
Distributed Transactions on Serverless Stateful Functions
Martijn de Heus Kyriakos Psarakis Marios Fragkoulis Asterios Katsifodimos

Delft University of Technology
{m.j.deheus,k.psarakis,m.fragkoulis,a.katsifodimos}@tudelft.nl

ABSTRACT
Serverless computing is currently the fastest-growing cloud services
segment. The most prominent serverless offering is Function-as-a-
Service (FaaS), where users write functions and the cloud automates
deployment, maintenance, and scalability. Although FaaS is a good
fit for executing stateless functions, it does not adequately sup-
port stateful constructs like microservices and scalable, low-latency
cloud applications, mainly because it lacks proper state manage-
ment support and the ability to perform function-to-function calls.
Most importantly, executing transactions across stateful functions
remains an open problem.

In this paper, we introduce a programming model and implemen-
tation for transaction orchestration of stateful serverless functions.
Our programming model supports serializable distributed trans-
actions with two-phase commit, as well as relaxed transactional
guarantees with Sagas. We design and implement our programming
model on Apache Flink StateFun.We choose to build our solution on
top of StateFun in order to leverage Flink’s exactly-once processing
and state management guarantees. We base our evaluation on the
YCSB benchmark, which we extended with transactional operations
and adapted for the SFaaS programming model. Our experiments
show that our transactional orchestration adds 10% overhead to
the original system and that Sagas can achieve up to 34% more
transactions per second than two-phase commit transactions at a
sub-200ms latency.

CCS CONCEPTS
• Information systems→Data streams;Middleware for databases;
Distributed transaction monitors; Message queues.

KEYWORDS
serverless, transactions, FaaS, two-phase commit, Sagas, streaming
dataflow

ACM Reference Format:
Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, Asterios Katsifodi-
mos. 2021. Distributed Transactions on Serverless Stateful Functions. In The
15th ACM International Conference on Distributed and Event-based Systems
(DEBS ’21), June 28-July 2, 2021, Virtual Event, Italy. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3465480.3466920

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8555-8/21/06.
https://doi.org/10.1145/3465480.3466920

1 INTRODUCTION
Serverless computing [22] is a cloud computing execution model
promising to simplify the programming, deployment, and operation
of scalable cloud applications. In the serverless model, developer
teams upload their code written in a high-level API, and the cloud
platform takes care of the application’s deployment and operations.
Serverless computing aims to substantially increase cloud adop-
tion by remedying the status quo in the cloud landscape, where
developer teams need to possess skills in distributed systems, data
management, and cloud execution model internals to use the cloud
effectively.

The most prominent serverless offering is Function-as-a-Service
(FaaS), where users write functions and the cloud providers auto-
mate deployment and operation. However, FaaS offerings lack the
state management support and the ability to perform transactional
workflows across multiple functions and state backends [3, 21],
which are needed by general-purpose cloud applications. Although
there is ongoing work in supporting stateful FaaS (SFaaS) applica-
tions, transactions across functions remain an open problem.

The only system addressing distributed transactions in a SFaaS
setting is Beldi [35], which provides fault-tolerant ACID transac-
tions on workflows across stateful functions by logging the func-
tions’ operations to a serverless cloud database. Cloudburst [31]
with HydroCache [34] provides causal consistency on function
workflows forming a DAG by leveraging Anna [33], a key-value
store with conflict resolution policies in place. Cloudburst does not
provide isolation between DAG workflows.

In sharp contrast with the aforementioned approaches, devel-
oper teams in the microservices and cloud applications landscape
go to extreme lengths when they need to implement transactional
workflows across the boundaries of a single service or function.
Depending on the requirements of each use case with respect to con-
sistency and performance, two approaches stand out: application-
level implementations of the two-phase commit protocol or the
Saga pattern. These two approaches serve opposing goals. Two-
phase commit (TPC) [20] offers ACID, serializable transactions but
imposes blocking across functions participating in a transaction,
which penalizes performance in return for strict atomicity.

On the other hand, the Saga pattern [16] separates a transaction
into sub-transactions that proceed independently with the bene-
fit of improved performance but at the risk of having to undo or
compensate the changes of successful sub-transactions when at
least one of the involved sub-transactions fails. In addition, com-
pensating actions can be challenging when concurrent changes
are applied to the state because Sagas do not require any means of
isolation. For this reason, state consistency needs to be dealt with
at the application level.

To alleviate these issues, we propose a programming model and
a corresponding implementation, publicly available on GitHub1,
1https://github.com/delftdata/flink-statefun-transactions

DEBS 2021 Research Track

31

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3465480.3466920
https://doi.org/10.1145/3465480.3466920
https://github.com/delftdata/flink-statefun-transactions
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3465480.3466920&domain=pdf&date_stamp=2021-06-28


for authoring workflows across stateful functions in FaaS with
transactional guarantees. Our programming model provides two al-
ternatives: two-phase commit and Sagas, drawing inspiration from
best practices in developing microservices and cloud applications.
We implement the two approaches on an open-source stateful FaaS
system, Apache Flink’s [9] StateFun.2

Although different flavors of FaaS platforms exist, we base our
work on a stateful dataflow engine for reasons that we have argued
in previous work [3, 25]. In short, modern dataflow engines, used
by stream processing systems [4, 5, 8, 9, 17] can execute stateful
functions as follows: incoming events represent function execution
requests routed to continuous stateful operators that execute the
corresponding functions. With proper, consistent fault tolerance
mechanisms [7, 28], state of the art stream processing systems
operate at high-throughput and low-latency. At the same time,
they guarantee the correctness of execution even in the presence of
failures. As we explain in Section 2 this set of properties is important
for supporting transactions managed by the platform with minimal
involvement from the application developers.
In summary, our work makes the following contributions:

• we make a case for implementing transactions on a stateful
dataflow engine and present the advantages that come with
such an approach

• we propose a programming model for transactions across
stateful serverless functions

• we implement the two main approaches used by cloud ap-
plication practitioners to achieve transactional guarantees:
two-phase commit and Saga workflows

• we evaluate two transactional schemes using an extended
version of the YCSB benchmark on a cloud infrastructure

Section 2 gives the motivation of this work and explains the ben-
efits of running transactions on dataflow graphs, while Section 3
presents the background. Next, Section 4 introduces the concept of
coordinator functions, and Section 5 details their implementation
and the introduced programming model. The experimental setup is
presented in Section 6, while the performance of coordinator func-
tions is evaluated in Section 7. Section 8 presents the related work.
Finally, Section 9 summarizes the work and discusses interesting
areas for further research.

2 TRANSACTIONS ON STREAMING
DATAFLOWS

Serverless platforms come in different flavors. One breed of SFaaS
systems (e.g., Apache Flink StateFun and [3]) is built on top of a
stateful streaming dataflow engine. This architecture bears impor-
tant implications for the support of transactions because of how
distribution, state management, and fault tolerance work.

Network communication between distributed components in a
typical streaming dataflow engine is implemented via FIFO network
channels that guarantee exactly-once data delivery and preserve de-
livery order. In a serverless FaaS system, this characteristic obviates
the need for handling lost messages and implementing retry logic
with respect to function invocations in transactional workflows.
Messaging errors and retries are a significant source of friction and

2https://statefun.io

development effort at the application level, and those are offered
by the underlying dataflow system.

State management in state-of-the-art streaming systems achieves
exactly-once processing guarantees by taking consistent snapshots
of the system’s distributed state periodically [7]. The snapshots
capture a globally consistent state of the system at a specific point in
time and are used to recover the system’s state upon failure. Exactly-
once means that the changes brought by each function execution
instance are recorded in the system’s state exactly once, even in the
face of failures. For transactions, this capability is essential because
fault recovery of transactions can piggyback on the underlying
fault tolerance mechanism with zero effort and knowledge by the
application. Given that a big part of code and effort is spent on
failure handling, fault tolerance, and virtual resiliency [18] provided
at the system level can play a significant role.

Furthermore, unlike stream processing applications where the
computations are fully encapsulated within the system’s operators,
it is common to have nondeterministic side effects in microser-
vices and cloud applications. One popular way is by interacting
with external services located out of the system’s boundaries or
by having business logic that is nondeterministic. However, the
fault tolerance of streaming dataflow systems was not designed to
support the many faces of non-determinism that are possible in
general-purpose applications. Thus, the consistency of applications
and the integrity of transactions are endangered when transactions
involve nondeterministic operations. Extending the fault tolerance
approach of streaming dataflow systems to support nondeterminis-
tic computations [28] is an important step towards opening their
adoption for executing general-purpose applications. Finally, recent
work [11, 31] also recognizes the dataflow model as a key enabler
for the SFaaS systems of the future.

In summary, we believe that stateful streaming dataflows and
the associated research that has been proposed so far [1, 14, 25]
can alleviate the burden of building rich stateful and transactional
applications on top of streaming dataflows. This paper presents a
step towards this direction.

3 PRELIMINARIES
3.1 Transaction Model
In the context of this work, a transaction is an atomic execution of
a set of stateful-function invocations. More specifically, the trans-
actional model introduced in this paper considers transactions that
are defined up-front. This is referred to as single-shot [32] or one-
shot [23] transactions in prior works. More specifically, we follow
the definition of H-Store [23] one-shot transactions assuming that
the output of a function (query) cannot be used as input to subse-
quent functions (queries) in the same transaction. This simplifies
coordination of the transaction across the system while still pro-
viding a practical model for transactions; for instance, Amazon’s
DynamoDB [29] implements one-shot transactions [32] and has
wide applicability. Implementing one-shot transactions on top of
a SFaaS system has a significant advantage: functions can imple-
ment arbitrary business logic in a touring complete programming
language such as Java or Python. This creates a lot more flexibil-
ity in the programming model and allows for complex transaction
definitions and business logic.

32



3.2 Apache Flink StateFun
Apache Flink StateFun3 offers an abstraction and runtime for users
to implement stateful cloud functions. A stateful function imple-
mented by user-code is referred to as a function type and describes
the state held by this function type. Multiple instances based on
the same function type can exist in parallel and are identified by an
id. Each of these function instances encapsulates its own state and
can be uniquely addressed by the combination of its type and id.
Function instances can be invoked from other function instances
or through ingresses such as Kafka. Function instances can have
four different controlled side effects; (1) state updates, (2) function
invocations, (3) delayed function invocations, (4) egress messages
(for example, Kafka). StateFun supports end-to-end exactly-once
guarantees from ingress to egress, including any state updates.
Embedded vs. Remote Functions. Functions can be deployed
both inside the StateFun workers (referred to as embedded func-
tions) and outside the StateFun cluster (co-located and remote func-
tions). Embedded functions are simply an abstraction on top of
stateful streaming operators in Flink, therefore providing exactly-
once and fault-tolerance guarantees. StateFun allows dynamic com-
munication between these streaming operators by introducing a
cycle in the streaming graph. The co-located and remote functions
are entirely stateless because the state is persisted within State-
Fun. This paper focuses on remote functions as these can lever-
age existing FaaS services such as AWS Lambda to auto-scale the
compute layer. Figure 1 shows how remote functions work. Each
function instance is represented by an embedded stateful function
in the StateFun cluster. This standardized embedded function is
responsible for managing the state of the function instance and the
communication with the remote function that may be deployed
anywhere. The persisted data in the embedded stateful function
with the communication pattern for remote functions are shown in
Figure 1.
Function Invocations as Dataflow Messages. Invocations that
are sent to a function instance arrive in a queue, as shown in step 1
of Figure 1. If the embedded stateful function is ready to process
the next invocation, it pulls a message (invocation parameters)
from the queue (step 2). When no invocation is being executed at
the remote function, the remote function is called. However, if the
remote function is busy with a previous function call, the current
invocation message is appended to the next batch. Batches are used
to avoid multiple remote calls to a given function, with a trade-off
in latency (see Section 7.1). Batches are also used to preserve the
invocation order and order of state access (the batch has to wait
until the state updates caused by the previous batch have been
performed), thus ensuring linearizability at the function instance
level.

In step 3, the stateless remote function is called through a Proto-
buf interface that contains both the (keyed) state required for the
remote function to operate and the invocation parameters of the
function. The stateless remote function can execute the (batch of)
invocations and will be ready to return the updated state back to
the Flink worker that made the call. In step 4, the response of the
stateless remote function is appended to the queue of incoming

3https://flink.apache.org/stateful-functions.html

Flink Worker

Embedded Representation Function Instance

Remote 
Function

Embedded Stateful FunctionQueue

2, 51
3

4
Managed user stateNext batch

Original behaviour diagram

6

In-flight status

Figure 1: Original communication flow for remote functions

messages to the function. The response includes any side effects
caused by the invocation(s), including updates to the user-defined
state.

When the response from the stateless function is processed (step
5), the side effects caused by the invocation(s) are applied to the state
of the embedded function. This updates the managed state in the
embedded stateful function. If any invocations are batched, the next
batch of invocations is sent to the remote stateless function, and the
batch is truncated. When there are no batched invocations, the in-
flight status is cleared. Finally, any outgoing function invocations
are sent to the queues of their respective function instances, and
egress messages are sent to their respective egresses (step 6).

3.3 Assumptions & Requirements
Aswe describe in the next section, our coordinator functions rely on
an underlying SFaaS system for bookkeeping the state of ongoing
transactions and reliable messaging. To allow this, the underlying
system should satisfy two requirements.
Exactly-once Processing Guarantees. Firstly, it is required for
all communication to be reliable and executed with exactly-once
processing guarantees. Thus, we require that the underlying system
is fault-tolerant [9] to ensure atomicity in case of a failure in the
middle of a transaction. This also means that the state is durable
within a snapshot/checkpoint, even in the event of failures. If we
can rely on exactly-once processing guarantees, message replay
and error handling, which involve a significant part of transac-
tion coordination, are greatly simplified. Exactly-once processing
guarantees are supported in Flink StateFun.
Linearizable Operations. The second requirement is that the op-
erations for any specific function instance should be linearizable,
which means that there is a given order that operations are per-
formed on the function instance and the state encapsulated in this
instance. Accordingly, a function invocation will always have the
correct state of the function instance in order to implement transac-
tions. Since Flink StateFun’s function instances use a single replica
of the state per function instance and a single process is executing
function invocations for that function instance in a sequential FIFO
manner, this ensures linearizable operations per function instance.

4 APPROACH OVERVIEW
In this section, we introduce the concept of stateful coordinator
functions and provide an overview of our approach. Our approach
is based on the simple observation that since an underlying SFaaS
system provides exactly-once processing and message delivery
guarantees, conceptually, it would be much simpler to implement

33

https://flink.apache.org/stateful-functions.html


1 def serializable_transfer(context, message: Transfer):
2 subtract_credit = SubtractCreditMessage(amount = message.amount)
3
4 context.2pc_invocation("account_function",
5 message.debtor,
6 subtract_credit)
7 add_credit = AddCreditMessage(amount = message.amount)
8 context.2pc_invocation("account_function",
9 message.creditor,
10 add_credit)

Listing 1: Two-phase commit coordinator function.

a transaction coordinator as a regular, stateful function. With this
in mind, we opted for implementing a transaction API on top of
stateful functions, which we present in Listing 3. Notably, further
work is required to raise the transaction abstractions at a higher
level [25] as syntactic sugar.

4.1 API
A stateful coordinator function is a stateful function that preserves
state about the execution of a given transaction. Coordinator func-
tions have the ability to force other function instances to abort or
compensate for the changes they applied.
API Overview. Our coordinator function implements two trans-
action coordination patterns: two-phase commit and Sagas [16]. A
complete example of a coordinator function for two-phase com-
mit and Saga is shown in Listings 1 and 2 respectively. In short,
to coordinate a two-phase commit transaction, the user needs to
invoke function instances via 2pc_invocation, while for a Saga,
an invocation pair is expected, which consists of the normal trans-
action invocation and the corresponding compensation invocation
to be sent to the same function instance. A Saga invocation pair can
be called with saga_invocation_pair. An important difference
between the behavior of the two schemes is that a failure in a Saga
workflow will incur a compensating function call.

4.2 Two-Phase Commit
The serializable_transfer function of Listing 1, receives a con-
text (the underlying context of StateFun as we have extended it
to support transactions) and a message. The message is of type
Transfer, and it contains three fields: the amount of money trans-
fer, a creditor, and a debtor. The amount mentioned in the mes-
sage must be subtracted from the debtor and transferred to the
creditor. To this end, assuming that there is a function type reg-
istered in the system as account_function, as per the original
StateFun API, we need to construct an object containing the pa-
rameters for the account_function and push that message to
the transaction coordinator. This is done in lines 4-6: we give the
TPC coordinator the function type to invoke, alongside the id of
the debtor to form the address of the function instance and the
SubtractCreditMessage which is going to be given to that func-
tion as a parameter. Subsequently, we do the same for the creditor:
we construct an AddCreditMessage and we pass it over to the func-
tion type account_function. In short, the transaction coordinator
function instance will make sure that the two function instances are
invoked with serializable guarantees. It does this by coordinating
a two-phase commit protocol across the function instances with
locking to ensure isolation. More details on these aspects are given
in Section 5.

1 def sagas_transfer(context, message: Transfer):
2 subtract_credit = SubtractCreditMessage(amount=message.amount)
3 add_credit = AddCreditMessage(amount=message.amount)
4 context.saga_invocation_pair("account_function",
5 message.debtor,
6 subtract_credit,
7 add_credit)
8 context.saga_invocation_pair("account_function",
9 message.creditor,
10 add_credit,
11 subtract_credit)

Listing 2: Saga coordinator function.

4.3 Sagas
Similarly to two-phase commit, our API offers the ability to specify
Sagas: as seen in Listing 2, the saga_invocation_pair function in
line 4 will receive the target function name, the ID of the debtor as
well as two messages: the subtract_credit and its compensating
action add_credit. If there is a failure during the execution of
subtract_credit our Sagas transaction coordinator will execute
the compensating action add_credit which will put back the orig-
inal credit to the debtor’s account. The details on how Sagas are
executed are given in Section 5.

4.4 Extensions to Regular Functions
To allow the execution of a transaction by the two types of coor-
dinator functions across any arbitrary function instances, some
extensions to regular functions are required.

First, functions that can partake in a coordinated transaction
need to be able to fail explicitly. After a failure is communicated to a
coordinator function, it results in a transaction rollback. Currently,
there is no notion of failing an invocation in Flink StateFun; the
function invocation may simply perform no side effects. To allow
explicit failure, a field containing these details is added to the pro-
tocol between StateFun and the remotely deployed functions. From
the API perspective, a function failure can be triggered by throwing
an exception. The failure of a function can be roughly compared to
integrity constraint violations based on the state encapsulated in a
function instance in traditional database terms.

Second, any batching mechanism needs to be changed. TPC
coordinator functions ensure isolated transactions. This means that
any function invocation that is part of such a transaction may not
be batched between other function invocations. Third, appropriate
locking should be implemented on the level of function instances to
ensure the isolation of serializable transactions based on two-phase
commit coordinator functions.

Finally, the function instances should communicate with the
coordinator functions transparently; developers should not be bur-
dened with this task.

5 TRANSACTIONALWORKFLOWS
In this section, we present our Python API in more detail, and
we present the implementation for transactional workflows across
stateful serverless functions on Apache Flink StateFun. Our imple-
mentation consists of coordinator functions that enforce either a
distributed serializable transaction with a two-phase commit or a
Saga workflow as a transaction without isolation.

34



Function Description

Shared coordinator function methods

send_on_success(type, id, message) Sends a message to another function instance if the transaction is successful
send_after_on_success(delay, type, id, message) Sends a delayed message if the transaction is successful
send_egress_on_success(type, egress_message) Sends a message to an egress if the transaction is successful
send_on_failure(type, id, message) Sends a message to another function instance if the transaction failed
send_after_on_failure(delay, type, id, message) Sends a delayed message if the transaction failed
send_egress_on_failure(type, egress_message) Sends a message to an egress if the transaction failed

Two-phase commit function methods

2pc_invocation(type, id, message) Add a function invocation to the transaction
send_on_retryable(type, id, message) Sends a message if the transaction aborted because of a deadlock
send_after_on_retryable(delay, type, id, message) Sends a delayed message if the transaction aborted because of a deadlock
send_egress_on_retryable(type, egress_message) Sends a message to an egress if the transaction aborted because of a deadlock

Sagas function methods

saga_invocation_pair(type, id, message, compensating_message) Add a pair of a message and a compensating message to the transaction

Ordinary functions

FunctionInvocationException Raised to fail the function invocation

Listing 3: Coordinator functions’ Python API.

5.1 Coordinator Functions
Coordinator functions instrument transactional workflows across
ordinary Stateful functions. To achieve this, coordinator functions
encapsulate the state of active transactional workflows that they
are in charge of but hold no state of the participating function exe-
cutions or custom user-defined state. A coordinator function can
be invoked simply by its name (uniquely identified by a type inter-
nally) and an ID generated randomly at initialization time. Then an
input message will arrive at the coordinator’s input queue. If the
coordinator function is involved in an ongoing transaction, the mes-
sage will be queued until the workflow that is executing completes.
The coordinator functions’ Python API is listed in Listing 3.

Figure 2 shows the common communication flow between a
coordinator function and regular function instances. Specializations
of this communication for two-phase commit and Saga workflows
are described in Section 5.2 and Section 5.3 respectively. Messages
that are not always sent in both cases are annotatedwith a *. Figure 2
shows the enriched internal structure for regular function instances
compared to Figure 1. These are the extensions that we implement
for regular functions so that they can participate in transactional
workflows.

5.2 Saga Coordination
The programming model of the Saga coordinator function is shown
in Listing 2 through an example. Listing 3 presents the API. In Sagas,
the developer is responsible for defining pairs of function invoca-
tions so that the invocation of the second function compensates
the one of the first function[16]. Besides this, the Saga coordinator
function can also define side effects (e.g., outgoing egress messages)
based on different completion scenarios of the transaction (success
or failure). The function invocations composing a Saga are executed

in parallel in the current implementation. 4 In the following, we
describe the messages specifically for Sagas seen in Figure 2.
Initialization & remote coordinator function call. First, a mes-
sage is sent to the coordinator function to initialize a transaction
(step 1). The message is taken from the queue to initialize the trans-
action (step 2). Then, the remote Saga coordinator function is called
with the incoming message (step 3). The remote function returns
the definition of the Saga workflow to its embedded counterpart
(step 4). This includes the function invocations involved in the
transaction and their compensating invocations, as well as the side
effects to perform on success or failure.
Processing the remote coordinator function’s result. When
the embedded function processes the result of the remote function
(step 5), a random transaction ID is generated, and a map is created
holding the addresses of function instances and the result of their
execution (at this stage, those are initialized as null values). It fol-
lows that only one invocation per function instance can be involved
in a particular workflow. If multiple invocations of a single function
instance are required, this can be solved at the application level
by allowing a single message, which combines multiple function
invocations to be sent to the function instance.
Invoking regular functions. In step 6, each of the participating
regular (non-coordinator) function instances receives a function
invocation in its input queue. All the invocations are sent simultane-
ously, and the function instances can do the work in parallel. These
function invocations are distinguishable as function invocations
that belong to a Saga workflow. Each Saga function invocation is
fetched from the queue, and it is either directly sent to the remote
function or batched with other invocations for efficiency (step 7).
Because Sagas do not require isolation, a function invocation can

4We plan to expose a configuration for the intended behavior in the API, in order to
optionally make these sequential.

35



Flink Worker

Flink Worker

Embedded Representation Coordinator Function Instance
Remote 

Coordinator 
Function

Embedded Stateful Coordinator Function

Flink Worker

Embedded Representation Regular Function Instance

Embedded Stateful Regular Function

Queue

Queue

Queued batches

Tpc prepare
message

Instance 
address

Success 
status

Remote 
Regular 
FunctionTpc prepare

message

1

2, 5, 12 3

4

6, 13*

7, 10 14*

8, 15*

9, 16*

11

Transaction ID

Resulting side effects

Managed user state

Lock

Staged side effects

Details in-flight batch

Coordinator diagram

Figure 2: Communication flow for transactions.

be batched with other invocations. Then it is sent to the regular re-
mote function (step 8). After processing it, the function’s response is
added to the queue of its stateful embedded representation in State-
Fun (step 9). When the response of the stateless remote function is
processed in the embedded stateful function at step 10, the indices
in the in-flight function invocation metadata and new list added to
the Protobuf interface, i.e., the regular function extensions, are used
to identify the result status of the Saga function invocations and the
corresponding coordinator’s addresses. If the function invocation
fails, no side effects of the function are performed. After this, this
function can continue processing other function invocations.
Saga success vs. compensation. Based on the success status of
the Saga function invocation, a success or failure message is sent to
the coordinator function (step 11). When the embedded coordinator
function processes the success status of each function invocation,
the map is updated with either a success or failure status (step 12).
If a function instance failed, any function instances that success-
fully executed their function invocation are messaged with their
respective compensating actions (step 13), and the side effects in
case of a failure are performed (steps 14, 15, 16). The coordinator
function has to wait until the result of all function invocations is
received before it is done. In case any of the function invocations
fails, the coordinator function sends the compensating messages to
all function instances that successfully processed their invocation.
Note that there is no need to send compensating invocations to
function instances that failed since those function instances have
applied no side effects. The compensating messages are processed
as regular messages and are only required when any of the func-
tion invocations fail. This means that the performance of a Saga
workflow will be worse if it is likely to fail as this will require extra
messaging and processing, up to double. As a matter of fact, this
is the trade-off offered by optimistic transaction approaches like
Sagas.

5.3 Two-phase Commit Coordination
In Listing 1 we presented the programming model for a two-phase
commit coordinator function; Listing 3 shows the available func-
tions of the two-phase commit API. Similar to Saga coordinator
functions, two-phase commit coordinator functions can also define
side effects to execute for any completion scenario. Beyond success-
ful and failed completion, two-phase commit transactions can also
complete as “retryable”. This occurs when the transaction is aborted
due to a deadlock (Section 5.4). In the following, we describe the
workflow of the two-phase commit as seen in Figure 2. Note that
the initialization of the workflow, i.e., steps 1-5, is the same as in
Sagas. Thus, we do not detail it here.
PREPARE & Two-phase locking growing phase. Each involved
function instance is messaged with its respective function invoca-
tion in step 6. This message is identifiable as a PREPARE message of
the two-phase commit protocol. When a two-phase commit func-
tion invocation arrives at the embedded stateful regular function
and a batch of invocations for this function is currently in-flight, this
two-phase commit function invocation is not batched with other
invocations. Instead, the two-phase commit function invocations
split up batches and are sent to the remote function in isolation
as seen in Figure 2. This practice increases the complexity of the
batching mechanism, as it now requires a queue of batches rather
than an append-only batch as shown in Figure 1.
Invoking regular remote functions. When the message (and
current state) is processed and sent to the remote function in steps
7 and 8, the transaction ID and the address of the two-phase commit
coordinator function are stored in the details of the in-flight batch
of invocations. The lock on the function instance is also set at
this point. The response of the stateless remote function includes
the result status of the function invocation and any side effects
(step 9). Suppose a FunctionInvocationException is thrown at
the stateless remote function. In that case, the response of the
remote function is discarded, a response to the coordinator function
instance is sent to notify it that the invocation failed, and the regular
function instance’s lock is removed as it knows the transaction will
be aborted. If the function invocation is successful, the lock is kept,
and a success response is sent to the coordinator function instance.
The state effects are then stored as staged side effects in the function
instance (step 10). Any othermessages that arrivewhile the function
instance is locked are put in the queued batches.
ABORT & Two-phase locking shrinking phase upon Failure.
The message at step 11 notifies the two-phase commit coordinator
function instance whether the function invocation succeeded. If the
two-phase commit function instance receives the message that a
function invocation failed (step 12), it immediately sends an ABORT
message to all other function instances and performs the appro-
priate side effects (step 13), and calls the two-phase lock shrinking
phase. After this, the two-phase commit function is done.
COMMIT&Two-phase locking shrinking phase. If the two-phase
commit function instance receives the message that a function in-
vocation was successful, it updates the map it keeps of all involved
function instances. If all function instances succeeded, it sends
COMMIT messages to all involved function instances and publishes

36



the appropriate side effects (i.e., applies the changes to the embed-
ded function state).
COMMIT/ABORT & Two-phase locking shrinking phase.When a
function instance receives a COMMIT message (step 14), it executes
its staged side effects, releases the lock and continues processing the
next request. When a function instance receives an ABORT message,
it discards its staged changes, releases the lock, and continues pro-
cessing. Note that a function could also receive the ABORT message
while the PREPARE message is still in the queue or in-flight. In this
case, the PREPARE message is discarded. Messages 15 and 16 are
never sent for two-phase commit transactions.

5.4 Deadlock Detection in Two-phase Commit
Due to the use of locks, the two-phase commit protocol is sus-
ceptible to deadlocks. A deadlock can happen when two or more
different two-phase commit transactions wait on the locks on func-
tion instances that are held by other transactions. To deal with
deadlocks, we have implemented a deadlock detection mechanism,
which we describe below. All participants in the two-phase commit
transaction can be partitioned across different machines, and the
state of active transactions is encapsulated in different coordinator
function instances. Thus, we do not want transactions to rely on any
centralized component for handling deadlocks. We implemented
the Chandy-Misra-Haas algorithm [10] that provides a simple way
to detect deadlocks in a distributed manner, without dependence
on a single global coordinator.

Whenever a deadlock is detected in a transaction, it immediately
completes as a retry-able transaction and sends abort messages
to all involved function instances. Upon receiving a retry-able re-
sult status, a two-phase commit regular function may send itself a
delayed invocation with the same initial message (and possibly a
counter attached) to perform a retry. This is left to the developer
so that the system remains flexible across various use cases.

6 EXPERIMENTAL SETUP
In this section, we describe in detail our experimental evaluation
methodology. In the lack of a proper benchmark for SFaaS, we opted
for an extension of the Yahoo! Cloud Serving Benchmark (YCSB) [12]
benchmark.

6.1 Benchmark Workload
In YCSB, the first step is to insert records into the system with
a unique ID and several task-specific fields. After the data inser-
tion stage, the benchmark performs operations on the initialized
state. YCSB defines read and write operations as part of their core
workloads. Because this work’s main contribution is distributed
transactions across stateful function instances, we added a new
operation based on an extension introduced in [13]. This operation
is called a transfer, and it atomically subtracts balance from one
account and adds this to another, meaning that records also include
a numeric balance field. These additions mean that the workloads
can consist of the following three operations:
read Reads the state associated with a single key and outputs it to
the egress.

Benchmark clients Kafka cluster StateFun cluster

Account function

Transfer function

Workload

Ingress

Egress

Invocation

Result

Invocation

Result

Figure 3: Benchmark application architecture

write Updates a field associated with a single key and outputs a
success message to the egress.
transfer Requires two keys and a specified amount, and subtracts
the amount from the balance of one key and adds it to the other.
Depending on the transaction result, the output is either a success
or failure message to the egress.

Across experiments, we vary the proportion of each operation
in the resulting workloads. In YCSB, the user selects the probability
distribution of the operations’ record IDs. In this work, we consider
solely uniform distributions to make the experiment results explain-
able. The added benefit is that the number of requests for a single
key can be increased transparently by decreasing the system’s total
number of records. Finally, YCSB allows variations in the number
of fields and the size of the values associated with each field. In this
evaluation process, all records have ten fields containing a single
random string of 128 bits and a single integer field. A StateFun
application is implemented with the following two functions to
support the operations defined in Section 6.1:
Account function. This is a regular function containing the record
state for each key. It processes messages to read the state, update
the fields, and subtract or add balance as part of a transaction. It
throws an exception and rollbacks the transaction if the key does
not exist or if there is not enough balance to subtract the transaction
amount.
Transfer function. The transfer function is a coordinator function
that takes a message consisting of two different keys and an amount.
It will define a transaction consisting of two function invocations,
one to each of the function keys. This function is both implemented
as a two-phase-commit or a Saga function.

Figure 3 showcases a diagram of the system under test. The
benchmark publishes the workload to a Kafka cluster. StateFun
reads from Kafka as ingress, invokes the appropriate functions,
and then publishes the result to a Kafka topic as an egress. The
system under test is deployed on SurfSara5, an HPC cloud with
instances with up to 80-vCPUs. For our experiments, we used a two
VM Kubernetes cluster to simplify deployment and management of
the system’s separate components with enough vCPUs to support
the system’s configuration under test. All components shown in
Figure 3 can be horizontally scaled as necessary. Additionally, we
give the Kafka cluster enough resources to ensure it can handle the
load so that when a bottleneck comes up, it would be owed to the
StateFun cluster.

5https://userinfo.surfsara.nl/systems/hpc-cloud

37

https://userinfo.surfsara.nl/systems/hpc-cloud


100 2000 5000 10000
Keys (#)

0

5

10

15

20

25

30

35

40

M
a
x
im

u
m

 t
h
ro

u
g
h
p
u
t

(K
 r

e
q
u
e
st

s/
s)

Original StateFun - read only

Original StateFun - write only

Coordinator Functions - read only

Coordinator Functions - write only

Figure 4: Maximum throughput for the original StateFun vs.
StateFun with coordinator functions

6.2 Evaluation metrics
We evaluate the system based on twometrics. The throughput either
at max or stable (80%), showing the number of workload operations
the system can handle per second, and the latency, showing the
time it takes to process an operation.

The maximum throughput of each workload and system configu-
ration is found by steadily increasing the input throughput created
by the benchmark clients in Kafka until the StateFun cluster can no
longer consistently handle the load, as measured by the system’s
output throughput in Kafka. At some point, the output throughput
starts fluctuating, and we define this value to be the maximum
throughput for the configuration.

We use the Kafka event time for the ingress and egress events
of correlated operations to measure end-to-end latency. Because
latency is always dependent on the throughput, in the experiments,
we set the throughput to 80% of the maximum throughput to allow
consistent operation of StateFun andmeasure the latency accurately.
When comparing latencies, the different throughput rates at which
the latency is measured should be considered.

7 EXPERIMENT RESULTS
In this section, we go through the experimental evaluation of our
system that is split into four experiments with the following goals.
i) Determine the overhead that function coordination introduced
to StateFun (Section 7.1). ii) Compare between the two transaction
protocols with/out rollback operations (Section 7.2). iii) Evaluate
the system’s scalability (Section 7.3). iv) Perform a microbenchmark
with a fixed number of machines and a variable number of keys
and proportions of transfer operations (Section 7.4). In terms of
resources used, for (i, ii, iv), we used three 4-CPU StateFun workers,
and for (iii), each worker had 2 CPUs.

7.1 Coordination Overhead
In the first experiment, the performance of StateFun with coordina-
tor functions is compared against the original on non-transactional
workloads to see how much computational overhead the coordina-
tion logic has added. In Figure 4 we show the maximum throughput
achieved by the two systems for a varying number of keys. While

in Figure 5 we show the different latencies for the systems across
read and write workloads at different throughputs and numbers
of keys.
Throughput. The first observation we can make is that there is a
20% decrease in throughput in the case of 100 keys that plateaus to
10% as the number of keys increases. The decrease in performance is
due to the changed batching mechanism being more complex than
the original append-only approach by enforcing isolated function
invocations as part of a two-phase commit transaction. In addition,
coordinator functions keep track of transaction progress, which
incurs some overhead. Another observation is that there is no
noticeable throughput difference between workloads with only
read or write operations. The reason behind this behavior is that,
in StateFun, both operations need to access the remote function,
making the communication layer the bottleneck.
Latency. The latencies in Figure 5 are approximately 20% higher
for our version of StateFun for read workloads. However, as the
number of keys increases, the difference becomes smaller, towards
7%. This decrease in performance is due to the additional logic
required for the function coordination. Another interesting obser-
vation is the indifference in performance for write workloads. It
relates to StateFun requiring every read operation in a batch to be
serialized, which adds up over time for larger batches. In contrast,
for writes, only the last version needs to be serialized. Additionally,
this serialization happens at the remote function, which explains
why it does not affect throughput, but it does affect latency.

Finally, we consider the introduced overhead as a reasonably low
price to pay for having full-fledged transaction execution primitives
added to the system.

7.2 Sagas vs Two-Phase Commit
The second experiment shows a performance comparison between
the two implemented transaction protocols, their impact on the
maximum throughput in perfect conditions (Figure 6), and with
failures, measuring the impact of locking for the two-phase com-
mit (Figure 7) and of rollbacks (Figure 8) for the Saga protocols.
In these experiments, we set a certain proportion of the work-
load to be transfer operations and the remaining proportion is
equally shared between read and write operations. In our case,
each transfer operation causes three remote function invocations.
We do not include messages sent to detect deadlocks in the total
number of invocations when evaluating two-phase commit func-
tions. Therefore, the indicator is a lower bound. Finally, we used a
uniform key access distribution for these experiments, while in real-
world conditions, this will likely be skewed towards some popular
keys.

Figure 6 plots the achieved throughput against the absolute num-
ber of transfer operations in the workload with varying number
of keys given that the benchmark provided the accounts enough
balance to ensure all transactions succeeded. It also displays indica-
tors for the absolute amount of total internal function invocations,
taking into account additional internal invocations required for
transactions and the absolute amount of total remote function invo-
cations.We observe that Sagas performmuch better than two-phase
commit for few keys (100 and 2000). For two reasons: i) Sagas can
still benefit from the batching mechanism of StateFun since they

38



OS@29K CF@22K
100 keys

OS@22K OS@16K
5000 keys

CF@14K OS@14K
0

100

200

300

400

500

600

La
te

n
cy

 (
m

s)

read

write

(a) Mean

OS@29K CF@22K
100 keys

OS@22K OS@16K
5000 keys

CF@14K OS@14K
0

5

10

15

20

25

30

35

La
te

n
cy

 (
m

s)

read

write

(b) Median

OS@29K CF@22K
100 keys

OS@22K OS@16K
5000 keys

CF@14K OS@14K
0

500

1000

1500

2000

2500

3000

3500

4000

4500

La
te

n
cy

 (
m

s)

75 80 89 65 83 89

read

write

(c) 95th percentile

Figure 5: Graphs comparing latencies of original StateFun (OS) and StateFun with coordinator functions (CF) at different
throughputs for read-only and write-only workloads

0.
0

0.
05 0.

1

0.
25 0.

5

0.
75 1.

0

100 keys

0.
0

0.
05 0.

1

0.
25 0.

5

0.
75 1.

0

2000 keys

0.
0

0.
05 0.

1

0.
25 0.

5

0.
75 1.

0
5000 keys

0.
0

0.
05 0.

1

0.
25 0.

5

0.
75 1.

0

10000 keys
Proportion of transfer operations in the workload

0

5

10

15

20

25

30

M
ax

im
um

th
ro

ug
hp

ut
(K

re
qu

es
ts

/s
)

Total operations

transfer operations

Total function invocations

Total remote invocations

Sagas

Two-phase commit

Figure 6: Maximum throughput for workloads with increasing proportions of transfer operations in the workload

do not require isolation, and ii) the locking in two-phase commit
severely limits the throughput. However, it is also interesting that
for a higher number of keys (5000-10000), two-phase commit per-
forms comparably to Sagas even though it provides much stronger
guarantees. This is because there is less contention on a single
function, decreasing the effect of locking, while batching provides
no benefits, as also shown in Figure 4. A second observation from
Figure 6 is that the total function invocations still drop when the
proportion of transactions increases. The total function invocations
account for the additional messaging required to coordinate trans-
actions, leading to the overall throughput of workloads with a high
proportion of transfer operations being relatively low.
Locking Overhead. In Figure 7 we measure the behavior of lock-
ing and deadlocks that accompany the two-phase commit protocol.
The lock duration is measured between the point in time where
the function instance sends the response to the prepare message
and when it either receives a commit or abort message, sending
the next batch to the remote function. In Figure 7a, we see little
to no difference in the median across the different workloads but,
when the proportion of transfer operations is higher, the higher
percentiles increase significantly. Next, we want to measure the

deadlock frequency, and Figure 7c shows the number of deadlocks
against the total number of transfer operations in the workload.
As expected, there are no deadlocks for workloads on 5000 keys
since the contention is low. For 100 keys, we observe an increasing
number of deadlocks while the proportion of transfer operations
increase. However, the percentage of deadlocks across all transfer
operations is still small. Finally, Figure 7b shows the time it takes to
detect a deadlock, i.e., perform the Chandy-Misra-Haas algorithm.
We observe that the median of the time this takes is similar across
all workloads, and it also shows that as the amount of transfer
operations increase, so do the higher percentile times.
Rollback Overhead. Figure 8 shows the maximum throughput for
workloads with 50% and 100% transfer operations where different
proportions of transfer operations fail for Sagas and two-phase
commit coordinator functions. As expected, when using two-phase
commit, a rollback does not increase the load in the system be-
cause the coordinator function needs to send a second message
either way. Again, nothing out of the ordinary happened as the
proportion of transfer operations to be rolled back increased.
The throughput decreased as the protocol required additional com-
pensating messages to be sent in the system. However, with 5000

39



0.25 0.5 0.75 0.25 0.5 0.75
100 keys 5000 keys

Proportion of transfer operations in the workload

0

50

100

150

200

250

300
Ti

m
e 

(m
s)

(a) Time regular locks are held

0.25 0.5 0.75
100 keys

Proportion of transfer operations in the workload

0
50

100
150
200
250
300
350
400

Ti
m

e 
(m

s)

(b) Time to detect deadlocks

Keys Transfer Deadlocks /
proportion transfer ops

100 0.25 9/12014 (0.07%)
0.5 27/24107 (0.11%)
0.75 82/35875 (0.22%)

5000 0.25 0/60121
0.5 0/120089
0.75 0/179794

(c) Frequency of deadlocks

Figure 7: Details of locking behaviour for a workload for 100 and 5000 keys with various proportions of transfers without
rollbacks. The boxplots show the 5th and 95th percentiles.

0.
25 0.

5

0.
75

100 keys
0.5 transfer ops

0.
25 0.

5

0.
75

5000 keys

0.
0

0.
5

1.
0

100 keys
1.0 transfer ops

0.
0

0.
5

1.
0

5000 keys

Proportion of rollback operations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ax

im
um

 th
ro

ug
hp

ut
(K

 re
qu

es
ts

/s
)

3.8 3.7 3.6
3.8 3.7

3.5

2.2 2.1 2.0
2.2 2.1

1.8

Two-phase commit
Sagas

Figure 8: Throughput with different proportions of rolled
back transfer operations for workloads with 50% and 100%
transfer operations

keys, the difference is small at 50% transfer operations: 8% when
going from 25 to 75% rollbacks and increasing to 18% with 100%
transfer operations. This is larger than the 100 keys case that
can still leverage the batching mechanism of StateFun and limit
the performance drop to 10% in the worst case. Still, no matter the
decrease in performance due to the compensating actions of the
Saga protocol, it remains 20% faster than two-phase commit in the
worst-case scenario of 5000 keys and 75% rollbacks.

7.3 Scalability Comparison
In the last experiment, we evaluate the scalability of the proposed
system with coordinator functions. In Figure 9 we display the maxi-
mum throughput for both two-phase commit and Sagas at different
amounts of StateFun workers and different transaction proportions
in the workload. For Sagas, the scalability from 1 to 5 workers is
close to 90% throughout for all workloads. For two-phase commit,
the scalability from 1 to 5 workers starts at 87% at 10% transfer
operations and drops to 75% at 100% transfer operations.

The reason for the low decrease in scalability on both protocols
is that as workers increase, more traffic needs to go over the net-
work. In the Sagas’ case, the efficiency does not decrease across all
workloads for the same reasons as expressed in Section 7.2. Namely,
the system can still utilize batching, no locking is required, and

the number of messages is two times lower than the two-phase
commit protocol when all transactions succeed. On the other hand,
the 8% decrease in scalability in two-phase commit from 10% to
100% transfer operations is due to the protocol’s requirements
for locks, more messages, and the inability to use batching. Con-
sidering all the impeding factors, it still manages to achieve decent
efficiency with strong consistency guarantees in fully transactional
workloads.

7.4 Micro Benchmark
As a final experiment, we conduct a micro benchmark on the sys-
tem. At first, we keep the number of resources fixed, and then for
every transfer proportion and number of keys, we measure the
throughput at 80% load and the corresponding latency. By the re-
sults presented in Figure 10 we can see that for a use case with a
low number of keys, the Sagas beat by a large margin the two-phase
commit protocol in both throughput, with more than a 650% in-
crease in performance, and latency that is at least two times lower.
For a larger amount of keys, the contention becomes less of a prob-
lem. We observe a smaller difference between the two protocols at
around 40% on average for throughput and a stable difference in
latency around 20%. To conclude, Sagas seems to be the obvious
choice for a small number of keys or high contention; if the business
logic permits it. In any other case, the choice is mainly about the
consistency guarantee requirements since the difference is not that
significant.

8 RELATEDWORK
SFaaS has been a very active area in both research and the open-
source community. From the research community, the most relevant
work is Beldi [35] which, like AFT[30], builds on top of Amazon’s
AWS Lambda to add fault tolerance and transaction support allow-
ing for more complex state management. Their principal difference
is that Beldi’s execution environment is entirely serverless, while
AFT relies on external servers for transaction support. To make that
happen, Beldi uses atomic logging, extending Olive [27], to ensure
fault tolerance for read and write operations, with garbage col-
lection to manage the logs’ growth. Regarding transactions, Beldi
supports a variant of the two-phase commit protocol enforcing
strong consistency guarantees with wait-die deadlock prevention.

40



1 3 5

0.1 transfer ops
1 3 5

0.5 transfer ops
Sagas

1 3 5

1.0 transfer ops
1 3 5

0.1 transfer ops
1 3 5

0.5 transfer ops
Tpc

1 3 5

1.0 transfer ops

Number of StateFun workers

0

2

4

6

8

10

12

14

M
ax

im
um

th
ro

ug
hp

ut
(K

re
qu

es
ts

/s
)

2.8K

8.0K

12.5K

0.9K

2.6K

4.0K

0.5K
1.4K

2.3K 2.5K

7.2K

10.8K

0.7K

1.8K
2.5K

0.4K
1.0K

1.5K

Total operations

transfer operations

Figure 9: Maximum throughput for the system with 5000 keys for different numbers of StateFun workers for workloads with
different proportions of transfer operations

(a) Mean (b) Median (c) 95th percentile

100 keys 5000 keys
Sagas Tpc Sagas Tpc

0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0
11K 3K 2K 1.5K 0.4K 0.16K 9K 3K 2K 8K 2K 1.2K

(d) Throughputs at which latency was measured

Figure 10: Graph comparing latencies for Sagas and two-phase commit coordinator function for different keys and transaction
proportions in the workload at 80% of the respective maximum throughputs

Cloudburst with Hydrocache [34] provides causal consistency guar-
antees within the same DAG workflow backed by Anna [33], a key-
value state backend. The two most prominent open-source SFaaS
projects are Cloudstate6, based on stateful actors, and Apache Flink
StateFun, which is presented in detail in Section 3.2. In Cloudstate,
communication is allowed between different actors within the same
cluster and between user-defined functions over gRPC.

The most notable difference among these systems in terms of
programming model is state access. Both StateFun and Cloudstate
encapsulate state within a specific function instance. In contrast,
Cloudburst and Beldi allow any function access to any state stored
in Anna or DynamoDB, respectively. Regarding transactions, only
Beldi offers a programming model where the programmer writes

6https://cloudstate.io/

two markers (begin/end_tx), and every function invocation in be-
tween will execute as part of a transaction. Our contribution is a
programming model that supports transactions on StateFun with
the choice of strong or relaxed consistency guarantees as shown in
Section 4.1.

Furthermore, transactions on top of stream processing systems
have received some interest in the literature. In [6] the authors intro-
duce a transactional model over both data streams and traditional
tabular data. Following a similar model, in [19] the authors add guar-
antees for snapshot isolation and consistency across partitioned
state. Then TSpoon [2], an extension of FlowDB [1]), proposes a
data management system built on top of a stream processor that
supports transactions, giving the option of both strong and weak
transactional guarantees and, queryable state. Our work focuses

41

https://cloudstate.io/


on transactional workflows between generic stateful functions exe-
cuted on a serverless dataflow system.

The large variety of use cases and systems makes them difficult
to compare using a standardized benchmark. The related bench-
marks that could be used to evaluate SFaaS systems are the Yahoo!
Cloud Serving Benchmark (YCSB) [12] and the DeathStarBench [15].
Given that StateFun is based on Flink, which is a stream process-
ing system, a stream processing benchmark [24] would be another
alternative, but its workloads are not representative of those exe-
cuted by a SFaaS system. In addition, we did not consider TPC-C
[26] because it was created to test relational database management
systems, including transactions, and requiring many additional fea-
tures not present in SFaaS. We ultimately chose to develop and use
an extension of YCSB [13] that introduced explainable transactional
workloads, allowing for an easier interpretation of the results.

9 CONCLUSIONS
In this paper, we tackle the problem of supporting transactional
workflows across cloud applications on a serverless platform. This
problem is notorious in the microservices and cloud applications
landscape. In this paper, we introduced a programming model and
corresponding implementation for authoring workflows across
stateful serverless functions with configurable transactional guar-
antees. Developers can opt for a distributed transaction across func-
tions with strict atomicity and consistency guarantees or a Saga
workflow that provides eventual atomicity and consistency. These
complementary alternatives faithfully represent the requirements
of real-world use cases. We described our implementation on top of
Apache Flink StateFun, an open-source production-grade serverless
sFaaS platform, and evaluated our implementation on an extended
version of the YCSB benchmark that we developed in terms of a)
throughput and latency overhead against the original StateFun, b)
performance efficiency between distributed transactions and Saga
workflows, and c) scalability. We found that our transactional work-
flows add affordable overhead to the system around 10%, Sagas
significantly outperform distributed transactions on a scale of 15% –
34% depending on the amount of ongoing transactional workflows
in the system, and scalability manifests a factor of 90% for Sagas
compared to 75-87% for two-phase commit.
Acknowledgments. This work has been partially funded by the
H2020 project OpertusMundi No. 870228. Experiments were carried
out on the Dutch national e-infrastructure with the support of SURF
Cooperative.

REFERENCES
[1] Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola. 2017. Flowdb:

Integrating stream processing and consistent state management. In DEBS.
[2] Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola. 2020. TSpoon:

Transactions on a stream processor. In Journal of Parallel and Distributed Com-
puting.

[3] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. Stateful func-
tions as a service in action. In VLDB.

[4] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: fault-tolerant stream processing at internet scale. In VLDB.

[5] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured Stream-
ing: A Declarative API for Real-Time Applications in Apache Spark. In SIGMOD.

[6] Irina Botan, Peter M Fischer, Donald Kossmann, and Nesime Tatbul. 2012. Trans-
actional stream processing. In EDBT.

[7] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State Management in Apache Flink: Consistent Stateful Dis-
tributed Stream Processing. In VLDB.

[8] Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. Beyond Analytics: The Evolution of Stream Processing Systems. In SIG-
MOD.

[9] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink TM : Stream and Batch Processing in a
Single Engine. In IEEE Data Eng. Bull.

[10] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. 1983. Distributed Deadlock
Detection. In ACM Trans. Comput. Syst.

[11] Alvin Cheung, Natacha Crooks, Joseph M Hellerstein, and Matthew Milano. 2021.
New Directions in Cloud Programming. In CIDR.

[12] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In SOCC.

[13] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Röhm. 2014. YCSB+T:
Benchmarking web-scale transactional databases. In ICDE Workshops.

[14] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2014. Making State Explicit for Imperative Big Data Processing. In
USENIX ATC.

[15] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In ASPLOS.

[16] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In ACM Sigmod Record.
[17] Can Gencer, Marko Topolnik, Viliam Ďurina, Emin Demirci, Ensar B. Kahveci, Ali

Gürbüz Ondřej Lukáš, József Bartók, Grzegorz Gierlach, František Hartman, Ufuk
Yılmaz, Mehmet Doğan, Mohamed Mandouh, Marios Fragkoulis, and Asterios
Katsifodimos. 2021. Hazelcast Jet: Low-latency Stream Processing at the 99.99th
Percentile. In VLDB.

[18] Jonathan Goldstein, Ahmed Abdelhamid, Mike Barnett, Sebastian Burckhardt,
Badrish Chandramouli, Darren Gehring, Niel Lebeck, Christopher Meiklejohn,
Umar Farooq Minhas, Ryan Newton, et al. 2020. Ambrosia: Providing performant
virtual resiliency for distributed applications. In VLDB.

[19] Philipp Götze and Kai-Uwe Sattler. 2019. Snapshot Isolation for Transactional
Stream Processing.. In EDBT.

[20] J. N. Gray. 1978. Notes on data base operating systems. Springer Berlin Heidelberg.
[21] Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann Schleier-

Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless
Computing: One Step Forward, Two Steps Back. In CoRR.

[22] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. In arXiv.

[23] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-Store: A High-Performance,
Distributed Main Memory Transaction Processing System. In VLDB.

[24] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl.
2018. Benchmarking Distributed Stream Data Processing Systems. In ICDE.

[25] Asterios Katsifodimos and Marios Fragkoulis. 2019. Operational Stream Process-
ing: Towards Scalable and Consistent Event-Driven Applications. In EDBT.

[26] Francois Raab. 1993. TPC-C - The Standard Benchmark for Online transac-
tion Processing (OLTP). In The Benchmark Handbook, Jim Gray (Ed.). Morgan
Kaufmann.

[27] Srinath Setty, Chunzhi Su, Jacob R Lorch, Lidong Zhou, Hao Chen, Parveen Patel,
and Jinglei Ren. 2016. Realizing the fault-tolerance promise of cloud storage
using locks with intent. In OSDI.

[28] Pedro Silvestre, Marios Fragkoulis, Diomidis Spinellis, and Asterios Katsifodi-
mos. 2021. Clonos: Consistent Causal Recovery for Highly-Available Streaming
Dataflows. In SIGMOD.

[29] Swaminathan Sivasubramanian. 2012. Amazon dynamoDB: a seamlessly scalable
non-relational database service. In SIGMOD.

[30] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E Gonzalez,
Joseph M Hellerstein, and Jose M Faleiro. 2020. A fault-tolerance shim for
serverless computing. In EuroSys.

[31] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst.
In VLDB.

[32] Doug Terry. 2019. Transactions and Scalability in Cloud Databases—Can’t We
Have Both?. In USENIX Association.

[33] C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein. 2018. Anna: A KVS for Any Scale. In
ICDE.

[34] ChenggangWu, Vikram Sreekanti, and JosephM. Hellerstein. 2020. Transactional
Causal Consistency for Serverless Computing. In SIGMOD.

[35] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu. 2020. Fault-tolerant and transactional stateful serverless workflows. In OSDI.

42


	Abstract
	1 Introduction
	2 Transactions on Streaming Dataflows
	3 Preliminaries
	3.1 Transaction Model
	3.2 Apache Flink StateFun
	3.3 Assumptions & Requirements

	4 Approach Overview
	4.1 API
	4.2 Two-Phase Commit
	4.3 Sagas
	4.4 Extensions to Regular Functions

	5 Transactional Workflows
	5.1 Coordinator Functions
	5.2 Saga Coordination
	5.3 Two-phase Commit Coordination
	5.4 Deadlock Detection in Two-phase Commit

	6 Experimental Setup
	6.1 Benchmark Workload
	6.2 Evaluation metrics

	7 Experiment Results
	7.1 Coordination Overhead
	7.2 Sagas vs Two-Phase Commit
	7.3 Scalability Comparison
	7.4 Micro Benchmark

	8 Related Work
	9 Conclusions
	References

