
The University of Manchester Research

Reproducibility in Evolutionary Computation

DOI:
10.1145/3466624

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
López-ibáñez, M., Branke, J., & Paquete, L. (2021). Reproducibility in Evolutionary Computation. ACM
Transactions on Evolutionary Learning and Optimization, 1(4), 1-21. https://doi.org/10.1145/3466624

Published in:
ACM Transactions on Evolutionary Learning and Optimization

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Apr. 2024

https://doi.org/10.1145/3466624
https://research.manchester.ac.uk/en/publications/5f8ba4ab-c2c3-44da-8d1f-2c91aaf16800
https://doi.org/10.1145/3466624


Reproducibility in Evolutionary Computation

MANUEL LÓPEZ-IBÁÑEZ, University of Málaga, Spain

JUERGEN BRANKE, University of Warwick, UK

LUÍS PAQUETE, University of Coimbra, CISUC, Department of Informatics Engineering, Portugal

Experimental studies are prevalent in Evolutionary Computation (EC), and concerns about the reproducibility and replicability of
such studies have increased in recent times, reflecting similar concerns in other scientific fields. In this article, we discuss, within the
context of EC, the different types of reproducibility and suggest a classification that refines the badge system of the Association of
Computing Machinery (ACM) adopted by ACM Transactions on Evolutionary Learning and Optimization (TELO). We identify cultural
and technical obstacles to reproducibility in the EC field. Finally, we provide guidelines and suggest tools that may help to overcome
some of these reproducibility obstacles.

CCS Concepts: • General and reference → Empirical studies; • Theory of computation → Optimization with randomized
search heuristics; Bio-inspired optimization.

Additional Key Words and Phrases: Evolutionary Computation, Reproducibility, Empirical study, Benchmarking

ACM Reference Format:
Manuel López-Ibáñez, Juergen Branke, and Luís Paquete. 2021. Reproducibility in Evolutionary Computation. 1, 1 (July 2021), 20 pages.
https://doi.org/?

1 INTRODUCTION

As in many other fields of Computer Science, most of the published research in Evolutionary Computation (EC) relies
on experiments to justify their conclusions. The ability of reaching similar conclusions by repeating an experiment
performed by other researchers is the only way a research community can reach a consensus on an empirical claim
until a mathematical proof is discovered. From an engineering perspective, the assumption that experimental findings
hold under similar conditions is essential for making sound decisions and predicting their outcomes when tackling a
real-world problem.

The “reproducibility crisis” refers to the realisation that many experimental findings described in peer-reviewed
scientific publications cannot be reproduced, because e.g. they lack the necessary data, they lack enough details to
repeat the experiment or repeating the experiment leads to different conclusions. Despite its strong mathematical basis,
Computer Science (CS) also shows signs of suffering such a crisis [Cockburn et al. 2020; Fonseca Cacho and Taghva
2020; Gundersen et al. 2018]. EC is by no means an exception. In fact, as we will discuss later, particular challenges of
reproducibility in EC arise from the stochastic nature of the algorithms.

Authors’ addresses: Manuel López-Ibáñez, manuel.lopez-ibanez@uma.es, University of Málaga, Bulevar Louis Pasteur, 35, Málaga, Spain, 29071; Juergen
Branke, juergen.branke@wbs.ac.uk, University of Warwick, Gibbet Hill Road, Coventry, UK, CV4 7AL; Luís Paquete, paquete@uc.pt, University of
Coimbra, CISUC, Department of Informatics Engineering, Polo II, Pinhal de Marrocos, Coimbra, Portugal, 3020-290.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-9974-1295
HTTPS://ORCID.ORG/0000-0002-4343-5878
https://doi.org/?
https://orcid.org/0000-0001-9974-1295
https://orcid.org/0000-0002-4343-5878
https://orcid.org/0000-0002-4343-5878


2 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

Although concerns about reproducibility in randomised search heuristics have existed for a long time, see, for
example, Gent et al. [1997], Johnson [2002], and Eiben and Jelasity [2002], only recently we have reached a critical point
that is leading to changes in journal policies and research practices. The goal of this paper is to discuss reproducibility
in the context of EC (and randomised search heuristics in general). We review the abundant research on reproducibility
from other fields and adapt it, when pertinent, to the EC context. In Section 2, we explain what reproducibility means
in the context of EC and argue that reproducibility is as relevant in EC as in any other sub-field of CS, both from a
scientific and from an engineering perspective. In Section 3, we discuss, in the context of EC, two key concepts that
arise when discussing reproducibility, the notions of artifact and measurement. We also review the terminology adopted
by ACM [2020] and others to formally distinguish between different levels of reproducibility, and propose a refinement
that classifies reproducibility studies in EC according to the factors that are varied in the study with respect to the
original work. We discuss in Section 4 some of the cultural and technical obstacles to ensuring reproducibility in EC.
In Section 5, we suggest guidelines and tools that may help overcome some of those obstacles. Finally, we conclude
in Section 6 with an overall discussion of the state of reproducibility in EC and point out future directions to further
understand and improve reproducibility.

2 WHY IS REPRODUCIBILITY IN EC IMPORTANT ?

2.1 Falsifiability and community consensus

Evolutionary Computation (EC), in much the same way as Computer Science [Wegner 1976], can be seen as a three-fold
discipline: it is mathematical since it is concerned with the formal properties of abstract structures; it is also scientific

since it is concerned with the empirical study of a particular class of phenomena; and it is engineering since it is
concerned with the effective design of tools that have social and commercial impact in the real world. Despite major
advances in the Theory of EC, the dynamics of practical EC algorithms applied to non-trivial problems are still too
complex to be analysed using only mathematical arguments. As a result, a majority of EC research relies on empirical
studies. Thus, in the following, we focus on the scientific (empirical) and engineering perspectives.

In empirical sciences, the body of knowledge is built by following the principles of the scientific method:

(1) Observe a phenomenon, e.g. EAX crossover appears to have the capacity for local optimisation in the travelling
salesman problem (TSP) [Nagata and Kobayashi 1997].

(2) Construct a hypothesis, e.g. a specific evolutionary algorithm (EA) converges faster to the optimal solution for a
particular class of TSP instances when using EAX than when using the other known crossovers for the TSP.

(3) Conduct an experiment, e.g. measuring the performance of the EA using EAX and alternative crossovers on a
number of TSP instances.

(4) Analyse and draw a conclusion on whether the experiment supports the hypothesis and, hence, it is provisionally
accepted, or not, hence, it is falsified.

A cornerstone of the scientific method is the notion of falsifiability, i.e. a scientific hypothesis must be testable
empirically and, possibly, falsifiable. For example, the statement “There are problems for which Evolutionary Algorithms

are the best optimisation methods possible” is not falsifiable (by evidence), not only because of the vagueness of terms
such as “best” and “Evolutionary Algorithm”, but also because we may never know all possible optimisation methods
nor all possible problems. However, the statement “in crossover operators for the traveling salesman problem, the trade-off

between the ratio of edges inherited by offsprings from parents and the variety of offsprings is important for generating

large number of improved offsprings” [Nagata and Kobayashi 1999] is falsifiable by evidence.
Manuscript submitted to ACM



Reproducibility in Evolutionary Computation 3

On the other hand, research in EC very often takes an engineering perspective, e.g. when comparing different
EC algorithms to solve a particular problem. As in other engineering disciplines, a researcher has to go through the
following steps:

(1) Specify requirements, e.g. an EA that outperforms the LKH algorithm in finding solutions less than 1% from the
optimum on instances of the TSP with up to 200,000 cities [Nagata and Kobayashi 2013].

(2) Design a solution, e.g. a particular type of EA that uses a novel crossover.
(3) Conduct an experiment, which will often involve implementing a reasonably efficient prototype, careful parameter

tuning and benchmarking the prototype against a competitor.
(4) Analyse and draw a conclusion on whether the benchmarking results provide evidence that the solution meets

the requirements.

There are clear parallels between the scientific and engineering perspectives. Moreover, engineering requirements can
also be recast as scientific hypotheses. A major difference between the scientific and engineering perspectives is that the
latter is mostly concerned with demonstrating performance differences between realistic algorithmic implementations
on practical problems under the requirements specification, whereas the former is concernedwith confirming hypotheses
on abstract models of the real-world that may lead to general principles.

From both scientific and engineering perspectives, experiments that are reproducible and falsifiable by others are
a prerequisite to reach a consensus in the research community and building a body of knowledge about working
principles of EC. Such “laws of qualitative structure” [Newell and Simon 1976] are qualitative hypotheses that are
accepted by the research community until sufficient empirical evidence arises to falsify them, e.g. the generally accepted
hypothesis that the search space of the travelling salesman problem (TSP) has a “big valley” structure [Boese et al. 1994].

2.2 Building on the work of others

Scientific progress is a collaborative effort. Most new research results build on previous research results. The first step
to improving an algorithm is to reproduce the previous results. In this sense, reproducibility facilitates (or even is a
prerequisite of) scientific progress. If reproducing previous results is easy because the research has been published in a
reproducible format, it saves researchers a lot of time, allowing the community to quickly absorb new results, speeding
up scientific progress as well as the transfer of new ideas into practical applications.

2.3 Quality control and error correction

In a provocative paper entitled "Why most published research findings are false", Ioannidis [2005] suggests that much
of published research results cannot be trusted. A recent survey in Nature [Baker 2016] revealed that more than 70% of
researchers have previously failed in an attempt to reproduce another researcher’s experiments, and over 50% have even
failed to reproduce one of their own previous results. This is generally not due to researchers deliberately falsifying
their results, but more often a result of the publication culture, researcher ignorance, or confirmation bias.

A well-documented bias against publishing negative results [Fanelli 2012] together with a culture that rewards
scientists chiefly on quantity of publications incentivises non-reproducible research [Grimes et al. 2018].

Researchers often lack sufficient expertise in statistics and unknowingly use improper statistical tests, insufficient
sample sizes [Campelo and Wanner 2020], or manipulations of the experimental conditions that alter (unintentionally
or deliberately) the statistical significance of results, e.g. p-hacking [Cockburn et al. 2020; Simmons et al. 2011] and
hypothesising after results are known (HARKing) [Kerr 1998].

Manuscript submitted to ACM



4 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

In particular since research in EC is often framed as competitive testing [Hooker 1996], there is also a bias in the
effort spent by researchers in verifying their experimental setup and code. If a researcher hypothesises that a new
mutation operator should work well on a particular problem, and experiments show poor performance, they are likely
to carefully check their code and experimental setup to make sure that this unexpectedly poor performance is not due
to an error. On the other hand, if results are very positive, they are less likely to suspect a problem and thus spend much
less time verifying their code and experimental setup. As a result, errors that lead to poor performance are usually
corrected, whereas errors that lead to apparent but false good performance are often not detected and are published. A
similar bias, but in the opposite direction, may be true for competing algorithms. There, an error that leads to poor
performance of an existing algorithm relative to the author’s newly proposed algorithm risks not being detected because
it supports the author’s presumption that their new algorithm is better. Even if the code is available but the bug only
shows up on new problem instances or experimental conditions, there is little incentive to investigate the reasons
behind the poor performance of a benchmark algorithm. Brockhoff [2015] reports the illustrative case of a bug in one
implementation of an algorithm affecting published results and how the bug has propagated to many other software
packages due to the lack of independent implementations, potentially affecting the results of hundreds of published
papers.

However, even though there is evidence that a significant proportion of published research results are wrong,
and many researchers probably have experienced challenges in reproducing published results [Sörensen et al. 2017],
the number of published corrections is negligible. A search on Scopus (November 2020) reveals that out of 2484
papers published in the journals IEEE Transactions on Evolutionary Computation, Evolutionary Computation, and Swarm

Intelligence and Evolutionary Computation, only 8 were Errata. As a consequence, a lot of effort is potentially wasted by
many research groups who independently attempt to reproduce results and fail, before the rumor somehow spreads
and people accept that certain results are not reproducible. A proper research culture where reproducibility is regularly
attempted and also negative results are published could significantly speed up scientific progress.

3 TERMINOLOGY

Informally, the terms reproducibility and replicability are often used to describe various concepts related to being able
to confirm or falsify a hypothesis by repeating an experiment. More formally, those terms often denote various degrees
of reproducibility and, unfortunately, not always consistently, since different communities use different terminologies.
For a historical perspective on terminology see Plesser [2018]. In our paper, we use the term “reproducibility” when
addressing the general topic. When discussing specific degrees of reproducibility, we mostly follow the terminology
used by ACM [2020] with a further refinement presented later in this Section.1 The ACM terminology relies on the
concepts of “artifact” and “measurement”:

Artifact. “A digital object that was either created by the authors to be used as part of the study or generated by
the experiment itself” [ACM 2020]. Examples of artifacts in the context of EC would be complete implementations
of algorithms, either in source code or executable form; data or code required to fully specify problem instances or
benchmark functions, e.g. files containing distance matrices for the traveling salesman problem, a software library
of continuous benchmark functions or a simulation software needed for evaluating solutions; raw data measured
during the experiment and used for validating the hypothesis, e.g. measurements of solution quality, counts of objective

1On August 24th 2020, ACM swapped the definitions of “Reproducibility” and “Replicability” to match the terminology proposed by Claerbout and
Karrenbach [1992].

Manuscript submitted to ACM



Reproducibility in Evolutionary Computation 5

function evaluations, iterations, steps, or computation times; and any scripts required to process the raw measurements
and calculate the statistics or visualisations that justify the conclusions of the experiment.

Measurement. The term "measurement" is used in analogy to physical experiments. For computer science, a measure-
ment is the raw data (objective function values, runtimes, etc.) that results from an experiment. In EC, instead of the
actual measurements, it is common to report summary statistics such as means and standard errors. As discussed by
McGeoch [2012], the measurements taken should be appropriate to the level of abstraction being studied. For example,
computational effort may be measured as cycles, seconds, function evaluations or iteration counters.

Based on the above concepts of artifact and measurement, the ACM defines the following terms [ACM 2020]:

Repeatability. “Themeasurement can be obtained with stated precision by the same team using the samemeasurement
procedure, the same measuring system, under the same operating conditions, in the same location on multiple trials.”
(Same team, same experimental setup).

Reproducibility. “The measurement can be obtained with stated precision by a different team using the same measure-
ment procedure, the same measuring system, under the same operating conditions, in the same or a different location
on multiple trials.” (Different team, same experimental setup).

Replicability. “The measurement can be obtained with stated precision by a different team, a different measuring
system, in a different location on multiple trials.” (Different team, different experimental setup).

In the context of EC, repeatability means that the authors of a publication can reliably perform multiple times their
own experiments and get the same result up to their own stated precision. Reproducibility means that independent
researchers can reliably performmultiple times the experiments described by the publication using the artifacts provided
by the original authors and the same computational environment or a similar one, and get the same result up to the
stated precision. Finally, replicability means that independent researchers can reliably perform multiple times the
experiments using independently developed artifacts on a different computational environment and get the same result
up to the stated precision.

According to the ACM classification, the main distinction between reproducibility and replicability is that, in case of
reproducibility, the original artifacts are re-used, while for replicability another group has to independently generate the
necessary artifacts. However, we believe that there are more dimensions to reproducibility, especially in evolutionary
computation, where algorithms are randomised, parameterised, and results based on benchmark problems. What should
be kept fixed and what should change to assess either reproducibility or replicability?

Following classical statistical terminology [Chiarandini and Goegebeur 2010], we make a distinction between two
types of experimental factors: random effect factors and fixed effect factors. A random factor has many possible values and
the experimental conclusion of a paper applies to a certain range or distribution, but the experiment only evaluates a
random sample of values. A fixed factor may also have many possible values, but the experiment only evaluates specific
values chosen by the experimenter and the claim in the paper is only supported for those specific values. A typical
random factor in EC is the random seed of a stochastic algorithm, even though most computer experiments are not truly
random. A typical fixed factor would be an algorithmic parameter. Whether a factor is treated as random or as fixed is
typically decided by the experimenter, depending on the claim that the experiment will aim to support. In some cases, a
factor must be fixed because there is no known unbiased way to sample its values. This is often the case for benchmark
problem instances—e.g. it is not clear how to sample from the space of all “interesting” real-valued functions—or only

Manuscript submitted to ACM



6 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

few real-world instances are available for a particular application. If they are selected by the experimenter, then they are
treated as a fixed factor and the experiment only directly supports claims regarding those specific instances, although
the author may hypothesise about a wider applicability. If the problem instances are randomly generated or selected
from a larger class of instances, then they are treated as a random factor, and the paper can make statistical inferences
about the larger class.

We suggest to consider the following three dimensions of reproducibility:

(1) Artifacts: Re-use of the original artifacts should allow to repeat the exact same experiments as described in the
original publication. However, it bears the risk of also repeating the exact same mistakes in case the original
code or data contained errors. Having the artifacts re-created by another group reduces the risk of errors being
repeated, and also confirms that all information required to re-create the artifacts is contained in the manuscript.
We extend ACM’s definition of artifact beyond pure digital objects and suggest that, in some cases, the entire
computational environment, and even the hardware, used in the original experiment may be provided as artifacts
in the form of virtual machines, “containers” or access to cloud platforms (see Section 5.1).

(2) Random factors: In the presence of random factors in an experiment, repeating exactly the same computation
would require using exactly the same values of the random factors, e.g. same random seeds. However, one would
expect that the claims of the paper hold after resampling the values of the random factors. Of course, such claims
would need to be expressed in statistical terms to determine whether the results are equivalent.

(3) Fixed factors: Unless somehow randomised, fixed factors in EC typically include test problems, parameter settings,
computational budget, etc. Strictly speaking, the hypothesis supported by the experiment will only apply to
the specific values tested. Changing these values (or converting them to a random factor) will test whether the
claims of the paper generalise also to other values and would go beyond just replication of the experiments in
the paper. In some cases, the experiment specifies a reproducible procedure to randomise or unambiguously
determine the values of a factor, for example, for deciding parameter values. In those cases, the procedure itself
becomes the experimental factor, either random or fixed.

The typical combinations of these dimensions in a reproducibility study, together with a suggested label, are
summarised in Table 1. In a repeatability study, every dimension is exactly as in the original experiment. This could
be useful to assess that the original results are indeed obtainable, but may be only feasible for the original authors or
require access to the original computational environment. A reproducibility study (in the narrow sense) would vary
the stochastic aspects of the experiment, i.e. the random factors, but re-use as much as possible the original artifacts,
possibly including the computational environment if provided as an artifact, and values of fixed factors. At this level,
we cannot expect to obtain exactly the same results as the original experiment. What is being evaluated is the statistical
robustness of the conclusions reached. At a third level we find replicability studies, where the goal is to reach the
same conclusion as the original experiment but with independently developed artifacts. Such a study would evaluate
how much the conclusions depend on the particular artifacts and/or computational environment. As in the previous
level, random factors must be varied to properly evaluate the statistical robustness of the claims, thus there is no
point in re-using the original random seeds at this level. A further level concerns the generalisability of claims of
the paper to other values of the fixed factors. Generalisability goes beyond the claims supported by the experiment.
For example, although the conclusions of the paper may be true for the problem instances (or instance generator)
evaluated, they would be more interesting if they extend to other problem instances. The sensitivity of the algorithm’s
performance to particular parameter settings would also be an example of generalisability. In generalisability studies
Manuscript submitted to ACM



Reproducibility in Evolutionary Computation 7

Table 1. Proposed classification of reproducibility studies.

Label Artifacts
Random
factors

Fixed
factors Purpose of the study

Repeatability Original Original Original Exactly repeat the original experiment, generating precisely
the same results.

Reproducibility Original New Original Test whether the original results were dependent on specific
values of random factors and, hence, only a statistical
anomaly.

Replicability New New Original Test whether it is possible to independently reach the same
conclusion without relying on original artifacts.

Generalisability Original
or New

New New Test whether the conclusion extends beyond the experimental
setup of the original paper. When new artifacts are used,
generalisability should come after a replicability study.

that use independently developed artifacts, it is a good idea to conduct first a replicability study so that, if conclusions
are different from the ones in the original experiment, this discrepancy can be properly attributed to the changes in
fixed factors or in artifacts.

Studies that fall between levels are possible. For example, a study that re-uses some of the original artifacts, such as
the implementation of the algorithms, while evaluating the results in a new computational environment, would fall
closer to reproducibility than replicability. Similarly, if claims of the paper rely on specific aspects (implementation
language, hardware and third-party software capabilities, etc), these become fixed factors rather than artifacts and,
thus, varying them would be closer to a generalisability study than a replicability one.

Ideally, all published experiments should be replicable, and some argue that a pure repeatability study does not
generate additional evidence for a paper’s claims and therefore may not be worthwhile [Drummond 2009]. However,
evaluating the repeatability and reproducibility of an experimental study is typically less demanding and may be taken
as a precondition before attempting replication. In any case, we consider it important that reproducibility studies are
specific about what level of reproducibility is attempted. We also suggest that if an attempt to reproduce results fails to
generalise to other values of fixed factors (e.g. test problems or parameter settings), it should be attempted with the
same test problems and parameter settings, and if this fails too, it should be attempted with the original artifacts and,
if possible, same random seeds. This would allow tracing back the cause of a reproducibility problem. Hence, while
repeatability and reproducibility are not the end goal, they are still important to learn from and facilitate replicability
and generalisability studies.

For completeness, we would like to mention two more terminologies that classify levels of reproducibility. First,
the Turing Way project [The Turing Way Community et al. 2019] funded by The Alan Turing Institute in the UK
distinguishes reproducibility (same analysis performed on the same dataset consistently produces the same answer),
replicability (same analysis performed on different datasets produces qualitatively similar answers), robustness (different
analysis applied to the same dataset produces a qualitatively similar answer to the same question) and generalisability
(the combination of replicability and robustness). This classification has been adopted by a segment of the Machine
Learning community [Pineau et al. 2020]. Second, Stodden [2014] makes a distinction between empirical reproducibility,

Manuscript submitted to ACM



8 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

which is the concept of reproducibility that arises in natural sciences, i.e. being able to repeat an experiment following
the details published and obtain a similar conclusion by using different artifacts, since artifacts cannot be copied in the
natural sciences; computational reproducibility, which relates to the availability of the code, data and all details of the
implementation and experimental setup that allow obtaining the published results; and, lastly, statistical reproducibility,
which is concerned with validating the results of repeated experiments by means of statistical assessment.

Nevertheless, the above definitions do not fully specify what details define the experimental setup (or operating
conditions). Completely replicating the exact conditions of the original experiment may be impossible even by the
original authors, e.g. the original hardware may not be available anymore, the load of the computational system may
have influenced the measurements, the precise version of some software libraries may be unknown, some sources of
randomness may not be repeatable, etc. In that case, the experimental setup may refer only to the details that the original
authors consider relevant for their experiment. Alternatively, one may give up on repeatability and reproducibility
as long as replicability is achievable, which does not mean that the latter is easier to achieve than the former. Indeed,
replicability requires high-level descriptions of artifacts with enough detail to enable their independent development
and a careful choice of measurements, their stated precision and confidence levels that allow other researchers to
unequivocally conclude whether a replication attempt falsifies the original experiment.

4 OBSTACLES TO REPRODUCIBILITY

Despite the obvious benefits or reproducibility studies, very few such studies are published in EC. In this section, we
try to explain the low number of reproducibility studies by discussing cultural and technical obstacles.

4.1 Cultural obstacles

A key reason for the low number of reproducibility studies is simply that the current “publish or perish” culture does
not encourage it. Neither has the author of a scientific paper enough incentives to facilitate reproducibility studies, nor
have other scientists enough incentives to conduct reproducibility studies.

Disincentives to artifact publication . Reproducibility studies would be greatly facilitated if authors would make their
artifacts available and accessible for others to be easily re-used, which means that authors would have to learn about
and apply standard principles of software engineering such as proper documentation, modularity, version control,
testing and maintenance. With reputation and career prospects closely linked to the number of publications, this
additional effort is not obviously beneficial to the individual,2 and thus researchers rather invest their time in publishing
more papers than in making artifacts available and accessible. Besides the additional effort required, the publication of
artifacts increases the chances of error detection, and thus may increase chances of the paper being rejected (if the
artifacts are checked before publication), having to publish errata, or even to retract a paper.

In principle, the lack of intrinsic incentives could be counter-balanced by top journals requiring the publication of
artifacts prior to publication of the paper. This would not only lead to a larger number of artifacts being available, but
also raise the quality of the artifacts provided, as reviewers would be less inclined to review and accept poor quality
artifacts. There is some evidence that journal policies are frequently ignored and marginally effective if they merely
“encourage” authors to make their artifacts available or only “require” them post-publication [Stodden et al. 2018].
Nevertheless, we are not aware of any journal or conference in the EC field that requires artifact publication. And even

2Although a recent study found a small positive correlation between linking to artifacts in a paper and its scientific impact in terms of citations [Heumüller
et al. 2020].

Manuscript submitted to ACM



Reproducibility in Evolutionary Computation 9

conferences with an explicit reproducibility checklist do not absolutely request artifacts upon submission [AAAI 2021;
Liu and Tang 2021]. In any case, code review places a significant additional workload onto reviewers and a peer review
system that is already stretched to the limit. Moreover, the time constraints for conference publications would not allow
for additional code review. It can therefore be expected that only few top publications would be able to provide such a
service. As a result, very few published papers, even in major journals, provide a complete set of artifacts.

Difficulty of publishing a reproducibility study. Conducting a reproducibility study is also not incentivised, as publish-
ing the results may be challenging [Sörensen et al. 2017]. If the experiments confirm the results from the original paper,
the knowledge gained may be considered marginal. On the other hand, if the experiments fail to validate previous work,
the results of the original publication stand against the results of the reproducibility study, and the question arises
whether there is a problem with the original paper, a problem with the reproducibility study, or whether the difference
is simply due to statistical uncertainty. It is difficult to convince reviewers that the new study is more reliable than the
old one. An independent third party, or a collaboration between the authors of the original paper and the team that
tried to reproduce the results, may be required to explain the observed difference. Hence, rather than spending the
effort on reproducibility studies that are difficult to publish, scientists are incentivised to develop new algorithms and
publish new results.

Insufficient description. The reluctance of authors to publish and properly document their artifacts further compounds
the disincentive for reproducibility studies. Without artifacts, direct reproducibility is impossible. Often, the description
given in a paper is unintentionally ambiguous or insufficient to re-implement the precise algorithm. Indeed, the page
limit imposed by some journals often necessitates omitting some details. This stresses the importance of making the
original source code available. Even “obsolete” code, which can no longer be run because the compiler or hardware
needed are no longer available, can help to resolve ambiguities and fill in details missing in the paper.

But even if the artifacts are available when the paper is published, they may not match the required standards for
reproducibility: the steps to reproduce the results are not fully documented, the artifacts require precise versions of
additional software not provided nor documented, the download link to the artifacts has become unavailable since the
paper was published, etc. It also happens that the artifacts provided do not match the description in the paper, i.e. either
the algorithm described in the paper is not the one actually used in the experiments or the results shown in the paper
correspond to a different version of the artifacts provided.

Mistakes perceived negatively. Even though everyone occasionally makes mistakes and discussing them openly would
be beneficial to the community, errors are culturally disdained. The author of a study may feel uneasy having to admit a
mistake in a published paper, and the scientist who conducted a reproducibility study may feel uneasy about challenging
the authors of the original study. As a result, even if someone has attempted to reproduce a scientific study, the results
are rarely published.

4.2 Technical obstacles

Intellectual property. Concerns about licensing, privacy and commercially sensitive information may be legitimate
obstacles for making artifacts (source code or data) publicly available [Fonseca Cacho and Taghva 2020]. Although it
may be tempting to make artifacts available only to reviewers under some type of nondisclosure agreement [Heroux
2015; Stodden et al. 2016], such an arrangement does not actually improve reproducibility.

Manuscript submitted to ACM



10 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

Binary-only artifacts. Similarly, publishing artifacts in executable form instead of source code does not increase
reproducibility. One might think that being able to reproduce the results by having the algorithm in executable form is
better than not being able to reproduce the results. However, such argument misunderstands the ultimate purpose of
reproducibility, which is to be able to understand in detail how the published results were produced and whether they
match the description in the paper. Therefore, if we have to choose, even obsolete source code, in the sense discussed
above, is better than “working” black-box object code.

Unreproducible Computational environment. Although lab conditions in computer science are very controlled, con-
clusions may depend on details of the computational environment such as the compiler, the hardware, or specific
libraries [Bocchese et al. 2018].

Computational resources. A more challenging obstacle arises when the time or computational resources required
to reproduce an experiment are prohibitively large. It is not unusual nowadays that research teams have access to
computation clusters capable of performing several years of CPU-time in a few weeks. Reviewers may not have access
to such resources, neither the time or the budget required to reproduce all experiments.

Verification of artifacts. Although we believe that a cursory peer-review of artifacts before publication would have a
positive impact on reproducibility in EC, in an ideal world one would like to ensure the correctness of the artifacts.
However the effort to do so manually is tremendous, and can only be reduced somewhat by implementation-agnostic
validation testsuites and detailed source documentation. This is also one of the reasons why replicability studies using
independent implementations solely based on the description of the algorithm in the paper are very valuable, as it is
unlikely that different teams would make exactly the same implementation errors.

4.3 Obstacles specific to generalisation

A particular challenge in empirical EC research is that experiments are necessarily limited to specific problem instances,
computational budget and parameter settings. Nevertheless, the insights are usually expected to generalise to other
settings. For example, if a paper finds one TSP crossover operator superior over another on some TSP instances and for a
certain computational budget, the expectation is (and the claim in the paper usually implies) that similar results also hold
for other TSP instances and a larger or smaller computational budget. Studies on generalisability as defined in Table 1
are thus very important to understand how robust and generalisable the paper’s conclusions are. Furthermore, in EC,
parameter settings can have a huge impact on performance. Smit and Eiben [2010] have demonstrated that automatic
optimisation of the parameters can substantially improve even the performance of the algorithm winning the CEC 2005
competition. They speculate in their conclusion that different algorithms might benefit differently from tuning, and
that tuning all algorithms may change the ranking observed in the competition. This is exactly what Melis et al. [2017]
have investigated for natural language processing. They re-evaluated several popular architectures and regularisation
methods by automatically tuning their parameters and arrive at the conclusion that standard architectures, when
properly tuned, outperform more recent models. Further evidence is provided by various propositional satisfiability
(SAT) competitions [Hutter et al. 2017] where the rankings of solvers change substantially before and after automatic
parameter tuning. To make things worse, one can argue that changing the problem instance class or the computational
budget available necessitates a change in the algorithm’s parameter settings, e.g., see Bezerra et al. [2018]. Someone
testing the generalisability of a paper’s conclusion to a different class of problem instances thus faces the additional
challenge of choosing appropriate parameter settings. So unless parameters have been set in a systematic way, one may
Manuscript submitted to ACM



Reproducibility in Evolutionary Computation 11

question whether the observation that one algorithm is better than another is really due to the algorithmic differences,
or just a consequence of insufficient or inappropriate tuning.

5 GUIDELINES AND TOOLS

In this section, we discuss a few general guidelines and present pointers to the literature that aim at improving, assessing
and encouraging reproducibility of research published in the EC field. Some of these guidelines are inspired by the
ACM guidelines for artifact review badging [ACM 2020], the guidelines for AI research endorsed by AAAI3 [Gundersen
et al. 2018], the Replicated Computational Results Initiative of ACM Transactions on Mathematical Software [Heroux
2015] and other sources [Stodden et al. 2016].

5.1 Ensuring reproducibility

Publish permanently accessible, complete and useful artifacts. When sharing artifacts, the rule-of-thumb heuristic
should be that a person who only has access to the published paper and the artifacts provided should be able to reproduce
the results shown in the paper without having to contact the original authors. This implies that the shared artifacts
should not change after publication, because the changes may prevent reproducing the paper as published. Hence, a
development repository, e.g. in GitHub, is not a valid repository for artifacts unless the precise versions used in a paper
are clearly tagged. Preferably, artifact repositories will have a digital object identifier (DOI), such as those generated
by Zenodo (e.g. doi: 10.5281/zenodo.3749288). If revisions to the published artifacts are necessary, it should be easy to
identify each previous version. The repository should provide a plan for long-term, ideally permanent, accessibility.
Authors’ personal webpages or development repositories do not typically satisfy this requirement. ACM uses the badge
artifact available for papers that match the requirements above [ACM 2020].

Artifacts should contain, at a minimum, all the source code and the input data required to reproduce the results
reported in the paper, together with clear metadata and sufficient documentation on how to reproduce the results.
We suggest, however, to provide a detailed step-by-step documentation, flexible reproduction scripts and, as much as
possible, raw intermediate (generated) data that allow reviewers and other researchers to selectively repeat parts of the
experiment. Such extensive artifacts enable a better evaluation and comprehension, hopefully simplifying reproduction
efforts and avoiding mistakes. In summary, with regards to source code, we suggest splitting the code into:

• Pre-processing code, e.g. code that generates instance data and scripts that set up the experimental conditions.
• Algorithm code, the implementation of the algorithm(s) to be tested.
• Analysis code, scripts that post-process the data produced by the algorithm and perform statistical analysis.
• Presentation code, e.g. scripts that generate tables and figures reported in the article.

As for the generated data provided, although a paper may report only summary statistics, the artifacts should ideally
contain the raw data generated, thus not only enabling the reproduction of the analysis, but also further analysis by
others. Furthermore, in an optimisation context, we support the recommendation that the raw data should contain not
only objective function values but also the actual solutions [Gent et al. 1997; Kendall et al. 2016], thus making it possible
to verify and compare results. Even for simple problems such as the TSP, the correct computation of the objective
function may depend on technical details, e.g. preprocessing of distance data.4 Subtle implementation errors cannot be
detected unless the actual solutions are available. Verification may be facilitated by publicly available solution checkers

3Latest version can be found at https://folk.idi.ntnu.no/odderik/reproducibility_guidelines.pdf (Last accessed, version 1.3, June 25, 2020)
4E.g. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp95.pdf

Manuscript submitted to ACM

http://doi.org/10.5281/zenodo.3749288
https://folk.idi.ntnu.no/odderik/reproducibility_guidelines.pdf
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp95.pdf


12 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

or the authors themselves may provide such a checker as an additional artifact that other researchers may use to verify
their obtained solutions. Solution checkers should be as simple as possible so that the implementation can be trusted.
One further step would be to automatically run the solution checker during post-processing. Gent et al. [1997] suggest
checking every solution evaluated. This proposal will bring us closer to “certifying artifacts” [McConnell et al. 2011].

Finally, we argue that artifacts should be made available as source code and open-data formats under conditions no
more restrictive than those required to read the paper itself. License information should be included with the artifacts,
preferably an open-source license allowing reading and distributing the code, running it and, ideally, reusing it [Stodden
et al. 2016].

In the case of papers using sensitive artifacts that cannot be made available in this manner, we suggest to perform
the experiments supporting the main conclusion using artifacts that are free from such concerns, either by generating
synthetic data, removing from the source code any sensitive parts or using a less realistic version of the artifacts,
possibly at a different level of abstraction, as we will discuss later in this section. Results using the sensitive artifacts
may still be reported to highlight qualitative differences, but they will not constitute the main scientific evidence.

Facilitate access to computational resources. Current practice for journals checking artifacts is that it is up to reviewers
to get access to the required resources and bear the cost for reproducing experiments. If special hardware is required,
e.g, graphical processing units (GPUs), authors could consider providing reviewers with access to the required resources
for the purpose of reproducibility checks. Although this case may seem similar to the availability of sensitive artifacts
discussed above, where we argued against making sensitive artifacts only available to reviewers, there is a fundamental
difference: Artifacts that are only disclosed to reviewers will never become available to other researchers, which hinders
reproducibility, whereas specialist hardware such as GPUs is publicly available for purchase by interested researchers
but reviewers should not bear the cost. A similar distinction may be made between undisclosed data, which is not
suitable for reproducibility, and data that is simply too large to host or copy for review purposes [Fonseca Cacho
and Taghva 2020]. Journals might consider making resources available to their reviewers and bear some of the cost.
For really expensive resources, however, the only realistic solution might be that research councils specifically fund
reproducibility studies (see also Section 5.3).

Report detailed experimental conditions. Any details required to reproduce the experiment but not included as part of
the artifacts should be thoroughly reported in the documentation included with the artifacts. These details include
the precise versions of any additional software, packages, libraries, simulators, compilers, interpreters, and operating
systems (possibly including installation steps unless trivial); as well as the relevant details of the hardware platform. For
example, experiments requiring significant amounts of memory should report the memory available, whereas results
sensitive to small changes in computation time should report full CPU details including cache sizes.

Literate programming, dynamic documentation and reproducible notebooks5 integrate code, documentation and
analysis, which makes it much easier to understand and interact with code, and reproduce or observe results by
automatically re-creating analysis, tables and figures.

Nowadays, several technical solutions exist that can ensure the portability of programs to different software en-
vironments such as virtual machines, containers, and platforms, e.g. Open Science Foundation6, Code Ocean7 and
Docker8. A container includes everything that is needed to run an application, such as code, system tools, system
5E.g. Rmarkdown, Jupyter notebooks, Knitr
6https://osf.io/
7https://codeocean.com/
8https://www.docker.com/

Manuscript submitted to ACM

https://osf.io/
https://codeocean.com/
https://www.docker.com/


Reproducibility in Evolutionary Computation 13

libraries and settings, independent of the underlying operating system. ACM Transactions on Evolutionary Learning
and Optimization explicitly supports the use of Code Ocean and can integrate it directly into its Digital Library platform.

In the case of algorithms, all (hyper-)parameters should be clearly described in the documentation, including their
domain. For the purposes of generalisability, the process used for setting parameter values should be reproducible
as well, ideally by means of design of experiments [Montgomery 2012; Paquete et al. 2007] or automatic algorithm
configuration tools [Birattari 2009], such as SMAC [Hutter et al. 2011] or irace [López-Ibáñez et al. 2016], with a clear
explanation of the values explored.

If an experiment relies on a random number generator, one should document or provide as artifacts the precise
random seeds that produce the results reported, for the purpose of allowing the exact repetition of the experiment [Gent
et al. 1997; Johnson 2002; Kendall et al. 2016].9 Various conferences [AAAI 2021; Liu and Tang 2021] already encourage
the specification of random seeds in their submissions guidelines. This recommendation also applies to randomly
generated data and problem instances, although in this case, one may also provide the data generated for completeness.

Measure and report with reproducibility in mind. There are two main concerns that should guide which measurements
are performed and how they are reported: (1) the level of algorithmic abstraction being considered in the experiment
and (2) what measurements can actually be reproduced given the artifacts provided.

McGeoch [2012] provides detailed guidelines for measuring and reporting solution quality and computational effort
at various abstraction levels that are directly applicable to EC. At the highest level, we find algorithm paradigms such
as metaheuristics, which are generic algorithmic templates that can be applied to different problem domains; whereas
at the lowest level we find executable implementations of specific algorithms running on a particular machine. It makes
sense to consider machine-independent measures to compare algorithm paradigms as well as very precise machine
counts to compare different implementations, but not the other way around.

When measuring and reporting computation time, authors should report not only hardware configuration, but also
include calibration codes and their running times among the artifacts provided, e.g. a publicly available deterministic
algorithm for the particular problem domain, run on a few small standard benchmark problem instances. Such informa-
tion may be used to normalise machine speeds [Johnson 2002] by comparing the speed of these standard benchmarks
on different computers, and scaling speeds accordingly.

With respect to ensuring reproducibility in the narrow sense, random experimental factors may lead to differences
in results reported no matter how detailed the artifacts provided are. Therefore, results should not be reported with a
confidence or precision larger than what can actually be reproduced, since it provides a false certainty about the values
reported. Nevertheless, the more details are included in the artifacts (e.g. random seeds, precise versions of required
software or even fully-fledged software containers and virtual machines), the less random variation we need to account
for in a reproducibility study.

Report statistical inference to make your claimsmore robust. Due to the stochastic nature of EC algorithms, it is expected
that authors report not only means and variances, but also confidence intervals, 𝑝-values and/or size effects estimates.
The usage of confidence intervals, rather than 𝑝-values, is usually recommended in recent literature [Cumming 2012].
The former gives useful information about uncertainty and it is easier to interpret. Moreover, a 𝑝-value can always be
derived from a confidence interval, but not the other way around. Effect size, such as Cohen’s 𝑑 and Pearson’s 𝑟 estimate
the effect of a treatment, such as the effect of a new operator on the overall performance of an algorithm. Confidence

9Of course, the conclusions should not depend on the precise seeds and a reproducibility study should vary the seeds.

Manuscript submitted to ACM



14 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

intervals for the effect size estimates are also available. For an appropriate treatment of inferential procedures in the
context of computer science experiments, we refer to Cohen [1995], Lilja [2000], Bartz-Beielstein et al. [2010] and
McGeoch [2012].

Be precise about the claims made. Most empirical results in EC are obtained with specific algorithmic parameter
settings, on a small set of problem instances and under specific experimental conditions (e.g. number of function
evaluations allowed) and random seeds. However, it is usually expected that the conclusions generalise beyond the
precise experiment reported by the paper. Certainly, in most cases, a conclusion that depends on the specific random
seeds would not have much value, even if it is fully repeatable. On the other hand, the conclusions in many papers are
much broader, e.g. crossover operator A is better than crossover operator B for continuous optimisation. If a subsequent
study finds that crossover operator B is better than crossover operator A on continuous problems different than the
ones used in the original paper then, strictly speaking, the original claim is falsified, even though the experiment may
still be replicable and we can only say that the results do not generalise (Table 1). Authors should therefore be as
precise as possible about the claims they make, such as the experimental conditions and problem classes for which
they believe their conclusions to hold. The experimental design should reflect as well the scope of the claims, e.g. by
using a problem instance generator whenever possible to clearly define the relevant class of problems rather than
testing on a few arbitrarily selected problem instances. In absence of (or in addition to) such generator, e.g. for complex
real-world problems, defining and measuring problem features would characterise the scope of the claims [Muñoz and
Smith-Miles 2020] and provide evidence that the conclusions hold within this scope. Another well-known issue is that
specialising algorithm designs and parameter settings to particular problem instances, i.e. overfitting, typically comes
at the cost of worsening performance in unseen instances, even of the same problem [Birattari 2009]. Thus, several
journals [Dorigo 2016; Journal of Heuristics 2015] have adopted policies that require a clear separation between the
problem instances used for algorithmic development and parameter tuning, and problem instances used for hypothesis
testing and benchmarking [Eiben and Jelasity 2002]. Such separation provides evidence that the claims of the paper
apply to a broader scope than the particular instances evaluated. The procedure for defining the two sets of instances
should be clearly described and reproducible. Finally, a sensitivity analysis of parameter settings and experimental
conditions would also provide evidence that the main conclusions hold when those conditions vary.

5.2 Assessing Reproducibility

Procedures to assess reproducibility should be tied to author’s claims. Unfortunately, there is no standard to evaluate
reproducibility of computational experiments. This is particularly difficult in EC, since one has to deal not only with
differences on hardware and/or software for reproducing experiments, but also with algorithm stochasticity. Therefore,
we advocate some caution before concluding, in a clear-cut manner, that a work is not reproducible if results do not
match exactly. Instead, we suggest to investigate further reasons for the work not being reproducible, for instance,
identify possible hardware or software differences, such as compiler flags, cache level sizes, software libraries, or even
sample size.

Even in repeatability studies (see Table 1), we may not always expect an implementation to obtain exactly the same
result under the same random seed if run twice, for instance, due to small fluctuations on the running time that defines
the termination condition. Inferential procedures could be used to assert whether the differences between the original
runs and the replicated runs are due to a random or a systematic effect. In this case, a matched-pair inferential procedure

Manuscript submitted to ACM



Reproducibility in Evolutionary Computation 15

would be appropriate in order to take into account the natural pairing between the original and the replicate run using
the same random seed.

A typical scenario in EC is to compare the performance of several algorithms on a set of benchmark instances.
Asserting an author’s claim that Algorithm A is significantly better than Algorithm B with respect to solution quality
can be performed by testing whether the reproduced results show a significant effect in the same direction, given the
same significance level as specified in the original publication. Alternatively, the opposite direction of the claim could
be tested, which, if significant, would allow to infer that the work is not reproducible.

In the above scenario, it is also possible to test if the effect size is significantly different, even if the direction is the
same. The authors in Open Science Collaboration [2015] suggest to test whether the original effect size is within the
95% confidence interval of the reproduced effect size estimate. However, some concerns have been raised about this
procedure, as the average probability of the first 95% confidence interval including the next reproduced mean is only
approximately 83% [Cumming 2012]. Reporting confidence intervals of the difference between original and reproduced
effect sizes is usually recommended. If 0 is included in this confidence interval, it suggests that the work is reproducible.

We note that the usual assumptions of parametric inferential procedures may be hard to be met for assessing EC
algorithms and non-parametric alternatives may be better suited. However, conducting non-parametric inference
procedures based on computationally intensive methods, such as bootstrapping and randomisation tests, for assessing
reproducibility may require access to all data collected by the original study in addition to the aggregated statistical
measures usually reported.

Meta-analysis is an interesting complementary analysis extensively used in other fields to aggregate results from
different studies to derive general conclusions [Borenstein et al. 2009]. A recent example is the meta-analysis of the
effect of adaptiveness in adaptive large neighborhood search [Turkeš et al. 2021]. In the context of reproducibility,
meta-analysis would allow to understand how much the effect size varies in the original and the reproduced studies by
combining the results from both. This new estimate takes usually the form of a weighted average of individual estimates,
where the weights are inversely proportional to the sampled variance, and from which inferential procedures for testing
heterogeneity are constructed. We refer to Ehm [2016] for the application of inferential methods in meta-analysis for
reproducibility.

Most research in EC is trying to derive general insights such as “algorithm A is better than algorithm B for the class
of problems with feature C” from limited experiments on a set of problem instances. Reproducibility studies should thus
not only focus on exactly reproducing results, but also expand experimentation to assess generalisability, by changing
the value of fixed factors such as parameter settings and problem instances. Statistical methods exist to assess the
generality of conclusions even from a limited number of real-world problem instances [Bartz-Beielstein 2015]. Such
experiments will confirm, over time, that the conclusions are not only valid for the fixed values examined in the original
paper, but have a broader validity.

5.3 Encouraging reproducibility efforts

Ideally, rigorous journals should adopt the Transparency and Openness Promotion (TOP) guidelines, which require
reproducibility checks and even independent replication before publication [Nosek et al. 2015; Stodden et al. 2016].
Some journals, such as Mathematical Programming Computation10, already require that source code is provided to
reviewers and we concur with authors who argue that this requirement should become the norm [Sörensen et al. 2017].

10https://www.springer.com/mathematics/journal/12532 (Last accessed: January 22, 2021).

Manuscript submitted to ACM

https://www.springer.com/mathematics/journal/12532


16 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

Top conferences in Artificial Intelligence have recently adopted reproducibility checklists as part of their submission
process, e.g. NeurIPS [Pineau and Sinha 2020; Pineau et al. 2020], AAAI Conference on Artificial Intelligence [AAAI
2021] and International Joint Conference on Artificial Intelligence [Liu and Tang 2021]. An intermediate, less onerous
step is to award recognition to papers that achieve certain levels of reproducibility. ACM badges [ACM 2020] already
provide a way to recognise different degrees of reproducibility that journals could adopt.

ACM Transactions on Evolutionary Learning and Optimization (ACM TELO) follows the ACM guidelines for
reproducibility [ACM 2020]. When submitting the manuscript, the author can apply for an ACM reproducibility badge.
Once the paper passes the first stage of review and is accepted or returned to the author for revision, the artifacts are
reviewed by a member of the journal’s reproducibility board, who can recommend that a badge be awarded, or request
further revisions of the artifact before a badge can be awarded. Three badges can be requested: Artifacts Available,
Artifacts Evaluated and Results Reproduced. The badges are independent, that is, any combination of badges can be
requested. The badge Artifacts Available is provided if the artifact is publicly available in a permanent repository. The
badge Artifacts Evaluated is concerned with ensuring that the artifact fulfills the requirements to be reproduced by others
and it has two levels, functional and reusable, the latter requiring that the artifact can be re-used and re-purposed. The
badge Results Reproduced corresponds to the notion of reproducibility presented in Section 3, that is, the experimental
results are validated using the artifact provided by the author. In order to receive this badge, it is required that the
results obtained by the reviewer are in agreement with those in the article within a tolerance deemed acceptable. For
this reason, it is required that precise estimates of performance are reported by the authors. Note that ACM also has a
badge for Results Replicated, which requires that the results are replicated without using the author’s artifacts. However,
this is not offered by ACM TELO at the moment, as the effort to replicate the code has been deemed excessive.

Another aspect that may be of interest to the EC community and that may help to prevent publication bias, is to allow
authors to pre-register [Nosek et al. 2018] their scientific studies and hypotheses with a journal, or a publicly available
website, before conducting the experiments. Pre-registration would allow reviewers to verify whether the initial authors’
plan and the published results match or not. A more ambitious goal would be to allow the pre-registration document to
be peer reviewed in order to identify issues with the experimental setup and its suitability for validating the authors’
hypotheses before the experiments are conducted. A certain publication guarantee could be provided depending of the
reviewers’ confidence. This is particularly relevant for experimental studies that take very long time or require huge
amounts of computational resources.

Funding agencies may also encourage reproducibility in various ways, as suggested by Stodden et al. [2016]. In
particular, funding agencies may require that the resulting research is reproducible according to specific and verifiable
criteria, in a similar manner that some funding agencies already require and/or provide funding for open-access
publications and data management plans. Funding agencies could also encourage and support reproducibility efforts by
funding reproducibility studies as well as research that analyses or alleviates reproducibility obstacles. We want to
highlight the incongruity of funding non-reproducible research with public money.

6 DISCUSSION AND CONCLUSIONS

Reproducibility is a cornerstone of science. Without reproducibility, scientific progress is impossible. Yet, many scientific
works are not reproducible. EC is particularly vulnerable because of its reliance on experimental results and the
stochastic nature of its algorithms. In this paper, we have discussed reproducibility in the context of EC, and proposed a
new classification of reproducibility studies, distinguishing four different types, namely, Repeatability, Reproducibility,
Replicability and Generalisability, with different purposes and study designs. Our proposed classification could be
Manuscript submitted to ACM



Reproducibility in Evolutionary Computation 17

applied to other fields in Computer Science. We have then analysed the reasons for the reproducibility crisis and
identified various cultural and technical obstacles.

Despite these obstacles, there are positive developments that point to a shift of culture. First, concern is growing in
the EC community about questionable benchmarking [Bartz-Beielstein et al. 2020; Eiben and Jelasity 2002], insufficient
statistical assessment [Buzdalov 2019; García et al. 2009; Shilane et al. 2008], unfair parameter tuning [Bartz-Beielstein
and Preuss 2014; Birattari 2009], and, more recently, reproducibility and replicability issues [Kendall et al. 2016; Sörensen
et al. 2017]. Several journals have adopted explicit policies that encourage reproducibility—albeit do not require it—and
improve replicability. Some ACM journals, with TELO being a prominent example, have established reproducibility
boards that award badges recognising the effort in making research reproducible. Finally, due to this shift in culture,
solutions to technical obstacles are becoming more widely available and adopted, thus lowering the effort to improving
the reproducibility of EC research.

We suggest that reproducibility (in the narrow sense) is a short-term goal that ideally should be checked during
the review process. In EC, in particular, there are no actual technical obstacles to make code and data available, thus
making results reproducible should be the norm. Platforms such as CodeOcean and OSF exist that provide nearly
identical experimental setup to ensure that published results may be reproduced by reviewers and other researchers.
Nevertheless, once this validation step is done, we believe that the preservation of code and data is more useful in the
long-term than the long-term availability of a reproducible experimental environment, given the rapid obsolesce of
software and hardware. Even if the original study becomes non-reproducible due to the obsolescence of its original
artifacts, studying their code and data could help future replication and generalisation efforts.

The next step should be empirical and statistical replicability, and published research should enable it. In other words,
published research should contain the information required to independently replicate the experiment without using
the original artifacts, and reach the same conclusion given the statistical confidence claimed by the original experiment.
This information would include all relevant details about the algorithm, problem, measurements and experimental
environment at the right level of abstraction. It would also include all statistical details that would allow the authors of
a replication study to assess whether their new results, which are expected to be numerically different from the original
ones due to varying the random factors of the experiments, reject or not the original hypothesis. The final step that will
actually push the boundary is to examine the generalisability of the claims made in scientific papers by testing whether
the main conclusions still hold in somewhat different experimental setups and for different problem classes.

To overcome the reproducibility crisis we need a culture shift towards reproducibility in EC, with reproducibility
playing a bigger role in education, funding decisions, recruitment and reputation. While this requires some extra effort,
especially early on, the reward will be faster scientific progress, less frustration trying to build on other’s work, and a
higher reputation for the field as a whole. The journey has already begun.

ACKNOWLEDGMENTS

We would like to thank Carola Doerr (Sorbonne University, France) and Mike Preuss (Leiden University) for pointing
out guidelines for reproducibility in other fields. M. López-Ibáñez is a “Beatriz Galindo” Senior Distinguished Researcher
(BEAGAL 18/00053) funded by the Spanish Ministry of Science and Innovation (MICINN). This work was partially
funded by national funds through the FCT - Foundation for Science and Technology, I.P. within the scope of the project
CISUC – UID/CEC/00326/2020.

Manuscript submitted to ACM



18 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

REFERENCES
AAAI. 2021. 35th AAAI Conference on Artificial Intelligence: Reproducibility Checklist. https://aaai.org/Conferences/AAAI-21/reproducibility-checklist/.

Last accessed: June 6th, 2021.
ACM. 2020. Artifact Review and Badging Version 1.1. https://www.acm.org/publications/policies/artifact-review-and-badging-current.
Monya Baker. 2016. Is there a reproducibility crisis? Nature 533 (2016), 452–454.
Thomas Bartz-Beielstein. 2015. How to Create Generalizable Results. In Springer Handbook of Computational Intelligence, Janusz Kacprzyk and Witold

Pedrycz (Eds.). Springer, Berlin, Heidelberg, 1127–1142.
Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, and Mike Preuss (Eds.). 2010. Experimental Methods for the Analysis of Optimization Algorithms.

Springer, Berlin, Germany.
Thomas Bartz-Beielstein, Carola Doerr, Daan van den Berg, Jakob Bossek, Sowmya Chandrasekaran, Tome Eftimov, Andreas Fischbach, Pascal Kerschke,

William La Cava, Manuel López-Ibáñez, Katherine M. Malan, Jason H. Moore, Boris Naujoks, Patryk Orzechowski, Vanessa Volz, Markus Wagner,
and Thomas Weise. 2020. Benchmarking in Optimization: Best Practice and Open Issues. Arxiv preprint arXiv:2007.03488 [cs.NE] (2020). https:
//arxiv.org/abs/2007.03488

Thomas Bartz-Beielstein and Mike Preuss. 2014. Experimental Analysis of Optimization Algorithms: Tuning and Beyond. In Theory and Principled
Methods for the Design of Metaheuristics, Y. Borenstein and A. Moraglio (Eds.). Springer, Berlin, Heidelberg, 205–245. https://doi.org/10.1007/978-3-
642-33206-7_10

Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. 2018. A Large-Scale Experimental Evaluation of High-Performing Multi- and
Many-Objective Evolutionary Algorithms. Evolutionary Computation 26, 4 (2018), 621–656. https://doi.org/10.1162/evco_a_00217

Mauro Birattari. 2009. Tuning Metaheuristics: A Machine Learning Perspective. Studies in Computational Intelligence, Vol. 197. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-00483-4

Andrea F. Bocchese, Chris Fawcett, Mauro Vallati, Alfonso E. Gerevini, and Holger H. Hoos. 2018. Performance robustness of AI planners in the 2014
International Planning Competition. AI Communications 31, 6 (Dec. 2018), 445–463. https://doi.org/10.3233/AIC-170537

Kenneth D. Boese, Andrew B. Kahng, and Sudhakar Muddu. 1994. A New Adaptive Multi-Start Technique for Combinatorial Global Optimization.
Operations Research Letters 16, 2 (1994), 101–113.

Michael Borenstein, Larry V. Hedges, Julian P. T. Higgins, and Hannah R. Rothstein. 2009. Introduction to Meta-Analysis. Wiley.
Dimo Brockhoff. 2015. A Bug in the Multiobjective Optimizer IBEA: Salutary Lessons for Code Release and a Performance Re-Assessment. In Evolutionary

Multi-criterion Optimization, EMO 2015 Part I, António Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos A. Coello Coello (Eds.). Lecture Notes in
Computer Science, Vol. 9018. Springer, Heidelberg, Germany, 187–201. https://doi.org/10.1007/978-3-319-15934-8_13

Maxim Buzdalov. 2019. Towards better estimation of statistical significance when comparing evolutionary algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO Companion 2019, Manuel López-Ibáñez, Anne Auger, and Thomas Stützle (Eds.). ACM Press,
New York, NY, 1782–1788. https://doi.org/10.1145/3319619.3326899

Felipe Campelo and Elizabeth F. Wanner. 2020. Sample size calculations for the experimental comparison of multiple algorithms on multiple problem
instances. Journal of Heuristics (2020). https://doi.org/10.1007/s10732-020-09454-w

Marco Chiarandini and Yuri Goegebeur. 2010. Mixed Models for the Analysis of Optimization Algorithms. See [Bartz-Beielstein et al. 2010], 225–264.
https://doi.org/10.1007/978-3-642-02538-9

Jon Claerbout and Martin Karrenbach. 1992. Electronic documents give reproducible research a new meaning. In SEG Technical Program Expanded
Abstracts 1992. Society of Exploration Geophysicists, 601–604. https://doi.org/10.1190/1.1822162

Andy Cockburn, Pierre Dragicevic, Lonni Besançon, and Carl Gutwin. 2020. Threats of a Replication Crisis in Empirical Computer Science. Commun.
ACM 63, 8 (July 2020), 70–79. https://doi.org/10.1145/3360311

Paul R. Cohen. 1995. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge, MA.
Jeff Cumming. 2012. Understanding the New Statistics – Effect Sizes, Confidence Intervals, and Meta-analysis. Taylor & Francis.
Marco Dorigo. 2016. Swarm intelligence: A few things you need to know if you want to publish in this journal. Swarm Intelligence (Nov. 2016).

https://static.springer.com/sgw/documents/1593723/application/pdf/Additional_submission_instructions.pdf
Chris Drummond. 2009. Replicability is not Reproducibility: Nor is it Good Science. In Proceedings of the Evaluation Methods for Machine Learning

Workshop at the 26th ICML. Montreal, Canada. http://www.site.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf
Werner Ehm. 2016. Reproducibility from the perspective of meta-analysis. In Reproducibility – Principles, problems, practices and prospects, Harald

Atmanspacher and Sabine Maasen (Eds.). Wiley, 141–168.
Agoston E. Eiben and M. Jelasity. 2002. A critical note on experimental research methodology in EC. In Proceedings of the 2002 Congress on Evolutionary

Computation (CEC’02). IEEE Press, Piscataway, NJ, 582–587. https://doi.org/10.1109/cec.2002.1006991
Daniele Fanelli. 2012. Negative results are disappearing from most disciplines and countries. Scientometrics 90, 3 (2012), 891–904. https://doi.org/10.1007/

s11192-011-0494-7
Jorge Ramón Fonseca Cacho and Kazem Taghva. 2020. The State of Reproducible Research in Computer Science. In 17th International Conference on

Information Technology-New Generations (ITNG 2020), Shahram Latifi (Ed.). Springer International Publishing, 519–524. https://doi.org/10.1007/978-3-
030-43020-7_68

Manuscript submitted to ACM

https://aaai.org/Conferences/AAAI-21/reproducibility-checklist/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://arxiv.org/abs/2007.03488
https://arxiv.org/abs/2007.03488
https://doi.org/10.1007/978-3-642-33206-7_10
https://doi.org/10.1007/978-3-642-33206-7_10
https://doi.org/10.1162/evco_a_00217
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.3233/AIC-170537
https://doi.org/10.1007/978-3-319-15934-8_13
https://doi.org/10.1145/3319619.3326899
https://doi.org/10.1007/s10732-020-09454-w
https://doi.org/10.1007/978-3-642-02538-9
https://doi.org/10.1190/1.1822162
https://doi.org/10.1145/3360311
https://static.springer.com/sgw/documents/1593723/application/pdf/Additional_submission_instructions.pdf
http://www.site.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf
https://doi.org/10.1109/cec.2002.1006991
https://doi.org/10.1007/s11192-011-0494-7
https://doi.org/10.1007/s11192-011-0494-7
https://doi.org/10.1007/978-3-030-43020-7_68
https://doi.org/10.1007/978-3-030-43020-7_68


Reproducibility in Evolutionary Computation 19

Salvador García, Daniel Molina, Manuel Lozano, and Francisco Herrera. 2009. A study on the use of non-parametric tests for analyzing the evolutionary
algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization. Journal of Heuristics 15, 617 (2009), 617–644.
https://doi.org/10.1007/s10732-008-9080-4

Ian P. Gent, Stuart A. Grant, Ewen MacIntyre, Patrick Prosser, Paul Shaw, Barbara M. Smith, and Toby Walsh. 1997. How Not To Do It. Technical Report
97.27. School of Computer Studies, University of Leeds.

David R. Grimes, Chris T. Bauch, and John P. A. Ioannidis. 2018. Modelling science trustworthiness under publish or perish pressure. Royal Society Open
Science 5 (2018), 171511.

Odd Erik Gundersen, Yolanda Gil, and David W. Aha. 2018. On Reproducible AI: Towards Reproducible Research, Open Science, and Digital Scholarship
in AI Publications. AI Magazine 39, 3 (Sept. 2018), 56–68. https://doi.org/10.1609/aimag.v39i3.2816

Michael A. Heroux. 2015. Editorial: ACM TOMS Replicated Computational Results Initiative. ACM Trans. Math. Software 41, 3 (June 2015), 1–5.
https://doi.org/10.1145/2743015

Robert Heumüller, Sebastian Nielebock, Jacob Krüger, and Frank Ortmeier. 2020. Publish or perish, but do not forget your software artifacts. Empirical
Software Engineering 25, 6 (2020), 4585–4616. https://doi.org/10.1007/s10664-020-09851-6

John N. Hooker. 1996. Testing Heuristics: We Have It All Wrong. Journal of Heuristics 1, 1 (1996), 33–42. https://doi.org/10.1007/BF02430364
Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-Based Optimization for General Algorithm Configuration. In Learning

and Intelligent Optimization, 5th International Conference, LION 5, Carlos A. Coello Coello (Ed.). Lecture Notes in Computer Science, Vol. 6683. Springer,
Heidelberg, Germany, 507–523. https://doi.org/10.1007/978-3-642-25566-3_40

Frank Hutter, Marius Thomas Lindauer, Adrian Balint, Sam Bayless, Holger H. Hoos, and Kevin Leyton-Brown. 2017. The Configurable SAT Solver
Challenge (CSSC). Artificial Intelligence 243, 1–25 (2017).

John P. A. Ioannidis. 2005. Why Most Published Research Findings Are False. PLoS Medicine 2, 8 (2005), e124. https://doi.org/10.1371/journal.pmed.0020124
David S. Johnson. 2002. A Theoretician’s Guide to the Experimental Analysis of Algorithms. In Data Structures, Near Neighbor Searches, and Methodology:

Fifth and Sixth DIMACS Implementation Challenges, M. H. Goldwasser, David S. Johnson, and Catherine C. McGeoch (Eds.). American Mathematical
Society, Providence, RI, 215–250.

Journal of Heuristics 2015. Journal of Heuristics. Policies on Heuristic Search Research. http://www.springer.com/journal/10732. Version visited last on
June 10, 2015.

Graham Kendall, Ruibin Bai, Jacek Błazewicz, Patrick De Causmaecker, Michel Gendreau, Robert John, Jiawei Li, Barry McCollum, Erwin Pesch, Rong Qu,
Nasser Sabar, Greet Vanden Berghe, and Angelina Yee. 2016. Good Laboratory Practice for Optimization Research. Journal of the Operational Research
Society 67, 4 (2016), 676–689. https://doi.org/10.1057/jors.2015.77

Norbert L. Kerr. 1998. HARKing: Hypothesizing After the Results are Known. Personality and Social Psychology Review 2, 3 (Aug. 1998), 196–217.
https://doi.org/10.1207/s15327957pspr0203_4

David J. Lilja. 2000. Measuring Computer Performance: A Practitioner’s Guide. Cambridge University Press. https://doi.org/10.1017/CBO9780511612398
Zhiyuan Liu and Jian Tang. 2021. IJCAI 2021 Reproducibility Guidelines, 35th International Joint Conference on Artificial Intelligence. https://ijcai-

21.org/wp-content/uploads/2020/12/20201226-IJCAI-Reproducibility.pdf.
Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle, and Mauro Birattari. 2016. The irace Package: Iterated Racing for

Automatic Algorithm Configuration. Operations Research Perspectives 3 (2016), 43–58. https://doi.org/10.1016/j.orp.2016.09.002
Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. 2011. Certifying algorithms. Computer Science Review 5, 2 (2011), 119–161.

https://doi.org/10.1016/j.cosrev.2010.09.009
Catherine C. McGeoch. 2012. A Guide to Experimental Algorithmics. Cambridge University Press.
Gábor Melis, Chris Dyer, and Phil Blunsom. 2017. On the State of the Art of Evaluation in Neural Language Models. Arxiv preprint arXiv:1807.02811

(2017). http://arxiv.org/abs/1707.05589
Douglas C. Montgomery. 2012. Design and Analysis of Experiments (8th ed.). John Wiley & Sons, New York, NY.
Mario A. Muñoz and Kate Smith-Miles. 2020. Generating New Space-Filling Test Instances for Continuous Black-Box Optimization. Evolutionary

Computation 28, 3 (Sept. 2020), 379–404. https://doi.org/10.1162/evco_a_00262
Yuichi Nagata and Shigenobu Kobayashi. 1997. Edge Assembly Crossover: A High-power Genetic Algorithm for the Traveling Salesman Problem. In

ICGA, Thomas Bäck (Ed.). Morgan Kaufmann Publishers, San Francisco, CA, 450–457.
Yuichi Nagata and Shigenobu Kobayashi. 1999. An analysis of edge assembly crossover for the traveling salesman problem. In IEEE SMC’99 Conference

Proceedings, 1999 IEEE International Conference on Systems, Man, and Cybernetics, Koji Ito, Fumio Harashima, and Kazuo Tanie (Eds.). IEEE Press,
628–633. https://doi.org/10.1109/icsmc.1999.823285

Yuichi Nagata and Shigenobu Kobayashi. 2013. A Powerful Genetic Algorithm Using Edge Assembly Crossover for the Traveling Salesman Problem.
INFORMS Journal on Computing 25, 2 (2013), 346–363. https://doi.org/10.1287/ijoc.1120.0506

Allen Newell and Herbert A. Simon. 1976. Computer Science as Empirical Inquiry: Symbols and Search. Commun. ACM 19, 3 (March 1976), 113–126.
https://doi.org/10.1145/360018.360022

B. A. Nosek, G. Alter, G. C. Banks, D. Borsboom, S. D. Bowman, S. J. Breckler, S. Buck, C. D. Chambers, G. Chin, G. Christensen, M. Contestabile, A.
Dafoe, E. Eich, J. Freese, R. Glennerster, D. Goroff, D. P. Green, B. Hesse, M. Humphreys, J. Ishiyama, D. Karlan, A. Kraut, A. Lupia, P. Mabry, T.
Madon, N. Malhotra, E. Mayo-Wilson, M. McNutt, E. Miguel, E. L. Paluck, U. Simonsohn, C. Soderberg, B. A. Spellman, J. Turitto, G. VandenBos,
S. Vazire, E. J. Wagenmakers, R. Wilson, and T. Yarkoni. 2015. Promoting an open research culture. Science 348, 6242 (June 2015), 1422–1425.

Manuscript submitted to ACM

https://doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1609/aimag.v39i3.2816
https://doi.org/10.1145/2743015
https://doi.org/10.1007/s10664-020-09851-6
https://doi.org/10.1007/BF02430364
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1371/journal.pmed.0020124
http://www.springer.com/journal/10732
https://doi.org/10.1057/jors.2015.77
https://doi.org/10.1207/s15327957pspr0203_4
https://doi.org/10.1017/CBO9780511612398
https://ijcai-21.org/wp-content/uploads/2020/12/20201226-IJCAI-Reproducibility.pdf
https://ijcai-21.org/wp-content/uploads/2020/12/20201226-IJCAI-Reproducibility.pdf
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.cosrev.2010.09.009
http://arxiv.org/abs/1707.05589
https://doi.org/10.1162/evco_a_00262
https://doi.org/10.1109/icsmc.1999.823285
https://doi.org/10.1287/ijoc.1120.0506
https://doi.org/10.1145/360018.360022


20 Manuel López-Ibáñez, Juergen Branke, and Luís Paquete

https://doi.org/10.1126/science.aab2374
Brian A. Nosek, Charles R. Ebersole, Alexander C. DeHaven, and David T. Mellor. 2018. The Preregistration Revolution. Proceedings of the National

Academy of Sciences 115, 11 (March 2018), 2600–2606. https://doi.org/10.1073/pnas.1708274114
Open Science Collaboration. 2015. Estimating the reproducibility of psychological science. Science 349, 6251 (2015), aac4716. https://doi.org/10.1126/

science.aac4716
Luís Paquete, Thomas Stützle, and Manuel López-Ibáñez. 2007. Using experimental design to analyze stochastic local search algorithms for multiobjective

problems. In Metaheuristics: Progress in Complex Systems Optimization, Karl F. Doerner, Michel Gendreau, Peter Greistorfer, Walter J. Gutjahr,
Richard F. Hartl, and Marc Reimann (Eds.). Operations Research / Computer Science Interfaces, Vol. 39. Springer, New York, NY, 325–344. https:
//doi.org/10.1007/978-0-387-71921-4_17

Joelle Pineau and Koustuv Sinha. 2020. TheMachine Learning Reproducibility Checklist (v2.0). https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist-
v2.0.pdf.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. 2020.
Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program). Arxiv preprint arXiv:2003.12206
[cs.LG] (2020).

Hans E. Plesser. 2018. Reproducibility vs. Replicability: A Brief History of a Confused Terminology. Frontiers in Neuroinformatics 11 (Jan. 2018).
https://doi.org/10.3389/fninf.2017.00076

David Shilane, JarnoMartikainen, Sandrine Dudoit, and Seppo J. Ovaska. 2008. A general framework for statistical performance comparison of evolutionary
computation algorithms. Information Sciences 178, 14 (2008), 2870–2879. https://doi.org/10.1016/j.ins.2008.03.007

Joseph P. Simmons, Leif D. Nelson, and Uri Simonsohn. 2011. False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows
Presenting Anything as Significant. Psychological Science (2011). https://ssrn.com/abstract=1850704

Selmar K. Smit and Agoston E. Eiben. 2010. Beating the ’world champion’ evolutionary algorithm via REVAC tuning. In Proceedings of the 2010 Congress
on Evolutionary Computation (CEC 2010), Hisao Ishibuchi et al. (Eds.). IEEE Press, Piscataway, NJ, 1–8. https://doi.org/10.1109/CEC.2010.5586026

Kenneth Sörensen, Florian Arnold, and Daniel Palhazi Cuervo. 2017. A critical analysis of the “improved Clarke and Wright savings algorithm”.
International Transactions in Operational Research 26, 1 (2017), 54–63. https://doi.org/10.1111/itor.12443

Victoria Stodden. 2014. What scientific idea is ready for retirement? Reproducibility. Edge (2014). https://www.edge.org/annual-question/2014/response/
25340

Victoria Stodden, Marcia McNutt, David H. Bailey, Ewa Deelman, Yolanda Gil, Brooks Hanson, Michael A. Heroux, John P. A. Ioannidis, and Michela
Taufer. 2016. Enhancing reproducibility for computational methods. Science 354, 6317 (Dec. 2016), 1240–1241. https://doi.org/10.1126/science.aah6168

Victoria Stodden, Jennifer Seiler, and ZhaokunMa. 2018. An empirical analysis of journal policy effectiveness for computational reproducibility. Proceedings
of the National Academy of Sciences 115, 11 (March 2018), 2584–2589. https://doi.org/10.1073/pnas.1708290115

The Turing Way Community, Becky Arnold, Louise Bowler, Sarah Gibson, Patricia Herterich, Rosie Higman, Anna Krystalli, Alexander Morley, Martin
O’Reilly, and Kirstie Whitaker. 2019. The Turing Way: A Handbook for Reproducible Data Science. Zenodo. https://doi.org/10.5281/zenodo.3233986

Renata Turkeš, Kenneth Sörensen, and Lars Magnus Hvattum. 2021. Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive
large neighborhood search. European Journal of Operational Research 292, 2 (2021), 423–42. https://doi.org/10.1016/j.ejor.2020.10.045

Peter Wegner. 1976. Research paradigms in computer science. In ICSE’76: Proceedings of the 2nd international conference on Software engineering. 322–330.

Manuscript submitted to ACM

https://doi.org/10.1126/science.aab2374
https://doi.org/10.1073/pnas.1708274114
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1007/978-0-387-71921-4_17
https://doi.org/10.1007/978-0-387-71921-4_17
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist-v2.0.pdf
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist-v2.0.pdf
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.1016/j.ins.2008.03.007
https://ssrn.com/abstract=1850704
https://doi.org/10.1109/CEC.2010.5586026
https://doi.org/10.1111/itor.12443
https://www.edge.org/annual-question/2014/response/25340
https://www.edge.org/annual-question/2014/response/25340
https://doi.org/10.1126/science.aah6168
https://doi.org/10.1073/pnas.1708290115
https://doi.org/10.5281/zenodo.3233986
https://doi.org/10.1016/j.ejor.2020.10.045

	Abstract
	1 Introduction
	2 Why is reproducibility in EC important ?
	2.1 Falsifiability and community consensus
	2.2 Building on the work of others
	2.3 Quality control and error correction

	3 Terminology
	4 Obstacles to reproducibility
	4.1 Cultural obstacles
	4.2 Technical obstacles
	4.3 Obstacles specific to generalisation

	5 Guidelines and tools
	5.1 Ensuring reproducibility
	5.2 Assessing Reproducibility
	5.3 Encouraging reproducibility efforts

	6 Discussion and conclusions
	Acknowledgments
	References

