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ABSTRACT

Most localization systems rely on measurements gathered from
signals emitted by stations whose position is assumed known as
ground truth, namely anchors. As demonstrated by a significant
bulk of experimental research, location security is threatened when
an attacker becomes able to tamper either the signals emitted by the
stations, or convince the user that the anchor station is in a different
position than the true one. With this paper, we first propose a for-
mal threat model which captures the above-mentioned wide class
of attacks, and permits to quantitatively evaluate how tampering
of one or more anchor locations undermines the user’s localization
accuracy. We specifically derive a Cramér Rao Bound for the local-
ization error, and we assess a number of example scenarios. We
believe that our study may provide a useful formal benchmark for
the design and analysis of detection and mitigation solutions.
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1 INTRODUCTION

Location information is enabling a plethora of new services be-
yond classic navigation, including smart network management and
location-based analytics, which leverage the accurate estimation of
users’ location. However, while the social and economic value of
localization information grows in mobile networks[4, 7, 10], and
while the cellular networks are in the process of including local-
ization facilities in the incoming 3GPP standardization [1, 2], a
multiplicity of adversaries may find threatening value in attacking
localization technologies and services so as to alter the end-user’s
belief of being in a given position - imagine for instance the po-
tentially dramatic consequences of a location deception attack that
diverts a driver-less car out of its path.

The networking community has broadly explored localization
threats in several domains[11-13], and also with specific focus on
the experimental proof-of-concept of attacks [3, 14, 17]. A striking
recent example is reference [15] which demonstrates how to divert
an aircraft out of its landing track by exploiting the lack of authen-
tication of ILS (Instrument Landing System) radio communications.

In terms of nonadversarial localization, the analysis of localiza-
tion accuracy of wireless networks has been widely studied in the
literature. The Fisher information is used to examine the accuracy
of maximum likelihood estimators of an unknown parameter vector.
Specifically, Fisher information has been used extensively to de-
rive the user’s localization information in the presence of multiple
impairments to signal propagation, leading to the minimum achiev-
able localization error, namely squared position error bound (SPEB)
[5, 9, 16, 18].

Nevertheless, in terms of adversarial localization, a formal threat
model for the localization error is still missing. Such threat model
would be pivotal for the design and comparison of countermea-
sures. In this paper, we investigate localization tampering attacks,
focusing on the case where the information of anchor nodes (e.g.,
base stations or access points) are tampered, hence undermining
the user’s localization accuracy.

First, we provide a mathematical model for the description of
such spoofing attacks. Then, we derive the SPEB in the presence of
tampering attacks and compare it with the case in the absence of the
attack. While the model is technology-agnostic, we use localization
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Figure 1: Example scenario with N, = 3 anchors and one
agent in the presence of a spoofing attack against the third
anchor.

on received signal strength indicator (RSSI) to exemplify its deriva-
tion. Numerical results show the effect of system parameters on the
localization error. We believe that the proposed model and bound
can give insights into the impact of such attacks on the accuracy
of user’s localization and provide a benchmark for the design and
analysis of detection and mitigation solutions. Table 1 describes the
notation used for the model derivation.

2 THREAT MODEL

The scenario considered in this paper is a very classical one: an
end-device infers its own position by means of suitable measure-
ments taken from a set of reference anchor stations whose position
is assumed known. A location spoofing attack can be technically
performed by several different means, by altering the measurement
process so that the reference anchor station is perceived as closer
(or farther, or shifted) from its real place, or by deploying a rogue
station claiming to be a legitimate one but placed in a different
position, or by corrupting the control system which provides the
legitimate anchors’ positions.

Our proposed threat model aims to abstract from the specific
details of each attack, and rather has the ambition to provide a
reference formal model common to all the above specific cases. The
intuitive idea is that a location attack occurs when the attacker
is capable to associate an anchor’s position to an observable not
representative of the claimed position, being irrelevant whether this
is obtained by tampering the measurements or by spoofing the
claimed position. In what follows we formalize this notion.

2.1 Formal model

Consider a localization network as consisting of Ny, anchors for
inferring the location of an agent, which is at p.! The ith anchor
is at position p;, and p, = [p1,p2, ..., Pn, |- The agent location is
inferred based on measurements of signals communicated between
each anchor and agent. In particular, the measurement vector is
z =[z1,22,...,2N,], where z; is measured between the ith anchor
and the agent.

!In this paper, we consider p € R?.
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An example illustration is given in Fig. 1. The localization algo-
rithm exploits z together with the information about the anchors’
positions [6]. Each measurement depends on the true anchor and
agent positions according to a measurement model, e.g.

zi = zo(p, Pi) + 1 (1

where n; ~ N(0, O'iz) and the measurements from different anchors
are independent. Example cases are when the measurement is a
timing, angle, or power measurement and we know the signal speed
and the anchors’ position.

If we model the agent position as a deterministic but unknown
parameter, and the anchor positions as a deterministic and known
parameter, the likelihood function for the vector p is

Ny
f@p.pv) = | | £Gippi) 2)
i=1

where each f(z;, p, pi) is obtained according to the measurement
model in (1).

If the likelihood function is known, the maximum likelihood (ML)
estimator is the optimal solution, as it achieves the Cramér—Rao
bound (CRB) asymptotically in the high signal-to-noise ratio (SNR)
regimes, as we will discuss in Sec. 3. The ML estimator is unbiased,
ie. E{p} = p, where p is the estimate of p. In most cases, the like-
lihood function is unknown in general, as the parameters of the
measurement distribution can be unknown (or, at most, partially
known). In such practical cases, sub-optimal estimators are consid-
ered, e.g. using the well known trilateration algorithm or the least
square algorithm.

2.2 Error Model for the Spoofing Attack

In the presence of a spoofing attack, where the anchor positions
are tampered, the main effect is that the measurement z; is taken
with respect to the true anchor at p;, and therefore follows the true
measurement model zo(p, p;) + n;. Nevertheless, as the information
about the anchor position is tampered, i.e. the information on p;
is biased as p; + &;, where §; the bias, if there is no detection or
awareness of such a tampering attack, the localization algorithm
will estimate the agent position according to an incorrect measure-
ment model, i.e. zo(p, pi + ;) + n;. The effect of such an incorrect
measurement model on the accuracy of localization depends on
several system parameters and on the estimator itself. In general,
different estimators will be less or more robust to this type of attack.

In the case of a ML estimator, the position estimate under attack
will be

Psp = argmfe)le(z, p.pi +6i). (3)

Note that for §; # 0 for some i, the ML estimator is biased, i.e.
E{psp} # p. We define the spoofing error as esp = psp — p-

Let us now consider the following system of N}, equations with
respect to p

20(p,pi +8i) = zo(p,pi) Vi=1,2,...,Ny. (4)

If there exists a solution to (4), such vector p would be the position
of the agent in the case the true position of the ith anchor would
be p; + 8; foreachi = 1,2,..., N, and the measurement between
the anchor and the ith anchor would have the expected value z;. In
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Table 1: Notation.

Symbol
X

X

o8
()
E{-}

I

tr{-}

0

N, 0?)

9 with £(x) = [fi(x). o). ... fn)]T

Description

boldface and lowercase letter denotes a vector
boldface and uppercase letter denotes a matrix
denotes the transpose of the multivariate argument
denotes the inverse of the matrix argument

denotes the expected value of the random argument
denotes the Euclidean norm

denotes the trace of the matrix argument

denotes the null vector of suitable size

means is distributed as

denotes the univariate Gaussian distribution with mean y and vari-

ance o 2

denotes [V fi(x), V fa(x), . . ., VfN(x)]T with Vf(x) the gradient of

such a case, i.e. in the absence of any spoofing, a ML estimator for
the case with an agent at p and the anchors p; + §; would solve
the equivalent problem as in (3) as an unbiased estimator. Then,
E{p} = p. It follows that, being this the identical problem as (3) we
have

E{ép}=p-p- ®)

Note that (5) is valid for any estimator that is unbiased in the
absence of an attack, i.e. E{p |6 = 0} = p and that is based on a
measurement model as in (1). If p does not exists, i.e. the system of
Ny equations in (4) has no solution, then the error will depend on
the specific localization algorithm and the measurement model.

2.3 Example Case Study: Range-based
Localization using RSSI

As an example, we here focus on the range-based localization using
RSSI. In this case, each anchor transmits with power Pr. The signal
propagates in fading channel where the fading is modeled as a
lognormal random variable n; ~ N(0, 62). Thus, the power received
at the agent from the ith anchor is

Pr
zi = 10logyy = + n; (6)
i 810 d;’ i
where d; = ||p — pil| is the true distance between the ith anchor

and the agent, 1 is the path-loss exponent, and n; ~ N(0, o2) are
statistically independent.
In this case, given the anchors’ spoofed positions p; + §; with

i=1,2,...,Np, and following (4), we have
p:llp-pi-Sill=llp-pill Vi=12....Np. (7)

When N;, = 3, we have p = A~lc, where

o2 = x1), (Y2 — y1)
A=z (x3 — x2), (y3 — yz)]
S ®

fG).
and r; = ||pil|- In such a case, if there exists a solution to the system
of equations in (7), such solution is p = A~1¢, where
A (5x2—5x1) (5y2_5y1)
A=A+2 20 2T
(5x, - 5x 2) (5y,3 - 5y,2)
. +(d?
€= é—r2+(d5 d%] ©

where 7; = ||p; + 8|, and 8; = [0y, i, dy,i]. Note that we can also
write p = Gp with G = A71Q.A and Q. being a transformation
matrix such that ¢ = Qcc.

3 ERROR BOUND UNDER SPOOFING
ATTACK

Consider the measurement model f(z;, p) for the observation z; and
unknown deterministic parameter vector p. Let p be any unbiased
estimate of p given p;. Based on the information inequality, which
gives a lower bound on the mean squared error (MSE) of estimators,
we have

E{lIp - p)I*} = tr{J; "} (10)

where Jp, is the Fisher information matrix for the parameter vector
p and tr{];,l} is called the SPEB [16].

As we have discussed in Sec. 2, an estimator p that is unbiased
in the absence of a tampering attack, i.e., E{p |8 = 0}, becomes
biased when 8 # 0 due to the incorrect measurement model. In
such a case, E{p |6 # 0} = p + esp, where eyp, is the bias due to the
tampering attack.

The information inequality on the mean squared error of such a
biased estimators should take into account the bias esp. In particular,
we define

. . OB(pIS #0)

= 11
p.6 ap ( )

and we derive the SPEB for a biased estimator p as

B{1Ip - Il # 0) = tr{w, 51 T ) (12)
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Figure 2: SPEB (dashed) and MSE (solid) varying §, with o =
0.5 (circles), o = 1 (triangles), and ¢ = 2 (squares); single
spoofed anchor (red) and two spoofed anchors (blue).

3.1 Example Case Study: range-based
Localization using RSSI

The (12) is general for any biased position estimator. For range-
based localization with RSSL, J}, is well known from the literature
[8] and given by

N
_( 10p (23 (pi—p) (pi - p)
Jp = Z yamt (13)
In(10)o/ & |Ipi —pll
From (9), it follows that V5 = A~1Q.A, where Q. is a transfor-
mation matrix such that ¢ = Qcc.

4 NUMERICAL RESULTS

In this section, we evaluate the effects of tampering on location
estimation using simulation results. We consider a network on
Ny = 3 anchors uniformly distributed on a circumference of radius
r = 1km. We consider the agent as uniformly distributed within
a squared area of 1 by 1 km. RSSI-based localization is considered
following the measurement model in (6) with ¢ varying from 0.1
to 10, and n = 2. The spoofing is simulated considering a constant
value 8§; = [J, 8] equal for all the spoofed anchors. We consider
the case with a single spoofed anchor and two spoofed anchors.
Location estimation is performed with a least square algorithm,
which is equivalent to the MLE when o is constant.

Fig. 2 shows the SPEB and MSE varying § when a single or
two anchors are spoofed. The second spoofed anchor increases
both the MSE and the SPEB. Note that the value of the MSE with
two spoofed anchors and § = 270m is comparable to the MSE
with a single spoofed anchor with § = 350 m. As a matter of fact,
the value of the bias is the leading parameter and therefore even
a single spoofed anchor can impact dramatically the localization
performance.

Fig. 3 shows the SPEB and the MSE as a function of ¢ for § =
100, 400, and 800 m with a single or two spoofed anchors. When
the value of § is above 100 m, the effect of sigma is negligible for
any value of ¢ in the interval considered. Also, when § = 100 m,
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Figure 3: SPEB (dashed) and MSE (solid) varying o with
d = 100m (circles), § = 400m (triangles), and § = 800m
(squares); a single spoofed anchor (red) and two spoofed an-
chors (blue).
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Figure 4: MSE for different numbers of anchors in the case of
two spoofed anchors (blue) and a single spoofed anchor (ma-
genta), with spoofing (dashed) and without spoofing (full).

the effect of the number of spoofed anchors is much smaller than
when § > 100 m. This fact corroborates what observed in Fig. 2
and shows that the measurement noise has a little impact in the
presence of spoofing attacks.

Fig. 4 shows the MSE varying the number of anchors Ny, for
the case with a single or two spoofed anchors. As it could be ex-
pected, the MSE decreases with the number of anchors that are not
affected by spoofing. In particular, with Ny, = 8, the case with a
single spoofed anchor is very close to the case without spoofing,
meaning that the effect of the spoofing has been mitigated with a
greater number of anchors. On the other side, when two anchors
are spoofed, even N, = 8 anchors are not sufficient to mitigate
completely the effect of the spoofing. These results provides a quan-
titative indications of the number of non-spoofed anchors required
to compensate the bias introduced by the spoofed anchors.

5 CONCLUSION

The main contribution of this paper is the proposal of a formal
reference model designed to abstract a variety of location spoofing
attacks. We present a mathematical model for describing spoofing
assaults. The relevant Cramér-Rao bound is then derived in the
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presence of tampering attacks and compared to the case in which
the assault is not present. While the model is technology agnostic,
we demonstrate its derivation using RSSI-based localization. The ef-
fect of system parameters on the localization error is demonstrated
numerically. Owing to its generality, our model may become a con-
venient formal benchmark for location security assessment, an area
which appears to attract a growing interest, also considering the
ongoing native integration of positioning technologies in the evolv-
ing 5G network. Future works will focus on the development of
techniques for the detection and mitigation of the location spoofing
attacks.
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