
S2CE: A Hybrid Cloud and Edge Orchestrator for Mining
Exascale Distributed Streams

Nicolas Kourtellis
nicolas.kourtellis@telefonica.com

Telefonica Research
Barcelona, Spain

Herodotos Herodotou
herodotos.herodotou@cut.ac.cy
Cyprus University of Technology

Limassol, Cyprus

Maciej Grzenda
m.grzenda@mini.pw.edu.pl

Warsaw University of Technology
Warsaw, Poland

Piotr Wawrzyniak
800383@edu.p.lodz.pl

Lodz University of Technology
Lodz, Poland

Albert Bifet
albert.bifet@telecom-paris.fr
LTCI, Telecom Paris, IP-Paris

Paris, France

ABSTRACT
The explosive increase in volume, velocity, variety, and veracity
of data generated by distributed and heterogeneous nodes such as
IoT and other devices, continuously challenge the state of art in big
data processing platforms and mining techniques. Consequently, it
reveals an urgent need to address the ever-growing gap between
this expected exascale data generation and the extraction of insights
from these data. To address this need, this paper proposes Stream
to Cloud & Edge (S2CE), a first of its kind, optimized, multi-cloud
and edge orchestrator, easily configurable, scalable, and extensible.
S2CE will enable machine and deep learning over voluminous and
heterogeneous data streams running on hybrid cloud and edge
settings, while offering the necessary functionalities for practical
and scalable processing: data fusion and preprocessing, sampling
and synthetic stream generation, cloud and edge smart resource
management, and distributed processing.

CCS CONCEPTS
• Information systems → Data stream mining; • Computer
systems organization→Cloud computing; •Computingme-
thodologies→Machine learning.

KEYWORDS
data stream analysis, edge analytics, cloud analytics, stream mining,
machine and deep learning

1 INTRODUCTION
In the future Internet era, with hundreds of billions of devices,
principle factors dominating the continuous utility of the Internet
will be: 1) the massive population of devices and their intelligent
agents, 2) the big, fast, and diverse data produced from them and
their users, and 3) the need for large-scale, adaptive infrastructures
to process and extract knowledge from these exascale data in or-
der to help make critical, data-driven decisions. Intelligent agents
already exist in different forms, and are well embedded in various
ways in our everyday lives, either as passive data collectors, or
active producers. They are instantiated in self-driving vehicles [94],
phones [84], IoT devices [28], personal artificial intelligence (AI) as-
sistants [21], factory or health sensors [48], smart utilitymeters [24],
sensors in public transportation vehicles [76], chat bots [18], etc.
Such entities typically interface with centralized cloud processing
systems, responsible for collecting, analyzing, and visualizing the
data produced. Finally, through machine learning (ML) and deep
learning (DL), they can collect and learn new modalities of data,
build new models and functionalities, and operate autonomously,
making data-driven, critical decisions.

Human and smart agents’ activities already produce big data
workloads every day. Billions of messages per day are processed
by Facebook Messenger and WhatsApp [41], while the Internet
of Things (IoT) (∼75 billion objects by 2025 [81]) continuously
produces data without human intervention, leading to a dramatic
increase of data volume and velocity. These numbers are only ex-
pected to exponentially grow through time: billions of devices
(autonomous agents or user-devices) will generate big data continu-
ously, as a stream, characterized by at least 4 important dimensions:
Volume, Velocity, Variety and Veracity.

All these data are useful only when processed and modeled, and
learnings are extracted in time to be used for appropriate decisions.
Thus, in the last decade there has been a high demand for data min-
ing tools that allow data practitioners to compute complex ML mod-
els on big data streams produced by different sources and collected
in centralized locations for processing. To partially satisfy the need
for computation power to process these data, we have witnessed an
exponential growth of cloud computing, where the market itself is
expected to reach 150 billion USD by the early 2020s [56]. Various
vendors have introduced different types of clouds (private, public,
and hybrid), with heterogeneous resources available in each, vary-
ing with respect to computation (CPU/GPU), memory, and network

ar
X

iv
:2

00
7.

01
26

0v
1 

 [
cs

.D
C

] 
 2

 J
ul

 2
02

0



N. Kourtellis, et al.

S2CE
Telco Cloud

S2CE
Bus Company Cloud

S2CE
Smart City or
Public Cloud

O

O

O

Upstream
Downstream
S2CE edge node O

Figure 1: Examples of functionalities and usage of the S2CE platform ecosystem.

capacities. However, all such clouds are typically not interoperable
and do not facilitate data or computation portability between them.
Thus, customers are typically stuck in vendor lock-in, forced to rely
on data analytic services of a single cloud provider, leading to lost
opportunities in revenue and business from both sides (customers
and providers) [61]. Finally, customers who choose private clouds
are typically forced to deal with significant overhead in setting,
managing, and manually tuning cloud resources.

Furthermore, the current model of data collection and process-
ing is not sustainable. Billions of IoT/edge devices generate tens
of times more data than the 30+ million nodes across public and
private cloud centers [74]. This influx of data cannot be processed
in real time due to latency issues, lack of scalability in some cases,
limited bandwidth in wireless connections (e.g., rural or congested
areas), or compliance and privacy on data access, and does not
allow customers to make real-time, data-driven decisions for their
businesses. The cloud industry has recently moved into a hybrid
of cloud-edge computing, but this creates a whole set of new chal-
lenges regarding interoperability and APIs, managing heteroge-
neous capacities, workload offloading, data integrity and privacy,
storage decentralization, application restructuring, etc. [73].
Proposal. To address the aforementioned challenges, this paper
proposes Stream to Cloud & Edge (S2CE), a first of its kind, optimized,
multi-cloud and edge orchestrator. In fact, S2CE enables machine
and deep learning on big data streams using hybrid cloud and edge
resources, while offering the necessary functionalities for practical
and scalable event-based processing: data fusion and preprocessing,
sampling and synthetic data stream generation, cloud and edge
smart resource management, and distributed event processing.
Motivating scenarios. Future industrial settings can impose po-
tentially diverse and interdisciplinary constraints and requirements
to S2CE and its tools. However, its unique architectural design and
functionalities enable it to flexibly accommodate different future
use-case scenarios. Figure 1 illustrates some of these functionalities
and industrial setups. S2CE can consume big data from different
sources, destined for different types of analysis. These input data

can range from data-in-motion, such as events produced from sen-
sor and other readings from mobile or IoT edge devices, up to fully
processed data-at-rest or in-motion from other complete cloud plat-
forms. The distributed and parallel nature of S2CE’s components
allow the platform to scale gracefully to accommodate future exas-
cale volumes and velocities.

Depending on the capabilities of the source nodes, pre-models
could be executed at the edge to alleviate computing pressure from
the main cloud platform. Results can be consumed by end-users,
the company managing the S2CE platform, or shared and even
sold to other downstream companies. In fact, interconnection APIs
made available by the platform can enable such data to be shared
across companies, with appropriate payment schemes in place,
while respecting users’ privacy. For example, a bus company may
be collecting data to optimize bus routes and perform data-driven
business decisions, but can also sell such data to a City Council to
bootstrap their effort to optimize traffic, and reduce congestion and
pollution in the city. This crucial property will drive high business
innovation in the data sharing markets, as required and expected
by the emerging world Data Economy.
Contributions. With this paper, we make the following contribu-
tions in the domain of distributed, event-based processing systems:
• Analyze state-of-the-art stream data processingmethods, libraries,
and systems that are widely used in academia and industry.

• Identify needs and challenges faced by – as well as success criteria
expected by – the industrial and R&D sectors.

• Propose a novel, hybrid, cloud-edge architecture that can address
these challenges, with several key design objectives in mind.

• Discuss the innovation potential of the proposed architecture
across different dimensions.

2 STATE-OF-THE-ART ANALYSIS
The current state-of-the-art in the space of distributed data stream
processing systems is populous and covers various aspects of the
needs that the industry has from such systems. In the next para-
graphs, we briefly cover efforts from academia and industry to



S2CE: A Hybrid Cloud and Edge Orchestrator for Mining Exascale Distributed Streams

address such needs, and identify pending issues and gaps that a
new platform, such as our proposed S2CE, should address:

• Big data stream processing systems (Section 2.1)
• Cloud resource management and tuning (Section 2.2)
• Distributed stream processing at the edge (Section 2.3)
• Machine and deep learning over data streams (Section 2.4)
• Data transformation techniques (Section 2.5)

2.1 Big Data Stream Processing Systems
There are currently several open source Distributed Stream Process-
ing Engines (DSPE), such as Apache Storm [12], Apache Samza [10],
and Heron [54]. While they support developing ML applications,
they do not have dedicated ML libraries. Apache Spark [11], origi-
nally a batch processing framework, now offers streaming support
for micro-batches or continuous streams. Spark ML and MLLib are
Spark’s ML libraries with only simple linear classifiers and cluster-
ing algorithms for streaming, none of which are state of the art.
Also, StreamDM [82] is an Apache-licensed, open source software
for mining big data streams using Spark Streaming, and developed
by Huawei. Apache Flink [6] is a processing framework that focuses
on streaming tasks and arranges them in directed acyclic graphs,
similar to Spark’s topologies. Its ML library, FlinkML, supports
batch-based ML. Apache Apex [3] and Apache Beam [4] are unified
stream and batch processing engines containing basic ML libraries.

In the Cloud front, Google Cloud Dataflow [39] is a streaming
data processing system that can emulate batch processing and has
some support for ML. MS Azure [59] is Microsoft’s cloud system
performing both batch and stream processing. The batch processing
engine hasML algorithms, but the StreamingAnalytics tool can only
compute aggregation and statistics, without any other streaming
ML. AWS Kinesis [13] is Amazon’s offering for processing data
streams in real-time but, similar to MS Azure, it does not provide
native support for streaming ML.

Massive Online Analysis (MOA) [20] consists of well-known on-
line algorithms for streaming classification, clustering, and change
detection mechanisms. However, MOA only runs in a single ma-
chine and lacks high-performance integration interfaces (e.g., with
the widely-used Kafka), making it non-usable in industrial big data
deployments. Vowpal Wabbit [88] is a streaming ML framework
based on the perceptron algorithm with a specific focus on re-
inforcement learning and optimized for a multi-core single-node
setting. Jubatus [49] is a ML framework for stream mining that
establishes tight coupling between the ML library and the underly-
ing custom-built DSPE, which limits the framework’s applicability
and extensibility. Finally, Apache SAMOA [9] allows for distributed
computation of several ML algorithms over four DSPEs, namely
Storm, Flink, Samza, and Apex.

A future processing platform should take advantage of exist-
ing engines (be it pure streaming or hybrid) for executing a given
streaming ML task, while offering an API for extending ML algo-
rithms available and runnable on the platform. Table 1 summa-
rizes how the desired platform should differ from, and advance the
features and functionalities provided by the most relevant prior
research projects and large-scale data processing systems used by
the industry today.

Table 1: Feature comparison between the desired platform
and related large-scale data processing tools and systems.

× means no support

! means partial support

✓ means good/full support

Features/Capabilities A
pa
ch
e
St
or
m

A
pa
ch
e
Sa
m
za

A
pa
ch
e
Sp

ar
k

A
pa
ch
e
Fl
in
k

A
pa
ch
e
A
pe
x

A
pa
ch
e
Be

am
G
oo

gl
e
CD

M
S
A
zu
re

M
L

M
O
A

Vo
w
pa
lW

ab
bi
t

Ju
ba
tu
s

A
pa
ch
e
SA

M
O
A

D
es
ir
ed

Pl
at
fo
rm

Stream integration components ✓ ✓ ✓ ✓ ✓ ✓ × × × × ! ✓ ✓
Data preprocessing and fusion ! × ! ! × × × × ! ! ✓ ! ✓
Built-in synthetic data generator × × × × ! ! × × ! × × ! ✓
Stream-based machine learning ! ! ! ! ! ! ! ! ✓ ✓ ✓ ! ✓
Stream-based deep learning × × × × × × × × × × × × ✓
Resource management ✓ ! ✓ ✓ ✓ ✓ × × × × ! ! ✓
Distributed platform ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓
Open license (Apache preferred) ✓ ✓ ✓ ✓ ✓ ✓ × × ! ! ! ✓ ✓

2.2 Cloud Resource Management and Tuning
Cloud Compute and Storage services are traditionally utilized for
creating and provisioning Virtual Machines (VMs) to host batch
and stream processing applications [77]. This method offers a tight
control of the infrastructure where the software is running, but
comes at high cost of maintenance, as each machine has to be
provisioned individually. When it comes to scalability and opti-
mization, there is a strong need for careful capacity planning and
manual intervention even with automated tools [63]. To alleviate
these issues, the recent trend is to use containers instead of VMs as
the minimal computation unit in the cloud. Docker makes it easy
to generate and run such containers, while Docker Compose is a
lightweight solution for orchestrating them [33]. For big workloads,
Kubernetes [53] is a better fit for automating application deploy-
ment, scaling, and management. Kubernetes supports scaline up or
down a set of containers, but the decision has to be manually pro-
grammed. Also, when nodes fail or in overload cases, there is lack
of automated tools for infrastructure management in a Kubernetes
cluster.

Data management systems have grown in scale, complexity, and
number of installations [14]. Such systems contain 100s of config-
uration parameters and execute on 1000s of nodes that must be
properly configured and managed [42]. Hence, it is crucial to auto-
mate the process of resource management, as well as optimization
and tuning of application performance. The problem of resource
allocation deals mainly with gathering and assigning resources to
applications, while scheduling deals with allocating tasks to re-
sources [2]. Past works focused on different aspects of the problem:
[38] investigates the scheduling problem satisfying load balancing
and cost considerations; [68] employs design-time knowledge and
benchmarking method to deal with scheduling on heterogeneous
clusters; Re-Stream [83] focuses on energy-efficient resource sched-
uling; [93] addresses adaptive scheduling. Others focus on automat-
ically optimizing and tuning workloads using various techniques
such as cost-based (e.g., [43, 50, 87]) or ML-based (e.g., [16, 89, 90]).

Overall, a future platform should employ new and advanced
statistical and machine learning techniques for (i) understanding
application behavior and cloud resource usage, (ii) optimizing the



N. Kourtellis, et al.

provisioning of cloud resources for applications across different
providers in an automated and vendor-neutral manner, and (iii)
automatically tuning applications to increase performance and
meet SLAs.

2.3 Distributed Stream Processing at the Edge
Systems for distributed stream processing have traditionally been
designed to run on clusters or in the cloud. However, processing
all the data there can introduce latency delays due to data trans-
fer, which makes near real-time processing difficult to achieve. In
contrast, edge computing has become an attractive solution for
performing certain stream processing operations, and hence (i)
reduce end-to-end latency and communication costs, (ii) enable
services to react to events locally, or (iii) offload processing from
the cloud [45, 69]. Computing, storage, and network resources lo-
cated at the network edge, however, are more constrained than
those deployed in the cloud. While edge computing is often used
to reduce latency of delivering content to mobile end-users, the
emergence of application domains such as IoT require data events
to be treated locally, under short time delays.

The deployment of data stream processing applications onto
heterogeneous infrastructure has been proven to be NP-hard [17].
Moreover, moving operators from cloud to edge devices is chal-
lenging due to limitations of edge devices [30]. Existing work often
proposes placements strategies considering user intervention [69],
whereas many models do not support memory and communication
constraints [22]. Studies also consider all data sinks to be in the
cloud, with no feedback loop to actuators located at the edge [60].
Thus, no current solution covers scenarios involving smart cities,
precision agriculture, and smart homes comprising heterogeneous
sensors and actuators and time-constraint applications.

A future data stream processing service should be able to or-
chestrate the deployment of processing tasks and achieve resource
elasticity under highly distributed environments comprising edge
computing and clouds. A lightweight version of the platform should
be able to take advantage of existing solutions such as Apache Ed-
gent [5] in order to decentralize the online ML and mining towards
the edge of the ecosystem.

2.4 Machine/Deep Learning over Data Streams
To effectively deal with streaming data, models must be able to
adapt to patterns evolving over time by detecting changes in a
fast and accurate way [37]. Thus, shift detection mechanisms are
necessary in the context of devised ML methods, to render them
self-adaptive, similar to DDM [36], EDDM [15], and ADWIN [19].
Past work [26, 92] also demonstrates the need to better understand
the ML model structure and claim that such understanding is possi-
ble through informative visualization of the model structure. New
sophisticated visualization approaches are the Forest Floor [91],
interaction importance extraction [34], and the factorMerger [78].
Still the visualization of model structures is less mature than that
of raw data provided by popular BI tools such as Tableau [85] and
Power BI [65]. Hence, there is a strong need for designing and
implementing adaptive distributed algorithms for learning from
streaming data, novel tools for visualization of ML models, and

tools for tracing and monitoring the changes in the evolution of
streams and of the ML models.

Conventional deep networks do not allow for uncertainty rep-
resentation, which is key for addressing learning from streaming
data. Bayesian inference-based variants [31] offer a solution that
can account for two types of uncertainty: (i) heteroscedastic uncer-
tainty, which captures noise inherent in the observations due to
temporal irregularities in data sampling; and (ii) model uncertainty,
which accounts for uncertainty in the parameters. However, there
are two main issues with using Bayesian updating on data streams.
First, Bayesian inference computes posterior uncertainty under the
assumption that the model is correct, rather than being an approx-
imation. Second, existing approaches either explicitly model the
time series, at the cost of low inferential performance, or assume
that the data are exchangeable, i.e., that the underlying distribution
does not change over time.

To address these issues, a future machine learning stream pro-
cessing platform should adopt ideas fromBayesian non-parametrics,
such as population-driven posteriors [58], and introduce them into
the configuration of postulated Bayesian deep networks, and adopt
self-adaptive prior assumption mechanisms in the context of ap-
proximate variational inference. These adaptations should enable
the platform to build more complex, accurate ML and DL models.

2.5 Data Transformation Techniques
Raw data often need to be transformed before processing. Typical
architectures use Apache Flume [7] or Kafka [8] to first capture data
of interest from distributed sources, and then apply preprocessing
such as filtering and format conversion. Given the popularity of
these systems, interfaces and methods of Kafka and Flume should
be utilized for receiving input from multiple upstream sources and
producing output consumable by downstream units. For streams
with delayed labels, methods have been proposed such as (i) drift
detection applicable in stream classification [57], (ii) classification
method inspired by micro-clusters [80], and (iii) analysis of upper
loss bound of multiple expert system trained in nonstationary en-
vironment with verification latency [32]. Such methods are not
available in DSPEs libraries such as Spark ML or FlinkML.

Traditional dimensionality reduction techniques do not apply
for stream data as the processed data arrive at real-time and the
reduction must happen online, with no-multiple loop, batch-based
algorithms. [27] explored statistical inference methods for reducing
dimensions of streams using hashing projections to derive efficient
estimators of cardinality. [51] discussed different subspace tracking
methods for reducing dimension space in streams.

Studies like [1, 23] offered methods on how to produce synthetic
streams from real data by inferring underlying statistical distri-
butions. Such approaches do not work for streams with concept
drifts, and protecting privacy and confidentiality cannot be done
with fixed privacy preserving rules. Data generation allows altering
volume, velocity, variety, and proportion of records linked to indi-
vidual features, while maintaining inter-feature dependencies. Data
generators in [29, 67] allow for systematically producing large data
volumes. [20] offers several synthetic stream generators for bench-
marking ML methods, but without capabilities to scale properly to
produce large volume/velocity streams.



S2CE: A Hybrid Cloud and Edge Orchestrator for Mining Exascale Distributed Streams

Table 2: Expected industrial challenges and how the envisioned platform’s design should address each challenge.

Expected Industrial Challenge (Objective) How does S2CE address the challenge?

Heterogeneity (O1) Handling diverse types of cloud computing resources
Scalability (O1) Distributed and parallelized dynamic analytics for real-time learning
Data-in-motion and data-at-rest (O1) Processing data seamlessly at the same time without extra system overhead

Hybrid (central+edge) big data architectures (O2) Optimizing an efficient mixture of central and edge resources
Decentralization & edge (O2) Computing at edge for faster, more scalable, energy efficient processing

Data/AI/predictive/prescriptive analytics (O3) Using distributed deep and machine learning
Stream analytics frameworks & processing (O3) Minimal development effort, scalability, processing speed
Advanced business analytics (O3) Intelligence to empower companies for accurate, instant, data-driven decisions

Heterogeneity (O4) Handling diverse data, modeling, and input/output interfaces
Semantic interoperability (O4) Facilitating data and model exchange between vertical data silos
Data quality (O4) Providing curation methods for data filtering, quality assessment, improvement
Distributed trust infrastructures (O4) Managing data in anonymized and decentralized fashion

A future platform should provide instance data preparation for
ML, data fusion, methods to deal with evolving, incomplete, or
delayed data records and events, delayed labels, and time-spanned
joins of streams. Methods should also be explored based on new-
found advancements in DL, capturing hidden similarities within
streams, compressing more effectively data for efficient processing
downstream. Finally, such a platform should provide data genera-
tion process to (i) handle non-stationarity of data distributions due
to changes in the environment, (ii) scale appropriately to produce
required volume and velocity of data, (iii) handle concept drift and
skewness observed in real data.

3 INDUSTRIAL CHALLENGES & OBJECTIVES
In the next decade, the big data stream mining community will
face several industrial challenges, as summarized in Table 2. In
fact, these challenges drive particular industrial needs, for which a
future processing platform should adequately address. In the next
paragraphs, we first summarize four fundamental industrial needs
stemming from our analysis of the current state-of-the-art, as well
as success criteria that must be satisfied to address these needs.
Then, we outline the desired objectives that the future platform
must have by design, to fulfill these needs and success criteria.

3.1 Industrial Needs & Success Criteria
Industrial Needs. Based on the current challenges identified in
Section 2, and the expected landscape on data generation and pro-
cessing systems, we anticipate that the industry in data analytics
on cloud infrastructures will have the following four future needs:

N1: Computing platforms that can decentralize processing at the
source of data during generation (i.e., edge), to alleviate pressure
of computation and storage at cloud/centralized infrastructure.
N2: Computing platforms that use resources on heterogeneous
multi-clouds (public/private) for data mining.
N3: Computing platforms that can automatically self-tune and
orchestrate their resources for optimal resource allocation and use
between cloud and edge.
N4: Advanced machine and deep learning tools, capable of pre-
processing and analyzing exascale streams at real time, both at

the edge where data are produced and at the cloud where more
complex modeling can be done.

Success Criteria. A proposed platform can effectively address the
above needs if it satisfies at least the following criteria:
S1: The platform should scale appropriately and in a distributed
fashion to sustain throughput while processing exascale data
streams expected in the next 5-10 years.
S2: The platform should produce real-time data insights with mi-
crosecond updates, based on advanced machine and deep learning
models computed on incoming streams.
S3: The platform should shift workload between cloud and edge
resources seamlessly; increased latency and reduced model per-
formance should not violate agreed SLAs.
S4: The platform should integrate fully with current and future big
data processing systems, and facilitate easy adoption and usability
by big data practitioners and engineers.

3.2 Desired Platform Design Objectives
The envisioned platform must have key properties embedded in
its design to fulfill the following four main objectives, thus sat-
isfying the future industrial needs of big data stream processing.
Table 2 summarizes how each objective will address each industrial
challenge outlined earlier. In effect, the envisioned platform should:
Objective O1: Be a data processing platform capable of scaling in
a distributed fashion on cloud resources to ingest exascale streams,
and utilize smart cloud resource management and self-tuning for
reduced energy consumption, increased efficiency, easy configura-
tion and maintenance.
Objective O2: Be a hybrid cloud-edge architecture capable of scal-
ing in a decentralized fashion to preprocess big data streams on
edge nodes, by utilizing smart edge resource management for
workload migration from cloud to edge nodes, for energy effi-
ciency and reduced latency.
Objective O3: Provide the next generation of advanced stream
analytics, with distributed machine and deep learning (ML/DL), to
support predictive and prescriptive analytics of both data-at-rest
and data-in-motion in a unified manner, that empower business
intelligence in the new paradigm of Data Economy.



N. Kourtellis, et al.

Cloud/Edge Computing Infrastructure Interface

O
ut

pu
t I

nt
er

fa
ce

S2CE

Cloud Resource Allocation

App Optimization & Self-tuning

Cloud Management

Machine learning algorithms 

for streaming data

Adaptive Deep Learning for 

streaming data

Machine Learning

Data Fusion & Preprocessing

Model Interpretations, 

Evolution & Explainability

Transformations

Cloud-Edge Movement

Energy-efficient Edge

Edge Management

Multi-Access Edge

Data-in-

motion

Data-at-

rest

Flink Storm SamzaLocal …Spark

In
pu

t I
nt

er
fa

ce

Downstream DSPE 
Infrastructure

Downstream 
S2CE

Predictions

& Rules

Interpretable

Models

Performance

Indicators

Upstream 
S2CE

Upstream DSPE 
Infrastructure

Cloud/Engine Optimization 

True data stream generators 

Cloud
& Edge

Figure 2: Global architecture of the proposed S2CE platform.

Objective O4: Support tools for input/output data transformation
and synthetic data stream generation based on real-world statistic
distributions, for ensuring data quality, interoperability, and repli-
cability, while enabling the privacy-preserving and confidential
sharing of data.

4 PLATFORM DESIGN
Our proposed platform, S2CE, is a complete, cloud-edge orches-
tration platform, based on four key components for input/output
transformations, machine and deep learning processing, as well as
cloud and edge resource management and tuning. S2CE aims to
accelerate the building of tools that facilitate and enhance real-time
artificial intelligence over voluminous and heterogeneous streams
of data from IoT and other sources, in order to extract meaningful
knowledge and perform extreme-scale predictive analytics over
cloud and edge computing infrastructures. A key objective of this
platform is to provide the big data industry with standardized in-
terconnection methods and a stream mining framework within the
Apache big data ecosystem, to enhance and automate decision mak-
ing processes. In the next paragraphs, we provide an overview of
the architectural components needed to instantiate the envisioned
platform and its desired properties.

4.1 Architectural Components
The high-level vision is to build an integrated platform that in-
cludes: (i) input of data from different upstream infrastructures
(these can be other S2CE pipelines, edge components deployed on
top of IoT or mobile nodes to perform data preprocessing, etc.);
(ii) cloud- and edge-based modules combining ML algorithms and
stream computing infrastructure; and (iii) output modules for data
visualization or input to downstream pipelines. Figure 2 shows the
architecture of this conceptually novel platform with its various
key components described in detail below.

Input Interface: APIs providing standardized, secured intercon-
nections will allow the mixing of multi-input data streams. Apart
from the edge, such streams can come either directly from IoT-
related sensors, or data producers including stream platforms posi-
tioned upstream in the pipeline. These data can be of different types
(data-in-motion or data-at-rest), formats, and arriving at different
velocities and volumes. Due to its adaptive features described later,
the platform will be capable of consuming them without penalties
in performance (throughput, prediction accuracy, etc.), or security.
It will also be capable of fusing, preprocessing, aggregating, or
sampling diverse data.
Transformations: The data streams will feed the Transformations
component, with the following functionalities:

• Data preprocessing and fusion: Data can be processed and trans-
formed to improve the quality of data and learning. The transfor-
mations will be either instance- or attribute-based and will allow
the imputation of missing data, fusing, and normalizing when
multiple data types provided, and dealing with delayed data. This
module will allow handling of complex, multi-featured data, with
dimensionality reduction techniques either for machine learning
or modeling within synthetic stream generators.

• Visual exploration and model explanation: ML models built on
top of streams are difficult to monitor their structure and perfor-
mance. This module will contain methods for interpretable ML
that efficiently summarizes and visualizes drift, model structure,
evolution and performance.

• Changes in Online Models: Changes in characteristics of data or
models require human intervention and, if not addressed in time,
could lead to model performance degradation. This module will
also identify and visualize significant changes and trends in data
and model performance.

• Privacy-preserving stream generators: To test end-to-end platform
performance and usability, novel synthetic data generators will be



S2CE: A Hybrid Cloud and Edge Orchestrator for Mining Exascale Distributed Streams

developed based on game neural networks. These generators can
be used for sharing of synthetic data reflecting closed business
data while preserving data owners’ privacy, for benchmarking of
both ML methods and end-to-end applications under varied load.

Machine Learning: This component will take inputted data and
perform various algorithms for fast learning. The main challenge
will be that such algorithms need to be incremental, use a small
amount of time and memory for processing, and adapt to the
changes on the streams:

• ML streaming algorithms: The platformwill contain the necessary
abstractions (and a library) so that complex ML algorithms can
be implemented for classification, clustering, anomaly detection,
frequent pattern mining, and reinforcement learning, designed
to scale in a distributed fashion, using cloud deployments to
consume very large data streams in real time.

• Self-adaptive DL algorithms: DL (Deep Learning) algorithms that
evolve and adapt on the streamed data, in a self-enforced fashion,
will also be supported.

Cloud Resource Management: This component will manage
cloud resources efficiently, starting from the basicmechanics needed
for cloud resource provisioning, to algorithmic monitoring and dis-
tributed task management, to self-tuning streaming applications
automatically:

• Resource Allocation, Deployment &Monitoring: Fundamentalmeth-
ods will be deployed to allow S2CE to monitor and control avail-
able resources at different cloud providers and allocate resources
in them as needed, deploying computation tasks and monitoring
execution.

• Cloud/Engine Algorithm Management: Different cloud and com-
puting engine parameters impact streaming applications in differ-
ent ways. This module will be responsible for making initial and
recurring provisioning and configuration decisions to meet per-
formance, monetary budget, and/or energy efficiency objectives,
while employing the most appropriate cloud and computing en-
gine and, if needed, applying data transformation and reduction
strategy satisfying these objectives.

• Optimization & Self-Tuning of Cloud Applications: Given a ML
task to be performed on an input data stream, the platformwill be
able to self-tune using ML algorithms to pick the best streaming
engine and appropriate parameter settings for the execution of
the task.

Edge Resource Management: This component will manage edge
resources efficiently, by understanding what streaming computa-
tion can be offloaded from cloud to edge resources, where (i.e.,
to which edge nodes), when this offloading should be done (or
reversed), as well as how the offloading will be done:

• Energy-Efficient Edge Placement:Many streams are simple enough
to be preprocessed at their origin (edge) to reduce communica-
tion and processing costs at the main cloud platform. Sampling
and summarization algorithms will be applied at the edge (e.g.,
IoT nodes, mobile devices), while guaranteeing property preser-
vation of streams (e.g., via unbiased sampling), and dynamic
reconfiguration of processing services according to computing
and network availability of edge nodes.

• Multi-access Edge Computing (MEC): The platform will contain a
MEC module to enable collaborative deployment of applications
on the basis of telecommunication and computing resources
located closer to user equipment.

• Computation Movement between Cloud and Edge: Fundamental
blocks will be deployed to monitor utilization of the edge comput-
ing infrastructure and, in coordination with the Resource Alloca-
tion, Deployment & Monitoring module, enable ML streaming
algorithms to offload computation from cloud to edge resources
and vice versa.

Output Interface: This component will implement standardized,
secured interconnections to allow the algorithmic results from
the ML module to be outputted for downstream streaming engines,
S2CE instantiations, and even end-users to consume on their devices
in a seamless, secure way through a pipeline. S2CE will offer new
connectors and interfaces to create stream processing pipelines and
output its resulting predictions and models for other engines to use
downstream. The output data streams will be splittable to different
formats and substreams, depending on the utility of the overall
pipeline.
Computing Infrastructure Interface: This component will al-
low S2CE to operate on top of several well-established distributed
stream processing engines (DSPEs) such as Apache Flink, Storm,
and Spark Streaming. In addition, it will be extensible to work with
future DSPEs, exposing flexible APIs for the definition of new data
input and output types.

4.2 S2CE Performant Interconnections
The various modules of S2CE will be interconnected through two
standardized APIs, as shown in Figure 3. These interfaces will be
high-performant, secured, capable of exchanging voluminous and
fast, exascale data, as well as rich data, depending on the modules
consuming them.

The External API will be responsible for consuming data inputted
to the platform from various upstream sources (other platforms or
end-user devices), or outputted to downstream platforms and de-
vices for consumption (further analysis, visualization, and storage).
The Internal API will be responsible for allowing the various mod-
ules to interact and exchange raw data, tuned parameters, models,
etc. For example, the Cloud and Edge Management components
will tune the computing infrastructure for a given data stream and
model applied, and provide such tunings to the Input Interface
for adjusting sampling rates. Furthermore, the Transformations
and Machine Learning components will consume raw streams or
pre-models already built at the edge, to build final, full-blown ML
models. Performance metrics will be used to monitor and adjust
resource consumption both at the cloud and edge infrastructure.

These APIs allow S2CE to have the following key features with
respect to big data mining systems:
• High extensibility and flexibility to accommodate future hetero-
geneous data sources and pools, distributed computing platforms,
ML algorithms, tuning algorithms, etc.

• Scalability to consume data from multiple sources with extreme
volumes and velocity.

• Federated-ness for connecting and building big data stream pipe-
lines across different clouds and edge.



N. Kourtellis, et al.

Data 
Input

Transformations &
Machine Learning

Edge 
Management

Data
Output

Cloud & Edge Computing Infrastructure

External API
Internal API

Transfor
mations

Cloud & Edge 
Management

Machine 
Learning

Transfor
mations

Transfor
mations

Flink Storm Spark StormT1 T2 T3 T4
T5

Cloud 
Management

Allocation Allocation
Performance metrics

Movement

Figure 3: APIs and component interconnection. The components can run in one S2CE instance (left), ormultiple S2CE instances
and on different DSPE systems (right).

• Standardized interoperability with other stream or batch plat-
forms, for faster and efficient data sharing.

5 INNOVATION POTENTIAL
The S2CE platform will enable the execution of machine and deep
learning algorithms on a variety of existing (and future) cloud
providers and DSPEs that are widely used in industry. This sec-
tion outlines the key innovation potential of the S2CE platform in
various domains.

5.1 Cloud Provisioning and Orchestration
The cloud landscape is becoming quite complex with different cloud
providers and offerings that cover the full spectrum from IaaS to
PaaS and SaaS with several intermediate solutions [35, 55]. Ven-
dor choosing and careful capacity planning is nowadays inevitable,
given the different prices, APIs, tools, and services that may vary
from provider to provider [70]. Nowadays, this process is neces-
sary given that once a provider is chosen, many workflows such
as provisioning, fault tolerance, development, DevOps, QA, etc.,
are consequently tied to the offerings of the chosen provider. In
fact, all the aforementioned dependencies make the process of
changing providers or even collaboration of processes between
different providers a very difficult task [61]. It is then necessary
to develop solutions that may encompass the provisioning of re-
sources and orchestration of software across different providers
in a vendor-neutral manner. That way, splitting processes across
several providers or even changing from one to another, becomes a
much easier task.

When it comes to data processing and ML, it is even more impor-
tant, given the myriad of software that is available and may or may
not collide with the different managed solutions available in the
major cloud providers such as Amazon, Microsoft, and Google [70].
Many enterprises might go for a single product based on a single
platform just because of the convenience of such managed solu-
tions, getting into a game of vendor lock-in that makes it difficult
to migrate to any other, or even to run some tasks on premises [61].
S2CE can be easy to install and manage, as well as optimize re-
source allocation, software deployment, and runtime tuning across
different cloud providers in a vendor-agnostic way.

5.2 Edge Preprocessing and Movement
Given the heterogeneous nature of the Edge, resource optimization
and task orchestration is an issue that is difficult to tackle in a
single way [72, 86, 95]. Advances in execution paradigms such

as containers and container-orchestration software may make it
easier [44], but given the difference in architecture and computation
or storage capacity that any node in an Edge infrastructure might
have, task placement strategies and resource monitoring become
essential tasks to guarantee the correct execution of preprocessing
software [30, 75, 79].

Evenwith that, especially in streaming data analytics, the volume
of ingestion might grow unexpectedly, overloading nodes that were
not meant to deal with such a volume of incoming data. In some
cases, scalability can be achieved when underloaded nodes can
collaborate in distributed tasks, or even between different edge
infrastructures closely collocated. However, there is a point inwhich
a mechanism is needed to offload this workload to the cloud, where
computation power might grow as needed. S2CE will provide task
placement mechanisms and algorithms across edge nodes, as well
as offloading methods for tasks to be migrated to the cloud from
edge, seamlessly and without impacting performance or latency
beyond agreed SLAs.

5.3 Data-driven Decisions based on Streams
Big Data projects, to be truly beneficial for organizations, have to
provide not only data storage and retrieval capabilities, but also
support for data-driven business decisions, inevitably necessitating
data analytics tools [25, 64]. In the case of big data resources, due to
little or no a-priori knowledge on inter-dependencies present in the
data, ML techniques are of particular use. In a traditional setting,
they are executed on a regular basis in batch mode. However, in
many industry cases nowadays, a tool is needed for advanced ana-
lytics on data streams coupled with ML, and performed in near-real
time. Thus, it is of no surprise that this need for online analyt-
ics raised the interest in stream processing engines from major
industrial players [40] (e.g., IBM, Twitter, LinkedIn, Google, Ama-
zon). S2CE will provide exactly such analytics to support exascale
data-driven decisions on business and innovation.

5.4 Innovation Exchange with Apache
Ecosystem’s Open Source

The big data interest was followed by a rapid development of DSPEs,
such as Apache Storm, Samza, and more recently Apache Spark and
Apache Flink, which are the dominating solutions in the area of
online analytics. These open source products achieved major pop-
ularity, exceeding the popularity of commercial, closed solutions.
This is clearly confirmed by the offerings of data processing ven-
dors such as Oracle providing its Oracle Table Access for Hadoop



S2CE: A Hybrid Cloud and Edge Orchestrator for Mining Exascale Distributed Streams

Big data stream processing support

N
u

m
b

e
r 

o
f 

im
p

le
m

e
n

te
d

M
L

 a
lg

o
ri

th
m

s

S2CE

Figure 4: S2CE positioning in the big data stream processing
ecosystem.

and Spark components [62]. Other vendors, such as SAS Institute
and IBM, developed their own stream-related offerings, such as
the SAS Cloud Analytics [71] and IBM Streams [46], respectively.
Some of these systems can or even are advised to be blended with
open source ML solutions including Spark MLLib [47]. In addition,
commercial offerings from Cloudera and other companies integrat-
ing big data projects into comprehensive platforms have provided
support and integration with these dominant streaming engines
and analytics.

The risks introduced by developing new solutions, and major
costs of big data projects arising from hardware infrastructure are
commonly observed. Hence, many companies build their big data
solutions based on open source platforms yielding no license cost, or
costs for core development of the tools. This is clearly confirmed by
the industrial success of Apache big data projects. Naturally, S2CE
must integrate organically with the Apache ecosystem projects as a
next generation big data solution, and enable innovation exchange
with existing and future industrial solutions.

5.5 Unifying Efforts for a Stream ML Library
Many real life big data use cases demand the inclusion of ML tech-
niques in data processing. This requirement was partly answered
by open-source libraries extending the functionality of Apache
Storm, Spark, and Flink [52]. Unfortunately, major deficiencies of
this approach can be already observed. The effort of the open source
community is fragmented across different DSPE projects. As the
popularity of DSPEs changes significantly over relatively short
time periods depending on industrial support, there is a risk that
none of the ML libraries accompanying nowadays DSPEs will reach
its maturity, before DSPEs are replaced by a competing and more
complete framework [66]. To the point, the industry focus already
gradually moved from Apache Storm to Spark, and lately, DSPEs
such as Flink are appreciated and significant developing effort is
applied. Importantly, none of the ML libraries accompanying these
DSPEs provide key stream mining techniques developed in the re-
search community such as classification, clustering, or regression.

Hence, on the one hand, there is a growing gap between the
constantly expanding portfolio of stream mining techniques in
research projects such as MOA [20], and the limited availability
of them in DSPEs adopted by the big data industry. On the other
hand, projects such as MOA include extensive implementations of
state-of-the-art stream ML techniques. However, being a research

project, MOA does not include distributed processing support and
integration interfaces or supervision interfaces, which are manda-
tory for industrial use. S2CE envisions to unify efforts in the open
source space to produce a comprehensive ML library for big data
stream mining (see Figure 4 for a comparison).

6 CONCLUDING REMARKS
This paper makes the case for the need of an exascale data stream
mining platform, that can address the current and future indus-
trial challenges in big data processing. Such a platform must scale
seamlessly between available cloud and edge infrastructures to
tackle the ever increasing volume, velocity, variety, and veracity
of data expected in the future, and can compute complex machine
and deep learning models needed for future, data-driven business
decisions. The paper proposes an architectural design for S2CE, a
platform that addresses all these needs and industrial challenges in
a one-stop-shop solution.

S2CE is a first of its kind, optimized, multi-cloud and edge orches-
trator, easily configurable, scalable, and extensible, while utilizing
cloud and edge smart resource management and distributed pro-
cessing. S2CE does not need to be linked to a single cloud provider
or DSPE. It has been inspired by the various big data projects in
the Apache ecosystem.

The author team has already started the design and development
of the needed components, by bootstrapping on functionalities of
Apache SAMOA. S2CE will be developed and continuously refined,
irrespective of evolving popularities of existing and future DSPEs
and cloud infrastructures.

Moreover, S2CE aims to bridge the gap between industry-selected
solutions and research projects by offering innovative approaches
to stream mining through:

(1) The ability to optimize the use of available cloud and edge re-
sources by deploying stream mining tasks using existing DSPE
clusters preferred by individual organizations. S2CE can go be-
yond current approaches by automatically tuning the platform,
the available DSPEs and cloud (public, private, or hybrid) infras-
tructure, breaking down the streaming processing task at hand
into subcomponents for efficient execution and minimization
of computing resources by offloading essential preprocessing to
the edge. Importantly, this will let the research community to
contribute to the unified ML library of S2CE, rather than multi-
ple native libraries of different DSPEs. Moreover, the platform
will include algorithms estimating the performance and DSPE
settings suitable for ML.

(2) Extensive set of high-impact tools on the ultimate results of
ML process, including: (i) stream sampling methods to control
the data volume used to update ML models in order to prevent
performance issues; (ii) synthetic stream generation methods to
preserve privacy and confidentiality of true data, while unlock-
ing the value of otherwise frequently not used or available data
streams; (iii) a visualization module revealing inference rules
present in ML models, making them transparent and promoting
business use of stream mining via increased understanding of
the performance of models.

(3) The adoption of existing industry standards. In particular, the
platform can provide integration components with popular



N. Kourtellis, et al.

systems such as Kafka, making it possible to create efficient and
high throughput data pipelines using S2CE. The S2CE should
be provided together with thoroughly designed integration
patterns for using S2CE with third-party modules such as data
storage platforms (e.g., Apache HBase), data ingestion (e.g.,
Apache Flume), and DSPEs (e.g., Apache Storm, Apache Flink).
Finally, S2CE can be coupled with extensive monitoring and
management abilities, easing S2CE adoption across companies.

In conclusion, we envision S2CE to become the go-to, one-stop-shop
platform for mining of big data streams over cloud and edge, and
adopted by big data practitioners for its easy pipeline integration
and management, and extended by machine learning experts.

REFERENCES
[1] Jason W Anderson, KE Kennedy, Linh B Ngo, Andre Luckow, and Amy W Apon.

2014. Synthetic Data Generation for the Internet of Things. In IEEE International
Conference on Big Data (Big Data). IEEE, 171–176.

[2] VP Anuradha and D Sumathi. 2014. A Survey on Resource Allocation Strategies
in Cloud Computing. In International Conference on Information Communication
and Embedded Systems (ICICES). IEEE, 1–7.

[3] Apache Apex 2019. https://apex.apache.org/.
[4] Apache Beam 2019. https://beam.apache.org/.
[5] Apache Edgent 2019. https://edgent.apache.org/.
[6] Apache Flink 2019. https://flink.apache.org/.
[7] Apache Flume 2019. https://flume.apache.org/.
[8] Apache Kafka 2019. https://kafka.apache.org/.
[9] Apache Samoa 2019. https://samoa.incubator.apache.org/.
[10] Apache Samza 2019. https://samza.apache.org/.
[11] Apache Spark 2019. https://spark.apache.org/.
[12] Apache Storm 2019. https://storm.apache.org/.
[13] AWS Kinesis 2019. https://aws.amazon.com/kinesis/.
[14] Shivnath Babu and Herodotos Herodotou. 2013. Massively Parallel Databases and

MapReduce Systems. Foundations and Trends® in Databases 5, 1 (2013), 1–104.
[15] Manuel Baena-Garcıa, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, R Gavalda,

and R Morales-Bueno. 2006. Early Drift Detection Method. In Fourth International
Workshop on Knowledge Discovery from Data Streams. 77–86.

[16] Zhendong Bei, Zhibin Yu, Huiling Zhang, Wen Xiong, Chengzhong Xu, Lieven
Eeckhout, and Shengzhong Feng. 2016. RFHOC: A Random-Forest Approach
to Auto-Tuning Hadoop’s Configuration. IEEE Transactions on Parallel and
Distributed Systems (TPDS) 27, 5 (2016), 1470–1483.

[17] Anne Benoit, Alexandru Dobrila, Jean-Marc Nicod, and Laurent Philippe. 2013.
Scheduling Linear Chain Streaming Applications on Heterogeneous Systems
with Failures. Future Generation Computer Systems 29, 5 (2013), 1140–1151.

[18] Morgan Benton et al. 2017. Quality in Chatbots and Intelligent Conversational
Agents. Software Quality Professional Magazine 19, 3 (2017).

[19] Albert Bifet, Eibe Frank, Geoffrey Holmes, and Bernhard Pfahringer. 2010. Accu-
rate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using
Stacking. In Proceedings of 2nd Asian Conference on Machine Learning. 225–240.

[20] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010. Moa:
Massive online analysis. Journal of Machine Learning Research 11, May (2010),
1601–1604.

[21] Nil Goksel Canbek and Mehmet Emin Mutlu. 2016. On the Track of Artificial
Intelligence: Learning with Intelligent Personal Assistants. Journal of Human
Sciences 13, 1 (2016), 592–601.

[22] Bin Cheng, Apostolos Papageorgiou, and Martin Bauer. 2016. Geelytics: Enabling
on-demand Edge Analytics over Scoped Data Sources. In IEEE International
Congress on Big Data (BigData Congress). IEEE, 101–108.

[23] Peter Christen and Agus Pudjijono. 2009. Accurate Synthetic Generation of
Realistic Personal Information. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 507–514.

[24] Mehmet Hazar Cintuglu, Osama A Mohammed, Kemal Akkaya, and A Selcuk
Uluagac. 2016. A Survey on Smart Grid Cyber-physical System Testbeds. IEEE
Communications Surveys & Tutorials 19, 1 (2016), 446–464.

[25] Cloud Customer Architecture for Big Data and Analytics V2.0
2019. https://www.omg.org/cloud/deliverables/CSCC-Cloud-Customer-
Architecture-for-Big-Data-and-Analytics.pdf.

[26] Paulo Cortez and Mark J Embrechts. 2013. Using Sensitivity Analysis and Visual-
ization Techniques to Open Black Box Data Mining Models. Information Sciences
225 (2013), 1–17.

[27] Ioana Ada Cosma. 2009. Dimension Reduction of Streaming Data via Random
Projections. Ph.D. Dissertation. Oxford University, UK.

[28] Rory Coulter and Lei Pan. 2018. Intelligent Agents Defending for an IoT World:
A Review. Computers & Security 73 (2018), 439–458.

[29] DataGenerator 2019. https://finraos.github.io/DataGenerator/.
[30] Marcos Dias de Assuncao, Alexandre da Silva Veith, and Rajkumar Buyya. 2018.

Distributed Data Stream Processing and Edge Computing: A Survey on Resource
Elasticity and Future Directions. Journal of Network and Computer Applications
103 (2018), 1–17.

[31] Armen Der Kiureghian and Ove Ditlevsen. 2009. Aleatory or Epistemic? Does it
Matter? Structural Safety 31, 2 (2009), 105–112.

[32] Gregory Ditzler, Gail Rosen, and Robi Polikar. 2014. Domain Adaptation Bounds
for Multiple Expert Systems under Concept Drift. In 2014 International Joint
Conference on Neural Networks (IJCNN). IEEE, 595–601.

[33] Docker: Enterprise Container Platform 2019. https://www.docker.com/.
[34] John Ehrlinger. 2015. ggRandomForests: Visually Exploring a Random Forest for

Regression. arXiv preprint arXiv:1501.07196 (2015).
[35] Ayman Gabarin. Overcoming Cloud Complexity 2019. https://www.

comparethecloud.net/articles/overcoming-cloud-complexity.
[36] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. 2004. Learning

with Drift Detection. In Brazilian Symposium on Artificial Intelligence. Springer,
286–295.

[37] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A Survey on Concept Drift Adaptation. ACM Computing
Surveys (CSUR) 46, 4 (2014), 1–44.

[38] Javad Ghaderi, Sanjay Shakkottai, and Rayadurgam Srikant. 2015. Scheduling
Storms and Streams in the Cloud. ACM SIGMETRICS Performance Evaluation
Review 43, 1 (2015), 439–440.

[39] Google Cloud Dataflow 2019. https://cloud.google.com/dataflow/.
[40] Lawrence EHecht. Vendors Compete for Users of Stream Processing Technologies

2019. https://thenewstack.io/vendors-compete-for-users-of-stream-processing-
technologies/.

[41] Jessi Hempel. This Is the Smartest Thing Facebook Ever Did 2016. https://
backchannel.com/this-is-the-smartest-thing-facebook-ever-did-e25404b79c77.

[42] Herodotos Herodotou. 2017. Business Intelligence and Analytics: Big Systems for
Big Data. In Analytics, Innovation, and Excellence-Driven Enterprise Sustainability,
Elias G. Carayannis and Stavros Sindakis (Eds.). Palgrave Macmillan US, 7–49.

[43] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-tuning System
for Big Data Analytics. In 5th Biennial Conference on Innovative Data Systems
Research (CIDR). 261–272.

[44] S. Hoque, M. S. d. Brito, A. Willner, O. Keil, and T. Magedanz. 2017. Towards
Container Orchestration in Fog Computing Infrastructures. In IEEE 41st Annual
Computer Software and Applications Conference (COMPSAC), Vol. 2. 294–299.

[45] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. 2015.
Mobile Edge Computing - A Key Technology Towards 5G. White paper 11. ETSI.
1–16 pages.

[46] IBM Streaming Analytics for IBM Cloud 2019. https://www.ibm.com/cloud/
streaming-analytics.

[47] IBM Streams 2019. https://ibmstreams.github.io/.
[48] Sajid Iqbal, Wasif Altaf, Muhammad Aslam, Waqar Mahmood, and Muhammad

Usman Ghani Khan. 2016. Application of Intelligent Agents in Health-care.
Artificial Intelligence Review 46, 1 (2016), 83–112.

[49] Jubatus: Distributed Online Machine Learning Framework 2019. http://jubat.us/
en/.

[50] Faria Kalim, Thomas Cooper, Huijun Wu, Yao Li, Ning Wang, Neng Lu, Maosong
Fu, Xiaoyao Qian, Hao Luo, Da Cheng, et al. 2019. Caladrius: A Performance
Modelling Service for Distributed Stream Processing Systems. In 35th IEEE Inter-
national Conference on Data Engineering (ICDE). IEEE, 1886–1897.

[51] Chandrika Kamath, I Gorton, and DK Gracio. 2013. Dimension Reduction for
Streaming Data. In Data-Intensive Computing: Architectures, Algorithms, and
Applications. Cambridge University Press, 124–156.

[52] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking Distributed Stream Data
Processing Systems. In IEEE 34th International Conference on Data Engineering
(ICDE). 1507–1518.

[53] Kubernetes: Production-Grade Container Orchestration 2019. https://kubernetes.
io/.

[54] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In Proc. of the 2015 ACM SIGMOD
Intl. Conf. on Management of Data. ACM, 239–250.

[55] David Linthicum. How to Deal with Cloud Complexity 2019. https://www.
infoworld.com/article/3409089/how-to-deal-with-cloud-complexity.html.

[56] Shanhong Liu. Size of the Cloud Computing and Hosting Market Worldwide
2018. https://www.statista.com/statistics/500541/worldwide-hosting-and-cloud-
computing-market/.

[57] E. Lughofer, E. Weigl, W. Heidl, C. Eitzinger, and T. Radauer. 2015. Drift De-
tection in Data Stream Classification without Fully Labelled Instances. In IEEE
International Conference on Evolving and Adaptive Intelligent Systems (EAIS). IEEE,
1–8.

https://apex.apache.org/
https://beam.apache.org/
https://edgent.apache.org/
https://flink.apache.org/
https://flume.apache.org/
https://kafka.apache.org/
https://samoa.incubator.apache.org/
https://samza.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://aws.amazon.com/kinesis/
https://www.omg.org/cloud/deliverables/CSCC-Cloud-Customer-Architecture-for-Big-Data-and-Analytics.pdf
https://www.omg.org/cloud/deliverables/CSCC-Cloud-Customer-Architecture-for-Big-Data-and-Analytics.pdf
https://finraos.github.io/DataGenerator/
https://www.docker.com/
https://www.comparethecloud.net/articles/overcoming-cloud-complexity
https://www.comparethecloud.net/articles/overcoming-cloud-complexity
https://cloud.google.com/dataflow/
https://thenewstack.io/vendors-compete-for-users-of-stream-processing-technologies/
https://thenewstack.io/vendors-compete-for-users-of-stream-processing-technologies/
https://backchannel.com/this-is-the-smartest-thing-facebook-ever-did-e25404b79c77
https://backchannel.com/this-is-the-smartest-thing-facebook-ever-did-e25404b79c77
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://ibmstreams.github.io/
http://jubat.us/en/
http://jubat.us/en/
https://kubernetes.io/
https://kubernetes.io/
https://www.infoworld.com/article/3409089/how-to-deal-with-cloud-complexity.html
https://www.infoworld.com/article/3409089/how-to-deal-with-cloud-complexity.html
https://www.statista.com/statistics/500541/worldwide-hosting-and-cloud-computing-market/
https://www.statista.com/statistics/500541/worldwide-hosting-and-cloud-computing-market/


S2CE: A Hybrid Cloud and Edge Orchestrator for Mining Exascale Distributed Streams

[58] James McInerney, Rajesh Ranganath, and David Blei. 2015. The Population
Posterior and Bayesian Modeling on Streams. In Advances in Neural Information
Processing Systems. 1153–1161.

[59] Microsoft Azure 2019. https://azure.microsoft.com/en-us/.
[60] Lina Ni, Jinquan Zhang, Changjun Jiang, Chungang Yan, and Kan Yu. 2017.

Resource Allocation Strategy in Fog Computing based on Priced Timed Petri
Nets. IEEE Internet of Things Journal 4, 5 (2017), 1216–1228.

[61] Justice Opara-Martins, Reza Sahandi, and Feng Tian. 2016. Critical analysis
of vendor lock-in and its impact on cloud computing migration: a business
perspective. Journal of Cloud Computing 5, 4 (2016).

[62] Oracle Table Access for Hadoop and Spark (OTA4H) 2018. https://docs.oracle.com/
bigdata/bda45/BIGUG/ota4h.htm#BIGUG76783.

[63] René Peinl, Florian Holzschuher, and Florian Pfitzer. 2016. Docker Cluster Man-
agement for the Cloud - Survey Results and own Solution. Journal of Grid
Computing 14, 2 (2016), 265–282.

[64] Darren Perucci. Cloud Computing + Data Analytics = Instant Business Intelli-
gence 2017. https://dzone.com/articles/cloud-computing-data-analytics-instant-
business-in.

[65] Power BI 2019. https://powerbi.microsoft.com/en-us/.
[66] Chandan Prakash. Spark Streaming vs Flink vs Storm vs Kafka

Streams vs Samza : Choose Your Stream Processing Framework 2018.
https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-
vs-kafka-streams-vs-samza-choose-your-stream-processing-91ea3f04675b.

[67] Tilmann Rabl, Michael Frank, Hatem Mousselly Sergieh, and Harald Kosch. 2010.
A Data Generator for Cloud-scale Benchmarking. In Technology Conference on
Performance Evaluation and Benchmarking. Springer, 41–56.

[68] Marek Rychly et al. 2014. Scheduling Decisions in Stream Processing on Hetero-
geneous Clusters. In Eighth International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS). IEEE, 614–619.

[69] Hooman Peiro Sajjad, Ken Danniswara, Ahmad Al-Shishtawy, and Vladimir
Vlassov. 2016. Spanedge: Towards Unifying Stream Processing over Central and
Near-the-edge Data Centers. In 2016 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 168–178.

[70] Mark Samuels. How to Choose your Cloud Provider: AWS, Google or Microsoft?
2018. https://www.zdnet.com/article/how-to-choose-your-cloud-provider-aws-
google-or-microsoft/.

[71] SAS Cloud Analytics 2019. https://www.sas.com/en_us/solutions/cloud-analytics.
html.

[72] D. SchÃďfer, J. Edinger, S. VanSyckel, J. M. Paluska, and C. Becker. 2016. Tasklets:
Overcoming Heterogeneity in Distributed Computing Systems. In IEEE 36th
International Conference on Distributed Computing Systems Workshops (ICDCSW).
156–161.

[73] Jim Scott. How Orchestration, Edge Computing, and Serverless Computing
Impact Your Cloud Strategy 2018. https://mapr.com/blog/how-orchestration-
edge-computing-and-serverless-computing-impact-your-cloud-strategy/.

[74] Arun Shankar. Nutanix Revamps Platform for Multi-cloud Orchestration and IoT
Edge Management 2018. http://www.biznesstransform.com/nutanix-revamps-
platform-for-multi-cloud-orchestration-and-iot-edge-management/.

[75] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge Computing: Vision and
Challenges. IEEE Internet of Things Journal 3, 5 (Oct 2016), 637–646.

[76] Bhupendra Singh and Ankit Gupta. 2015. Recent Trends in Intelligent Trans-
portation Systems: A Review. Journal of Transport Literature 9, 2 (2015), 30–34.

[77] Sukhpal Singh and Inderveer Chana. 2016. Cloud Resource Provisioning: Survey,
Status and Future Research Directions. Knowledge and Information Systems 49, 3
(2016), 1005–1069.

[78] Agnieszka Sitko and Przemyslaw Biecek. 2017. The Merging Path Plot: Adap-
tive Fusing of k-groups with Likelihood-based Model Selection. arXiv preprint
arXiv:1709.04412 (2017).

[79] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar. 2017. Towards QoS-Aware
Fog Service Placement. In IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). 89–96.

[80] Vinicius MA Souza, Diego F Silva, Gustavo EAPA Batista, and João Gama. 2015.
Classification of Evolving Data Streams with Infinitely Delayed Labels. In IEEE
14th International Conference on Machine Learning and Applications (ICMLA).
IEEE, 214–219.

[81] Statista Research Department 2019. https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/.

[82] streamDM: Data Mining for Spark Streaming 2019. http://huawei-noah.github.io/
streamDM/.

[83] Dawei Sun, Guangyan Zhang, Songlin Yang, Weimin Zheng, Samee U Khan, and
Keqin Li. 2015. Re-Stream: Real-time and Energy-efficient Resource Scheduling
in Big Data Stream Computing Environments. Information Sciences 319 (2015),
92–112.

[84] Ming Sun, Yun-Nung Chen, Zhenhao Hua, Yulian Tamres-Rudnicky, Arnab Dash,
and Alexander Rudnicky. 2016. AppDialogue: Multi-app Dialogues for Intelligent
Assistants. In Tenth International Conference on Language Resources and Evaluation
(LREC’16). 3127–3132.

[85] Tableau 2019. https://www.tableau.com/.
[86] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos. 2016.

Challenges and Opportunities in Edge Computing. In IEEE International Confer-
ence on Smart Cloud (SmartCloud). 20–26.

[87] Shivaram Venkataraman, Zongheng Yang, Michael J Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-Scale
Advanced Analytics. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX Association, 363–378.

[88] Vowpal Wabbit 2019. https://github.com/VowpalWabbit/vowpal_wabbit.
[89] Chunkai Wang, Xiaofeng Meng, Qi Guo, Zujian Weng, and Chen Yang. 2017. Au-

tomating Characterization Deployment in Distributed Data Stream Management
Systems. IEEE Transactions on Knowledge and Data Engineering (TKDE) 29, 12
(2017), 2669–2681.

[90] Guolu Wang, Jungang Xu, and Ben He. 2016. A Novel Method for Tuning Con-
figuration Parameters of Spark based on Machine Learning. In 18th International
Conference on High Performance Computing and Communications (HPCC). IEEE,
586–593.

[91] Soeren H Welling, Hanne HF Refsgaard, Per B Brockhoff, and Line H Clem-
mensen. 2016. Forest Floor Visualizations of Random Forests. arXiv preprint
arXiv:1605.09196 (2016).

[92] HadleyWickham, Dianne Cook, and Heike Hofmann. 2015. Visualizing Statistical
Models: Removing the Blindfold. Statistical Analysis and Data Mining: The ASA
Data Science Journal 8, 4 (2015), 203–225.

[93] Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. 2014. T-Storm: Traffic-Aware
Online Scheduling in Storm. In International Conference on Distributed Computing
Systems (ICDCS). IEEE Computer Society, 535–544.

[94] J Yang and JF Coughlin. 2014. In-vehicle Technology for Self-driving Cars:
Advantages and Challenges for Aging Drivers. International Journal of Automotive
Technology 15, 2 (2014), 333–340.

[95] Daniel (Yue) Zhang, Tahmid Rashid, Xukun Li, Nathan Vance, and Dong Wang.
2019. HeteroEdge: Taming the Heterogeneity of Edge Computing System in
Social Sensing. In International Conference on Internet of Things Design and Im-
plementation. 37–48.

https://azure.microsoft.com/en-us/
https://docs.oracle.com/bigdata/bda45/BIGUG/ota4h.htm#BIGUG76783
https://docs.oracle.com/bigdata/bda45/BIGUG/ota4h.htm#BIGUG76783
https://dzone.com/articles/cloud-computing-data-analytics-instant-business-in
https://dzone.com/articles/cloud-computing-data-analytics-instant-business-in
https://powerbi.microsoft.com/en-us/
https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams-vs-samza-choose-your-stream-processing-91ea3f04675b
https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams-vs-samza-choose-your-stream-processing-91ea3f04675b
https://www.zdnet.com/article/how-to-choose-your-cloud-provider-aws-google-or-microsoft/
https://www.zdnet.com/article/how-to-choose-your-cloud-provider-aws-google-or-microsoft/
https://www.sas.com/en_us/solutions/cloud-analytics.html
https://www.sas.com/en_us/solutions/cloud-analytics.html
https://mapr.com/blog/how-orchestration-edge-computing-and-serverless-computing-impact-your-cloud-strategy/
https://mapr.com/blog/how-orchestration-edge-computing-and-serverless-computing-impact-your-cloud-strategy/
http://www.biznesstransform.com/nutanix-revamps-platform-for-multi-cloud-orchestration-and-iot-edge-management/
http://www.biznesstransform.com/nutanix-revamps-platform-for-multi-cloud-orchestration-and-iot-edge-management/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://huawei-noah.github.io/streamDM/
http://huawei-noah.github.io/streamDM/
https://www.tableau.com/
https://github.com/VowpalWabbit/vowpal_wabbit

	Abstract
	1 Introduction
	2 State-of-the-Art Analysis
	2.1 Big Data Stream Processing Systems
	2.2 Cloud Resource Management and Tuning
	2.3 Distributed Stream Processing at the Edge
	2.4 Machine/Deep Learning over Data Streams
	2.5 Data Transformation Techniques

	3 Industrial Challenges & Objectives
	3.1 Industrial Needs & Success Criteria
	3.2 Desired Platform Design Objectives

	4 Platform Design
	4.1 Architectural Components
	4.2 S2CE Performant Interconnections

	5 Innovation Potential
	5.1 Cloud Provisioning and Orchestration
	5.2 Edge Preprocessing and Movement
	5.3 Data-driven Decisions based on Streams
	5.4 Innovation Exchange with Apache Ecosystem's Open Source
	5.5 Unifying Efforts for a Stream ML Library

	6 Concluding Remarks
	References

