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ABSTRACT
This tutorial overviews principles behind recent works on training
and maintaining machine learning models over relational data, with
an emphasis on the exploitation of the relational data structure to
improve the runtime performance of the learning task.

The tutorial has the following parts:
(1) Database research for data science
(2) Three main ideas to achieve performance improvements
(2.1) Turn the ML problem into a DB problem
(2.2) Exploit structure of the data and problem
(2.3) Exploit engineering tools of a DB researcher
(3) Avenues for future research

CCS CONCEPTS
• Computing methodologies → Machine learning; Learning
linear models; • Information systems→ Data management sys-
tems; Database query processing; Query optimization; Database
views; Stream management.

KEYWORDS
machine learning models, incremental maintenance, in-database
machine learning

ACM Reference Format:
Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2021. Ma-
chine Learning over Static and Dynamic Relational Data. In The 15th ACM
International Conference on Distributed and Event-based Systems (DEBS ’21),
June 28-July 2, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3465480.3467843

The starting points of this tutorial are a VLDB 2020 keynote [34]
and a short tutorial at SUM 2019 [44]. This tutorial goes beyond
these prior tutorials, in particular on learning over dynamic rela-
tional data. The interested reader may also want to explore further
work on machine learning over databases overviewed in two prior
tutorials [23, 39].

In the following, we briey overview each part of the tutorial.
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1 DATABASE RESEARCH FOR DATA SCIENCE
Database research is thriving in the data science era. Relational
data remains ubiquitous. According to a recent Kaggle survey [16],
most data scientists use relational data. The widespread use of rela-
tional data maintains the relevance of existing relational processing
techniques. Furthermore, the new requirements brought by the
machine learning workloads have led to new relational processing
techniques. In this tutorial, we overview some of these existing and
new techniques. They rely to a varying degree on an integration of
relational database engines and machine learning libraries.

This rst part of the tutorial overviews two main approaches
at the interface of data processing engines and machine learning
libraries. The main message is that this interface provides a fruitful
and exciting opportunity for database research to shine. A tighter
integration of the database and machine learning computation
uncovers new research challenges and can lead to signicant per-
formance improvements.

A typical approach to learning over relational data involves the
construction of the training dataset using a feature extraction query
that joins the input relations and constructs new features using
aggregates over the data columns. This query can be expressed
in SQL and executed using a database system, e.g., PostgreSQL or
SparkSQL [50], or Python Pandas [26] for Jupyter notebooks. The
desired model is then learned using a machine learning library, e.g.,
scikit-learn [38], R [40], TensorFlow [1], or MLlib [27]. This ap-
proach ignores the structure of the underlying relational data at the
expense of runtime performance. It is dubbed structure-agnostic in
this tutorial. It puts together two black-box specialised systems for
data processing and machine learning and may work for virtually
any dataset and model. There are several signicant downsides of
this approach, including: the materialisation of the result of the
feature extraction query; the export of this result from the data pro-
cessing system to the machine learning library; high maintenance
cost in case of changes to the underlying data; the limitations of
each of the two systems become a limitation of their combination.
These downsides hinder the runtime performance of a data science
solution using this approach.

The tutorial will also present an alternative approach, dubbed
structure-aware learning. It exploits the data sparsity and the struc-
ture of the relational data, in particular the various dependencies in
the data and the result of the feature extraction query (multi-valued,
functional). In this approach, the learning algorithm is opened up
and rewritten such that its data-intensive components are moved
closer to the data inside the relational query processor. Such com-
ponents can be expressed as (group-by) aggregates over the feature
extraction query. Part 2.1 of the tutorial is dedicated to them. Their
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output size is much smaller than that of the feature extraction query
and can be computed asymptotically faster than the feature extrac-
tion query itself. Since this approach avoids the materialisation
of the training dataset and its move between the two systems, it
enjoys excellent runtime performance. Opening up the learning
black box also allows to consider known mechanisms to maintain
the data-intensive components under data updates [33].

The tutorial will contrast the aforementioned two approaches
and present experimental evidence for the superior runtime per-
formance of the structure-aware over structure-agnostic [42]. This
runtime performance can in fact be translated into accuracy per-
formance: Within the time budget of training one model with the
structure-agnostic approach, the structure-aware approach may
train many possible models and eventually choose one with the best
accuracy. This part will conclude with a brief account to several
instantiations of these two approaches in the literature.

2 STRUCTURE-AWARE LEARNING
Part 1 of the tutorial sets up the scene for Part 2, which overviews
principles behind the structure-aware approach for learning over
relational data. We divide this second part of the tutorial into three
blocks. The rst block looks at how to turn the learning problem
into a database problem.

The second block overviews techniques for computing and main-
taining batches of aggregates that arise from mapping the learning
problem to a database problem. It considers a variety of types of
structure that can be exploited for improving the runtime per-
formance of such techniques, including algebraic, combinatorial,
statistical, and geometric structure. Techniques presented in this
block aim at lowering the asymptotic computational complexity.

Finally, the third block overviews engineering tools that proved
eective for improving runtime performance, such as parallelisa-
tion, specialisation to workload and dataset, and low-level sharing
of data access between dierent components of the code. Such tools
can eectively lower the constant factors of the computation time.

2.1 Turn the ML Problem into a DB Problem
The tutorial will explain how to express the data-intensive com-
putation of the learning task using various forms of aggregation
over the data matrix that are readily supported by database query
languages. A particular focus will be on the learning task for ridge
linear regression, support vector machines, and tree-structured
Bayesian networks (Chow-Liu trees) – as representatives for wider
classes of models and objective functions for the learning task. An
in-depth treatment for specic models and objective functions is
provided in the literature, e.g., [2–5, 20, 24, 42, 43].

For learning using the least-squares loss function, the gradient
vector of this function is built up using sum-product aggregates over
the model features and parameters: For each pair of features (data-
base attributes) 𝑥𝑖 and 𝑥 𝑗 , there is one such aggregate sum(𝑥𝑖 ∗ 𝑥 𝑗)
that sums over all tuples in the training dataset the product of
the values of the two attributes. In case an attribute corresponds
to a categorical feature, then it is promoted from the sum to the
group-by clause. If both attributes are in the group-by clause, then
the sum becomes the count of the number of occurrences of each
pair of categories of the two attributes: sum(1) group by 𝑥𝑖 , 𝑥 𝑗 .

This approach applies to ridge linear regression [4, 43] and polyno-
mial regression models in general [35], factorisation machines [3–
5], sum-product networks [10], principal component analysis [4],
quadratically regularised low-rank models [15], and QR and SVD
decompositions [49].

For decision trees, the computation of the cost functions for each
attribute and condition at a decision tree node can be expressed by
a sum-product aggregate with a lter condition. The cost functions
used by algorithms such as CART [9] for constructing regression
trees rely on aggregates that compute the variance of the response
𝑦 conditioned on a lter restricting the value of an attribute 𝑥𝑖 to
be equal, less than, or greater than a given constant (threshold 𝑐 𝑗 ):
VARIANCE(𝑦) WHERE 𝑥𝑖 op 𝑐 𝑗 . For a categorical attribute, the lter
condition expresses its membership in a set of possible categories.
The thresholds and categories are decided in advance based on the
distribution of values for 𝑥𝑖 . The variance aggregate is expressed
using the sum of squares, the square of sum, and the count. For
classication trees, the aggregates encode the entropy or the Gini
index using group-by counts to compute value frequencies in the
data matrix.

A large class of models, including support vector machines, are
trained using sub-gradient descent. They use non-polynomial loss
functions, such as (ordinal) hinge, Huber, scalene, and epsilon in-
sensitive, that are dened by multiple cases conditioned on additive
inequalities of the form

∑
𝑖 𝑥𝑖 ·𝑤𝑖 > 𝑐 , where𝑤𝑖 and 𝑐 are constants

and 𝑥𝑖 are the features. The ecient computation of aggregates
conditioned on additive inequalities calls for new algorithms be-
yond the classical ones for theta joins [2, 20]. Similar aggregates
are derived for 𝑘-means clustering [2].

2.2 Exploit Structure of Data and Problem
This part of the tutorial overviews principles behind new ecient
algorithms for batches of group-by aggregates, worst-case optimal
equality joins, and additive inequality joins. Such algorithms power
the structure-aware learning paradigm by systematically exploiting
the structure of the relational data to lower the computational
complexity and improve the runtime performance. The tutorial
discusses the algebraic, combinatorial, statistical, and geometric
structure of relational data, with a focus on the algebraic structure.
A. Algebraic structure. A relation is a sum-product expression,
where the sum is the set union and the product is the Cartesian
product. The computation expressed using relational algebra can be
captured using (semi)rings. There is extensive work in the literature
on 𝑘-relations over provenance semirings [13], generalised multiset
relations [21], and factors over multiple semirings [6]. The tutorial
will overview particular properties that make the rings eective for
computing and maintaining aggregates, as required by structure-
aware learning.
A.1. Distributivity of product over sum. This law allows to fac-
tor out data blocks common to several tuples in a relation, represent
them once, and compute over them once. It is the main concep-
tual ingredient of factorised databases [35, 36]. By systematically
applying the distributivity law, relations can be represented more
succinctly yet losslessly as directed acyclic graphs with fewer data
value repetitions. The factorisations of relations representing the
answers to relational queries can be asymptotically smaller than the
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standard representation as list of tuples. This applies to a rich class
of queries made up of joins [8, 36], selections, projections, unions,
group-by aggregates [7], and order-by clauses [7]. More relevant to
our tutorial, factorisation can also lower the computational complex-
ity of machine learning over feature extraction queries [2, 4, 35, 43].
The tutorial will exemplify factorised computation for joins and
aggregates such as those discussed in Part 2.1. The framework of
Functional Aggregate Queries [6] generalises factorised databases
to semirings beyond sum-product and shows that many problems
across Computer Science can benet from factorised computation.
LMFAO [41, 42], F-IVM [32, 33], and IVM𝜖 [18, 19] employ fac-
torised query computation and maintenance. These algorithms
factorise the query into a hierarchy of increasingly simpler views,
which are maintained bottom-up under data updates.
A.2. Sum-product abstraction. By conveniently overloading the
sum and product operations in a (semi)ring, we can capture the com-
putation for many dierent tasks over relational data, including the
type of aggregates needed for training models. This is exemplied
extensively in the FAQ framework [6], where the same structure of
computation but with possibly dierent denitions of sum and prod-
uct can be used to compute, among others, database queries, matrix
chains, and inference queries (marginals and MAP) in probabilistic
graphical models. The tutorial will exemplify this for covariance
matrices [32] and mutual information [33] over feature extraction
queries, used in the context of training models over relational data.
A.3. Additive inverse. To accommodate ecient mechanisms for
incremental maintenance of learned models over feature extrac-
tion queries, we extend tuples to carry along payloads, which are
elements from a ring. These payloads can for instance capture the
multiplicities of the corresponding tuples or, in case of tuples in the
query result, the number of derivations of that tuple from the input
tuples via the query. Similarly, the aggregates needed for training a
specic model may represent payloads. Tuple inserts and deletes
to the underlying data can be modelled uniformly as inserts with
appropriate payloads 𝑎 and respectively −𝑎 that follow the additive
inverse law of the ring: 𝑎 + (−𝑎) = 0, where 0 is the neutral element
for summation in the ring. Whenever a tuple’s payload becomes
0, then it is not anymore part of the data. In the simplest case, 𝑎 is
an integer representing the multiplicity [17, 21, 22]. Further exam-
ples discussed in the literature consider rings for factorised data
representation and covariance matrices [32, 33]. The ecient main-
tenance of covariancematrices makes it possible to keep ridge linear
regression models fresh under high-throughput data changes [32].
A recent tutorial overviews advances in incremental view mainte-
nance [12]. Our tutorial will go through several examples showing
how rings can be used to maintain models under data updates.
B. Combinatorial structure. The combinatorial structure preva-
lent in relational data is captured by notions such as the width
measure of the query and the degree of a data value. For reasons
of time limitation, the tutorial will only mention this type of struc-
ture. A brief overview is given in a recent keynote [34]. If a feature
extraction query has width𝑤 , then its data complexity is �̃� (𝑁𝑤)
for a database of size 𝑁 , where �̃� hides logarithmic factors in 𝑁 .
Similar complexities have been shown for learning a variety of
models over feature extraction queries [2, 35, 43] using prototypes
such as F [43] and LMFAO [42]. There are several width measures

proposed in the literature yet they are beyond the scope of our tu-
torial. The degree information captures the number of occurrences
of a data value in the input database [31]. Several existing query
processing and maintenance algorithms, e.g., worst-case optimal
join algorithms [30] and worst-case optimal incremental mainte-
nance of triangle [17, 18] and hierarchical [19] queries, adapt their
execution strategy depending on the degree of data values, with dif-
ferent strategies for high-degree and low-degree values. A special
form of bounded degree is given by functional dependencies. They
can be used to lower the learning runtime for ridge polynomial
regression models and factorisation machines. Instead of learning
a given model, we can instead learn a reparameterised model with
fewer parameters and then map it back to the original model [4, 5].
C. Statistical structure. In case of very large datasets, a feasible
approach is to learn approximately over data samples [28]. When
learning over feature extraction queries, we would like to sample
from the input data through the queries. Prior work considered
the problem of sampling through selection conditions and joins,
e.g., the ripple joins [14] and the wander joins [25], and for specic
classes of machine learning models [37].
D. Geometric structure. This type of structure becomes relevant
whenever we use distance measures. Clustering algorithms can
exploit such measures, e.g., the optimal transport distance between
two probability measures, and the distance-based triangle inequal-
ity. The relational 𝑘-means (Rk-means) [11] is a prime example of
structure-aware learning approaches that exploits the geometric
structure of the underlying data. It achieves a constant-factor ap-
proximation of the 𝑘-means objective by clustering over a small
coreset instead of the full result of the feature extraction query.

2.3 Engineering Tools of DB Researcher
Towards taming the computational challenge raised by structure-
aware learning, a large eort focuses on a toolbox of systems tech-
niques such as: specialisation for workload, data, and hardware;
observing the memory hierarchy and blocking operations; distri-
bution and parallelisation. The tutorial will highlight several re-
cent eorts in this space, in particular on compiling the task of
learning specic models over feature extraction queries into ef-
ciently executable low-level code. Such techniques can lead to
signicant runtime performance improvements, as reported for the
AC/DC [47], F-IVM [32, 33], LMFAO [41, 42], and IFAQ [47, 48]
prototypes. The tutorial will make the case for such a compilation
approach. These systems are based on prior work on specialisa-
tion for queries and database schema [29, 45, 46]. The LMFAO
system also systematically shares computation across the batch
of aggregates for structure-aware learning and takes advantage of
multi-core CPU architectures for domain and task parallelism.

3 FUTURE RESEARCH
The tutorial will conclude with reections on the state of machine
learning over relational data and will pinpoint several directions of
future research in systems and theory for structure-aware learning.
In particular, it will consider questions on the limits of structure-
aware learning and how to make it readily useful for practical data
science projects. It will also give a glimpse of ongoing work of the
authors on maintaining machine learning models under updates.
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