
RapidVMI: Fast and multi-core aware
active virtual machine introspection

Thomas Dangl
td@sec.uni-passau.de
University of Passau

Passau, Germany

Benjamin Taubmann
bt@sec.uni-passau.de
University of Passau

Passau, Germany

Hans P. Reiser
hr@sec.uni-passau.de
University of Passau

Passau, Germany

ABSTRACT
Virtual machine introspection (VMI) is a technique for the external
monitoring of virtual machines. Through previous work, it became
apparent that VMI can contribute to the security of distributed
systems and cloud architectures by facilitating stealthy intrusion
detection, malware analysis, and digital forensics. The main short-
comings of active VMI-based approaches such as program tracing
or process injection in production environments result from the
side effects of writing to virtual address spaces and the parallel
execution of shared main memory on multiple processor cores.

In this paper, we present RapidVMI, a framework for active virtual
machine introspection that enables fine-grained, multi-core aware
VMI-based memory access on virtual address spaces. It was built
to overcome the outlined shortcomings of existing VMI solutions
and facilitate the development of introspection applications as if
they run in the monitored virtual machine itself. Furthermore, we
demonstrate that hypervisor support for this concept improves
introspection performance in prevalent virtual machine tracing
applications considerably up to 98 times.

CCS CONCEPTS
• Security and privacy → Virtualization and security.

KEYWORDS
virtual machine introspection, security, virtualization, second level
address translation, semantic gap
ACM Reference Format:
Thomas Dangl, Benjamin Taubmann, and Hans P. Reiser. 2021. RapidVMI:
Fast and multi-core aware active virtual machine introspection. In The 16th
International Conference on Availability, Reliability and Security (ARES 2021),
August 17–20, 2021, Vienna, Austria. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3465481.3465752

1 INTRODUCTION
Virtual machine introspection (VMI) is defined as the external moni-
toring of virtual machines [6]. This process grants a VMI application
an untainted external view of a target virtual machine (VM) and
enables observation and analysis of the target’s behavior. The use of
this technique is appealing for many applications such as malware

This work is licensed under a Creative Commons Attribution International
4.0 License.

ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9051-4/21/08.
https://doi.org/10.1145/3465481.3465752

analysis, intrusion detection, and digital forensics [10]. Advantages
of the technique include the inherent isolation provided by the
virtualization, the stealthiness of the observation, and a view on the
monitored system that is protected from malicious manipulation.

In general, VMI-based monitoring mechanisms fall into one of
two groups [13]: Passive (also called asynchronous) VMI mecha-
nisms analyze main memory based on external events, such as a
periodic timer. Active (also called synchronous) mechanisms inter-
fere with the control flow of the monitored VM, e.g., by placing
breakpoints inside the monitored VM, such that monitoring may
occur at specific places in the control flow of the monitored VM.

Some active mechanisms are intrusive mechanisms that modify
the main memory of the monitored VM. Examples in this category
include injecting an agent into the VM and tracing program execu-
tion using breakpoints in main memory, whose handlers remain
outside the VM. However, the practical applicability of this intru-
sive introspection to real-world systems is limited by the following
problems that originate from the active nature and are typically
not addressed in traditional VMI tooling:

First, when tracing a process using VMI, e.g. to operate high-
interaction honeypots [23], the VMI application has to translate the
logical address where it wants to place a breakpoint to a physical
memory page in which the instruction is injected. This target page
may be part of multiple virtual address spaces, because it belongs
either to a shared library, to an intentionally shared memory area,
or to memory marked read-only (and duplicated later with a copy-
on-write strategy) after a fork system call.

As a consequence, the breakpoint is implicitly placed in all pro-
cesses that use this shared memory region. Hence, we cannot mon-
itor only a specific process, and this results in more tracing over-
head and potentially unwanted side effects. At present, this issue
is completely unaddressed by both academic and commercial VMI
solutions. Regarding this problem, we demonstrate a solution called
process-bound introspection that separates memory modifications
based on address spaces.

Second, when injecting shellcode into a VM, e.g. to bootstrap
an in-guest agent [4], the shellcode typically consists of multiple
instructions and the injection will likely overwrite more than one
instruction in the target location. Even if we limit the injection to
a single virtual address space (solving the first problem), multiple
threads of the same process may concurrently be executing the
overwritten instructions on multiple CPU cores, and, as a result,
the injection may lead to non-deterministic program behavior. The
common solution of simply pausing the target VM is not sufficient,
as even then, the target can be resumed with an instruction pointer
somewhere within the injected shellcode. With our core-selective
introspection approach in RapidVMI, we show how to inject arbitrary

https://doi.org/10.1145/3465481.3465752
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3465481.3465752
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3465481.3465752&domain=pdf&date_stamp=2021-08-17

ARES 2021, August 17–20, 2021, Vienna, Austria Thomas Dangl, Benjamin Taubmann, and Hans P. Reiser

code on multi-core systems using the altp2m mechanism introduced
by DRAKVUF and applying synchronization to the code injection
to avoid conflicts with the original mapping [15, 16]. We define
multi-core aware as a property of active introspection mechanisms
that enables process-bound and core-selective introspection.

Third, active VMI mechanisms introduce a large performance
penalty for the monitored VM. Each time the monitored VM is
intercepted, it is paused while the VMI application processes the
event. We show how to dramatically reduce the amount of time
the VM is paused by introducing a minimal set of performance-
enhancing VMI operations that handle CR3 write and EPT violation
events directly within the hypervisor instead of within the VMI
application. We refer to the solution that facilitates the use of these
operations as Hypervisor-based switching.

Our RapidVMI approach extends state-of-the-art VMI solutions
for active introspection and solves the aforementioned problems.
We demonstrate its efficiency by providing a proof-of-concept im-
plementation for the Xen hypervisor as open-source software. The
core contributions of this paper are as follows:

• An approach for process-bound injection into shared guest
memory based on EPT pointer switching;

• Core-selective code injection on concurrent systems based
on vCPU-specific altp2m mappings;

• Performance enhancements of more than an order of magni-
tude by handling specific VMI events (CR3 write and EPT
violation) directly in the hypervisor.

The remainder of the paper is structured as follows: In Section 2
we provide a brief summary of relevant background. The basic con-
cepts of our active introspection approach are discussed in Section 3.
In Section 4 we present our proof-of-concept implementation for
the Xen hypervisor and in Section 5 we assess the solution in terms
of performance and correctness. We discuss and compare related
approaches in Section 6. Finally, Section 7 concludes the paper.

2 BACKGROUND
In this section, we present relevant background on hardware-assisted
virtualization on the Intel x86 architecture and on active virtual
machine introspection.

2.1 Hardware virtualization on the x86
architecture

Intel VT-x and AMD-V enable hardware-level virtualization on the
Intel x86 architecture [30]. In this paper, we use the terminology
specific to Intel VT-x.

The second generation of hardware-assisted virtualization in-
troduced Intel Extended Page Tables (EPT) and AMD Rapid Virtu-
alization Indexing (RVI), which implement the concept of Second
Level Address Translation (SLAT). Instead of only translating vir-
tual addresses to physical addresses, the CPU’s MMU will first
translate virtual addresses to guest-physical addresses and then
guest-physical addresses to physical addresses. Since the MMU per-
forms these translations sequentially, one refers to SLAT as Nested
Paging.

Figure 1 shows the process of address translation with SLAT
when using Intel EPT. Page Map Level 4 (PML4) is the top-level
paging structure on x86-64, which refers to Page Directory Pointer

Guest Virtual Address

Guest Physical Address

Host Physical Address

PML4 / CR3

EPT PML4 / EPTP

Guest OS

Hypervisor

Guest Process
uses

manages

manages

Second Level Address Translation (SLAT)

1

Figure 1: Address translation with SLAT (Intel EPT)

Tables (PDPT). Each PDPT contains references to the actual Page
Directory Tables (PDT), which in turn refer to the Page Tables (PT).
With EPT, the guest PML4 maps guest-virtual to guest-physical
addresses, and the hypervisor-managed EPT PML4 maps guest-
physical to machine-physical addresses. The pointer to the top-level
paging structure is called Extended Page Table Pointer (EPTP). In
the following, we refer to an EPT PML4 configuration as a view
according to the altp2m terminology.

Both hardware vendors support memory access permissions
within the SLAT. For example, when writing to a page marked as
read-only using EPT, the translation will fail and cause an EPT
violation, which triggers a VM-exit and executes a virtualization
exception in VMX root mode. It has been known for some time
that this concept can be used to hide code in virtual machines by
creating complementary views for read, write, and execute and
dynamically switching between them [34]. Since this increases
stealthiness and resilience over traditional in-kernel protection,
it is of no surprise that the method has been adopted for kernel
hardening [25]. Other techniques can also be employed to achieve
similar results such as Shadow Walker [28]. However, our work will
focus only on modifications using Intel EPT.

The Xen hypervisor introduced the altp2m mechanism [15],
which enables managing the guest-physical to machine-physical
mapping with multiple EPT (multiple views) for a single guest. It
abstracts over the modification in the EPT such that the user of
this API needs to specify only for which page he wants to make
modifications, and Xen will automatically update all affected pag-
ing structures. The most common application of this mechanism
is in the DRAKVUF malware analysis system, which uses it to
remap modified pages in the EPT and change their memory per-
missions [16].

2.2 Active virtual machine introspection
The main problem every VMI application has to solve is the seman-
tic gap, the problem of extracting high-level semantic information
from low-level data sources [6]. This semantic gap can be divided
into two problems: The weak semantic gap is the challenge of cre-
ating VMI-based tools. The strong semantic gap refers to the open
problem of protecting these solutions from interference. Over the
years significant progress has been made in addressing this issue, so
much that the weak semantic gap can now be considered “a solved

RapidVMI: Fast and multi-core aware active introspection ARES 2021, August 17–20, 2021, Vienna, Austria

Host (Dom0)

ü

Application

Guest (DomU)

Process 1 Process 2 Process i...

Scheduler

Hypervisor

CPU 1

vhost

vr/w

v1

CPU i

...

vhost

vr/w

vi

monitors

EXIT_REASON_CR_ACCESS

activates view vi / vhost

EXIT_REASON_EPT_VIOLATION

activates view vr/w / vi

1

Figure 2: Process-bound and core-selective introspection architecture

engineering problem” [13]. Many of the proposed solutions for this
problem can be considered active, which means they aim to over-
come the external view by interacting directly with the underlying
system using active VMI mechanisms, for example by placing com-
ponents, hooks, or software breakpoints in the monitored virtual
machine [5, 8, 9].

As previously mentioned, virtual machine introspection can
be asynchronous/passive and synchronous/active [13]. Active intro-
spection requires interception points in the monitored system that
trigger a context switch to the hypervisor. Such a context switch
is referred to as VM-exit. It is triggered on predefined events such
as the execution of privileged instructions, interrupts, or others. A
VM-exit traps to VMX root mode, thereby transferring control to
the hypervisor, and executes the configured handler.

The conditions that cause a VM-exit may be configured in the
Processor-Based VM-Execution Controls for Intel processors [11].
Other VM-exit reasons that may not be configured include the
execution of privileged instructions, e.g., CPUID, and non-maskable
interrupts, for example, breakpoint exceptions (#BP) caused by the
execution of an INT3 instruction.

A commonly used VM-exit condition in virtual machine intro-
spection is the monitoring of writes to the CR3 register. Since this
register is the page table base register (PTBR) in the x86 architecture,
it must hold the currently active page table. By exiting on writes
to this register, we can synchronize the VMI application with the
guest’s scheduler [23]. As this control register may only be updated
in kernel mode, we can extract further information such as the
current scheduler state from the kernel.

3 ACTIVE INTROSPECTION
In this section, we introduce our solutions to the identified problems
of active introspection.

For our paper, we assume that the system provides hardware
support for Intel EPT. The monitored VM (a DomU) is referred to
as the guest whereas the VM that performs the introspection, in
our case the Dom0, is called the host.

Our introspection architecture does not necessitate any modi-
fications to the operating system of either the guest or the host.
Furthermore, the only knowledge we require about the guest is the

ability for the VMI application to iterate process structures, which
is implemented in readily available VMI libraries for all major op-
erating systems [18].

3.1 Process-bound introspection
The first problem we want to tackle is that of code injection that
remains local to a specific process. VMI write operations affect the
underlying physical memory, and the guest OS can map a single
guest-physical memory page into multiple virtual address spaces.
For example, dynamically linked shared libraries and explicitly
allocated shared memory regions make use of that feature. Any
VMI write operation will directly modify the underlying physical
memory pages, and these changes will be visible in the virtual
address spaces of all processes that have this page mapped.

The same problem arises after a fork system call, which is usually
implemented with lazy memory copying: Parent and child process
share the same physical address space, with all pages marked read-
only, and a copy-on-write (CoW) mechanism duplicates the pages
upon modification. However, such CoW mechanisms only apply
to guest-internal modification, not to the hypervisor-level page
modifications using VMI, which will not cause a page fault (#PF)
within the guest [12] and not trigger the CoW duplication.

Due to the modification on the original page, the system may
suffer instabilities when the modified code is executed by other
vCPUs in parallel or by the same vCPU in another process. The issue
becomes evident when considering code injection into a shared
library such as libc, which most user-mode applications typically
have mapped in virtual memory.

To address this issue, we create a new EPT view in which we
remap the affected page to a shadow page when writing to virtual
memory using introspection. Instead of performing the write on the
original page, we redirect this and all following write operations
on the respective page to this newly created page.

Furthermore, we enable CR3-store exiting in the Primary Processor-
based VM-Execution Controls [11]. When the scheduler writes the
PML4 address to the CR3 register, a VM-exit will occur. At this
point, the hypervisor can load the appropriate view for this process
to the EPTP index using the vmwrite instruction. If there are active

ARES 2021, August 17–20, 2021, Vienna, Austria Thomas Dangl, Benjamin Taubmann, and Hans P. Reiser

Host (Dom0)

ü
3

Application

Hypervisor Guest (DomU)
VM exit

EXIT_REASON_EPT_VIOLATION /
EXIT_REASON_CR_ACCESS

VM entry

"VM entry"

"VM exit"

1
(a) External Altp2m

Host (Dom0)

ü

Application

Hypervisor

3

Components

Guest (DomU)

VM exit

EXIT_REASON_EPT_VIOLATION /
EXIT_REASON_CR_ACCESS

VM entry

configures

1
(b) External Altp2m with hypervisor-based switching optimization

Figure 3: Altp2m inter-VM control flow on VM-exits

modifications for this process, we must use the modified view. Oth-
erwise, we may apply the host guest-physical-to-physical mapping
instead.

Since the new view will have its modifications on duplicated
pages, we essentially separate the result of VMI write operations
for each address space. Figure 2 shows the control flow between the
guest and host system when performing the process-bound EPTP
switching in our architecture.

3.2 Core-selective introspection
The second problem we aim to address is the code injection on
multi-core systems. Because all virtual processor cores use the
same main memory, our injected code is visible to every processor
core. In many situations—mostly when the injected code has side-
effects—this can be highly problematic as it might leave the system
in an undefined state.

Another reason for core-selective code injection can be the de-
sire to limit modified code to a single processor core for enhancing
performance. One example of such a use-case is a debugger for VMs,
which sets breakpoints specific for the monitored core. Since this
avoids context switches for non-affected processor cores, our ap-
proach reduces the overall performance overhead of the monitored
machine.

For both the application and the removal of a code injection,
we must ensure that program execution remains synchronized
with the injected code, i.e., we must make sure that no thread has
its instruction pointer inside our modification at the time of the
application/removal. As this problem requires knowledge about
the inner state of the guest VM machine, we discuss its details in
Section 4.2.

Instead of directly modifying the physical memory backed by
the respective page, we show a method that involves manipulating
the address translation in the monitored VM such that injected
code remains local to one core. With this goal in mind, we create an
EPT PML4 for each logical processor core that reflects the currently
active modifications on that specific core. This concept, which
expands upon the altp2m architecture [15], is visualized in Figure 2.

To apply a core-selective code injection, we must first check if
we already remapped the affected page. If this is the case, we can
directly perform the modifications on the copied page. Otherwise,
we must create a new guest-physical page, duplicate the original
contents onto this page, and finally remap the page in the EPT
structure of this processor core to point at our duplicated page
instead. To remove a core-selective code injection, we must undo

the modification on the duplicated page. If this code injection is
the last that affects the duplicated page, we restore the original
mapping in the EPT configuration of this processor core. Finally,
we can delete the duplicated page from guest-physical memory.

We set the permissions of this remapped, core-specific view to
execute only and those of the original, unmodified EPT view to read
and write. As explained earlier in Section 2.1, we can now hide the
injected code by switching between those views on the violation.

3.3 Hypervisor-based switching
The third problem we intend to solve is the huge performance
impact caused by context switches between the hypervisor and the
VMs. Figure 3(a) shows the usual interaction between monitoring
application and guest system in case an event (EPT violation or
CR3 access) on the guest triggers a VM exit. Note that on the left
side, the "VM entry" and "VM exit" between host and hypervisor do
not refer to these VMX CPU instructions, but to a para-virtualized
equivalent.

In this paper, we focus on reducing the required context switches
between the hypervisor and host system. Note that this interaction
is significantly more expensive than the interaction between guest
and hypervisor, even if both comprise a pair of VM exit and VM en-
try operations. While the hypervisor immediately reacts to the VM
exit, the VM entry on the host includes complex steps not explicitly
shown, like a host kernel driver receiving the event from the hyper-
visor and the host scheduler activating the monitoring application.
Nevertheless, optimizing for the guest–hypervisor transition still
merits discussion in Section 5.3.

To reduce context switches between hypervisor and host, we
introduce two optimizations—called hypervisor-based switching in
the following—that operate by configuring the hypervisor with
predefined actions from the host VM:

First, we demonstrate how to short-circuit EPTP switches re-
quired due to EPT violations in our architecture. For each virtual
core, the host configures the hypervisor with the accompanying
read/write and execute views. When an EPT violation occurs within
the guest and thus transitions to the hypervisor, we check if there is
a matching entry for this core such that we can handle the violation
inside the hypervisor without context switching to the host VM.

Second, we extend this core-specific configuration with map-
pings for specific processes. To do this, we convert the configuration
entry to a list of mappings and annotate each entry with the page
table directory of the targeted process. On EPT violation, we walk

RapidVMI: Fast and multi-core aware active introspection ARES 2021, August 17–20, 2021, Vienna, Austria

this list until we find a matching entry that is applicable for the cur-
rent process. Additionally, the hypervisor must enable the VM-exit
condition for CR3 writes and switch the EPTP index based on the
newly active process on such writes.

Figure 3 shows how these optimizations avoid performance over-
heads caused by context switches on EPT violations and CR3 writes.
In (a), we see the control flow without in-hypervisor components.
(b) depicts the optimizations using short-circuited EPTP switches
using in-hypervisor components.

4 IMPLEMENTATION
We present our proof-of-concept implementation of the previously
introduced concepts in this section. While our implementation
targets the Xen hypervisor, the underlying concepts can easily be
adapted to other hypervisors with SLAT implementations such as
KVM.

4.1 Altp2m views
We make use of the following altp2m views: The first view, vhost,
represents the original host guest-physical to machine-physical
mapping. It may be used to perform single-steps for breakpoints, as
shown in DRAKVUF, or as the default view on processes without
active modifications [16].

Next, the view vr/w has the same mapping as vhost. However, we
remove the execute permissions for each page that contains active
modifications. Due to these missing execute permissions, the guest
causes an EPT violation when attempting to execute such a page,
thereby enabling a switch to the vi view, which contains the active
modifications.

Finally, each view vi maps to the duplicated, modified pages ac-
tive on processor core i. When there are any current modifications,
this is the default view for the processor core i1. Because the EPT
view has no read-write permissions set on modified pages, any
attempt to read the modified code leads to an EPT violation, which
we use to switch to view vr/w, thus hiding the modifications from
the guest. Note that this behavior and the fact that code pages are
rarely being read or modified allows us to keep this view active
most of the time without the VM-Exit-associated overhead.

Table 1: Overview of the implemented altp2m views

ID Name Type Read Write Execute
#0 vhost Host P2M ✓ ✓ ✓

#1 vr/w Read-write P2M ✓ ✓ ✗

#i+2 vi Execute P2M for core i ✗ ✗ ✓
1

An overview of the purpose and page permissions of these altp2m
views is depicted in Table 1.

4.2 Host components
When implementing the host components of the VMI architecture,
we have to address three problems:

1The consequence of this partitioning is that the current implementation cannot have
different modifications on the same page in multiple processes. A sensible improvement
could be the dynamic creation of new views at this point if there are free EPTP indices.

First, to modify a page according to the principles outlined in
Section 3, it has to be duplicated and remapped in the execute
views vi. When we want to copy the page, we first determine the
start of the page by aligning the virtual address to the page size
and translate it to a physical address externally using VMI. All
following modifications to the page are applied to the duplicated
page instead. DRAKVUF introduced this technique in 2016 [16].
The altp2m mechanism of the Xen hypervisor already implements
the remapping for the EPT extension.

Second, the successive application of modifications is considered
non-commutative. Of course, this is also true for the removal. To
ensure the correct removal order, last-in-first-out (LIFO), we keep
track of the application order of the modifications. Finally, when
removing a modification, we ensure that all overlapping changes,
which we applied at a later point, are removed first.

Third, as outlined earlier, it is required to make sure that modifi-
cations are only applied once no thread is executing the affected
area inside the guest virtual machine. To do so, we require inside
knowledge about the guest operating system. In particular, we must
know where the kernel stores the threading structures and the asso-
ciated register values so that we can extract the current instruction
pointer. When applying or removing a modification, we pause the
virtual machine to check for intersections of the instruction pointers
of all threads with the injected code. To address potential conflicts,
we provide an API, which the monitoring application can use to
implement one of two strategies:

(1) Delaying the injection until there are no further intersections.
This is done by repeatedly pausing the monitored virtual
machine, iterating over all tasks while comparing their in-
struction pointer against the modified memory region and
finally resuming the virtual machine. The injection may be
applied when no task is currently executing the modified
memory.

(2) Relocating the injected code outside the intersected range.
In this strategy, we use the highest instruction pointer of
all tasks that intersect the modified area as the new starting
location of modification. This technique is repeated until
no further intersections are found. As the method solely
relies on the instruction pointers of the tasks, we avoid the
additional complexity of disassembling the affected area as
long as the program is in a well-defined state.

Which of these solutions is more suitable highly depends on
the situation. For example, it is possible to relocate shellcode that
aims to perform a given task in the monitored virtual machine.
Doing so, however, might change the semantics of the code. Given a
breakpoint that is placed at a particular location in the control-path,
relocation would move it to another position in the code, thereby
changing the location at which the VMI application is inspecting the
state of the monitored virtual machine. As the injection mechanism
does not know the program semantics, we consider this choice to
be the responsibility of the VMI application developer. In general,
strategy 2 is preferable since it avoids multiple synchronization
attempts in many cases.

ARES 2021, August 17–20, 2021, Vienna, Austria Thomas Dangl, Benjamin Taubmann, and Hans P. Reiser

4.3 In-hypervisor components
As explained in Section 3.3, we implement certain aspects of our
solution in the Xen hypervisor to speed-up the execution of the
guest virtual machine. These aspects include the dynamic switching
of altp2m views on EPT violation and CR3 write events.

To achieve this goal, we patch the Xen hypervisor by hooking
monitor_domctl, which sends the VMI events to monitoring virtual
machines. When receiving such an event, we have to handle two
cases:

First, if a CR3 write caused this event, we know that the guest’s
scheduler became active. Here we need to select the appropriate
view for this process: In case there are modifications for this address
space, we need to switch the altp2m view to vi, with i being the core
the CR3 write occurred on. Otherwise, we must check if there was
an active modification on the previous address space and switch to
vhost instead.

Second, if an EPT violation caused the event, we check if it
occurred on the vi or the vr/w view. For this case, we emulate the
memory access on the opposing view. If the violation would not
have occurred on that view, we can switch the active altp2m view
to this one safely.

If our in-hypervisor components handle any of these cases, we
drop the event from the queue instead of forwarding it to the host
system. By avoiding the overhead of this synchronous operation,
we improve performance in the guest virtual machine significantly.

To configure these in-hypervisor components from the host, we
introduce additional Xen hypercalls (see Appendix A): xc_altp2m_
add_switch / xc_altp2m_remove_switch. These hypercalls allow the
host to set a pair of complementary view identifiers individually for
each processor core and process. We store this information in the
hypervisor as a linked list and use it during the event processing,
as described above.

5 EVALUATION AND DISCUSSION
In this section, we assess our proof-of-concept implementation
based on performance and stealthiness metrics and discuss potential
limitations.

5.1 Performance
All of the following measurements are performed on a DomU
equipped with three physical cores of an Intel i7-6700K processor
and 4096 MB of RAM, swapping is disabled. The Dom0 is assigned
the remaining core of the processor and 2048 MB of RAM. For this
evaluation, we used Xen 4.14 with our patches applied. The guest
and host system run the Linux kernel with versions 4.4.0 and 4.19.0
respectively.

A common use-case for code injection in active introspection
is setting breakpoints that can be intercepted by the VMI appli-
cation to allow synchronous mechanisms at specific locations in
the control-flow of the guest virtual machine [26]. Other appli-
cations may include process forking and agent injection. As the
latter are typically less performance-critical, because they only
introduce a setup-cost, we base our performance evaluation on
breakpoints. Many VMI-based monitoring applications intend to

only trace certain suspicious processes, e.g., the user’s bash, to mon-
itor for malicious behavior, which is why part of our evaluation
will also focus on the implications of this aspect.

In the subsequent considerations, we assess the breakpoint per-
formance under the following conditions:

• NI (No introspection): This is a measurement of the given
task without any on-going introspection.

• BL (Baseline): Initially, we employ the naïve approach of
placing the breakpoint directly on the physical page, similar
to the breakpoints examples of libvmi. When the breakpoint
is hit, we execute the replaced instruction inside the VM
using the monitor trap flag [21].

• MC (Multi-core aware): This is our implementation based
on the concepts shown in Section 3.2. Instead of manipu-
lating the memory, we restore the original instruction by
switching the active EPTP index. Here we perform all opera-
tions related to RapidVMI in the monitoring application in
Dom0.

• HVS (Hypervisor-based switching): In this variant, we
evaluate the optimizations described in Section 3.3 on top of
our core-selective breakpoint architecture. In essence, this is
equivalent to MC, but the operations are performed at the
hypervisor level instead.

• FSS (Fast Single-Step): On top of our optimizations in HVS,
we use Sergey Kovalev’s fast single-step implementation to
reduce the context switch to the host after single-stepping [14].
By pre-configuring the hypervisor with the targeted altp2m
view after the single-step, we can avoid the costly, synchro-
nous event to the host application.

• PB (Process-bound): This measurement is the fully-featured
implementation of our concepts and performs the process-
bound monitoring of the current SSH session’s bash process.

First, we consider breakpoints in a synthetic benchmark: We
execute a program in the guest virtual machine that starts and pins
a thread to each vCPU. The VMI application places a breakpoint on
a procedure within this program. We measure alternating execu-
tion/read access on this function to determine the highest additional
overhead caused by the VM-exit required to switch to the correct
EPTP view. Additionally, we consider execution-only access as this
is the most probable scenario for code modifications. By comparing
the iterations achieved in a fixed time frame of one second, we can
determine the relative performance impact of the breakpoint mech-
anism. A pseudocode representation of this synthetic benchmark
is given in Appendix B.

Figure 4(a) depicts the results of this synthetic benchmark in
the two scenarios with a sample size of 100 each. By comparing

Table 2: Evaluation configurations

ARES 2021, August 17–20, 2021, Vienna, Austria Thomas Dangl, Benjamin Taubmann, and Hans P. Reiser

4.3 In-hypervisor components
As explained in Section 3.3, we implement certain aspects of our
solution in the Xen hypervisor to speed-up the execution of the
guest virtual machine. These aspects include the dynamic switching
of altp2m views on EPT violation and CR3 write events.

To achieve this goal, we patch the Xen hypervisor by hooking
monitor_domctl, which sends the VMI events to monitoring virtual
machines. When receiving such an event, we have to handle two
cases:

First, if a CR3 write caused this event, we know that the guest’s
scheduler became active. Here we need to select the appropriate
view for this process: In case there are modifications for this address
space, we need to switch the altp2m view to vi, with i being the core
the CR3 write occurred on. Otherwise, we must check if there was
an active modification on the previous address space and switch to
vhost instead.

Second, if an EPT violation caused the event, we check if it
occurred on the vi or the vr/w view. For this case, we emulate the
memory access on the opposing view. If the violation would not
have occurred on that view, we can switch the active altp2m view
to this one safely.

If our in-hypervisor components handle any of these cases, we
drop the event from the queue instead of forwarding it to the host
system. By avoiding the overhead of this synchronous operation,
we improve performance in the guest virtual machine significantly.

To configure these in-hypervisor components from the host, we
introduce additional Xen hypercalls (see Appendix A): xc_altp2m_
add_switch / xc_altp2m_remove_switch. These hypercalls allow the
host to set a pair of complementary view identifiers individually for
each processor core and process. We store this information in the
hypervisor as a linked list and use it during the event processing,
as described above.

5 EVALUATION AND DISCUSSION
In this section, we assess our proof-of-concept implementation
based on performance and stealthiness metrics and discuss potential
limitations.

5.1 Performance
All of the following measurements are performed on a DomU
equipped with three physical cores of an Intel i7-6700K processor
and 4096 MB of RAM, swapping is disabled. The Dom0 is assigned
the remaining core of the processor and 2048 MB of RAM. For this
evaluation, we used Xen 4.14 with our patches applied. The guest
and host system run the Linux kernel with versions 4.4.0 and 4.19.0
respectively.

A common use-case for code injection in active introspection
is setting breakpoints that can be intercepted by the VMI appli-
cation to allow synchronous mechanisms at specific locations in
the control-flow of the guest virtual machine [26]. Other appli-
cations may include process forking and agent injection. As the
latter are typically less performance-critical, because they only
introduce a setup-cost, we base our performance evaluation on
breakpoints. Many VMI-based monitoring applications intend to

only trace certain suspicious processes, e.g., the user’s bash, to mon-
itor for malicious behavior, which is why part of our evaluation
will also focus on the implications of this aspect.

In the subsequent considerations, we assess the breakpoint per-
formance under the following conditions:

• NI (No introspection): This is a measurement of the given
task without any on-going introspection.

• BL (Baseline): Initially, we employ the naïve approach of
placing the breakpoint directly on the physical page, similar
to the breakpoints examples of libvmi. When the breakpoint
is hit, we execute the replaced instruction inside the VM
using the monitor trap flag [21].

• MC (Multi-core aware): This is our implementation based
on the concepts shown in Section 3.2. Instead of manipu-
lating the memory, we restore the original instruction by
switching the active EPTP index. Here we perform all opera-
tions related to RapidVMI in the monitoring application in
Dom0.

• HVS (Hypervisor-based switching): In this variant, we
evaluate the optimizations described in Section 3.3 on top of
our core-selective breakpoint architecture. In essence, this is
equivalent to MC, but the operations are performed at the
hypervisor level instead.

• FSS (Fast Single-Step): On top of our optimizations in HVS,
we use Sergey Kovalev’s fast single-step implementation to
reduce the context switch to the host after single-stepping [14].
By pre-configuring the hypervisor with the targeted altp2m
view after the single-step, we can avoid the costly, synchro-
nous event to the host application.

• PB (Process-bound): This measurement is the fully-featured
implementation of our concepts and performs the process-
bound monitoring of the current SSH session’s bash process.

First, we consider breakpoints in a synthetic benchmark: We
execute a program in the guest virtual machine that starts and pins
a thread to each vCPU. The VMI application places a breakpoint on
a procedure within this program. We measure alternating execu-
tion/read access on this function to determine the highest additional
overhead caused by the VM-exit required to switch to the correct
EPTP view. Additionally, we consider execution-only access as this
is the most probable scenario for code modifications. By comparing
the iterations achieved in a fixed time frame of one second, we can
determine the relative performance impact of the breakpoint mech-
anism. A pseudocode representation of this synthetic benchmark
is given in Appendix B.

Figure 4(a) depicts the results of this synthetic benchmark in
the two scenarios with a sample size of 100 each. By comparing

Table 2: Evaluation configurations

NI BL MC HVS FSS PB
✗ ✓ ✓ ✓ ✓ ✓

✗ ✗ ✓ ✓ ✓ ✓

✗ ✗ ✗ ✓ ✓ ✓

✗ ✗ ✗ ✗ ✓ ✓

✗ ✗ ✗ ✗ ✗ ✓
1

VMI-based tracing
Core-selective (3.2)
HV-based switching (3.3)
Fast Single-Step
Process-bound (3.1)

RapidVMI: Fast and multi-core aware active introspection ARES 2021, August 17–20, 2021, Vienna, Austria

BL MC HVS FSS
0

2,000

4,000

915

2418

4871

2163

1202

2428

4823

Optimization level

Ite
ra

tio
ns

pe
rs

ec
on

d
(m

or
e

is
be

tte
r)

no
tp

os
sib

le
Alt. execute & read
Execute only

1
(a) Micro-benchmark (synthetic)

BL MC HVS FSS PB NI
100

101

102

103 920

3695

721
398

86 75

3359

282
158

34 29

Optimization level

Ti
m

e
in

se
co

nd
s(

le
ss

is
be

tte
r)

no
tp

os
sib

le

-j 1
-j 3

1
(b) Macro-benchmark (gcc / Linux kernel)

BL FSS PB NI
0

20

40

60

80
82.9

30.7

4.3 3.7

Optimization level

Ti
m

e
in

se
co

nd
s(

le
ss

is
be

tte
r)

1
(c) Macro-benchmark (tar + gcc / Jansson)

Figure 4: Consolidated benchmarks of the RapidVMI architecture

Table 3: VM-Exit reasons (gcc 8.3.0 / Jansson)

CR3 Write read write open close exec Σ

FSS 1,310,376 21,230 8,694 13,230 15,993 1,306 60,453
PB 0 0 0 0 7 7

1

the results of MC and HVS, we determine that our hypervisor-
based switching approach practically eliminates the overhead of
EPT violations in the VMI context, that is to say, their impact is
negligible.

Second, we perform the breakpoint measurements under real-
world scenarios: We place a breakpoint on every system call handler
to monitor any system call executed by the guest. Under those con-
ditions, we compile the Linux kernel 5.11 using the built-in "tiny"
configuration. The build process in this measurement is performed
both single-threaded (-j 1) and multi-threaded (-j 3) with gcc version
8.3.0. Because the breakpoint has to be removed from physical mem-
ory in the baseline measurement (BL) to perform the single-step,
we cannot use this technique in the multi-threaded context. We
measure these build times separately ten times each. Note that the
measurements of the variant MC were only performed three times
due to the enormous run time.

The results of these measurements are shown in Figure 4(b). By
comparing the build times of MC and FSS, we can see a speed-up
of more than an order of magnitude for system-wide system call
tracing. Furthermore, the results for process-bound system call
tracing indicate that depending on the ratio of monitored system
calls (PB) to total system calls (FSS) our method allows for near-
native execution speed during introspection. In the scenario of
building the Linux kernel using gcc, this ratio was determined to be
0.0024% during our experiments. Finally, we performed additional
measurements of the system-wide tracing where the method of
configuring a VM-Exit for CR3 writes was not used. This allowed

us to determine the overhead of this technique at 2.21% for the
single-threaded case and 0.20% for the multi-threaded case. When
monitoring a relatively inactive process (such as the user’s bash)
during heavy computational load, our optimized solution (PB) sig-
nificantly outperforms the naïve approach (MC) by a factor of 42
in the single-threaded case and a factor of 98 in the multi-threaded
case.

Third, we evaluate our active introspection solution targeting
the process-bound monitoring of a selected subset of system calls
(read, write, open, close and exec) during extraction and compilation
of the Jansson C library for JSON (de-)serialization. This allows a
direct comparison of the optimization aspect of our work to the
results obtained by Taubmann et al. [26].

The results of these measurements are given in Figure 4(c). When
extracting the source code from the tar.bz2 archive and compiling it,
we measure an overhead of 2119% in the unoptimized case. Using all
optimizations we obtain an overhead of 720% during system-wide
tracing. When considering process-bound tracing, the overhead is
reduced to 14% compared to the 58% obtained by Taubmann et al.

In addition, we have also broken down the VM-Exit reasons
during this monitoring. This itemized data is shown in Table 3.
From these results, we obtain a ratio of monitored to total system
calls of 0.00012% during these experiments.

500 1,000 1,500

PB w/ sync.

PB w/o sync.

BL

1,272.75 µs

454.44 µs

228.36 µs

Time in seconds (less is better)

M
od

e

1

Figure 5: Setup cost of a one-page modification

ARES 2021, August 17–20, 2021, Vienna, Austria Thomas Dangl, Benjamin Taubmann, and Hans P. Reiser

Finally, we conducted measurements in regard to the setup cost
of our VMI mechanism. Since we have to duplicate the targeted
page first and update the EPT to reflect the change, our approach
has significant overhead over writing to the original physical page
directly. Additionally, we take into consideration our synchroniza-
tion that prevents desynchronized execution in the guest virtual
machine.

As seen in Figure 5, the technique of duplicating and remap-
ping the affected page introduces a performance penalty of around
99%. In the case where we also apply our synchronization mecha-
nism, this further increases to 557%. The requirement of keeping
the virtual machine paused during this analysis explains the large
overhead of the synchronization mechanism. Nevertheless, we do
not expect issues in real-world applications stemming from the 1.3
milliseconds initial setup-up time of the modification.

5.2 Stealthiness
Like many VMI architectures, our solution is not entirely stealthy
due to implementation details. The first clue that can give away the
presence of active introspection is the hypervisor itself [27]. Many
approaches to detect virtualization from the inside are known. Most
of them revolve around timing attacks that are possible due to the
enforced isolation [20], for example using the repeated execution
of privileged instructions such as CPUID that cause a VM-exit on
Intel CPUs. By measuring the execution time, it is possible to detect
the overhead caused by virtualization. Since modern processors
have many independent methods of measuring time, such as high-
precision event timers, it is becoming increasingly difficult to hide
the presence of the hypervisor.

Since the mere presence of a hypervisor, however, is usual in
many environments like cloud computing, we cannot conclude that
there is ongoing introspection by this fact alone. In contrast, there
are also specific timing attacks that can detect out-of-guest moni-
toring techniques such as virtual machine introspection [19]. An
instance of this class of attacks to notice introspection from inside
the guest is a timing attack on the VM-exit condition of MOV-to-
CR3 [29], which is a common synchronous introspection operation
as discussed in Section 2.2. Because our approach also makes use of
this operation to synchronize with the guest’s scheduler, we remain
vulnerable to this type of attack.

Furthermore, implementation-specific details may lead to the
detection of our approach. The use of SLAT to separate read/write
from executing memory access can be detected using self-modifying
code. For example, the Microsoft Kernel Patch Protection uses this
technique in recent versions of the Windows NT kernel. Because
write operations of a program on its description cause an EPT vio-
lation, which our implementation handles by switching the altp2m
view, the overwritten instruction is only present on the vr/w view,
not the vi views. Hence, the code is no longer self-modifying and
follows a different control-flow path2.

Next, the same separation can be detected using timing attacks
on the overhead of the hardware virtualization. One can achieve
this either directly, e.g., by alternating read and execute access on
modified pages as seen in Section 5.1, or indirectly by measuring

2We can address this by emulating write accesses on pages that are executable by
applying the write on both the original and duplicated page.

the overhead of invalidated TLB entries due to EPTP switching as
seen in [29].

Finally, our approach does not require an agent present in the
virtual machine. Therefore, an attacker cannot detect any monitor-
ing tools or components from the inside of the monitored virtual
machine, for example, in the case of VMI-based malware analysis.

5.3 Limitations
In our paper, we have assumed a simplified memory management
scheme, e.g., we expect affected pages to be paged in. Thus we did
not consider some edge cases that may occur in real-world systems.

One situation that may occur is that the guest operating system
duplicates a page after the introspection application already dupli-
cated it externally. When this happens, the kernel will inevitably
cause a switch to vr/w when reading the page. Since our modifica-
tion may only reside on one of the executable views vi and not on
the readable view vr/w, it is removed from the duplicated view after
the guest duplicates the page on its own.

We can avoid this by introducing another view vk, which is used
exclusively in kernel-space. This view resembles the host guest-
physical to machine-physical mapping of view vhost, but removes all
access permissions on the union of all active modifications for any
process. Then, when a violation occurs, we can dynamically remap
the newly created physical page for the affected process and remove
the entry for the old page. However, there are also instances where
this improvement falls short, e.g., kernel-same-page merging [3].

Another issue that is currently unhandled is the case of mul-
tiple user-mode processes that share the same PML4. This is for
example possible after the invocation of vfork and before the call
to exec or exit [7]. As we use the address of the page table to per-
form EPTP switching synchronous to the guest operating system’s
scheduler, we cannot distinguish these processes and therefore ap-
ply the modifications to both. A potential solution that requires
insider knowledge about the guest operating system could perform
the matching based on the scheduler structures instead, e.g., the
task_struct under Linux.

The general concepts outlined in this paper are also applicable
to AMD CPUs that feature Rapid Virtualization Indexing (RVI).
However, it has to be considered that it is not possible to set read-
/execute permissions independent of each other [1]. As this issue
affects many security applications of hypervisors, the issue has
already been discussed and partially addressed [24]. Furthermore,
AMD CPUs do not have the Monitor Trap Flag, which mandates a
different implementation for breakpoints.

With regards to the synchronization mechanism used to elimi-
nate side-effects in the guest virtual machine during code injection,
we assume that the introspection application does not apply modi-
fications that span over multiple Single-Entry-Single-Exit regions
or unstructured code. We can achieve this by determining suitable
injection locations using static analysis. Intuitively, this limitation is
also given during normal code injection without any introspection.

6 RELATED WORK
Table 4 shows an overview of the most related work in regards to
active virtual machine introspection.

RapidVMI: Fast and multi-core aware active introspection ARES 2021, August 17–20, 2021, Vienna, Austria

Table 4: Comparison of active introspection approaches

In 2012 Bryan D. Payne presented a library named libvmi based
on XenAccess [18]. The integrated support of existing memory
forensic frameworks such as Volatility and Rekall made bridging
the semantic gap in production environments drastically more acces-
sible [22, 31]. While certain aspects of this library can be classified
as active introspection, it mostly provided abstractions that enabled
the easier development of portable VMI applications.

CXPInspector, a framework for VMI-based binary analysis, has
been implemented by Willems et al. in the same year [33]. It is
designed to harness the SLAT of modern systems to monitor inter-
modular method invocation by only keeping certain memory pages,
e.g., the user-mode address space of a monitored process, executable.
Therefore, it can intercept the virtual machine when it attempts
to perform such an intermodular call. However, it offers neither
fine-grained tracing capabilities nor the desired performance.

Gu et al. introduced a framework for active introspection called
Process Implanting [8]. The approach involves hooking the guest
operating system’s scheduler using VM-exit conditions and ‘steal-
ing’ execution time from a given process. Instead of executing the
intended process, the system transfers control to the implanted
process. The hypervisor manages the physical pages and the page
tables of the implanted process, i.e., it makes them visible when
switching to the process and hides them from the guest system after
execution. This approach has two main downsides: First, one has to
chose the targeted process carefully, because the missing time slices
may cause issues on real-time programs. Second, it is not possible
to monitor the execution in the guest virtual machine using the
VMI context, e.g., by setting breakpoints; it can only operate as a
non-VMI monitoring tool in this case.

Lengyel et al. presented DRAKVUF, a dynamic malware analysis
system based on libvmi [16]. Its primary purpose is the analysis of
malware samples for the Microsoft Windows NT operating system
using the Xen hypervisor. The authors implemented the altp2m
approach for hyper-breakpoints, which allows the application to
hide the modified code from the guest virtual machine and increases
performance compared to regular single-stepping or emulation.
Furthermore, by manipulating the active view separately for each
vCPU, the breakpoints became suitable for multi-processor systems.
However, as all processors use the same set of altp2m views, it was
still impossible to perform (overlapping) modifications on a subset
of vCPUs. Finally, these breakpoints were still present in every
process that had this page mapped.

In 2020 Bitdefender introduced the HVMI core library, which
focuses on live protection of monitored virtual machines, unlike
existing VMI projects that mostly revolve around debugging and
tracing of VMs [2]. Their solution can harden a virtual machine

against kernel exploits, rootkits, buffer overruns, and more. This
use-case is distinct from typical VMI applications in which the
control flow is being observed, not manipulated. However, their
approach does not address the prevalent limitations in concurrent
systems as it performs neither synchronization nor process-bound
modifications.

Westphal et al. showed a monitoring language for virtual ma-
chine introspection and implemented a prototype for the VMware
KVM hypervisor [32]. Their approach of programming the hyper-
visor with predetermined actions for VMI operations is similar
to our optimizations based on In-hypervisor components (see Sec-
tion 4.3). However, we do not intend to provide a fully-featured
language. Instead, we aim to factor out the operations with the
highest performance impact to the hypervisor level.

Li et al. discussed the implications of the performance overhead
that occurs on virtualized systems due to VMX context switches [17].
They demonstrated that using the VMFUNC instruction for imple-
menting a cross-world call mechanism can decrease latency by up
to 80% compared to traditional solutions.

7 CONCLUSION
In this paper, we discussed common problems in traditional active
introspection approaches that limit the practical applicability in
real-world systems.

We highlighted the presence of unwanted side effects and trac-
ing overhead caused by the direct modification of physical mem-
ory using VMI. To this avail, we have introduced the concept of
process-bound introspection that separates the memory access of
introspection applications based on virtual address spaces of the
monitored system.

Furthermore, we elaborated on the implications of concurrent
execution in an active introspection context. In this regard, we
examined approaches to ensure correct program execution and
introduced core-selective introspection, the property of VMI-aided
memory modifications that apply only on selected processor cores.
We realized this concept by maintaining the SLAT page tables
separately for each processor core.

With RapidVMI, our framework for active virtual machine in-
trospection, we implemented these concepts on an off-the-shelf
hypervisor and demonstrated their practical use for introspection
applications. Finally, we introduced optimizations in the form of
precomputed state transitions at the hypervisor-level, which reduce
the introspection overhead by a factor of up to 98.

ACKNOWLEDGMENTS
This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 361891819 (ARADIA).

REFERENCES
[1] Advanced Micro Devices 2019. AMD64 Architecture Programmer’s Manual. Ad-

vanced Micro Devices. Volume 2, 499–507.
[2] Bitdefender. 2020. Hypervisor Memory Introspection - Specification. https:

//hvmi.readthedocs.io/en/latest/index.html. Accessed: 2020-09-02.
[3] Jonathan Corbet. 2008. /dev/ksm: dynamic memory sharing. https://lwn.net/

Articles/306704/. Accessed: 2020-10-08.
[4] Thomas Dangl, Benjamin Taubmann, and Hans P. Reiser. 2021. Agent-Based

File Extraction Using Virtual Machine Introspection. In Secure IT Systems - 25th
Nordic Conference, NordSec 2020. Springer, Virtual Event, 174–191.

https://hvmi.readthedocs.io/en/latest/index.html
https://hvmi.readthedocs.io/en/latest/index.html
https://lwn.net/Articles/306704/
https://lwn.net/Articles/306704/

ARES 2021, August 17–20, 2021, Vienna, Austria Thomas Dangl, Benjamin Taubmann, and Hans P. Reiser

[5] Yangchun Fu, Junyuan Zeng, and Zhiqiang Lin. 2014. HYPERSHELL: A Prac-
tical Hypervisor Layer Guest OS Shell for Automated in-VM Management. In
Proc. of the 2014 USENIX Annual Technical Conference (USENIX ATC’14). USENIX
Association, Philadelphia, PA, USA, 85–96.

[6] Tal Garfinkel and Mendel Rosenblum. 2003. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In NDSS. The Internet Society, San
Diego, California, USA, 16 pages.

[7] Mel Gorman. 2004. Understanding the Linux Virtual Memory Manager (first ed.).
Prentice Hall, Upper Saddle River, New Jersey, USA, 33–38, 352.

[8] Z. Gu, Z. Deng, D. Xu, and X. Jiang. 2011. Process Implanting: A New Active
Introspection Framework for Virtualization. In 2011 IEEE 30th Int. Symposium on
Reliable Distributed Systems. IEEE, Madrid, Spain, 147–156.

[9] Kyle C. Hale, Lei Xia, and Peter A. Dinda. 2012. Shifting GEARS to Enable Guest-
Context Virtual Services. In Proc. of the 9th Int. Conf. on Autonomic Computing
(ICAC ’12). ACM, San Jose, California, USA, 23–32.

[10] Y. Hebbal, S. Laniepce, and J. Menaud. 2015. Virtual Machine Introspection:
Techniques and Applications. In 2015 10th Int. Conf. on Availability, Reliability
and Security. IEEE, Toulouse, France, 676–685.

[11] Intel Corporation 2009. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation. Volume 3C, 48, 111.

[12] Intel Corporation 2009. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation. Volume 2A, 28.

[13] Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E. Porter, and Radu
Sion. 2014. SoK: Introspections on Trust and the Semantic Gap. In 2014 IEEE
Symposium on Security and Privacy. IEEE, Berkeley, CA, USA, 605–620.

[14] Sergey Kovalev. 2019. x86/vm_event: add fast single step. https://patchwork.
kernel.org/patch/11297787/. Accessed: 2020-09-14.

[15] Tamas K. Lengyel. 2016. Stealthy monitoring with Xen altp2m. https://xenproject.
org/2016/04/13/stealthy-monitoring-with-xen-altp2m/. Accessed: 2020-09-07.

[16] Tamas K. Lengyel, Steve Maresca, Bryan D. Payne, George D. Webster, Sebastian
Vogl, and Aggelos Kiayias. 2014. Scalability, Fidelity and Stealth in the DRAKVUF
Dynamic Malware Analysis System. In Proc. of the 30th Annual Computer Security
Applications Conference (ACSAC ’14). ACM, New Orleans, LA, USA, 386–395.

[17] Wenhao Li, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan. 2015. Re-
ducing World Switches in Virtualized Environment with Flexible Cross-World
Calls. SIGARCH Comput. Archit. News 43, 3S (June 2015), 375–387.

[18] Bryan D. Payne. 2012. Simplifying virtual machine introspection using LibVMI.
Technical Report. Sandia National Laboratories.

[19] Gábor Pék, Boldizsár Bencsáth, and Levente Buttyán. 2011. NEther: In-Guest
Detection of out-of-the-Guest Malware Analyzers. In Proc. of the 4th European
Workshop on System Security (EUROSEC ’11). ACM, Salzburg, Austria, Article 3,
6 pages.

[20] Gábor Pék, Levente Buttyán, and Boldizsár Bencsáth. 2013. A Survey of Security
Issues in Hardware Virtualization. ACM Comput. Surv. 45, 3, Article 40 (2013),
34 pages.

[21] Rekall. 2012. LibVMI: Simplified Virtual Machine Introspection. https://github.
com/libvmi/libvmi. Accessed: 2021-02-08.

[22] Rekall. 2012. Rekall memory forensics framework. https://github.com/google/
rekall. Accessed: 2020-09-02.

[23] Stewart Sentanoe, Benjamin Taubmann, and Hans P. Reiser. 2018. Sarracenia:
Enhancing the Performance and Stealthiness of SSH Honeypots Using Virtual
Machine Introspection. In Secure IT Systems - 23rd Nordic Conference, NordSec
2018. Springer, Oslo, Norway, 255–271.

[24] Satoshi Tanda. 2019. AMD-V for Hackers. Hypervisor Development Hands
On for Security Researchers on Windows, Workshop, VXCON. http://tandasat.
github.io/VXCON/AMD-V_for_Hackers.pdf. Accessed: 2020-10-08.

[25] Satoshi Tanda, Irvin Homem, and Igor Korkin. 2017. Detect Kernel-Mode Rootkits
via Real Time Logging & Controlling Memory Access. In Proc. of the Annual
ADFSL Conference on Digital Forensics, Security and Law. Scholarly Commons,
Daytona Beach, Florida, USA, 31 pages.

[26] Benjamin Taubmann and Hans P. Reiser. 2020. Towards Hypervisor Support
for Enhancing the Performance of Virtual Machine Introspection. In Distributed
Applications and Interoperable Systems- 20th IFIP WG 6.1 International Conference,
DAIS 2020. Springer, Valletta, Malta, 41–54.

[27] C. Thompson and M. Huntley. 2010. Virtualization Detection: New Strategies
and Their Effectiveness. Ph.D. Dissertation. University of Minnesota. Accessed:

2020-09-15.
[28] Jacob Torrey. 2014. MoRE Shadow Walker: TLB-splitting on Modern x86. Black

Hat USA Conference.
[29] Tomasz Tuzel, Mark Bridgman, Joshua Zepf, Tamas K Lengyel, and Kyle J Temkin.

2018. Who watches the watcher? Detecting hypervisor introspection from
unprivileged guests. Digital Investigation 26 (2018), S98–S106.

[30] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM Martins,
Andrew V Anderson, Steven M Bennett, Alain Kagi, Felix H Leung, and Larry
Smith. 2005. Intel virtualization technology. Computer 38, 5 (2005), 48–56.

[31] Volatility Foundation. 2009. Volatility memory forensics framework. https:
//github.com/volatilityfoundation/volatility. Accessed: 2020-09-02.

[32] Florian Westphal, Stefan Axelsson, Christian Neuhaus, and Andreas Polze. 2014.
VMI-PL: A monitoring language for virtual platforms using virtual machine
introspection. Digital Investigation 11 (2014), S85–S94.

[33] Carsten Willems, Ralf Hund, and Thorsten Holz. 2012. CXPInspector: Hypervisor-
Based, Hardware-Assisted System Monitoring. Technical Report. Ruhr University
Bochum. TR-HGI-2012-002.

[34] Mingbo Zhang and Saman Zonouz. 2016. How to hide a hook: A hypervisor for
Rootkits. Phrack Magazine 15, 69 (2016), 8 pages.

A HYPERCALLS FOR HYPERVISOR-BASED
SWITCHING

/*

* Hypercall to insert a mapping between a page table

* and a set of complementary views for one processor.

*/

int xc_altp2m_add_switch(

xc_interface *handle , uint32_t domid ,

uint32_t vcpu_id , uint64_t pgd ,

uint16_t view_rw , uint16_t view_x);

/*

* Hypercall to remove an active mapping on one processor

* based on the page table.

*/

int xc_altp2m_remove_switch(

xc_interface *handle , uint32_t domid ,

uint32_t vcpu_id , uint64_t pgd);

B PSEUDOCODE OF SYNTHETIC
MICRO-BENCHMARK

struct vcpu_result_t

{

uint8_t bytes [14] = { 0 };

bool ret = false;

uint32_t iterations = 0;

};

thread_local vcpu_result_t res { };

__attribute__ ((noinline)) bool return_fn ()

{

volatile bool ret = false;

return ret;

}

while (! interrupted)

{

memcpy(res.bytes , (uint8_t *) &return_fn , sizeof(

↪→ vcpu_result_t ::bytes));

res.ret = return_fn ();

res.iterations ++;

}

https://patchwork.kernel.org/patch/11297787/
https://patchwork.kernel.org/patch/11297787/
https://xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://github.com/libvmi/libvmi
https://github.com/libvmi/libvmi
https://github.com/google/rekall
https://github.com/google/rekall
http://tandasat.github.io/VXCON/AMD-V_for_Hackers.pdf
http://tandasat.github.io/VXCON/AMD-V_for_Hackers.pdf
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware virtualization on the x86 architecture
	2.2 Active virtual machine introspection

	3 Active introspection
	3.1 Process-bound introspection
	3.2 Core-selective introspection
	3.3 Hypervisor-based switching

	4 Implementation
	4.1 Altp2m views
	4.2 Host components
	4.3 In-hypervisor components

	5 Evaluation and Discussion
	5.1 Performance
	5.2 Stealthiness
	5.3 Limitations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Hypercalls for Hypervisor-based switching
	B Pseudocode of synthetic micro-benchmark

