise, the item stays unallocated. Clearly, the auction is truthful and

generates revenue at least: ∑
𝑣∈V𝑛

𝑓 ∗ (𝑣) · 𝑥 · 1
(
max(𝑣) | 𝑗 ≥ 𝑥

)
.

Thus, we can upper bound the above quantity by SRev𝑗 (𝑛) and the lemma follows. □

Lemma B.2 (Seqential Posted Price). Let non-negative numbers {𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗 ∈[𝑚] be given. It
holds that:

𝑚∑
𝑗=1

∑
𝑣∈V𝑛

𝑓 ∗ (𝑣) · max

𝑖∈[𝑛]

{
𝑥𝑖, 𝑗 · 1

(
𝑣𝑖, 𝑗 ≥ 𝑥𝑖, 𝑗

)}
≤ SRev(𝑛).

Proof. Consider the auction that sells each item 𝑗 ∈ [𝑚] separately through the following

auction: It goes over all the bidders in decreasing order of 𝑥𝑖, 𝑗 , bidder 𝑖 can either take the item and

pay price 𝑥𝑖, 𝑗 , in which case the auction terminates, or skip the item, in which case the auction

goes to the next bidder. Clearly, the auction is truthful and generates revenue at least:

𝑚∑
𝑗=1

∑
𝑣∈V𝑛

𝑓 ∗ (𝑣) · max

𝑖∈[𝑛]

{
𝑥𝑖, 𝑗 · 1

(
𝑣𝑖, 𝑗 ≥ 𝑥𝑖, 𝑗

)}
.

Thus, we can upper bound the above quantity by SRev(𝑛) and the lemma follows. □

Lemma B.3 (Ronen’s auction [32]). For all 𝑗 ∈ [𝑚] and 𝑥 ≥ 0, define 𝑟 ∗Ron, 𝑗 (𝑥) = max𝑦>𝑥 𝑦 ·
Pr𝑦′∼D𝑗

(𝑦 ′ ≥ 𝑦). It holds that:
𝑚∑
𝑗=1

𝑛∑
𝑖=1

∑
𝑣−𝑖 ∈V𝑛−1

𝑓 ∗ (𝑣−𝑖 ) · 𝑟 ∗Ron, 𝑗 (max(𝑣−𝑖 ) | 𝑗 ) ≤ SRev(𝑛) .

Proof. Consider the auction that sells each item 𝑗 ∈ [𝑚] separately through the following

auction: First, it solicits bids 𝑣𝑖, 𝑗 for item 𝑗 from each bidder 𝑖 ∈ [𝑛]. Then, for 𝑖 ∈ [𝑛], it sets
𝑦∗𝑖, 𝑗 (𝑣−𝑖 ) to be

12
the maximizer in the definition of 𝑟 ∗Ron, 𝑗 (max(𝑣−𝑖 ) | 𝑗 ), and offers each bidder 𝑖 to

purchase item 𝑗 at a price of 𝑦∗𝑖, 𝑗 (𝑣−𝑖 ). As 𝑦∗𝑖, 𝑗 (𝑣−𝑖 ) > max(𝑣−𝑖 ) | 𝑗 by definition, at most one bidder

will ever purchase the item and the auction is well defined (Equation 1).

Also, as the price offered to bidder 𝑖 does not depend on his bid, the auction is also truthful. Thus,

its revenue is a lower bound on SRev(𝑛) and we get:

SRev(𝑛) ≥
𝑚∑
𝑗=1

∑
𝑣∈V𝑛

𝑓 ∗ (𝑣) ·
𝑛∑
𝑖=1

𝑦∗𝑖, 𝑗 (𝑣−𝑖 ) · 1
(
𝑣𝑖, 𝑗 ≥ 𝑦∗𝑖, 𝑗 (𝑣−𝑖 )

)
12
We write 𝑦∗

𝑖,𝑗
as a function of 𝑣−𝑖 but note that it only depends on the bidders’ bids for item 𝑗 .



≥
𝑚∑
𝑗=1

𝑛∑
𝑖=1

∑
𝑣−𝑖 ∈V𝑛−1

𝑓 ∗ (𝑣−𝑖 ) · 𝑦∗𝑖, 𝑗 (𝑣−𝑖 ) · Pr

𝑣𝑖 ∈V

(
𝑣𝑖, 𝑗 ≥ 𝑦∗𝑖, 𝑗 (𝑣−𝑖 )

)
≥

𝑚∑
𝑗=1

𝑛∑
𝑖=1

∑
𝑣−𝑖 ∈V𝑛−1

𝑓 ∗ (𝑣−𝑖 ) · 𝑟 ∗Ron, 𝑗 (max(𝑣−𝑖 ) | 𝑗 ).

□

C PROOFS OF LEMMA 4.4 AND LEMMA 4.5
We show Lemma 4.4 and Lemma 4.5 following the framework of [8]. The first step is common

to both the lemmas and shows that IU(𝑛′′, 𝑛′) is at most 4 · SRev(𝑛′) plus an additional term

corresponding to the term Core in [8]. This is captured in Lemma C.1. The next step bounds Core

in two different ways to show the two lemmas. These can be found in Subsubsection C.2.1 and

Subsubsection C.2.2.

C.1 Step 1 – Decomposing IU(·)
Lemma C.1. For all 𝑛′′ ≤ 𝑛′, we have:

IU(𝑛′′, 𝑛′) ≤ 4 · SRev(𝑛′) + Core,

where we define Core as:

𝑟 ∗Ron, 𝑗 (𝑥) = max

𝑦>𝑥
𝑦 · Pr

𝑦′∼D𝑗

(𝑦 ′ ≥ 𝑦) ∀𝑗 ∈ [𝑚] .

𝑟
(𝑖)
Ron (𝑤−𝑖 ) =

𝑚∑
𝑗=1

𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ) ∀𝑖 ∈ [𝑛′],𝑤−𝑖 ∈ V𝑛′−1.

T𝑖, 𝑗 (𝑤−𝑖 ) = 𝑟
(𝑖)
Ron (𝑤−𝑖 ) +max(𝑤−𝑖 ) | 𝑗 ∀𝑗 ∈ [𝑚], 𝑖 ∈ [𝑛′],𝑤−𝑖 ∈ V𝑛′−1.

Core =

𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

∑
max(𝑤−𝑖 ) | 𝑗 ≤𝑣𝑖,𝑗 ≤T𝑖,𝑗 (𝑤−𝑖 )

𝑓 ∗ (𝑤−𝑖 ) 𝑓𝑗 (𝑣𝑖, 𝑗 ) ·
(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

)
.

Proof. Fix 𝑛′′ ≤ 𝑛′. We first get rid of the parameter 𝑛′′ by showing that 𝑛′′ = 𝑛′ is the hardest
case for the lemma. We have:

IU(𝑛′′, 𝑛′) =
𝑚∑
𝑗=1

E
𝑣∼D𝑛′′

[
max

𝑖∈[𝑛′′ ]

{
𝑣𝑖, 𝑗 ·

(
1 − P𝑗 (𝑣𝑖 )

)
+ �̃� 𝑗 (𝑣𝑖, 𝑗 )+ · P𝑗 (𝑣𝑖 )

}]
≤

𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
𝑣𝑖, 𝑗 ·

(
1 − P𝑗 (𝑣𝑖 )

)
+ �̃� 𝑗 (𝑣𝑖, 𝑗 )+ · P𝑗 (𝑣𝑖 )

}]
= IU(𝑛′).

Henceforth, we focus on upper bounding IU(𝑛′). Note that the term 1 − P𝑗 (𝑣𝑖 ) in IU(𝑛′)
corresponds to the event that 𝑣𝑖 ∉ R 𝑗 (𝑤−𝑖 ). By our choice of the regions R 𝑗 (·), whenever this
happens, either 𝑣𝑖 is less than max(𝑤−𝑖 ) | 𝑗 or there is a 𝑗 ′ ≠ 𝑗 such that the utility from 𝑗 ′ is at least



as much as that from 𝑗 . To capture these cases we define the sets
13
:

𝐸Und𝑗 (𝑣𝑖 ) = 𝑤−𝑖 ∈ V𝑛′−1 | 𝑣𝑖, 𝑗 < max(𝑤−𝑖 ) | 𝑗
𝐸Srp𝑗 (𝑣𝑖 ) = 𝑤−𝑖 ∈ V𝑛′−1 | ∃ 𝑗 ′ ≠ 𝑗 : 𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗 ≤ 𝑣𝑖, 𝑗 ′ −max(𝑤−𝑖 ) | 𝑗 ′
𝐸NF𝑗 (𝑣𝑖 ) = 𝐸Srp𝑗 (𝑣𝑖 ) \ 𝐸Und𝑗 (𝑣𝑖 ).

(10)

As mentioned before, when 𝑣𝑖 ∉ R 𝑗 (𝑤−𝑖 ), we either have 𝑤−𝑖 ∈ 𝐸Und𝑗
(𝑣𝑖 ) or 𝑤−𝑖 ∈ 𝐸NF𝑗 (𝑣𝑖 ). Thus,

we have the following inequality.

1 − P𝑗 (𝑣𝑖 ) ≤ Pr

𝑤−𝑖∼D𝑛′−1

(
𝑤−𝑖 ∈ 𝐸Und𝑗 (𝑣𝑖 )

)
+ Pr

𝑤−𝑖∼D𝑛′−1

(
𝑤−𝑖 ∈ 𝐸NF𝑗 (𝑣𝑖 )

)
. (11)

Using Equation 11, we decompose IU(𝑛′) as follows:

IU(𝑛′) =
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
𝑣𝑖, 𝑗 ·

(
1 − P𝑗 (𝑣𝑖 )

)
+ �̃� 𝑗 (𝑣𝑖, 𝑗 )+ · P𝑗 (𝑣𝑖 )

}]
≤

𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
𝑣𝑖, 𝑗 ·

(
1 − P𝑗 (𝑣𝑖 )

)}]
+

𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
�̃� 𝑗 (𝑣𝑖, 𝑗 )+ · P𝑗 (𝑣𝑖 )

}]
≤

𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
�̃� 𝑗 (𝑣𝑖, 𝑗 )+ · P𝑗 (𝑣𝑖 )

}]
(Single)

+
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
𝑣𝑖, 𝑗 · Pr

𝑤−𝑖

(
𝑤−𝑖 ∈ 𝐸Und𝑗 (𝑣𝑖 )

)}]
(Under)

+
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
𝑣𝑖, 𝑗 · Pr

𝑤−𝑖

(
𝑤−𝑖 ∈ 𝐸NF𝑗 (𝑣𝑖 )

)}]
. (Non-Favorite)

We have now split IU(𝑛′) into three terms, Single, Under, and Non-Favorite. We will later show

that both Single and Under are at most SRev(𝑛′). As far as the term Non-Favorite goes, we need

to decompose it further. We have:

Non-Favorite =

𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · 𝑣𝑖, 𝑗 · 1
(
𝑤−𝑖 ∈ 𝐸NF𝑗 (𝑣𝑖 )

)}]
≤

𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) ·
(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

)
· 1

(
𝑤−𝑖 ∈ 𝐸NF𝑗 (𝑣𝑖 )

)}]
+

𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) ·max(𝑤−𝑖 ) | 𝑗 · 1
(
𝑤−𝑖 ∈ 𝐸NF𝑗 (𝑣𝑖 )

)}]
.

Plugging into the previous decomposition and using the fact that 𝐸NF𝑗 (𝑣𝑖 ) and 𝐸Und𝑗
(𝑣𝑖 ) are disjoint

by Equation 10, we get that:

IU(𝑛′) ≤ Single + Under

+
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) ·max(𝑤−𝑖 ) | 𝑗 · 1
(
𝑤−𝑖 ∉ 𝐸Und𝑗 (𝑣𝑖 )

)}]
(Over)

13
For readers familiar with [8], our naming of these events corresponds to that used in [8], e.g., NF corresponds to Non-

Favorite.



+
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) ·
(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

)
· 1

(
𝑤−𝑖 ∈ 𝐸NF𝑗 (𝑣𝑖 )

)]
. (Surplus)

It can now be shown thatOver is at most SRev(𝑛′). However, Surplus needs to be decomposed even

more before it is analyzable. For this, we first use linearity of expectation to take the expectation

over 𝑣 inside. As the summand corresponding to 𝑖 only depends on 𝑣𝑖 , we get:

Surplus =

𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

E
𝑣𝑖

[
𝑓 ∗ (𝑤−𝑖 ) ·

(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

)
· 1

(
𝑤−𝑖 ∈ 𝐸NF𝑗 (𝑣𝑖 )

)]
.

Writing the expectation is a sum and noting that 𝑤−𝑖 ∈ 𝐸NF𝑗 (𝑣𝑖 ) only happens when 𝑣𝑖, 𝑗 ≥
max(𝑤−𝑖 ) | 𝑗 and𝑤−𝑖 ∈ 𝐸Srp𝑗 (𝑣𝑖 ) by Equation 10, we get that:

Surplus ≤
𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

∑
𝑣𝑖,𝑗 ≥max(𝑤−𝑖 ) | 𝑗

𝑓 ∗ (𝑤−𝑖 ) 𝑓𝑗 (𝑣𝑖, 𝑗 ) ·
(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

)
· Pr
𝑣𝑖,−𝑗

(
𝑤−𝑖 ∈ 𝐸Srp𝑗 (𝑣𝑖 )

)
.

To continue, we define, for all 𝑗 ∈ [𝑚], the function 𝑟 ∗Ron, 𝑗 (𝑥) = max𝑦>𝑥 𝑦 · Pr𝑦′∼D𝑗
(𝑦 ′ ≥ 𝑦).

This definition is identical to that in Lemma B.3 and is closely connected to the payment of the

highest bidder in Ronen’s auction for item 𝑗 when the second highest bid is 𝑥 [32]. We also define,

for all 𝑖,𝑤−𝑖 , the quantity 𝑟
(𝑖)
Ron (𝑤−𝑖 ) =

∑𝑚
𝑗=1 𝑟

∗
Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ) and, for all 𝑗 ∈ [𝑚], the quantity

T𝑖, 𝑗 (𝑤−𝑖 ) = 𝑟
(𝑖)
Ron (𝑤−𝑖 ) + max(𝑤−𝑖 ) | 𝑗 . Using 𝑣𝑖,−𝑗 to denote the tuple (𝑣𝑖,1, · · · , 𝑣𝑖, 𝑗−1, 𝑣𝑖, 𝑗+1, · · · 𝑣𝑖,𝑚),

we continue decomposing Surplus as:

Surplus ≤
𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

∑
𝑣𝑖,𝑗>T𝑖,𝑗 (𝑤−𝑖 )

𝑓 ∗ (𝑤−𝑖 ) 𝑓𝑗 (𝑣𝑖, 𝑗 ) ·
(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

)
· Pr
𝑣𝑖,−𝑗

(
𝑤−𝑖 ∈ 𝐸Srp𝑗 (𝑣𝑖 )

)
(Tail)

+
𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

∑
max(𝑤−𝑖 ) | 𝑗 ≤𝑣𝑖,𝑗 ≤T𝑖,𝑗 (𝑤−𝑖 )

𝑓 ∗ (𝑤−𝑖 ) 𝑓𝑗 (𝑣𝑖, 𝑗 ) ·
(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

)
. (Core)

We call the first term above Tail and the second term as Core. We shall show that Tail is at most

SRev(𝑛′) while Core can be bounded as a function of BVCG(𝑛′) and SRev(𝑛′). First, we state our
final decomposition for IU(𝑛′):

IU(𝑛′) ≤ Single + Under + Over + Tail + Core. (12)

To finish the proof of Lemma C.1, we now show that each of the first four terms above is bounded

by SRev(𝑛′).

Bounding Single. If the term Single did not have the factor P𝑗 (𝑣𝑖 ) inside, it will just be maximum

(over all auctions) value of (Myerson’s) ironed virtual welfare, and we could use Proposition 3.6 to

finish the proof. As adding the factor P𝑗 (𝑣𝑖 ) can only decrease the value of Single, we derive:

Single ≤
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
�̃� 𝑗 (𝑣𝑖, 𝑗 )+

}]
≤ SRev(𝑛′). (Proposition 3.6)



Bounding Under. Roughly speaking, the term 𝑣𝑖, 𝑗 contributes to Under only if it is not the

highest amongst 𝑛′ bids. As the fact that 𝑣𝑖, 𝑗 is not the highest amongst 𝑛′ bids implies that it is

also not the highest amongst 𝑛′ + 1 bids, we get:

Under ≤
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · 𝑣𝑖, 𝑗 · 1
(
𝑣𝑖, 𝑗 < max(𝑤−𝑖 ) | 𝑗

)}]
(Equation 10)

≤
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{∑
𝑤

𝑓 ∗ (𝑤) · 𝑣𝑖, 𝑗 · 1
(
𝑣𝑖, 𝑗 ≤ max(𝑤) | 𝑗

)}]
.

Now, consider each term 𝑤 inside the max as the bids of 𝑛′ bidders. In this interpretation (as

formalized in Lemma B.1), the term inside the max is at most the revenue generated by a VCG

auction where the reserve for item 𝑗 is 𝑣𝑖, 𝑗 . Using Lemma B.1, we get:

Under ≤
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
SRev𝑗 (𝑛′)

}]
=

𝑚∑
𝑗=1

SRev𝑗 (𝑛′) = SRev(𝑛′).

Bounding Over. We first manipulate Over so that 𝑤−𝑖 can be moved outside the max. Using

Equation 10, we have:

Over ≤
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{∑
𝑤

𝑓 ∗ (𝑤) ·max(𝑤−𝑖 ) | 𝑗 · 1
(
𝑣𝑖, 𝑗 ≥ max(𝑤−𝑖 ) | 𝑗

)}]
≤

∑
𝑤

𝑓 ∗ (𝑤) ·
𝑚∑
𝑗=1

E
𝑣∼D𝑛′

[
max

𝑖∈[𝑛′ ]

{
max(𝑤−𝑖 ) | 𝑗 · 1

(
𝑣𝑖, 𝑗 ≥ max(𝑤−𝑖 ) | 𝑗

)}]
.

We now analyze the term corresponding to each𝑤 separately. For each𝑤 , consider a sequential

posted price auction that sells each item separately. When selling item 𝑗 , the auction visits the

bidders in non-increasing order of max(𝑤−𝑖 ) | 𝑗 and offers them the item at price max(𝑤−𝑖 ) | 𝑗 . The
revenue generated by this auction is at least term corresponding to𝑤 above. Lemma B.2 formalizes

this and gives:

Over ≤
∑
𝑤

𝑓 ∗ (𝑤) · SRev(𝑛′) = SRev(𝑛′).

Bounding Tail. At a high level, the term Tail is large only when bidder 𝑖 gets high utility from

item 𝑗 but there exists an item 𝑗 ′ ≠ 𝑗 that gives even higher utility. This should be unlikely. More

formally, by Equation 10 and a union bound, we have:

Pr

𝑣𝑖,−𝑗

(
𝑤−𝑖 ∈ 𝐸Srp𝑗 (𝑣𝑖 )

)
≤

∑
𝑗 ′≠𝑗

Pr

𝑣𝑖,𝑗′

(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗 ≤ 𝑣𝑖, 𝑗 ′ −max(𝑤−𝑖 ) | 𝑗 ′

)
.

As Tail only sums over 𝑣𝑖, 𝑗 > T𝑖, 𝑗 (𝑤−𝑖 ) ≥ max(𝑤−𝑖 ) | 𝑗 , the definition of 𝑟 ∗Ron, 𝑗 ′ (𝑥) allows us to
further bound this by:

Pr

𝑣𝑖,−𝑗

(
𝑤−𝑖 ∈ 𝐸Srp𝑗 (𝑣𝑖 )

)
≤

∑
𝑗 ′≠𝑗

𝑟 ∗Ron, 𝑗 ′ (max(𝑤−𝑖 ) | 𝑗 ′)
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

≤
𝑟
(𝑖)
Ron (𝑤−𝑖 )

𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗
.

(13)



Plugging Equation 13 into the term Tail, we have:

Tail ≤
𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

∑
𝑣𝑖,𝑗>T𝑖,𝑗 (𝑤−𝑖 )

𝑓 ∗ (𝑤−𝑖 ) 𝑓𝑗 (𝑣𝑖, 𝑗 ) · 𝑟 (𝑖)Ron (𝑤−𝑖 )

≤
𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · 𝑟 (𝑖)Ron (𝑤−𝑖 ) · Pr𝑣𝑖,𝑗
(
𝑣𝑖, 𝑗 > T𝑖, 𝑗 (𝑤−𝑖 )

)
.

(14)

Now, we claim that 𝑟
(𝑖)
Ron (𝑤−𝑖 ) · Pr𝑣𝑖,𝑗

(
𝑣𝑖, 𝑗 > T𝑖, 𝑗 (𝑤−𝑖 )

)
≤ 𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ). In the case

Pr𝑣𝑖,𝑗

(
𝑣𝑖, 𝑗 > T𝑖, 𝑗 (𝑤−𝑖 )

)
= 0, this holds trivially. Otherwise, there exists 𝑥 ∈ V𝑗 be the smallest

such that 𝑥 > T𝑖, 𝑗 (𝑤−𝑖 ) = 𝑟
(𝑖)
Ron (𝑤−𝑖 ) +max(𝑤−𝑖 ) | 𝑗 and we get:

𝑟
(𝑖)
Ron (𝑤−𝑖 ) · Pr𝑣𝑖,𝑗

(
𝑣𝑖, 𝑗 > T𝑖, 𝑗 (𝑤−𝑖 )

)
≤ 𝑥 · Pr

𝑣𝑖,𝑗

(
𝑣𝑖, 𝑗 ≥ 𝑥

)
≤ 𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ).

We continue Equation 14 as:

Tail ≤
𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · 𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ) .

The last expression is closely related to the revenue of a Ronen’s auction [32] that sells the items

separately, and is captured in Lemma B.3. Using Lemma B.3, we conclude:

Tail ≤ SRev(𝑛′).

This concludes the proof of Lemma C.1. □

C.2 Step 2 – Bounding Core

The next (and final) step in the proof of Lemma 4.4 and Lemma 4.5 is to upper bound the term

Core that was left unanalyzed in Lemma C.1. To this end, we first recall some definitions made

in Subsection C.1. Recall that, for all 𝑗 ∈ [𝑚], 𝑟 ∗Ron, 𝑗 (𝑥) = max𝑦>𝑥 𝑦 · Pr𝑦′∼D𝑗
(𝑦 ′ ≥ 𝑦) roughly (but

not exactly) corresponds to the payment of the highest bidder in a Ronen’s auction when the

second highest bid is 𝑥 . We also defined, for all 𝑖,𝑤−𝑖 𝑟
(𝑖)
Ron (𝑤−𝑖 ) =

∑𝑚
𝑗=1 𝑟

∗
Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ) and for

all 𝑗 ∈ [𝑚], T𝑖, 𝑗 (𝑤−𝑖 ) = 𝑟
(𝑖)
Ron (𝑤−𝑖 ) +max(𝑤−𝑖 ) | 𝑗 . The term Core equals:

Core =

𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

∑
max(𝑤−𝑖 ) | 𝑗 ≤𝑣𝑖,𝑗 ≤T𝑖,𝑗 (𝑤−𝑖 )

𝑓 ∗ (𝑤−𝑖 ) 𝑓𝑗 (𝑣𝑖, 𝑗 ) ·
(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

)
.

Observe that the term

(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗

)
in the above equation is closely related to the utility that

bidder with valuation 𝑣𝑖 gets from item 𝑗 in a VCG auction when the bids of the other bidders are

𝑤−𝑖 . To capture this, we define the notation:

Util𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) = max

(
𝑣𝑖, 𝑗 −max(𝑤−𝑖 ) | 𝑗 , 0

)
Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) = Util𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) · 1

(
Util𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) ≤ 𝑟

(𝑖)
Ron (𝑤−𝑖 )

)
.

These will primarily be used in the following form:

U𝑖,𝑤−𝑖 (𝑣𝑖 ) =
𝑚∑
𝑗=1

Util𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) and Û𝑖,𝑤−𝑖 (𝑣𝑖 ) =
𝑚∑
𝑗=1

Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ). (15)



Using this notation, Core satsifies:

Core =

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · E
𝑣𝑖

[
Û𝑖,𝑤−𝑖 (𝑣𝑖 )

]
. (16)

Observe that, written this way, Core is closely related to the random variable Û𝑖,𝑤−𝑖 (𝑣𝑖 ). It is in
this form that we upper bound Core in Subsubsection C.2.1 and Subsubsection C.2.2. But first, let

us show using Lemma 3.2 that the variance of Û𝑖,𝑤−𝑖 (𝑣𝑖 ) is small.

Lemma C.2. It holds for all 𝑖 ∈ [𝑛′] and all𝑤−𝑖 that:

Var𝑣𝑖∼D
(
Û𝑖,𝑤−𝑖 (𝑣𝑖 )

)
≤ 2 ·

(
𝑟
(𝑖)
Ron (𝑤−𝑖 )

)
2

.

Proof. Recall that D =
>𝑚

𝑗=1D𝑗 is such that all the items are independent. Using the fact that

variance is linear when over independent random variables (Fact 3.1, item 3) and Equation 15, we

get:

Var𝑣𝑖∼D
(
Û𝑖,𝑤−𝑖 (𝑣𝑖 )

)
=

𝑚∑
𝑗=1

Var𝑣𝑖,𝑗∼D𝑗

(
Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 )

)
. (17)

Our goal now is to bound each term using Lemma 3.2. To this end, note that Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) is always
at most 𝑟

(𝑖)
Ron (𝑤−𝑖 ) and thus, we can conclude that max𝑣𝑖,𝑗 Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) ≤ 𝑟

(𝑖)
Ron (𝑤−𝑖 ). Moreover, we

have for all 𝑣𝑖, 𝑗 that

Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) · Pr

𝑣′
𝑖,𝑗
∼D𝑗

(
Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣 ′𝑖, 𝑗 ) ≥ Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 )

)
≤ Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) · Pr

𝑣′
𝑖,𝑗
∼D𝑗

(
𝑣 ′𝑖, 𝑗 ≥ max(𝑤−𝑖 ) | 𝑗 + Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 )

)
.

Now, if Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) = 0, then, the right hand side is 0 and consequently, is at most

𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ). We show that the latter holds even when Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) > 0. Indeed, we have:

Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) · Pr

𝑣′
𝑖,𝑗
∼D𝑗

(
𝑣 ′𝑖, 𝑗 ≥ max(𝑤−𝑖 ) | 𝑗 + Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 )

)
≤

(
Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) +max(𝑤−𝑖 ) | 𝑗

)
· Pr

𝑣′
𝑖,𝑗
∼D𝑗

(
𝑣 ′𝑖, 𝑗 ≥ max(𝑤−𝑖 ) | 𝑗 + Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 )

)
≤ 𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ). (Definition of 𝑟 ∗Ron, 𝑗 (·))

Thus, we can conclude that:

max

𝑣𝑖,𝑗
Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) · Pr

𝑣′
𝑖,𝑗
∼D𝑗

(
Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣 ′𝑖, 𝑗 ) ≥ Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 )

)
≤ 𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ).

Plugging this and max𝑣𝑖,𝑗 Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 ) ≤ 𝑟
(𝑖)
Ron (𝑤−𝑖 ) into Lemma 3.2, we get:

Var𝑣𝑖,𝑗∼D𝑗

(
Ûtil𝑖, 𝑗,𝑤−𝑖 (𝑣𝑖, 𝑗 )

)
≤ 2 · 𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ) · 𝑟 (𝑖)Ron (𝑤−𝑖 ).

Plugging into Equation 17, we get:

Var𝑣𝑖∼D
(
Û𝑖,𝑤−𝑖 (𝑣𝑖 )

)
≤ 2 · 𝑟 (𝑖)Ron (𝑤−𝑖 ) ·

𝑚∑
𝑗=1

𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ) ≤ 2 ·
(
𝑟
(𝑖)
Ron (𝑤−𝑖 )

)
2

.

□



C.2.1 Bounding Core for Lemma 4.4. In this section, we finish our proof of Lemma 4.4 by upper

bounding the right hand side of Equation 16 by the revenue of a BVCG auction (and SRev(𝑛′)).
Specifically, we shall consider a BVCG auction with 𝑛′ bidders, where the fee charged for player 𝑖 ,

when the types of the other bidders are𝑤−𝑖 is:

Fee𝑖,𝑤−𝑖 = max

(
E
𝑣𝑖

[
Û𝑖,𝑤−𝑖 (𝑣𝑖 )

]
− 2 · 𝑟 (𝑖)Ron (𝑤−𝑖 ), 0

)
.

The following lemma shows that most bidders will agree to pay this extra fee, and thus, expectation

of the total fee is at most 2 · BVCG(𝑛′).

Lemma C.3. It holds that:

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · Fee𝑖,𝑤−𝑖 ≤ 2 · BVCG(𝑛′).

Proof. Consider the BVCG auction defined by Fee𝑖,𝑤−𝑖 . That is, consider the auction where the

auctioneer first asks all bidders 𝑖 ∈ [𝑛′] for their bids𝑤𝑖 and runs a VCG auction based on these

bids. If bidder 𝑖 ∈ [𝑛′] is not allocated any items in the VCG auction, he departs without paying

anything. Otherwise, he gets all the items allocated to him in the VCG auction if and only if he

agrees to pay an amount equal to Fee𝑖,𝑤−𝑖 in addition to the prices charged by the VCG auction.

This auction is truthful as we ensure that Fee𝑖,𝑤−𝑖 ≥ 0. Moreover, if bidder 𝑖 does not pay at least

Fee𝑖,𝑤−𝑖 , we must have that his utility from the VCG auction is (strictly) smaller that Fee𝑖,𝑤−𝑖 . Thus,
we get the following lower bound on BVCG(𝑛′).

BVCG(𝑛′) ≥
𝑛′∑
𝑖=1

∑
𝑤∈V𝑛′

𝑓 ∗ (𝑤) · Fee𝑖,𝑤−𝑖 · 1
(
Fee𝑖,𝑤−𝑖 ≤ U𝑖,𝑤−𝑖 (𝑤𝑖 )

)
≥

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · Fee𝑖,𝑤−𝑖 · Pr
𝑤𝑖

(
Fee𝑖,𝑤−𝑖 ≤ U𝑖,𝑤−𝑖 (𝑤𝑖 )

)
≥

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · Fee𝑖,𝑤−𝑖 · Pr
𝑤𝑖

(
Fee𝑖,𝑤−𝑖 ≤ Û𝑖,𝑤−𝑖 (𝑤𝑖 )

)
,

where the last step is because U upper bounds Û. The next step is to lower bound the probability on
the right hand side. We do this using Chebyshev’s inequality (Fact 3.1, item 2) and use the variance

bound in Lemma C.2. We have:

Pr

𝑤𝑖

(
Û𝑖,𝑤−𝑖 (𝑤𝑖 ) < Fee𝑖,𝑤−𝑖

)
≤ 1

2

.

Plugging in, we have:

BVCG(𝑛′) ≥
𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · Fee𝑖,𝑤−𝑖 ·
1

2

.

and the lemma follows. □

We now present our proof of Lemma 4.4.

Proof of Lemma 4.4. From Equation 16 and the definition of Fee𝑖,𝑤−𝑖 , we have:

Core ≤
𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) ·
(
Fee𝑖,𝑤−𝑖 + 2 · 𝑟

(𝑖)
Ron (𝑤−𝑖 )

)



≤
𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · Fee𝑖,𝑤−𝑖 + 2 ·
𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · 𝑟 (𝑖)Ron (𝑤−𝑖 )

≤
𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · Fee𝑖,𝑤−𝑖 + 2 ·
𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · 𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ).

These two terms can be bounded by Lemma C.3 and Lemma B.3 respectively yielding Core ≤
2 · BVCG(𝑛′) + 2 · SRev(𝑛′). Plugging into Lemma C.1, we get:

IU(𝑛′′, 𝑛′) ≤ 4 · SRev(𝑛′) + Core ≤ 2 · BVCG(𝑛′) + 6 · SRev(𝑛′).
□

C.2.2 Bounding Core for Lemma 4.5. Now, we finish our proof of Lemma 4.5 by upper bounding

the right hand side of Equation 16 by the revenue of a prior-independent BVCG auction. The auction

defined in Subsubsection C.2.1 was not prior independent as to compute the fees charged to the

bidders required knowledge of the distribution D. Our main idea follows [23], we construct an

auction with 𝑛′ + 1 bidders, and treat the last bidder as ‘special’. This special bidder does not receive
any items or pay anything, but his bids allow us to get a good enough estimate of the distribution

D.

We shall reserve 𝑠 to denote the bid of the special bidder and 𝑤 ∈ V𝑛
will denote the bids of

the other bidders. For 𝑖 ∈ [𝑛′], the notation𝑤𝑖 will (as before) denote the bid of player 𝑖 , while𝑤−𝑖
will denote the bids of all the other players excluding the special player. This time the fee for player

𝑖 ∈ [𝑛′] is defined as (recall Equation 15):

Fee𝑖,𝑤−𝑖 ,𝑠 = U𝑖,𝑤−𝑖 (𝑠). (18)

Importantly, this is determined by the bids of the bidders and is independent of D. We also define,

for all 𝑖 and𝑤−𝑖 , the set N𝑖,𝑤−𝑖 as follows:

N𝑖,𝑤−𝑖 =

{
𝑣 ∈ V

���� Û𝑖,𝑤−𝑖 (𝑣) ≥
1

2

· E
𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]}
. (19)

We now show a prior-independent analogue of Lemma C.3.

Lemma C.4. It holds that:

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · Pr

𝑣′∼D

(
𝑣 ′ ∈ N𝑖,𝑤−𝑖

)
2 · E

𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
≤ 4 · PI-BVCG(𝑛′ + 1) .

Proof. We follow the proof approach in Lemma C.3 but this time use the fees defined in

Equation 18 as they are prior-independent. More specifically, we consider the auction that first

receives the bids𝑤 and 𝑠 of the non-special and special players respectively and runs a VCG auction

based on 𝑤 . Thus, the special bidder never receives or pays anything. If bidder 𝑖 ∈ [𝑛′] is not
allocated any items in the VCG auction, he departs without paying anything. Otherwise, he gets all

the items allocated to him in the VCG auction if and only if he agrees to pay an amount equal to

Fee𝑖,𝑤−𝑖 ,𝑠 in addition to the prices charged by the VCG auction.

This auction is truthful as we ensure that Fee𝑖,𝑤−𝑖 ,𝑠 ≥ 0. Moreover, if bidder 𝑖 does not pay at

least the amount Fee𝑖,𝑤−𝑖 ,𝑠 , we must have that his utility from the VCG auction is (strictly) smaller

than Fee𝑖,𝑤−𝑖 ,𝑠 . From Equation 18, we get the following lower bound on the revenue of this auction:

PI-BVCG(𝑛′ + 1) ≥
𝑛′∑
𝑖=1

∑
𝑠∈V

∑
𝑤∈V𝑛′

𝑓 (𝑠) 𝑓 ∗ (𝑤) · U𝑖,𝑤−𝑖 (𝑠) · 1
(
U𝑖,𝑤−𝑖 (𝑠) ≤ U𝑖,𝑤−𝑖 (𝑤𝑖 )

)



≥
𝑛′∑
𝑖=1

∑
𝑤−𝑖

∑
𝑠,𝑤𝑖 ∈N𝑖,𝑤−𝑖

𝑓 (𝑠) 𝑓 (𝑤𝑖 ) 𝑓 ∗ (𝑤−𝑖 ) · U𝑖,𝑤−𝑖 (𝑠) · 1
(
U𝑖,𝑤−𝑖 (𝑠) ≤ U𝑖,𝑤−𝑖 (𝑤𝑖 )

)
.

As U upper bounds Û and we only consider 𝑠 ∈ N𝑖,𝑤−𝑖 , we have U𝑖,𝑤−𝑖 (𝑠) ≥ Û𝑖,𝑤−𝑖 (𝑠) ≥
1

2
· E𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
. Plugging in, we have:

PI-BVCG(𝑛′ + 1)

≥ 1

2

·
𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · E
𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
·

∑
𝑠,𝑤𝑖 ∈N𝑖,𝑤−𝑖

𝑓 (𝑠) 𝑓 (𝑤𝑖 ) · 1
(
U𝑖,𝑤−𝑖 (𝑠) ≤ U𝑖,𝑤−𝑖 (𝑤𝑖 )

)
.

By symmetry, we conclude that:

PI-BVCG(𝑛′ + 1) ≥ 1

4

·
𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · Pr

𝑣′∼D

(
𝑣 ′ ∈ N𝑖,𝑤−𝑖

)
2 · E

𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
.

□

We now present our proof of Lemma 4.5.

Proof of Lemma 4.5. Call a pair 𝑖,𝑤−𝑖 “high” if

E
𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
≥ 6 · 𝑟 (𝑖)Ron (𝑤−𝑖 ), (20)

and call it “low” otherwise. Using Chebyshev’s inequality (Fact 3.1, item 2) and the variance bound

in Lemma C.2, we have for all high (𝑖,𝑤−𝑖 ) that:

1 − Pr

𝑣′∼D

(
𝑣 ′ ∈ N𝑖,𝑤−𝑖

)
≤

4 · Var𝑣𝑖∼D
(
Û𝑖,𝑤−𝑖 (𝑣𝑖 )

)(
E𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
2

) ≤ 2

9

.

Thus, if the pair (𝑖,𝑤−𝑖 ) is high, we get that Pr𝑣′∼D
(
𝑣 ′ ∈ N𝑖,𝑤−𝑖

)
is at least

7

9
. We now bound Core

from Equation 16 and finish the proof. We have:

Core ≤
∑

high (𝑖,𝑤−𝑖 )
𝑓 ∗ (𝑤−𝑖 ) · E

𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
+

∑
low (𝑖,𝑤−𝑖 )

𝑓 ∗ (𝑤−𝑖 ) · E
𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
≤ 81

49

·
∑

high (𝑖,𝑤−𝑖 )
𝑓 ∗ (𝑤−𝑖 ) · Pr

𝑣′∼D

(
𝑣 ′ ∈ N𝑖,𝑤−𝑖

)
2 · E

𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
+ 6 ·

∑
low (𝑖,𝑤−𝑖 )

𝑓 ∗ (𝑤−𝑖 ) · 𝑟 (𝑖)Ron (𝑤−𝑖 ),

where, for high (𝑖,𝑤−𝑖 ), we plug in Pr𝑣′∼D
(
𝑣 ′ ∈ N𝑖,𝑤−𝑖

)
≥ 7

9
, while for low (𝑖,𝑤−𝑖 ), we use

Equation 20. This gives:

Core ≤ 81

49

·
𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · Pr
𝑣′∼D

(
𝑣 ′ ∈ N𝑖,𝑤−𝑖

)
2 · E

𝑣′∼D

[
Û𝑖,𝑤−𝑖 (𝑣 ′)

]
+ 6 ·

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · 𝑟 (𝑖)Ron (𝑤−𝑖 ).

Using Lemma C.4 and using the definition of 𝑟
(𝑖)
Ron (𝑤−𝑖 ), we get:

Core ≤ 7 · PI-BVCG(𝑛′ + 1) + 6 ·
𝑚∑
𝑗=1

𝑛′∑
𝑖=1

∑
𝑤−𝑖

𝑓 ∗ (𝑤−𝑖 ) · 𝑟 ∗Ron, 𝑗 (max(𝑤−𝑖 ) | 𝑗 ).



Using Lemma B.3 on the second term, we have Core ≤ 7 ·PI-BVCG(𝑛′ + 1) + 6 · SRev(𝑛′). Plugging
into Lemma C.1, we get IU(𝑛′′, 𝑛′) ≤ 4 ·SRev(𝑛′)+Core ≤ 7 ·PI-BVCG(𝑛′+1)+10 ·SRev(𝑛′). As we
assumed that all the items are regular, we have from Proposition 3.8 that SRev(𝑛′) ≤ VCG(𝑛′+1) ≤
PI-BVCG(𝑛′ + 1). This yields:

IU(𝑛′′, 𝑛′) ≤ 17 · PI-BVCG(𝑛′ + 1).

□

D PROOF OF COROLLARY 27 OF [8]
This section recalls the proof of Corollary 27 from [8] as Lemma D.1. Our presentation is different

from [8] as we do not need their ideas in full generality.

Lemma D.1. Let (𝑛,𝑚,D) be an auction setting as in Subsection 3.2. Let 𝑛′ > 0 and suppose that

for all 𝑖 ∈ [𝑛], valuations𝑤−𝑖 ∈ V𝑛′−1
are given. For all (𝜋, 𝑝) that correspond to a truthful auction

A, we have that:

Rev(A, 𝑛) ≤
𝑛∑
𝑖=1

𝑚∑
𝑗=1

E
𝑣𝑖

[
𝜋𝑖, 𝑗 (𝑣𝑖 ) ·

(
𝑣𝑖, 𝑗 · 1

(
𝑣𝑖 ∉ R (𝑛

′)
𝑗
(𝑤−𝑖 )

)
+ �̃� 𝑗 (𝑣𝑖, 𝑗 )+ · 1

(
𝑣𝑖 ∈ R (𝑛

′)
𝑗
(𝑤−𝑖 )

))]
.

Proof. We start with some notation. We use 𝑣∅ to denote a dummy valuation for the bidders

and adopt the convention 𝜋𝑖, 𝑗 (𝑣∅) = 𝑝𝑖 (𝑣∅) = 0 for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]. Suppose that non-negative
numbers Λ =

{
_𝑖 (𝑣𝑖 , 𝑣 ′𝑖 )

}
𝑖∈[𝑛],𝑣𝑖 ∈V,𝑣′

𝑖
∈V∪{𝑣∅ } are given that satisfy for all 𝑖 ∈ [𝑛] and 𝑣𝑖 ∈ V that:

𝑓 (𝑣𝑖 ) −
∑

𝑣′
𝑖
∈V∪{𝑣∅ }

_𝑖 (𝑣𝑖 , 𝑣 ′𝑖 ) +
∑
𝑣′
𝑖
∈V

_𝑖 (𝑣 ′𝑖 , 𝑣𝑖 ) = 0. (21)

As (𝜋, 𝑝) correspond to a truthful auction A, we have from Equation 4 that Rev(A, 𝑛) =∑𝑛
𝑖=1 E𝑣𝑖∼D

[
𝑝𝑖 (𝑣𝑖 )

]
. Continuing using the non-negativity of _𝑖 (𝑣𝑖 , 𝑣 ′𝑖 ) and Equation 3, we have:

Rev(A, 𝑛) ≤
𝑛∑
𝑖=1

∑
𝑣𝑖 ∈V

𝑓 (𝑣𝑖 ) · 𝑝𝑖 (𝑣𝑖 )

+
𝑛∑
𝑖=1

∑
𝑣𝑖 ∈V

∑
𝑣′
𝑖
∈V∪{𝑣∅ }

_𝑖 (𝑣𝑖 , 𝑣 ′𝑖 ) ·
(
𝑚∑
𝑗=1

(
𝜋𝑖, 𝑗 (𝑣𝑖 ) − 𝜋𝑖, 𝑗 (𝑣 ′𝑖 )

)
· 𝑣𝑖, 𝑗 −

(
𝑝𝑖 (𝑣𝑖 ) − 𝑝𝑖 (𝑣 ′𝑖 )

))
.

This can be rearranged to:

Rev(A, 𝑛) ≤
𝑛∑
𝑖=1

∑
𝑣𝑖 ∈V

©«𝑓 (𝑣𝑖 ) −
∑

𝑣′
𝑖
∈V∪{𝑣∅ }

_𝑖 (𝑣𝑖 , 𝑣 ′𝑖 ) +
∑
𝑣′
𝑖
∈V

_𝑖 (𝑣 ′𝑖 , 𝑣𝑖 )
ª®¬ · 𝑝𝑖 (𝑣𝑖 )

+
𝑛∑
𝑖=1

∑
𝑣𝑖 ∈V

𝑚∑
𝑗=1

©«
∑

𝑣′
𝑖
∈V∪{𝑣∅ }

_𝑖 (𝑣𝑖 , 𝑣 ′𝑖 ) · 𝑣𝑖, 𝑗 −
∑
𝑣′
𝑖
∈V

_𝑖 (𝑣 ′𝑖 , 𝑣𝑖 ) · 𝑣 ′𝑖, 𝑗
ª®¬ · 𝜋𝑖, 𝑗 (𝑣𝑖 ).

Plugging in Equation 21, we get:

Rev(A, 𝑛) ≤
𝑛∑
𝑖=1

∑
𝑣𝑖 ∈V

𝑚∑
𝑗=1

©«𝑓 (𝑣𝑖 ) · 𝑣𝑖, 𝑗 −
∑
𝑣′
𝑖
∈V

_𝑖 (𝑣 ′𝑖 , 𝑣𝑖 ) ·
(
𝑣 ′𝑖, 𝑗 − 𝑣𝑖, 𝑗

)ª®¬ · 𝜋𝑖, 𝑗 (𝑣𝑖 ).



Rearranging again, and denoting by ΦΛ
𝑖, 𝑗 (𝑣𝑖 ) = 𝑣𝑖, 𝑗 − 1

𝑓 (𝑣𝑖 ) ·
∑

𝑣′
𝑖
∈V _𝑖 (𝑣 ′𝑖 , 𝑣𝑖 ) ·

(
𝑣 ′𝑖, 𝑗 − 𝑣𝑖, 𝑗

)
, we get:

Rev(A, 𝑛) ≤
𝑛∑
𝑖=1

∑
𝑣𝑖 ∈V

𝑚∑
𝑗=1

𝑓 (𝑣𝑖 ) · 𝜋𝑖, 𝑗 (𝑣𝑖 ) · ΦΛ
𝑖, 𝑗 (𝑣𝑖 ). (22)

Observe that Equation 22 holds for any Λ that is non-negative and satisfies Equation 21. In order

to show Lemma D.1, we construct a suitable Λ and apply Equation 22. This is done by defining Λ′

and Λ∗ as below and setting Λ = Λ′ + Λ∗.

Defining Λ′. We start with some notation. For 𝑗 ∈ [𝑚], let 𝑓−𝑗 (·) denote the probability mass

function of the distribution

>
𝑗 ′≠𝑗 D𝑗 ′ . Also, for 𝑗 ∈ [𝑚] and 𝑣𝑖 ∈ V , let dec𝑗 (𝑣𝑖 ) be defined to be

𝑣∅ if 𝑣𝑖, 𝑗 = minV𝑗 . Otherwise define dec𝑗,𝑘 (𝑣𝑖 ) = 𝑣𝑖,𝑘 for all 𝑘 ≠ 𝑗 and dec𝑗, 𝑗 (𝑣𝑖 ) = max𝑥 ∈V𝑗 ,𝑥<𝑣𝑖,𝑗 𝑥 .

Recall the definition of the regions

{
R (𝑛

′)
𝑗
(𝑤−𝑖 )

}
𝑗 ∈{0}∪[𝑚]

from Equation 5 and for all 𝑖 ∈ [𝑛], 𝑣𝑖 ∈
V, 𝑣 ′𝑖 ∈ V ∪ {𝑣∅}, define the numbers:

_′𝑖 (𝑣𝑖 , 𝑣 ′𝑖 ) =



𝑓 (𝑣𝑖 ), if 𝑣𝑖 ∈ R (𝑛
′)

0
(𝑤−𝑖 ) and 𝑣 ′𝑖 = 𝑣∅

Pr𝑦∼D𝑗

(
𝑦 ≥ 𝑣𝑖, 𝑗

)
· 𝑓−𝑗 (𝑣𝑖,−𝑗 ), if ∃ 𝑗 ∈ [𝑚] : 𝑣𝑖 , 𝑣 ′𝑖 ∈ R

(𝑛′)
𝑗
(𝑤−𝑖 ) ∧ 𝑣 ′𝑖 = dec𝑗 (𝑣𝑖 )

Pr𝑦∼D𝑗

(
𝑦 ≥ 𝑣𝑖, 𝑗

)
· 𝑓−𝑗 (𝑣𝑖,−𝑗 ), if ∃ 𝑗 ∈ [𝑚] : 𝑣𝑖 ∈ R (𝑛

′)
𝑗
(𝑤−𝑖 ) ∧ 𝑣 ′𝑖 = 𝑣∅

and dec𝑗 (𝑣𝑖 ) ∉ R (𝑛
′)

𝑗
(𝑤−𝑖 )

0, otherwise

.

Defining Λ∗. For all 𝑖 ∈ [𝑛], we define _∗𝑖 (·) using the procedure described in Algorithm 2. In

Line 6 of Algorithm 2, when we say we invoke Algorithm 1 restricted to values at least 𝑥 , we mean

that Line 4 of Algorithm 1 would only include values that are at least 𝑥 in the argmax and Line 6 of

Algorithm 1 will abort as soon as 𝑦∗ = 𝑥 (instead of when 𝑦∗ = min(V𝑗 )). Algorithm 1 guarantees

that the output 𝜑
𝑣𝑖,−𝑗
𝑗
(·) produced in this manner is a lower bound of �̃� 𝑗 (·), and therefore, also a

lower bound of �̃� 𝑗 (·)+, for all values at least 𝑥 . Moreover it satisfies, for all 𝑦 ≥ 𝑥 and with equality

when 𝑦 = 𝑥 , that: ∑
𝑦′≥𝑦∈V𝑗

𝑓𝑗 (𝑦 ′) · 𝜑
𝑣𝑖,−𝑗
𝑗
(𝑦 ′) ≥

∑
𝑦′≥𝑦∈V𝑗

𝑓𝑗 (𝑦 ′) · 𝜑 𝑗 (𝑦 ′). (23)

We now finish the proof of Lemma D.1. Having defined Λ′ and Λ★
, we first observe that they

are both non-negative (Λ∗ is non-negative due to Equation 23). Moreover, observe that setting

Λ = Λ′ + Λ∗ satisfies Equation 21. Plugging into Equation 22, we get:

Rev(A, 𝑛) ≤
𝑛∑
𝑖=1

𝑚∑
𝑗=1

E
𝑣𝑖

[
𝜋𝑖, 𝑗 (𝑣𝑖 ) · ΦΛ

𝑖, 𝑗 (𝑣𝑖 )
]
.

Where, using Equation 23 and Definition 3.3, the value ΦΛ
𝑖, 𝑗 (𝑣𝑖 ) can be simplified to:

ΦΛ
𝑖, 𝑗 (𝑣𝑖 ) = 𝑣𝑖, 𝑗 · 1

(
𝑣𝑖 ∉ R (𝑛

′)
𝑗
(𝑤−𝑖 )

)
+ 𝜑𝑣𝑖,−𝑗

𝑗
(𝑣𝑖, 𝑗 ) · 1

(
𝑣𝑖 ∈ R (𝑛

′)
𝑗
(𝑤−𝑖 )

)
.

Plugging in and using the fact that 𝜑
𝑣𝑖,−𝑗
𝑗
(·) ≤ �̃� 𝑗 (·)+, we get:

Rev(A, 𝑛) ≤
𝑛∑
𝑖=1

𝑚∑
𝑗=1

E
𝑣𝑖

[
𝜋𝑖, 𝑗 (𝑣𝑖 ) ·

(
𝑣𝑖, 𝑗 · 1

(
𝑣𝑖 ∉ R (𝑛

′)
𝑗
(𝑤−𝑖 )

)
+ �̃� 𝑗 (𝑣𝑖, 𝑗 )+ · 1

(
𝑣𝑖 ∈ R (𝑛

′)
𝑗
(𝑤−𝑖 )

))]
.

□



Algorithm 2 Computing _∗𝑖 (·) for 𝑖 ∈ [𝑛].
1: Set _∗𝑖 (𝑣𝑖 , 𝑣 ′𝑖 ) = 0 for all 𝑣𝑖 ∈ V and 𝑣 ′𝑖 ∈ V ∪ {𝑣∅}.
2: for 𝑗 ∈ [𝑚] do
3: for 𝑣𝑖,−𝑗 ∈ V−𝑗 do
4: 𝑆 ← min

{
𝑥 ∈ V𝑗 | (𝑥, 𝑣𝑖,−𝑗 ) ∈ R (𝑛

′)
𝑗
(𝑤−𝑖 )

}
. If 𝑆 = ∅, continue to next iteration.

5: 𝑥∗ ← min(𝑆).
6: 𝜑

𝑣𝑖,−𝑗
𝑗
(·) ← the output of Algorithm 1 when restricted to values at least 𝑥∗.

7: for 𝑥 ∈ V𝑗 such that 𝑥∗ ≤ 𝑥 < maxV𝑗 do
8: 𝑥 ′← smallest element > 𝑥 inV𝑗 .

9: Set both _∗𝑖 ((𝑥, 𝑣𝑖,−𝑗 ), (𝑥 ′, 𝑣𝑖,−𝑗 )) and _∗𝑖 ((𝑥 ′, 𝑣𝑖,−𝑗 ), (𝑥, 𝑣𝑖,−𝑗 )) to
𝑓−𝑗 (𝑣𝑖,−𝑗 )
𝑥 ′ − 𝑥 ·

∑
𝑥 ′′>𝑥 ∈V𝑗

𝑓𝑗 (𝑥 ′′)
(
𝜑
𝑣𝑖,−𝑗
𝑗
(𝑥 ′′) − 𝜑 𝑗 (𝑥 ′′)

)
.

10: end for
11: end for
12: end for
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