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ABSTRACT
While memory corruption bugs stemming from the use of unsafe

programming languages are an old and well-researched problem,

the resulting vulnerabilities still dominate real-world exploitation

today. Various mitigations have been proposed to alleviate the

problem, mainly in the form of language dialects, static program

analysis, and code or binary instrumentation. Solutions like Adress-

Sanitizer (ASan) and Softbound/CETS have proven that the latter

approach is very promising, being able to achieve memory safety

without requiring manual source code adaptions, albeit suffering

substantial performance and memory overheads. While perfor-

mance overhead can be seen as a flexible constraint, extensive

memory overheads can be prohibitive for the use of such solutions

in memory-constrained environments. To address this problem,

we propose MESH, a highly memory-efficient safe heap for C/C++.
With its constant, very small memory overhead (configurable up

to 2 MB on x86-64) and constant complexity for pointer access

checking, MESH offers efficient, byte-precise spatial and temporal

memory safety for memory-constrained scenarios. Without jeopar-

dizing the security of safe heap objects, MESH is fully compatible

with existing code and uninstrumented libraries, making it practical

to use in heterogeneous environments. We show the feasibility of

our approach with a full LLVM-based prototype supporting both

major architectures, i.e., x86-64 and ARM64, in a Linux runtime en-

vironment. Our prototype evaluation shows that, compared to ASan

and Softbound/CETS, MESH can achieve huge memory savings

while preserving similar execution performance.
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memory safety, unsafe programming languages, buffer overflows,

pointer tagging, dangling pointers, use-after-free
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1 INTRODUCTION
The C and C++ programming languages are preferred for system

programming because they are efficient and offer low-level control.

These advantages come at the cost of memory safety, requiring the

programmer to manually manage heap memory and ensure the

legality of memory accesses. Incorrect handling by the programmer

can lead to serious issues [43] such as buffer overflows or use-after-
free bugs, which can be exploited by attackers to hijack the control-

flow (causing the program to inadvertently change its course of

execution) [6, 11, 35, 39] or to leak information [18, 40]. Even though

memory vulnerabilities are long-known issues, they are still very

common in mainstream programs: Out of all the vulnerabilities

reported in the Common Vulnerabilities and Exposures (CVE) data-

base, 14.7% aremarked as overflows and 4.3% aremarked asmemory

corruptions [13]. C/C++ memory corruption bugs can be divided

into two categories:

Temporal memory bugs access an object outside of its lifetime,

i.e., before its allocation or after its deallocation.
Spatial memory bugs access an object outside of its bounds, i.e.,

using addresses lower than the start or higher than the end
of the object.

Several mechanisms have been proposed to mitigate the effects of

memory bugs. A widely used mitigation mechanism are stack ca-

naries [14], detecting overflows on the stack before they can affect

the control flow via the stack-based return address. Another miti-

gation mechanism is Address Space Layout Randomization (ASLR)

[24], randomizing the location of program parts, making it harder

for the attacker to correctly guess valid code addresses. Finally, in

recent years, a plethora of Control-Flow Integrity (CFI) approaches

have been proposed [7, 9], trying to protect indirect jumps, calls,

and function returns using various policies and techniques. Unfortu-

nately, trading security for performance typically leaves mitigation

techniques vulnerable to exploitation, as shown in various attacks

on CFI [10, 12, 17] and ASLR [4, 33, 40].

A more complete way to counter memory vulnerabilities is to

detect and mitigate the memory bugs themselves—and not just

their effects—by imposing memory safety. Several ways of enforc-
ing memory safety in C/C++ have been proposed, among which are

language dialects, static analysis, and, more relevant to our work,

code or binary instrumentation. Language dialects remove unsafe

features from the languages, offering alternatives, for example, in

the form of new pointers types [2, 21, 30]. While they can be effec-

tive and efficient (fewer run-time checks), dialects of C/C++ lack

compatibility with existing code and are less likely to be accepted

in practice. Static analysis techniques [3, 20] detect bugs without

running the code, and hence do not impose any run-time over-

heads, but are less effective. Finally, code or binary instrumentation

can be used for detecting memory bugs through dynamic analysis
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[25, 41, 42]. They work on existing code and allow the program-

mer to write new code as usual, without any knowledge about the

underlying instrumentation.

Themost prominent instrumentation-basedmemory safetymech-

anism is AddressSanitizer (ASan) [36]. ASan approximates memory

safety by inserting protected memory regions between objects

and delaying reuse of freed memory. A more precise solution is

offered by SoftBound/CETS [28, 29], which ties pointers to their

objects and achieves strong temporal and spatial memory safety.

Both approaches, as well as other similar solutions [8, 16, 37], im-

pose substantial run-time and memory overheads. While a large

performance overhead might be impractical, it presents a flexible

constraint and does not prevent a solution from being applicable at

all. In contrast, extensive memory overheads can be prohibitive for

applying a solution in memory-constrained devices. Furthermore,

most of the approaches [2, 8, 16, 21, 28–30] do not offer a concept for

(secure) compatibility with uninstrumented code, hindering their

real-world applicability, e.g., in situations where external libraries

cannot be instrumented.

To tackle those problems, we present MESH, a novel, highly

memory-efficient heap safety mechanism, which uses a config-

urable but constant-sized lookup table, the MESH table, for storing
bounds and the validity of objects in memory. MESH makes use

of the unused bits in a pointer (by default, on Linux, only 47 bits

of a pointer are used on x86-64
1
, and 48 on ARM64

2
) to link point-

ers to their objects’ metadata entries in the MESH table. Using a

constant lookup algorithm, MESH ensures that only legal pointer

uses are permitted at run-time. Since stack corruptions have be-

come less important in recent years while heap corruptions are still

very common and often critical [27], MESH focuses on heap safety.

Nonetheless, MESH offers not only memory safety for heap objects,

but also protects its safe heap against other accesses, e.g., using

stack-based or external pointers.

Compared to other approaches of similar preciseness [2, 8, 21, 29,

30], MESH’s constant maximummemory overhead of only 2MB on

systems with 17 unused pointer bits (217 table entries with 16 bytes
each) is almost negligible. MESH is fully compatible with uninstru-

mented code, enabling the safe use and creation of external pointers

in MESH-instrumented code without manual code modifications.

In summary, we make the following contributions:

• We propose MESH, a memory-efficient safe heap using code

instrumentation for spatial and temporal memory safety.

• We present an LLVM-based prototype implementation pro-

tecting the heap of C/C++ applications in a Linux runtime

environment for the x86-64 and ARM64 architectures.
3

• We show the feasibility of our approach in a detailed evalua-

tion, measuring and comparing MESH’s performance and

memory overhead to existing solutions.

The remainder of the paper is organized as follows. In Section 2,

we define design goals for MESH. Section 3 details MESH’s actual

design based on our design goals. We describe our prototype in

Section 4 before discussing evaluation results in Section 5. Finally,

we examine related work in Section 6 and conclude in Section 7.

1
https://www.kernel.org/doc/html/v5.8/x86/x86_64/mm.html

2
https://www.kernel.org/doc/html/v5.8/arm64/memory.html

3
Source code available under: https://github.com/Fraunhofer-AISEC/mesh

2 DESIGN GOALS
For the design of MESH, we assume an attacker who can perform

memory corruption attacks on objects in arbitrary data regions of

a program. Further, we assume that the attacker cannot corrupt the

code itself (typically guaranteed by non-writable text segments) or

modify the program’s data regions from outside the instrumented

code, e.g., using special hardware access.

Based on these assumptions, we define six design goals for MESH

to ensure heap memory safety for C/C++ while maintaining high

compatibility and memory efficiency. Our first three design goals

aim to ensure memory safety for the MESH heap:

❶ Detect temporal bugs: Detect the usage of heap pointers

to heap objects that are no longer allocated (i.e., dangling

pointers).

❷ Detect spatial bugs: Detect any access (read/write) using

a heap pointer pointing outside the allocation bounds of its

object (i.e., overflows or underflows) with byte precision.

❸ Detect unprotected pointer accesses: Detect accesses to
protected objects using unprotected pointers (e.g., stack or

external pointers).

The next design goals target MESH’s compatibility. Our defense
mechanism must not change the functionality of the software it

protects and developers should not have to be aware of the underly-

ing protection. In other words, MESH has to work on any existing

C/C++ code without requiring modifications. We formalize these

goals as follows:

❹ Support standard C/C++: Every language feature in the

C/C++ standards must be supported. Moreover, language

features should not be limited or extended.

❺ Support unprotected code:Code that is instrumentedmust

be compatible with uninstrumented code, i.e., calling exter-

nal functions or using pointers created in external code must

not break the functionality of the program.

Finally, the last design goal aims to enable MESH’s application in
memory-constrained environments:

❻ Impose virtually no memory overhead: The memory

overhead imposed on the protected software must be con-

stant and insignificant in the software’s overall memory

consumption.

3 MESH DESIGN
In C and C++, pointers are simple types that hold addresses with-

out any information about the memory object pointed to. Hence,

programming errors involving pointers can easily lead to violations

of temporal or spatial memory safety. To ensure memory safety,

pointers must be augmented with additional metadata that can

be used to check if an access is legal at run-time. MESH keeps its

metadata in a table disjoint from pointers and objects, and uses

pointer tagging for linking pointers to metadata.

In the following, we first introduce the MESHmetadata structure.

Then, we discuss the management and placement of our safe heap.

Finally, we discuss how the MESH heap achieves our goals in terms

of memory safety and compatibility.

https://www.kernel.org/doc/html/v5.8/x86/x86_64/mm.html
https://www.kernel.org/doc/html/v5.8/arm64/memory.html
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3.1 Objects and Metadata
To discuss details of MESH’s design, we first identify all operations

on objects that must be considered when implementing memory

safety. The life-cycle of heap objects in C/C++ has three phases:

Allocation. The allocation of objects in the heap is done by calling
the corresponding functions (e.g., malloc or new). The allo-
cator then reserves enough bytes of memory for the object

and returns a pointer to the start of the object.

Access. Read or write accesses must happen during this phase. Ac-

cesses are only legal on allocated objects and must be within

object bounds. Otherwise, they present spatial memory bugs,

e.g., buffer overflows and underflows.
Deallocation. The deallocation of heap objects is done manually

using the respective allocator functions (e.g., free or delete).
Only one deallocation per allocated object is allowed. Deal-

locating an object more than once, a double-free bug, or ac-
cessing a deallocated object, a use-after-free bug, can directly

lead to memory corruptions or information leaks.

3.1.1 MESH Metadata Structure. To ensure memory safety, MESH

requires metadata to describe the spatial and temporal characteris-

tics of objects. This metadata can be represented as follows:

𝑚𝑜𝑏 𝑗 :=
( (
𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑜𝑏 𝑗 , 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑜𝑏 𝑗

)
, 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦_𝑓 𝑙𝑎𝑔𝑜𝑏 𝑗

)
For spatial memory safety, all pointer accesses must be within the

bounds of the object they are pointing to. Memory associated with

objects is contiguous, starting from a lower bound and ending at

an upper bound. These bounds are part of the object metadata and

are used for checking each pointer access. For ensuring temporal

safety, all pointer accesses must happen on objects that have been

allocated, but not yet deallocated. Therefore, the metadata must

contain information about the temporal validity of the object. For

this purpose, a metadata entry contains a validity flag, which is set

during allocation and cleared as soon as the object is deallocated.

MESH stores all metadata disjoint from pointers and objects in

the MESH table, as illustrated in Figure 1. Each row in the table

uniquely corresponds to one object 𝑜𝑏 𝑗 containing its metadata

𝑚𝑜𝑏 𝑗 . The rows are indexed using the global MESH table index 𝐼 .

Figure 1 additionally shows a pointer 𝑐 to object 𝑜𝑏 𝑗 at address

𝑁 . During the allocation of 𝑜𝑏 𝑗 , a new entry is generated at the

current index 𝐼 . The entry contains the object’s base address 𝑁 as

the 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑜𝑏 𝑗 and the result from adding the size of 𝑜𝑏 𝑗 to its

base address as the 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑜𝑏 𝑗 . The 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦_𝑓 𝑙𝑎𝑔𝑜𝑏 𝑗 is also

set and cleared once the object is deallocated.

3.1.2 MESH Metadata Access. MESH uses unused pointer bits to

store an index into the MESH table, linking a pointer to its corre-

sponding object’s metadata entry. This is illustrated in Figure 1,

showing a system in which 𝑇 pointer bits are unused. By storing

the index 𝐼 in those unused pointer bits, MESH links the pointer 𝑐

to its object 𝑜𝑏 𝑗 , represented by entry 𝐼 in the MESH table. 𝑇 also

determines the size of the MESH table (i.e., 2𝑇 possible entries),

limiting the number of objects that can be protected simultaneously.

In a sequence of allocations, 𝐼 always contains the MESH table

index used for the next object. At program start, 𝐼 is initialized to

the maximum value of 2𝑇 − 1 and the MESH table is initialized

to contain only invalid entries. During program execution, 𝐼 is

Figure 1: MESH table after a 4-byte allocation at address N,
and its resulting tagged pointer

decremented after each allocation. If 𝐼 reaches its minimum value

of 1, MESH will either wrap around 𝐼 and start re-using table slots

freed in the meantime or will terminate on the next allocation. This

is discussed further in Section 3.5.

3.2 Heap Separation
For MESH to effectively protect its heap objects, we must not only

guarantee their memory safety by maintaining the MESH table and

tagging pointers, but also secure access to those objects and the

MESH table from unprotected, i.e., untagged, pointers. Unprotected
pointers might origin from within the program itself, i.e., from

global, stack, or memory-mapped memory, or from a call to an

external function that returns a pointer to an object allocated in

the unprotected heap or memory-mapped memory of the program.

To achieve this protection, we separate the MESH table and all

MESH-protected heap objects from other data segments in a dedi-

cated memory segment, the safe heap. The safe heap is managed by

its own allocator, enabling programs to allocate protected objects

with tagged pointers on the safe heap, while simultaneously sup-

porting the allocation of unprotected objects using the conventional

allocator and generating untagged, i.e., unmodified, pointers. To

protect safe heap objects from accesses through untagged pointers,

we prevent any access to the safe heap using an untagged pointer.

As a consequence, the MESH index 𝐼 = 0 is reserved for untagged

pointers and cannot be used to store MESH metadata.

3.3 Memory Safety Enforcement
To show how MESH enforces memory safety, we examine possible

operations on pointers. A pointer is generated whenever a new heap

object is allocated and its memory address is assigned to the pointer.

Additionally, a pointer may also be derived from another, already

assigned pointer. During the object’s life span, the pointer can be

compared to other pointers or dereferenced to access the underlying

object. Once the object is deallocated, the pointer is invalidated
and no further use should be permitted. When a pointer is derived
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Algorithm 1Metadata generation during allocation

1: globals
2: 𝑇𝑎𝑏𝑙𝑒: MESH table

3: 𝐼 : MESH table index

4: procedure mesh_malloc(𝑠𝑖𝑧𝑒)
5: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ← safe_malloc(𝑠𝑖𝑧𝑒) ⊲ Allocate safe heap object

6: if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 = 𝑁𝑈𝐿𝐿 then
7: return 𝑁𝑈𝐿𝐿

8: if 𝐼 = 0 then ⊲ Check for end of MESH table

9: fail(“Metadata exhaustion”)

10: 𝑖 ← 𝐼 ⊲ Derive new index

11: 𝐼 ← 𝐼 − 1 ⊲ Decrement index

12: 𝑇𝑎𝑏𝑙𝑒 [𝑖] .𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ← 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ⊲ Set spatial metadata

13: 𝑇𝑎𝑏𝑙𝑒 [𝑖] .𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ← 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 + 𝑠𝑖𝑧𝑒
14: 𝑇𝑎𝑏𝑙𝑒 [𝑖] .𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦_𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒 ⊲ Set temporal metadata

15: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ← 𝑖 | 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ⊲ Tag pointer

16: return 𝑎𝑑𝑑𝑟𝑒𝑠𝑠

from another pointer, an implicit invalidation of the overwritten

pointer occurs. To achieve our design goals from Section 2, the

MESH design must consider all five pointer operations.

3.3.1 Assignment. With MESH, objects can be allocated in one

of two coexisting memory areas: the MESH-protected safe heap

and the remaining memory, including allocations on the stack, the

normal heap, or in memory-mapped memory. In general, MESH

automatically redirects all heap allocations inside the program to

the safe heap, while other allocations remain unaffected. In particu-

lar, the latter includes allocations in external, uninstrumented code,

such as linked libraries, which are unchanged by MESH, and still

reserve memory in the normal heap and return untagged pointers.

Using this separation, MESH does not interfere with any C/C++ fea-
ture nor restricts compatibility with uninstrumented code, fulfilling

our design goals ❹ and ❺.

For allocations on the safe heap, MESH must generate a new

metadata entry and tag the new pointer with its MESH table index.

For this, we wrap the safe heap allocator (safe_malloc) within a

dedicated metadata generation routine, as shown in Algorithm 1.

The routine takes the allocation size as input and first tries to allo-

cate the object through the safe heap allocator. If the allocation fails,

the routine aborts and returns NULL letting the application handle

the failed allocation. Next, the routine derives the table index 𝑖 for

the newly allocated object from the global MESH table index 𝐼 . The

operations on 𝐼 are arranged in a way that the allocation algorithm

can be made thread-safe as discussed in Section 4.4. Finally, the

routine initializes the bounds and validity metadata, and returns

the tagged address as the final pointer to the object.

3.3.2 Derivation. Pointers can be derived from other pointers by

copying or performing pointer arithmetic. Pointers can also be cast

to different types, changing the way they are dereferenced. Since

the derived pointer must retain the same restrictions as the pointer

it derived from, MESH must propagate metadata from source to

destination pointers.

As MESH uses tagged pointers, metadata is an implicit part of

the value used during the pointer derivation, trivially achieving

Algorithm 2 Temporal safety check

1: globals
2: 𝑇𝑎𝑏𝑙𝑒: MESH table

3: procedure temporal_safety_check(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 )
4: 𝑡𝑎𝑔 | 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ← 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ⊲ Split pointer

5: if 𝑡𝑎𝑔 = 0 then ⊲ No check for untagged pointers

6: return
⊲ Perform temporal check

7: if 𝑇𝑎𝑏𝑙𝑒 [𝑡𝑎𝑔] .𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦_𝑓 𝑙𝑎𝑔 = 𝑓 𝑎𝑙𝑠𝑒 then
8: fail(“use-after-free detected”)

design goal ❹ without instrumentation. For copying and casting,

the tag is implicitly copied with the pointer value. Similarly, pointer

arithmetic directly performs calculations on the tagged pointer

and generates a new pointer containing the same tag. As desired,

untagged pointers remain untagged through pointer derivation.

During pointer arithmetic, address values might theoretically over-

flow into the MESH tag bits, potentially corrupting an existing tag

or creating a tag in an untagged pointer. It is very unlikely that

the result of such overflows is usable, since the pointer value must

match the bounds associated with the corrupted or crafted tag.

3.3.3 Comparison. In C and C++, pointers of the same object can be

compared for equality or relative ordering. With MESH, pointers of

the same object share the same tag, leaving comparisons for equality

or relative ordering intact without instrumentation. C and C++ do

not define comparing pointers of different objects and comparing

pointers with different tags in MESH might yield different results

than comparing untagged pointers without MESH.

3.3.4 Dereferencing. An object is accessed by dereferencing the

corresponding pointer. For safe heap pointers, accesses must only

be allowed within the bounds of the object and during the life span

of the object, i.e., while it is still allocated. Both constraints are

enforced in MESH by calling the temporal and spatial safety check

routines shown inAlgorithms 2 and 3 before dereferencing a pointer.

Both routines first separate the tag from the checked pointer and

then use the metadata from the MESH table entry indexed by the

tag to verify the legality of the access. A temporal memory safety

violation is detected if the pointer’s object has been deallocated,

indicated by an unset validity bit. A spatial violation is detected if

the access is outside the object’s bounds. The spatial check takes

the pointer type’s size into account, also detecting overflows that

occur due to casting pointers to larger sizes. The MESH table is

initialized with unset validity flags and invalid bounds, so that

tag bits indexing an unused metadata entry will always lead to a

violation. Pointers not derived from an allocation in the safe heap

should never be allowed to access the safe heap. Hence, for those

untagged pointers, the spatial safety check must additionally ensure

that access to the safe heap memory is prohibited.

After the temporal and spatial validity of a pointer has been

verified, the pointer can be dereferenced. However, because MESH

uses tagged pointers, we cannot directly take the pointer’s value to

access the underlying memory. Hence, MESH strips pointers, i.e.,
removes their tag bits, before dereferencing.



MESH: A Memory-Efficient Safe Heap for C/C++ ARES 2021, August 17–20, 2021, Vienna, Austria

Algorithm 3 Spatial safety check

1: globals
2: 𝑇𝑎𝑏𝑙𝑒: MESH table

3: procedure spatial_safety_check(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 )
4: 𝑡𝑎𝑔 | 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ← 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ⊲ Split pointer

5: if 𝑡𝑎𝑔 = 0 then
6: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ safe heap then
7: fail(“Illegal access to safe heap detected”)

8: else
9: return

⊲ Perform spatial checks

10: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑇𝑎𝑏𝑙𝑒 [𝑡𝑎𝑔] .𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 then
11: fail(“Buffer underflow detected”)

12: 𝑠𝑖𝑧𝑒 ← sizeof(typeof(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ))
13: if (𝑎𝑑𝑑𝑟𝑒𝑠𝑠 + 𝑠𝑖𝑧𝑒) ≥ 𝑇𝑎𝑏𝑙𝑒 [𝑡𝑎𝑔] .𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 then
14: fail(“Buffer overflow detected”)

In summary, by calling both the temporal and spatial safety

check routines before dereferencing a pointer, MESH fulfills the

design goals ❶, ❷, and ❸. In addition, by stripping the pointer after

validation but before dereferencing, design goal ❹ is also met.

3.3.5 Invalidation. At the end of their lifetime, safe heap objects

are deallocated using our dedicated allocator, while objects on the

normal heap are freed as regular. To prohibit any further access to

a deallocated object in the safe heap and to achieve goal ❶, MESH

must invalidate the corresponding metadata entry. Additionally,

MESH must ensure that normal heap objects can still be freed using

untagged pointers and, to achieve goal ❸, that this does not affect

the safe heap. Similarly to safe heap allocations, deallocations are

realized by wrapping the safe heap deallocator (safe_free) within
a metadata invalidation routine.

The metadata invalidation routine, shown in Algorithm 4, takes

the pointer to be freed as input. Typically, heap objects allocated

by external, uninstrumented code are also deallocated externally.

Nonetheless, since this is not always the case, the routine must

be able to deallocate normal heap objects with untagged point-

ers. If the given pointer is untagged, the corresponding object is

freed using the system-provided heap deallocation function, after

checking that the pointer does not point into the safe heap region.

For tagged pointers, the routine performs a temporal safety check

before invalidating and freeing the object.

3.4 Compatibility
As discussed in the previous section, MESH’s pointer tagging nat-

urally interferes with C/C++ language assumptions. However, be-

cause MESH strips pointers before dereferencing or calling any

deallocation functions, design goal ❹ is still fulfilled. For imple-

menting MESH, the only essential requirement are unused bits in

pointers to store the MESH table index 𝐼 . MESH does not make any

other assumptions about the underlying platform implementation

nor modifies it in any way. In particular, while MESH moves heap

allocations into the safe heap, it does not change the behavior or se-

mantics of a program’s normal heap and its memory management.

Further, pointers are not “fattened” by MESH using pointer struc-

tures and pointers to globals, stack objects, or other unprotected

Algorithm 4 Metadata invalidation during deallocation

1: globals
2: 𝑇𝑎𝑏𝑙𝑒: MESH table

3: procedure mesh_free(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 )
4: 𝑡𝑎𝑔 | 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ← 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ⊲ Split pointer

5: if 𝑡𝑎𝑔 = 0 then
6: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ safe heap then
7: fail(“Illegal free in safe heap detected”)

8: else
9: free(𝑎𝑑𝑑𝑟𝑒𝑠𝑠) ⊲ Deallocate normal heap object

10: return
⊲ Perform temporal check

11: if 𝑇𝑎𝑏𝑙𝑒 [𝑡𝑎𝑔] .𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦_𝑓 𝑙𝑎𝑔 = 𝑓 𝑎𝑙𝑠𝑒 then
12: fail(“double-free detected”)
13: 𝑇𝑎𝑏𝑙𝑒 [𝑡𝑎𝑔] .𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ← 0 ⊲ Invalidate entry

14: 𝑇𝑎𝑏𝑙𝑒 [𝑡𝑎𝑔] .𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ← 0
15: 𝑇𝑎𝑏𝑙𝑒 [𝑡𝑎𝑔] .𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦_𝑓 𝑙𝑎𝑔← 𝑓 𝑎𝑙𝑠𝑒

16: safe_free(𝑎𝑑𝑑𝑟𝑒𝑠𝑠) ⊲ Deallocate safe heap object

memory are left untouched. Moreover, the most notable sources

of language incompatibility for memory safety mechanisms are

modifications to function call conventions, casts between differ-

ent pointer types, or casts between pointers and integers. MESH

handles these cases by encoding the index to the metadata into the

value of the pointer itself: Since pointers are passed to functions by

value, their tags are passed implicitly. Likewise, casts are done by

value, only having their interpretation changed.

For compatibility with external code, we have to consider un-

tagged pointers that originate from uninstrumented code, and

tagged pointers that are passed to uninstrumented code. Since

the normal heap is still available alongside the safe heap, uninstru-

mented code can still use the system-provided heap management

functions, allocating and deallocating objects with untagged point-

ers. If those untagged pointers are returned to MESH-instrumented

code, MESH is able to use them as-is without breaking any func-

tionality and without compromising the security of the safe heap,

as those untagged pointers can never access the safe heap.

When passing tagged pointers as arguments to external func-

tions, the pointers are checked and stripped byMESH before issuing

the function call, as they are unusable for uninstrumented code oth-

erwise. For functions returning one of its pointer arguments, MESH

additionally wraps the call to store the stripped tag temporarily and

reapply it to the returned pointer argument after the function re-

turned. To identify functions external to MESH-instrumented code,

we perform instrumentation during Link Time Optimization (LTO).

LTO generates an inter-modular representation of the entire ap-

plication, enabling our instrumentation to detect truly external

functions that will not be instrumented. As a result, MESH achieves

complete compatibility with any external, uninstrumented library,

and therefore meets design goal ❺.

3.5 MESH Limitations
The limitations of MESH result from the number of unused bits in

a pointer. As those bits store the MESH table index 𝐼 , they directly
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determine the maximum number of objects that can be represented

in the MESH table.

3.5.1 Heap-Only Protection. In general, we designed MESH to

avoid the complete filling of its table. As a consequence, we are

bound to protecting a maximum of 2𝑇 − 1 objects, when 𝑇 pointer

bits are unused. In practice, as shown in Section 5.3, restricting the

MESH protection to the heap alleviates this problem, as there are

generally much fewer, but more long-lived heap objects than stack

objects in typical programs.

However, limiting the MESH protection to the heap only, leaves

stack objects unprotected and stack pointers untagged. An unpro-

tected stack does not pose a direct security threat to MESH, as

untagged pointers are prohibited from accessing the safe heap. But,

with a stack vulnerability present, an attacker might be able to craft

a tagged pointer to access the safe heap regardless. To circumvent

this possibility, it is possible to combine MESHwith a separate stack

protection mechanism, such as SafeStack [23]. With SafeStack, po-

tentially exploitable stack objects are moved to MESH’s safe heap,

while provable safe objects remain on the stack. Consequently, stack

vulnerabilities no longer pose a security threat as well.

3.5.2 Architecture Support. To reduce the limiting effects of unused

pointer bits available for storing the MESH table index 𝐼 , MESH is

best supported on 64-bit architectures. On our target architectures

x86-64 and ARM64, MESH natively supports storage of at least

217−1 and 216−1metadata entries, respectively.Most applications—

especially in a memory-constrained environment—only use up to a

few thousand heap objects per process (as shown in more detail in

Section 5.3). Moreover, by modifying the kernel’s virtual address

space size (i.e., decreasing the number of used address bits in a

pointer) or by restricting the heap memory space on an application

level, the bits available for storing 𝐼 can be increased.

3.5.3 MESH Table Wrap-Around. If more than the supported 2𝑇 −1
allocations are required by an application, once the MESH table

index 𝐼 reaches its minimum value of 1, MESH can optionally per-

form a wrap-around of 𝐼 and reuse entries of objects freed in the

meantime. If enabled, this wrap-around is an extension to MESH’s

metadata generation routine (see Algorithm 1) that searches for

entries in the MESH table whose validity flag is unset. Such an entry

is then reused by the routine to store the metadata of the newly

allocated object. While this wrap-around avoids the limitation on

the total number of allocations, MESH is still limited to support at

most 2𝑇 − 1 alive safe heap objects at the same time. The limit on

simultaneously alive objects—with or without the optional wrap-

around—is similar in nature to other common resource exhaustion

problems, such as stack overflows or heap exhaustion. However, the

optional wrap-around degrades MESH’s temporal safety guaran-

tees from precise to probabilistic: A dangling pointer to an already

deallocated object might get usable again when the metadata en-

try corresponding to its tag gets reused due to the wrap-around

mechanism. Nevertheless, for rogue memory accesses to succeed

with such dangling pointers, the bounds of the new object have to

overlap with the bounds of the past object, as otherwise a spatial

safety violation is detected. Considering this, we can assume that

most memory safety violations are still detected and MESH can,

with its wrap-around mechanism, offer an attractive trade-off for

larger applications.

4 IMPLEMENTATION
To show the feasibility of MESH, we implemented a prototype for

the x86-64 and ARM64 architectures as an extension to the LLVM

compiler framework (version 11). Our prototype currently supports

the ELF binary format for Linux runtime environments.

As discussed in Section 3.3, MESH has to handle pointer as-

signments, dereferences, and invalidations to enforce the memory

safety of heap objects. Our prototype provides a dedicated runtime

support library for assigning and invalidating pointers, and directly

instruments load and store instructions in LLVM’s Intermediate

Representation (IR) with the temporal and spatial safety checks for

pointer dereferences. Additionally, our prototype optimizes perfor-

mance by removing checks statically proven to be safe and ensures

that all changes to the program are thread-safe.

4.1 Runtime Support Library
We built our prototype’s runtime support based on the LLVM com-

piler runtime (compiler-rt) library. The runtime support initial-

izes and manages the safe heap, maintains the MESH table, and

handles memory safety violations.

The runtime support adds a constructor to protected binaries,

which is executed by the dynamic linker at load-time. This con-

structor first allocates 1/8 of available memory for the safe heap

using mmap. Within the safe heap, it then allocates the MESH table

and initializes the entire table to invalid memory addresses (i.e., the

value 0xFF...FF for both columns lower_bound and upper_bound).
As discussed in Section 3.1, the MESH table has a constant size of

2𝑇 entries, depending on the architecture and its number of unused

bits𝑇 in a pointer. The constructor initializes the MESH table index

𝐼 to the table’s uppermost entry, i.e., 𝐼 = 2𝑇 −1. The index is also al-
located in the safe heap, making it solely accessible to our metadata

handling routines. The MESH table and its index are independent

for each process so that there are no inter-process conflicts.

The runtime support also provides our dedicated safe heap al-

locator and routines wrapping the allocator functions to handle

MESH metadata. The safe heap allocator is based on a simple heap

allocator implementation
4
modified by us to be thread-safe and sup-

port 64-bit systems. The implementation of the metadata routines,

as described in Section 3.3, straightforwardly follows Algorithm 1

for allocating and Algorithm 4 for deallocating. The MESH instru-

mentation detects calls to the GNU C and C++ standard library’s

allocation and deallocation functions and redirects them to our rou-

tines.
5
In addition, if enabled through a compiler flag, the allocation

routines also perform the optional MESH table wrap-around, as

detailed in Section 3.5.

4.2 IR Instrumentation
To enforce temporal and spatial memory safety, our prototype has

to instrument each load and store instruction. Because loads and

stores are very frequent, we use an optimized check that combines

4
https://github.com/CCareaga/heap_allocator

5
MESH provides custom routines for malloc, free, new, delete, calloc, realloc,
and memalign.

https://github.com/CCareaga/heap_allocator
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Algorithm 5 Spatial and temporal safety check

1: globals
2: 𝑇𝑎𝑏𝑙𝑒: MESH table

3: procedure safety_check(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 )
4: 𝑡𝑎𝑔 | 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ← 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ⊲ Split pointer

5: if 𝑡𝑎𝑔 = 0 then
⊲ Optimized access to safe heap check

6: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ≤ safe heap upper bound then
7: fail(“Illegal access to safe heap detected”)

8: else
9: return

⊲ Combined temporal and lower bound spatial check

10: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑇𝑎𝑏𝑙𝑒 [𝑡𝑎𝑔] .𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 then
11: fail(“use-after-free or buffer underflow detected”)

⊲ Upper bound spatial check

12: 𝑠𝑖𝑧𝑒 ← sizeof(typeof(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ))
13: if (𝑎𝑑𝑑𝑟𝑒𝑠𝑠 + 𝑠𝑖𝑧𝑒) ≥ 𝑇𝑎𝑏𝑙𝑒 [𝑡𝑎𝑔] .𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 then
14: fail(“Buffer overflow detected”)

the temporal and spatial checks (Algorithm 2 and Algorithm 3)

presented in Section 3.3. This optimized check routine, shown in

Algorithm 5, requires a specific placement for the safe heap and an

adaption of the MESH table, both described in the following.

First, to protect the safe heap against spatial violations through

untagged pointers, our combined memory safety check must verify

a pointer’s address against the bounds of the safe heap (lines 5 to

9). This verification can be implemented using a single comparison

by placing the safe heap at a low address in memory before any
other data segment. Hence, we allocate our safe heap at the lowest

possible memory page, i.e., the second page on Linux, requiring us

only to check if the address of untagged pointers is greater than

our safe heap’s upper bound.

Then, the combined memory safety check must verify the tem-

poral and spatial validity of tagged pointers using the metadata

stored in the MESH table (lines 10 to 14). This verification can

be implemented using only two comparisons by optimizing the

MESH table to encode a heap object’s validity flag within its lower

bound: If the lower bound has a value of 0xFF...FF, i.e., the highest
though invalid memory address, the entire MESH table entry can

be considered invalid and any access to the corresponding object

is prohibited. Hence, revisiting Figure 1, since the column valid-
ity_flag is not required by the implementation, we can slim the

MESH table to the two columns lower_bound and upper_bound. The
resulting combined check is identical to the spatial safety check

from Algorithm 3, except that the check in line 10 can now indicate

both a temporal or spatial violation. Both types of violations can

still be differentiated afterwards by examining the lower bound: A

lower bound of 0xFF...FF indicates a use-after-free while other
values indicate a buffer underflow.

4.3 Check Removal
By default, the MESH prototype instruments every pointer deref-

erence. This also includes dereferences loading from or storing to

objects that are not allocated on the heap and also do not have

compound types. Even though pointers to such objects are not

tagged, our instrumentation still requires three additional instruc-

tions to verify their tags are zero. Hence, in order to reduce the

performance impact of handling untagged pointers, we apply a

simple optimization to our instrumentation.

For every pointer dereference, we perform an intra-procedural

analysis of pointer origins. If we infer that a pointer originates from

an allocation on the stack (i.e., resulting from an alloca instruction)
or from a global IR variable, we omit the instrumentation of the

corresponding pointer dereference if the accessed address is the

one allocated and not otherwise derived. The optimization is very

conservative, only omitting instrumentation if a pointer’s origin

can be determined reliably. For example, checks for accesses in

which the pointer is going through a PHI node are only omitted if it

can be guaranteed that all PHI sources are stack allocations which

have not been further derived. This ensures that the optimization

does not result in MESH missing tagged pointers. In an example

case protecting the nginx web server with MESH, we were able to

reduce the number of instrumented pointer dereferences by about

5% using our optimization.

4.4 Multithreading Support
Our MESH prototype is fully compatible with user-level and kernel-

level multithreading. In the following, we discuss the considerations

taken into account for supporting multithreading and present how

MESH achieves thread-safety.

4.4.1 Concurrent Allocations. When allocating objects on the safe

heap, unique MESH table entries are required to store the objects’

metadata. To allow for concurrent allocations, our runtime support

library must ensure that the MESH table index 𝐼 is not modified

concurrently. To this end, our heap allocation routines use a global

mutex to provide atomic access to the retrieval of a new tag (i.e.,

the modification of the index). Thread-safety for the actual memory

allocation is guaranteed by our underlying heap allocator itself,

as our runtime support library merely wraps the heap allocation

functions.

4.4.2 Concurrent Deallocations. Deallocating the same object from

two different threads is an application-level issue and must be

handled by the application programmer. In other words, without

application-level thread-safety, this behavior is undefined with or

without MESH. Pointers of different objects are associated with

different tags, hence, correspond to different MESH table entries so

that accesses to invalidate the metadata do not collide.

4.4.3 Concurrent Allocations and Deallocations. For the default

configuration of MESH, concurrent allocations and deallocations

already handled, as our allocation routines are thread-safe and

our deallocation routines do not modify the MESH table index

𝐼 . However, if the MESH table wrap-around (see Section 3.5) is

active, concurrent allocations and deallocations become problem-

atic as unused MESH table entries—which might concurrently be

invalidated—can be reused for new allocations. To solve this prob-

lem, we protect the invalidation of a MESH table entry with the

same global mutex that is used by the allocation routines, making

all allocations and deallocations atomic in regard to each other.



ARES 2021, August 17–20, 2021, Vienna, Austria Emanuel Q. Vintila, Philipp Zieris, and Julian Horsch

Table 1: Memory overhead of memory safety mechanisms

Defense Mechanism Memory Overhead (approx.)

MESH ≤ 2 MB (x86-64) / ≤ 1 MB (ARM64)*

CUP ≤ 32 GB (231 · 16)* [8]
ASan > 200% [42]

LFP 3–11%** [16]

SoftBound (hash table) 87% [29]

SoftBound (shadow) 64% [29]

* Cannot be measured in percent because it is constant

** Depending on precision

5 EVALUATION
To evaluate MESH, we first compare its memory overhead to those

of similar memory safety solutions (as discussed in Section 6). Then,

we evaluate the performance of MESH on an artificial benchmark

and a widely used real-world program. This evaluation is performed

on the x86-64 and ARM64 architectures. Finally, we count the num-

ber of heap allocations in a mainstream application to determine

the maximum number of objects alive at the same time, as well as

the total number of allocations performed during the lifetime of the

program. We use this to validate our assumption that the MESH

table is large enough for small to mid-size programs that typically

run on resource-constrained devices.

5.1 Memory Overhead
Table 1 shows a comparison of MESH’s memory overhead with

the memory overheads incurred by other memory safety solutions.

MESH’s and CUP’s [8] overheads are given as calculated constant

maximums, while the others are variable and measured at run-

time. The comparison shows that, except for programs with little

memory usage, MESH achieves a much smaller memory overhead

than the other approaches. Especially solutions based on shadow

memory, namely Softbound [29] and ASan [36], typically perform

much worse than the approaches based on pointer tagging, namely

LFP [16], CUP, and MESH. Although LFP achieves a very low mem-

ory overhead, in contrast to MESH, it only provides spatial safety

and does not detect memory corruptions with byte-precision, as

discussed further in Section 6.

5.2 Performance Overhead
For evaluating MESH’s performance, we chose CoreMark

6
, a CPU

benchmark designed for embedded systems, as a synthetic test

and the Nginx
7
web engine in conjunction with the ApacheBench

HTTP benchmark
8
as a real-world application test. To evaluate

the performance with Nginx, we let ApacheBench generate 10,000
HTTP requests measuring the average response time. We repeated

each test five times to exclude outside factors as much as possible.

With our two benchmarks, we compared MESH and ASan [36]

against a baseline without instrumentation. Since MESH is a heap-

only protection, we configured ASan to also protect only the heap.

6
https://www.eembc.org/coremark/

7
https://www.nginx.com/

8
http://httpd.apache.org/docs/current/programs/ab.html

Table 2: Performance overhead of MESH and ASan

Program MESH ASan (Heap-only)

CoreMark for x86-64 170% 51%

CoreMark for ARM64 111% 30%

Nginx for x86-64 5.6% 8.2%

Nginx for ARM64 3.1% 4.6%

Table 2 summarizes the results of our evaluation. It shows that

for CoreMark, MESH is noticeably slower than ASan. This is mainly

due to the more complex checking required for the byte-precision

and the space-saving MESH table, which, in this case, has a heavy

impact as CoreMark involves a large number of memory accesses.

However, in case of Nginx’s real-world application test, MESH out-

performs ASan and causes almost no overhead at all. We explain

this difference with the better caching properties of the small MESH

table in comparison to ASan’s shadow metadata. While CoreMark

repeatedly accesses the same memory regions, for which the meta-

data can be cached well for both solutions, Nginx accesses a larger

variety of memory regions, making the checks hard to cache for

ASan, while remaining easy for MESH.

Summarizing, depending on the test case, MESH provides per-

formance that is comparable to ASan. However, MESH provides

an increased precision, as discussed further in Section 6, and has a

lower memory footprint, as shown in Section 5.1.

5.3 Other Metrics
Finally, to validate our assumption that the MESH table has enough

entries for practical use, we analyzed the number of allocated ob-

jects in Nginx and CoreMark. For Nginx, we counted the allocations

for the same ApacheBench test procedure used in the performance

evaluation. Since Nginx is a multi-process application and each pro-

cess uses an independentMESH table, we simply took themaximum

number of allocations out of all processes.

The results show that the number of allocated heap objects varies

substantially between the two test programs. While CoreMark only

allocated one heap object over its full execution in our test, Nginx

allocated 5211 objects, of which only a maximum of 151 were alive

at the same time. In other words, only 4% and 8% of the maximum

supported entries of the MESH table were filled for x86-64 and

ARM64, respectively. Furthermore, only at most 0.1% and 0.2% of

entires were used at the same time. The test results confirm that

MESH can be used to effectively protect real-world applications,

especially in memory-constrained devices.

6 RELATEDWORK
In the following, we analyze howMESH compares to other memory

safety approaches. We are mainly interested in solutions that meet

at least some of the MESH design goals presented in Section 2.

Fat pointer approaches [2, 21, 30] store an object’s metadata

alongside its pointers (e.g., using struct-like pointers). Because

metadata is stored directly with the protected pointers, such ap-

proaches usually only tackle spatial memory safety and do not

offer temporal memory safety (❶): If an object is deallocated, all its

https://www.eembc.org/coremark/
https://www.nginx.com/
http://httpd.apache.org/docs/current/programs/ab.html
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Table 3: Comparison of MESH and related memory safety solutions

Goal MESH LFP [16] ASan [36] HWASan [37] SoftBound/CETS [28, 29] CUP [8]

❶ Detect temporal bugs Yes No Imprecise Probabilistic Yes Probabilistic

❷ Detect spatial bugs Yes Imprecise Imprecise Probabilistic Yes Yes
❸ Detect unprotected pointer accesses Yes No Imprecise Yes Yes Yes
❹ Support standard C/C++ Yes Yes Yes Yes Yes Yes
❺ Support unprotected code Yes Yes Yes Yes No No

❻ Impose low memory overhead Yes Yes No No No No

pointers must be found and invalidated, which is not trivial with-

out additional data structures. Moreover, replacing normal pointers

with fat pointers can cause incompatibilities with language features

and uninstrumented libraries, thus failing to meet design goals ❹

and ❺. To tackle this problem, LFP [16] encodes the metadata (still

only spatial) inside the value of the pointer itself to protect the heap

of 64-bit systems. Similarly to MESH, LFP instruments LLVM IR to

tag pointers and associate them with their object’s spatial metadata.

But since LFP optimizes performance overheads by size-aligning

objects to a set of predefined sizes, it loses precision for its spatial

checks compared to MESH, as overflows up to the alignment size

are not detected (❷). In addition, LFP does not restrict access of

non-heap and external pointers, failing to protect against unpro-

tected pointers (❸). However, while not constant, LFP achieves a

low memory overhead of 3-11% (❻).

Another approach tomemory safety is the use of shadowmemory.
Location-based solutions shadow a portion of the addressable mem-

ory to store certain attributes (e.g., accessible or non-accessible)

about the shadowed memory. Using this shadow, objects are sur-

rounded by red-zones [5, 19, 36, 38] or interleaved by guard pages
[15, 26, 32] to detect spatial memory violations. The most promi-

nent location-based solution is ASan [36], which shadows 8 byte

blocks with an 8-bit tag to insert red-zones between memory allo-

cations. ASan performs compile-time instrumentation of pointer

dereferences to detect errors when accessing the red-zones. ASan

is not byte-precise (8-byte alignment) and only able to detect buffer

under- and overflows, but not arbitrary reads and writes skipping

red-zones. Hence, unlike MESH, ASan only partially achieves spa-

tial memory safety (❷ and ❸). Furthermore, and also in contrast

to MESH, ASan only approximates temporal safety by delaying

the reuse of freed memory (❶) and introduces a substantial mem-

ory overhead overhead of 237% [36]. But, ASan supports standard

C/C++ (❹) and is compatible with uninstrumented code (❺).

An alternative to ASan is Hardware-assisted AddressSanitizer

(HWASan) [37], which aims to reduce memory and performance

overheads by using specific hardware features. HWASan imple-

ments a typical memory tagging approach, in which objects in

memory and their pointers are tagged with tags that must match

for a memory access to be allowed. Similarly to ASan, HWASan

uses shadow memory to tag objects, and similarly to MESH, uses

unused pointer bits to store its tags. Since HWASan, in its main

form, relies on an ARM64-specific feature that allows the processor

to ignore the top eight bits in pointers, only 8-bit sized tags are

used. While not having to strip pointers before dereferencing signif-

icantly increases HWASan’s performance, its small tag size makes

both spatial and temporal checks probabilistic (❶ and ❷), with a

chance of 0.39% [37] for missing bugs even without an attacker

targeting the mechanism. Furthermore, using shadow memory, sim-

ilarly to ASan, HWASan is less memory-efficient than MESH (❻).

However, HWASan supports standard C/C++ language features (❹)

and untagged pointers do not interfere with its instrumentation

(❺) nor jeopardize the security of tagged objects (❸).

Another group of approaches using shadowmemory are identity-
based solutions, which track object bounds for each pointer. Using

these bounds, pointer dereferences are precisely checked to detect

spatial memory violations. These solutions either use per-object
bounds tracking [1, 22, 34, 44], where pointers to the same object

share the same bounds, or per-pointer bounds tracking [8, 28, 29,

31], where each pointer tracks its own object bounds. Per-pointer

bounds tracking is usually more precise, as per-object bounds have

to be aligned to powers of two. SoftBound [29], the most prominent

identity-based solution, uses per-pointer bounds tracking for spa-

tial memory safety (❷). Additionally, it ensures temporal memory

safety with its CETS [28] extension that invalidates pointers on

object deallocation (❶). SoftBound/CETS supports standard C/C++
(❹), but is incompatible with pointers originating from uninstru-

mented code (❺), for which it aborts due to missing metadata (❸).

SoftBound/CETS shadows 8 byte blocks (i.e., pointers) with 32 byte

of metadata. To reduce memory overhead, a variant of SoftBound/

CETS uses a disjoint table to store metadata instead of shadow

memory. While this metadata store is similar to MESH, instead of

tagging pointers, SoftBound/CETS derives a unique hash from each

pointer to access its metadata. On average, with an overhead of 87%

for its hash table and 64% for its shadow memory [29], SoftBound/

CETS has a significantly higher memory footprint than MESH (❻).

CUP [8] is a recent approach that is similar to MESH design-wise

and aims to achieve temporal and spatial memory safety. As MESH,

CUP uses a constant metadata table to facilitate per-pointer bounds

tracking. But in contrast to MESH, CUP focuses on completeness,

partly sacrificing memory-efficiency and modularity in comparison.

CUP also leverages the unused bits in pointers on 64-bit architec-

tures to store a link into the metadata table. Pointers in CUP are

completely replaced with an index into the metadata table and the

pointer’s offset into the object. While this frees up additional index

bits in pointers, it comes at a performance loss, as, in comparison

to MESH, additional steps are required to prepare a tagged pointer

for an actual memory access. CUP achieves probabilistic temporal

and precise spatial memory safety (❶ and ❷), but the resulting

CUP metadata table is very large (❻). Further, while CUP supports

standard C/C++ language features (❹), by design, it does not strip

pointers for uninstrumented code and mandates the use of a modi-

fied libc library that is capable of allocating protected objects and

handling tagged pointers. Hence, uninstrumented code is not able
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to allocate unprotected objects with untagged pointers (❸) nor able

to dereference tagged pointers outside of libc (❺).

Table 3 summarizes MESH’s comparison to other approaches.

None of the other approaches is able to achieve all our design

goals, confirming the necessity for MESH as a memory-efficient

and highly compatible alternative for memory-safe heap solutions.

7 CONCLUSION
We presented MESH, a simple yet efficient safe heap design for C

and C++ programs. MESH’s metadata store and pointer tagging

mechanism ensure constant memory overheads and metadata look-

ups. We showed the feasibility of our concept with a full LLVM-

based implementation for both major 64-bit architectures, x86-64

and ARM64. Our practical evaluation using the Nginx web server

and the CoreMark CPU benchmark shows that while the perfor-

mance overhead imposed by MESH is similar to those of existing

memory safety solutions, MESH typically requires magnitudes less

memory, causing an insignificant and constant memory overhead,

such as 2 MB on x86-64. Its performance and memory efficiency,

together with its increased precision and complete compatibility

with external code make MESH a viable solution for heap memory

safety, especially in resource-constrained scenarios.
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