
HAL Id: hal-03325303
https://hal.science/hal-03325303

Submitted on 24 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Leveraging Targeted Value Prediction to Unlock New
Hardware Strength Reduction Potential

Arthur Perais

To cite this version:
Arthur Perais. Leveraging Targeted Value Prediction to Unlock New Hardware Strength Reduction
Potential. IEEE/ACM International Symposium on Microarchitecture (MICRO 2021), Oct 2021,
Athens, Greece. �10.1145/3466752.3480050�. �hal-03325303�

https://hal.science/hal-03325303
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Leveraging Targeted Value Prediction to Unlock New Hardware
Strength Reduction Potential

Arthur Perais
arthur.perais@univ-grenoble-alpes.fr

Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA
38000 Grenoble, France

ABSTRACT
Value Prediction (VP) is a microarchitectural technique that specula-
tively breaks data dependencies to increase the available Instruction
Level Parallelism (ILP) in general purpose processors. Despite re-
cent proposals, VP remains expensive and has intricate interactions
with several stages of the classical superscalar pipeline. In this paper,
we revisit and simplify VP by leveraging the irregular distribution
of the values produced during the execution of common programs.

First, we demonstrate that a reasonable fraction of the perfor-
mance uplift brought by a full VP infrastructure can be obtained
by predicting only a few "usual suspects" values. Furthermore, we
show that doing so allows to greatly simplify VP operation as
well as reduce the value predictor footprint. Lastly, we show that
these Minimal and Targeted VP infrastructures conceptually enable
Speculative Strength Reduction (SpSR), a rename-time optimization
whereby instructions can disappear at rename in the presence of
specific operand values.

CCS CONCEPTS
• Computer systems organization → Superscalar architec-
tures.

KEYWORDS
Microarchitecture, speculation, value prediction, performance
ACM Reference Format:
Arthur Perais. 2021. Leveraging Targeted Value Prediction to Unlock New
Hardware Strength Reduction Potential. InMICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’21), October 18–22,
2021, Virtual Event, Greece. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3466752.3480050

1 INTRODUCTION
Inmodern general purpose processors, high sequential performance
is achieved by building on three axioms : 1) Provide high instruc-
tion fetch throughput at low latency 2) Provide high data fetch
throughput at low latency and 3) Minimize structural hazards that
prevent executing otherwise ready instructions.

Arguably, the first item is the most impactful on performance, as
even the most aggressive out-of-order execution engine is not able
∗Institute of Engineering Univ. Grenoble Alpes

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480050

to do much if there are no instructions in the pipeline. To address
the two other items, bigger instruction windows are built to be able
to perform work under long latency data misses, and more intricate
data prefetching schemes are tied to bigger and deeper memory
hierarchies to minimize the number of data cache misses.

However, data dependencies between instructions – which ex-
press program semantics – oftentimes lead to instruction window
stalls where, for instance, one long latency miss is stuck at the head
of the Reorder Buffer and a single dependency chain resides in the
scheduler. While increasing the scheduler size improves perfor-
mance in this case, it is unlikely to completely solve the problem.
Indeed, allowing a second dependency chain to enter the scheduler
may require a scheduler that is order of magnitudes bigger than
the ones that are currently implemented. Moreover, the scheduler
is notorious for its inability to scale [31].

An alternative is therefore to predict instructions results in the
frontend to allow dependents to execute, even though the actual
result is not available. This technique, known as Value Prediction
(VP) has potential to increase performance in this specific example
but also in general, by virtue of increasing the available Instruction
Level Parallelism (ILP) beyond what exists in the program.

Value Prediction is not a new proposal : there have been many
contributions in that area [4, 7, 8, 13, 14, 23, 26, 30, 33–35, 42, 43,
46, 47, 49, 51, 53]. Common wisdom suggests that while there is
performance to be gained from VP, the hardware and complexity
overhead of the technique is not yet worth the hassle. This is es-
pecially true as other less complex techniques may still be used to
improve performance, for instance improving branch prediction,
prefetching, or increasing the size of microarchitectural buffers.

In this work, we first demonstrate that focusing on predicting
only a handful of distinct values permits to significantly reduce
the value predictor footprint, but more importantly, to remove the
additional write ports on the register file that are usually required
to insert predicted values into the execution engine. This narrowing
of scope further simplifies prediction validation by permitting to
validate in-place at the functional unit, with one possible design not
requiring reading an additional operand from the physical register
file (or dedicated storage) just to validate the prediction and train
the predictor.

Second, we build on this simpler VP infrastructure and introduce
the concept of Speculative Strength Reduction (SpSR). The concept
is similar to strength reduction as used in compilers whereby a
complex operation (e.g., division by 2) is replaced by a "weaker"
but semantically equivalent operation (e.g., right shift by 1). How-
ever, SpSR is implemented at the microarchitectural level and dy-
namically swaps a complex instruction for a simple one, based on
predicted operands. For instance, the ARMv8 instruction add x0,

https://orcid.org/0000-0002-5757-2507
https://doi.org/10.1145/3466752.3480050
https://doi.org/10.1145/3466752.3480050
https://doi.org/10.1145/3466752.3480050

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arthur Perais

x0, x1 can be speculatively strength reduced to a nop if x1 is pre-
dicted to be 0x0. In addition to appearing as having 0-cycle latency,
speculatively strength reduced instruction do not require execution
resources (physical register, scheduler entry, issue slot) in the exe-
cution engine. This may further improve performance by allowing
other instructions to consume those resources rather than block on
a structural stall.

2 GENERIC VALUE PREDICTION
Value prediction is usually performed through the addition of a
hardware value predictor that associates a prediction to a given in-
struction. Arbitrary state can be leveraged to generate a prediction.
For instance, the VTAGE value predictor [34] will hash the PC of
the instruction with the global branch history to generate the index
at which the candidate prediction resides in the predictor tables.
Other predictors, such as FCM [43] rely on the value history (i.e.,
the last 𝑛 values produced by a given PC) to identify correlations.

Value prediction operates in three steps. First, a prediction is
generated by the value predictor. Second, the prediction is vali-
dated by comparing it against the computed result, and if incorrect,
corrective steps are taken. Third, the value predictor is updated
using the computed value and the outcome – correct or incorrect.
Conditional branch prediction and indirect branch target predic-
tion operate similarly. In spirit, indirect branch target prediction is
closely related to value prediction.

In this context, one may ask why processors are able to predict
a 64-bit target for an indirect branch, compare it against the value
of the branch source register and update the predictor, yet do not
implement value prediction, despite the mechanisms being quite
similar at first glance.

Observation I : The need for branch prediction is a fact of life in
pipelined microarchitectures implementing von Neumann architec-
tures, but the need for value prediction is not. In other words, the
hardware cost of branch prediction has to be paid even to attain
medium-range performance, while value prediction is not always
useful and its benefits appear highly workload dependent. Yet, area
investment to implement VP is significant and paid even if VP is
not beneficial.

Observation II : Value predictions have multiple consumers. This
is a key difference with branch prediction in which only the pre-
dicted branch consumes the prediction when it executes. Con-
versely, in VP, many dependent instructions may need to consume
the prediction so they can execute earlier. This entails that value
predictions cannot just be carried down the pipeline by the pre-
dicted instructions themselves. Rather, they need to be written to
storage accessible by the functional units, be it the physical register
file itself, or dedicated storage [46].

Given those two initial high-level observations, we argue that
a VP infrastructure should be constructed as a fairly inexpensive
microarchitectural add-on that provide noticeable performance
improvements in some workloads. In the next paragraphs, we high-
light other source of VP complexities to strengthen this argument.

2.1 Value Predictors
Algorithms. Some value prediction algorithms rely on the value

of instance 𝑛 − 1 to generate a prediction for instance 𝑛. For in-
stance, in Stride, D-FCM [14] or D-VTAGE [35], the prediction is
the previous result plus a certain stride. In deep pipelines, many
instances of the same instruction can be live at any given time. In
this case, using the most recent retired previous result will lead to
incorrect predictions. Consequently, this type of predictors need to
track speculative state, whether in a window of previous results or
a per-entry counter of live instruction (to multiply the stride with).
In spirit, this is similar to the speculative update of local branch his-
tories in branch predictors, which is not straightforward [48]. For
Stride-based value predictors, a fully associative, priority-encoded
structure can be used to implement the speculative window [35],
although the overhead of such a structure will increase with the in-
struction window size. Predictors that use any form of value history
to correlate are also subject to this shortcoming.

Storage. While there exist proposals that suggest predicting only
narrow values [42] or partition predictor structures based on actual
prediction width [27], many recent proposals attempt to predict
arbitrary general purpose register data, i.e., 64-bit worth of data per
instruction. This mechanically increases the bitcount of the value
predictor as compared to the conditional branch predictor, if we as-
sume both use the same structure and number of entries. This issue
compounds with the fact that there are in general more instructions
candidate for value prediction than conditional branches.

2.2 Predictions in the Pipeline
Generation. Predictions that are generated in the frontend of

the pipeline should be made available to dependent instructions so
they can execute early. This entails writing predictions to either the
Physical Register File (PRF) itself1 or to a dedicated storage area
that can be read by issuing instructions [46]. The former requires
additional write ports on the PRF, while the latter adds a third
source of operand data for execution (the bypass network being
the second). Both require that predicted instructions carry their
predictions down the pipeline until such time the prediction can
be written to the staging area (usually, after the Rename stage). If
Virtual Registers are used, [15], predicted instructions cannot easily
write their predictions in the PRF at Rename since virtual registers
are bound to physical registers at Issue or Writeback.

An alternative, if the microarchitecture supports it, is to inject
move immediate `-ops2 in the instruction stream to perform the
register write in the backend through the existing datapath. How-
ever, this implies that all value predicted instructions will a minima
consume a second scheduler entry and issue slot.

Validation. The least involved way to validate predictions is to
inject dedicated compare `-ops in the pipeline. When combined to
the injection of move immediate `-ops to write value predictions
in the physical register file, we can simply have the compare `-op
compare the result of the predicted instruction against the result of
1Or the ROB if the microarchitecture uses the ROB to store speculative register values.
2To keep the discussion ISA-agnostic, we consider that architectural instructions
are transformed into one or multiple microarchitecture-specific operations (`-ops)
at Decode, before entering the processor backend. `-op injection would therefore
happens at Decode.

Leveraging Targeted Value Prediction to Unlock New Hardware Strength Reduction Potential MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0 8 1 10 2 4 3 5 7 9

7ff
f7

ad
3c

cb
0 6 20

55
b5

ac
0d

78
40

55
74

00
3f

32
20

f5
26

6a
7f

72
49

7b
00 a

3c
cf
2b

4f
35

6a
02

00

ffff
ffff

ffff
ffff

12
89

dd
40

92
28

9f
00

0

1

2

3

4

5

D
yn

.
V

a
lu

e
 D

is
tr

ib
u

tio
n

 (
G

P
R

s)
 (

%
)

Figure 1: Distribution of values produced by instructions
writing to general purpose registers (SPEC2k17 [6] speed,
train inputs, x86 ISA). From [32].

the move immediate `-op, and resteer the pipeline on a mismatch.
All consumers of the predicted instructions will have been made
dependent on the move immediate destination physical register at
Rename. This scheme does not increase port requirements on the
PRF and does not require additional hardware at the functional
units to validate predictions. However, it may require a predicted
instruction to occupy three entries in the scheduler (instruction
itself, move immediate `-op and compare `-op), and to consume an
additional physical register (one for the instruction itself, one for
the move immediate `-op). Scheduler entries and physical registers
are critical resources and increasing pressure on these resources
just to save a single cycle (e.g., if an addition is value predicted) is
most likely not a good tradeoff. In other words, validating arbitrary
value predictions without specific changes to the pipeline will incur
overheads on-par with the performance gains expected from these
(correct) predictions.

Consequently, hardware support is commonly assumed to vali-
date predictions in place at the functional unit, during execution.
In this case, the predicted value needs to be read by the predicted
instruction, in addition to its regular operands. To avoid reading
the prediction from the PRF at issue time and therefore increase
PRF read port requirements, the prediction may also be read from
the FIFO that tracks inflight VP state and is used to perform predic-
tor updates after retirement. Alternatively, the prediction may be
carried by the instruction into dedicated scheduler storage.

Finally, predictions may also be validated at retirement [33, 34]:
predictions are read from the VP state tracking FIFO at retirement
and compared against the actual value that has been written back
to the PRF, incurring an additional PRF read during the lifetime of
the predicted instruction.

Recovery Scheme. Much like memory dependency prediction,
value prediction speculates on the dataflow. As a result, on a mis-
prediction, the instructions in the pipeline are still on the correct
path, even though they are using incorrect data. The bare minimum
needed to recover is therefore to re-execute direct and indirect
consumers of the mispredicted instruction. This technique, known
as replay can be selective (replay only direct/indirect consumers) or
coarse grain (replay all younger instructions), but is generally less

expensive performance-wise than flushing the pipeline. However,
replay is known to be complex to implement efficiently and can
lead to "replay tornadoes" if the replay wavefront cannot catch
up to the speculative wavefront of executing instructions [24]. As
a result, flushing the pipeline may be preferred as a simpler – if
slower – alternative. Perais and Seznec go as far as suggest to per-
form prediction validation and a full pipeline flush at retire time
to prevent significant modifications to the out-of-order execution
engine [33, 34].

2.3 Summary
While many proposals go to great length to reduce hardware over-
head, many aspect of "generic" value prediction introduce complex-
ity in the processor, either by requiring large prediction structures
[35], structures to identify critical instructions that should be pre-
dicted in priority [4] or adding read/write ports to the PRF [33]. In
this paper, we argue that a more limited form of value prediction
still has potential to improve performance while leveraging existing
mechanisms to handle predictions in the pipeline. This proposal
requires a value predictor with a much lower storage footprint than
Generic VP (GVP), and is notably oblivious to the use of Virtual
Registers [15]. We also demonstrate that this targeted implementa-
tion of value prediction enables a novel rename-time optimization :
Speculative Strength Reduction (SpSR).

3 TARGETED VALUE PREDICTION
A key difficulty of value prediction is that a prediction has to be
made available to multiple consumers, for instance by writing it
directly into the physical register file. In this section, we will demon-
strate that limiting ourselves to few distinct values simplifies this
process.

3.1 Minimal Value Prediction (MVP)
The distribution of values manipulated by general purpose pro-
grams is biased towards a few specific values [52], as shown for
instructions of SPEC CPU 2k17 in Fig. 1. While some of those values
are related to the algorithm itself, the most heavily produced value
is 0x0, and 0x1 is third. Evidently, the frequency at which a value is
produced does not say anything about how often it can be correctly
predicted, or how beneficial predicting it will be. However, 0x0
and 0x1 will often participate in boolean computations, which are
often predictable since branch directions are generally predictable.
Therefore, those values appear as reasonable candidates if the goal
is to limit the number of distinct values that can be predicted.

Focusing on 0x0 and 0x1 allows us to "write" predictions to physi-
cal registers implicitly through hardwired physical registers. Indeed,
by implementing a physical register whose value is always 0x0 (resp.
0x1), we can simply rename the destination register of an instruc-
tion predicted to produce 0x0 (resp. 0x1) to the relevant hardwired
register. In fact, several ISAs already define a zero architectural
register whose value is always 0x0, and any microarchitecture im-
plementing such ISA must therefore implement a hardwired zero
register. Even in x86, modern microarchitectures implement a hard-
wired zero register (resp. one register) to perform zero-idiom (resp.
one-idiom) elimination [18].

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arthur Perais

3.2 Targeted Value Prediction (TVP)
Focusing only on two values may be a reasonable tradeoff, but
Fig. 1 clearly depicts that many narrow values are also produced
often. As a result, we propose to leverage physical register names
to either encode a physical register name, or a small constant. This
idea, register inlining, was already proposed in another context by
Lipasti et al. [25], but was never considered in the context of Value
Prediction.

Specifically, to implement out-of-order execution, instructions
are allocated an entry in the scheduler. There, they track the readi-
ness of their source operands by matching their source physical
register identifiers or names against the physical register names
being produced each cycle. A scheduler entry already tracks several
source physical register names as well as one or multiple destina-
tion register names (depending on the ISA and microarchitecture).
Modern high-performance processors feature between 256 and 512
physical registers, therefore, each physical register name is 9-bit
(assuming no virtual register [15] scheme is implemented). By in-
creasing the size of physical register names by one bit, we can
overload physical register names so they can be interpreted as ac-
tual values, alleviating the need for providing write ports to the
PRF to write predictions. Note that the larger names are only used
in Rename structures. Notably, the wakeup logic of the scheduler
does not need to use the additional bit in the CAM hardware that
determines if a broadcast name matches operands stored in entries.

3.2.1 Renaming Hardware. To demonstrate that targeted Value
Prediction requires only that we widen physical register names by
one bit, we assume a baseline implementation of renaming that
uses a Committed Register Alias Table (CRAT) in addition to the
speculative Register Alias Table (RAT), without loss of generality3.

Register Allocation. Overloading register names to represent
small values essentially causes the RAT/CRAT to act as physical
register files. For instance, consider an instruction that is value pre-
dicted to produce 0x42. The associated physical register "name" will
be 0x242, as physical register names are now 10-bit (from 9-bit) and
the most significant bit is always set if the physical name represents
a value, and unset for physical register names.

This instruction then associates its architectural destination reg-
ister (e.g., 𝑥0) to physical "name" 0x242 in the RAT, instead of fetch-
ing a new physical register name from the Free List. Dependents
then read the RAT entry for 𝑥0 and retrieve 0x242, which they will
know to interpret as the value 0x42. Consequently, when a depen-
dent is dispatched to the scheduler, it will not mark itself waiting on
physical register 0x42. When the dependent is eventually selected
for issue, the value can be muxed to the functional unit, with bit 9
of the overloaded name controlling the mux.

Lastly, when the predicted instruction executes, the produced
value is checked against the physical destination register name
(which is the predicted value). Assuming the prediction is correct,
no specific action has to be taken. Mispredictions are discussed in
3.4

3Correct RAT state can be still recovered without a CRAT by "undoing" wrong-path
mappings stored in the Active List FIFO from the youngest mapping to themispredicted
instruction. Flash copy of RAT snapshots without iterative walks is also possible [1].

Register Reclamation. Physical register reclamation usually takes
place when an instruction retires. At that point, the instruction
moves the physical register currently mapped to its architectural
destination register in the CRAT into the Free List, and overwrites
the CRAT entry with its own physical destination register.

With Targeted Value Prediction, either of the CRAT physical
register name or the physical destination register name of the com-
mitting instruction may be values. If the former, then the name in
the CRAT is not put on the Free List. If the latter, then the algorithm
is unchanged.

Pipeline Flush. To restore correct mappings on a pipeline flush,
the RAT has to be repaired. This can be achieved through check-
pointing [1] or by copying the CRAT to the RAT and iteratively
re-applying mappings from an in-order queue (the Active List) to
the RAT until the misprediction point is reached. In both cases,
the use of small values instead of physical register names has no
bearing on the recovery algorithm. It simply widens the names
by a bit, which will increase the size of checkpoints or Active List
entries accordingly.

3.2.2 Other Possible Optimization. The ability to use physical reg-
ister names as values lets us eliminate move immediate instructions
whose immediate fits in a signed 9-bit integer (in this paper) [25].
Essentially, this is 9-bit signed integer-idiom elimination.

3.3 Impact on the Value Predictor
Predictor Design and Sizing. Minimal and Targeted Value Pre-

diction have two effects on value predictor design. First, specific
algorithms such as stride-based prediction become mostly irrele-
vant. This alleviates the need for speculative management of the
predictor entries to account for the presence of several instances of
the same instruction in the pipeline. Second, the bit count of each
entry is reduced significantly. Indeed, the content of a predictor
entry is generally comprised of a tag, a prediction and a confidence
counter. The prediction size will greatly decrease, from 64-bit to
1-bit and 9-bit respectively. Considering the aggressive VTAGE
predictor depicted in Table 2, this decreases storage from 55.2KB
(64-bit) to 13.9KB (9-bit) and 7.9KB (1-bit), respectively.

Predictor Training. Abstractly, the Reorder Buffer may be used to
track inflight value prediction state and update the predictor based
on the outcome at retirement. In practice, since not all instructions
are VP-eligible, a dedicated FIFO structure may be used [34]. Alter-
natively, the Active List can be augmented with storage to store
value prediction information.

It should be noted that when using a predicted value in the
pipeline, the physical destination register name is the predicted
value, therefore, we simply have to compare it against the result
of the functional unit, and update the the FIFO accordingly. While
this assumes a dedicated comparator – potentially pipelined after
the functional unit (FU) – is present in all execution lanes that can
execute predicted instructions, this may allow the predictor to be
more aggressive compared to [34], in which the cost of validating
predictions at retire forces the predictor to be conservative.

However, during the training phase of a predictor entry, when
predictions are generated but not yet used, the candidate instruction
is still given a physical destination register. Therefore, we cannot

Leveraging Targeted Value Prediction to Unlock New Hardware Strength Reduction Potential MICRO ’21, October 18–22, 2021, Virtual Event, Greece

generally compare the physical destination register name against
the output of the FU to determine if the prediction was correct.
Fortunately, during training, the predicted instruction is the only
consumer of the prediction, therefore, we assume a mechanism
similar to indirect branch prediction where the prediction is either
read from the FIFO at issue or carried with the instruction and
placed in the scheduler payload. It is then compared against the
result at execute, and the outcome is written to the corresponding
FIFO entry. While this puts pressure on the FIFO, reads and writes
are guaranteed never to collide and since we only predict arithmetic
and load instructions, port requirements remain smaller than on
the actual PRF (i.e. branch, store and INT to FP/SIMD conversion
pipelines do not require ports on that FIFO). In MVP, an alternative
"brute force" approach can be used during training : the result is
always compared against both 0x0 and 0x1, and the outcome is
used to update the corresponding FIFO entry.

3.4 Handling Mispredictions
MVP/TVP will detect mispredictions as early as possible, at execute
time. To repair the microarchitectural state, replay (selective or not)
is a possibility. However, in this paper, we focus on pipeline flush
as it is the simplest scheme, and it is sufficient to demonstrate the
idea. Microarchitectures that already implement replay for other
reasons (e.g., speculative scheduling) may build VP recovery on top
of it.

The key difference with Generic VP is that on a value mispre-
diction, we must include the mispredicted instruction in the set of
flushed instructions. The reason is that to predict an instruction,
its destination register was either renamed to a hardwired register
(MVP) or not allocated a physical register at all (TVP). Therefore,
if the prediction is incorrect, the correct result cannot overwrite
the hardwired value (MVP), or does not have a physical space to
write the correct result (TVP) to. Consequently, the mispredicted
instruction has to be renamed again. This is most easily achieved
by flushing and refetching the mispredicted instruction.

3.4.1 Preventing Livelock. In MVP/TVP, the mispredicted instruc-
tion is included in the pipeline flush, and it is therefore the first
instruction that will be fetched when the frontend restarts. If the
value predictor provides the same – incorrect but confident – pre-
diction to the new instruction, then the processor will livelock.
Therefore, on a misprediction, we need to ensure that the mis-
predicting instruction does not immediately get value predicted
again. Although this can be achieved through several means, we
found that silencing the predictor for a small number of cycles is
sufficient. Silencing means that the predictor may provide predic-
tions for the purpose of training, but those will not be used by
the pipeline, even if they are confident. In our experiments, we
found that MVP/TVP/GVP perform similarly well by using a very
small number of 15 silencing cycles, except in roms with TVP. In
this particular case, TVP causes the L1D Stride prefetcher to issue
additional prefetches that are detrimental to performance (-1.09%).
Indeed, the gem5 [28] implementation does not currently throttle
the Stride prefetcher if it does not perform well and does not dy-
namically adapt distance and degree, so occasional performance
drops are not unexpected. GVP sees the same prefetcher behavior
but compensates slowdown through increased prediction coverage.

Regardless, to curb that effect, we use 250 silencing cycles in all
cases, as we found it did not impact performance in MVP and GVP.
We expect that the optimal silencing amount varies with pipeline
geometry and benchmark, and a dynamic scheme would likely be
beneficial. If needed, this scheme could be combined to a commit
watchdog to guarantee liveness.

3.4.2 Silent Value Mispredictions. Existing VP proposals can pre-
vent a value misprediction from causing corrective actions if the
prediction has not yet been used by dependents when the mismatch
is detected. In this case, the correct value can just overwrite the
wrong prediction in the physical register. In MVP/TVP, this opti-
mization is not possible since either writes to hardwired registers
are nullified, and the correct value will therefore not be able to
replace the incorrect prediction in the physical register (MVP), or
there is no storage for the correct value (TVP). Therefore, incorrect
predictions that have not yet been used by dependents at validation
time still cause a pipeline flush.

3.5 Potential Gains
The main interest of VP is to speculatively break data dependen-
cies, thus increasing the available ILP. However, in both MVP and
TVP, Value Prediction also provides hardware resource savings as
predicted instructions do not require a destination physical register.

Moreover, while a value predictor needs to be implemented
and physical register names need to be widened by a bit in TVP,
predicted instructions reduce PRF read and write pressure as pre-
dictions are stored in the RAT and inserted directly into consumers’
scheduler entries "for free" in both MVP and TVP.

3.6 Other
In this work, we focus on the ARMv8 ISA. The ISA defines a relaxed
memory model, which can theoretically lead to incorrect execu-
tion when VP is used in a multithreaded context [29]. To address
this issue, one solution is to attach acquire semantics to all value
predicted loads.

ARMv8 already features load acquire instructions, therefore,
pre-existing hardware support can be expected. Moreover, loads
younger than a load-acquire may still speculate past the barrier as
long as they get squashed when receiving a relevant invalidation
message. As a result, the cost of marking value predicted loads as
acquire remains limited in a high-performance setting.

4 SPECULATIVE STRENGTH REDUCTION
Focusing on a few values to predict is of notable interest because
many instructions have specific behavior when one of their source
operands is 0x0 or 0x1.

As an example, we consider the ARMv8 instruction add x0, x0,
x1. If x1 is predicted to be 0x0, then the instruction becomes a nop
(no changes to the architectural state). If x0 is predicted to be 0x0,
then the instruction becomes amove. Many instructions exhibit the
same behavior.

Therefore, as a side effect of targeting 0x0 and 0x1 in MVP/TVP,
we can uncover additional strength reducible instructions in the
frontend. Such instructions are handled by existing register name

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arthur Perais

manipulation mechanisms (move elimination, or ME, and zero/one-
idiom elimination). Since those instructions are "reduced" specula-
tively as a result of a value prediction, we refer to this technique as
"Speculative Strength Reduction" (SpSR). This is in contrast with
"Static Strength Reduction" (StSR) which is performed by the code
generator (e.g., using a left shift instead of a multiply by a power of
2) and "Dynamic Strength Reduction" (DSR) which is performed by
the microarchitecture but is not speculative (e.g., move elimination
and zero/one-idiom elimination).

4.1 Potential Gains
Much like move eliminated and zero/one-idiom eliminated instruc-
tions, a speculative strength reduced instruction appears as having
an execution latency of 0 cycle.

Moreover, eliminated instructions do not consume specific pipeline
resources, which may help newer instructions enter the execution
engine earlier. Indeed, an eliminated instructions requires neither a
new physical destination register from the Free List nor a scheduler
entry, nor an execution unit. This means that similarly to value
predicted instructions, eliminated instructions will not dissipate
power writing the PRF. In addition, eliminated instructions will not
read the PRF and dissipate power being scheduled and executed.

4.2 Strength Reducibility
Regardless of the ISA, instructions eliminated through move elimi-
nation and zero/one-idiom elimination can only be eliminated if
they have no side-effects, or because the side effects can be trivially
performed at elimination time.

For instance, if we consider x86 xor regd, regs. The result of this
instruction is always 0x0 if regd and regs are the same architectural
register. However, the x86 xor instruction has side effects in that
it must update the condition flags based on the outcome of the
instruction [19]. Fortunately, the result is always 0x0, so the update
to the condition flags can be performed directly at elimination time.

Another example is x86 mov regd, regs instruction. In this case,
the outcome of the instruction is not known at elimination time,
and can be any 64-bit value. If mov had had side effects similar
to xor, then the elimination could not have been performed : the
instruction would still have to read the source operand, compute
the condition flags and then update them, although dependents on
the destination register of the mov would still see a 0-cycle latency
for the moved operand. Fortunately, x86’s mov does not modify
the condition flags, and it can therefore be fully eliminated [19]. In
this context a partially eliminated (non fully eliminated) instruc-
tion does make its destination register available faster, as per the
strength reduction, but an operation is still dispatched to the sched-
uler to perform the side effects, such as updating the condition flags.
The notion of side effects actually plays a major role in the context
of Speculative Strength Reduction, as ISAs are not created equal.

x86:Most arithmetic and logic instructions have side effects in
x86 in that they write all or some of the condition flags [19]. There-
fore, SpSR’d instructions that become move instructions can only
be partially eliminated. While this may still improve performance
by short-circuiting the production of the destination register, the

resource savings will be limited : only the physical destination regis-
ter is saved, but the instruction still has to dispatch to the scheduler,
read its operand(s), execute, and write the condition flags.

ARMv8: contrarily to x86, most arithmetic and logic instruc-
tions do not modify the condition flags [3]. As a result, the vast
majority of SpSR’d instructions can be fully-eliminated, including
instructions that reduce to move. It should however be noted that
in some cases, instructions with side effects can also be fully elim-
inated if the microarchitecture implements hardwired condition
flags registers. For instance, ands is guaranteed to produce 0x0 if
one source operand is 0x0. Therefore, the condition flags can be
trivially computed and ands can be fully eliminated if a condition
flags register hardwired to {N=0,Z=1,C=0,V=0} is implemented. The
same is possible in x86, as long as the produced value is always
known (e.g. test if one of the sources is 0x0).

RISC-V: Instructions that are candidate for SpSR do not have
side effects [40]. There are no condition flags as branch instructions
embed the comparison operation. As a result, all instructions of
interest to SpSR may be fully eliminated.

In this work, we focus on the ARMv8 ISA. Table 1 depicts the
SpSR idioms we implement in our experiments. Note that csel/csneg/
csinc as well as conditional branches are considered to be SpSR
candidates. This may seem counter-intuitive since they depend on
the condition flags. However, we assume that we can keep track of
the NZCV ARMv8 condition flags in the frontend when they are
generated by an SpSR’d instruction. For instance, if an ands x0, x1
sees that x1 is predicted to be 0x0, then it can be SpSR’d, and we
can write {N=0,Z=1,C=0,V=0} into the NZCV register that is local
to the frontend.4 This register is invalidated as soon as the next
condition flag writer is renamed (if it is not itself SpSR’d), but it
allows instructions that depend on the condition flags to be SpSR’d
as well. Specifically, csinc/csneg/csel can be reduced to a simplemove
if the condition is known, and conditional branches can be resolved
early.

4.3 Hardware Overhead
The design of a fast and wide state-of-the-art renamer is out of the
scope of this paper. However, we point out that SpSR does introduce
additional complexity in the renamer.

Baseline superscalar renaming suffers from intra-group depen-
dencies. That is, the physical source register of a younger instruc-
tion may be the non-yet renamed physical destination register of
an older instruction in the same rename group. Consequently, the
renaming circuit is expected to rename all sources via the RAT, and
stitch any stale mapping combinationally if needed. Pipelining may
be used to widen the circuit [41], but intra-group dependencies
become even more likely as the superscalar degree increases.

In baseline superscalar renaming without any form of strength
reduction, we can assume that the destination physical registers
of all instructions in the rename group become available at the
same time as all instructions speculatively retrieve a new physical
register from the Free List concurrently.

4We also assume the presence of hardwired NZCV physical registers in the backend
to allow the ands instruction to be fully reduced.

Leveraging Targeted Value Prediction to Unlock New Hardware Strength Reduction Potential MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 1: Strength Reductions Considered in this Work

Instruction src0 value src1 value
0x0 0x1 0x0 0x1

sub dst, src0, #1 – zero-idiom – –
sub dst, src0, src1 – zero-idiom if src1 == 0x1 move-idiom zero-idiom if src0 == 0x1
add/orr/xor dst, src0, #1 one-idiom – – –
add/orr/xor dst, src0, src1 move-idiom – move-idiom –
and dst, src0, #1 zero-idiom one-idiom – –
and dst, src0, (src1 | #imm) zero-idiom – zero-idiom –
shr/shl dst, src0, #imm zero-idiom – – –
shr/shl dst, src0, src1 zero-idiom – move-idiom –
ubfm dst, src0, ... zero-idiom – – –
bic dst, src0, (src1 | #imm) zero-idiom – move-idiom –
rbit dst, src0 zero-idiom – – –
ands src0, src1 nop+NCZV nop+NCZV if src1 == 0x1 nop+NCZV nop+NCZV if src0 == 0x1
ands src0, #imm nop+NCZV – – –
subs/adds src0, src1 nop+NCZV if src1 == 0x0 or 0x1 nop+NCZV if src1 == 0x0 or 0x1 nop+NCZV if src0 == 0x0 or 0x1 nop+NCZV if src0 == 0x0 or 0x1
cbz/tbz src0 nop nop – –
b.cond nop if NCZV avail.
csel src0, src1, cond move-idiom if NCZV avail.
csinc/csneg src0, src1, cond move-idiom if NCZV avail and cond is true.

With rename optimizations such as SpSR (or even plain ME),
this is no longer true. Indeed, for an eliminated move, the physical
destination register is its physical source register. Thus, amove may
need to wait for its source physical operand to be updated by an
older instruction in the same rename group before it can propagate
its own physical destination register to newer instructions within
the group. A pathological case would be a rename group full of
dependent move instructions. Before the correct physical source
register of the last move can be resolved, the physical destination
register of the second to last move must be resolved, and so on.

SpSR furthers this issue because the strength reduction decision
depends on the physical source registers. That is, with plain move
elimination, the decision to strength reduce can be made prior
to inspecting the physical source register of the instruction : the
renamer knows that the instruction can be strength reduced a priori
thanks to its opcode. Conversely, in SpSR, the decision to strength
reduce is delayed until the physical source registers are known,
which may be late if the source register has to propagate through a
move chain. Therefore, the design of the renamer will likely need
modifications to accommodate SpSR.

5 EVALUATION FRAMEWORK
We evaluate MVP/TVP and SpSR using the full-system gem5 sim-
ulator [28]. We compile SPEC2k17 CPU [6] speed source code to
Aarch64 binaries using gcc 8.3 -O3,5 and simulate ten 100M instruc-
tion Simpoints [17] representative of the first 100B instructions of
each benchmark (reference inputs). The system is warmed-up for
50M instructions.

We initially attempted tomodel a pipeline resembling Apple’s M1
processor core using publicly available reverse-engineered numbers
frommicrobenchmarks [11] (630-entry ROB, 148-entry Load Queue,
106-entry Store Queue). However, using such a large instruction
window led to performance inversions when implementing non-
speculative techniques that can only improve instruction flow in the

5aarch64-linux-gnu-gcc-8 (Debian 8.3.0-2) 8.3.0, 4.19.0-10-amd64 #1 SMP Debian
4.19.132-1 (2020-07-24) x86_64 GNU/Linux.

pipeline (e.g. 0/1-idiom andmove elimination). This is because faster
execution on a highly speculative path can yield a net performance
loss. Aragón et al. [2] showed through simulation that even for a
Power 4-class processor (128-entry ROB), an oracle fetcher that does
not fetch wrong-path instruction (but still mispredicts branches)
provides 5% speedup in SPECint95 and SPECint2000. The use of
bigger speculation windows than what was considered in [2] will
likely amplify the trend. Aragón et al. provide heuristics aimed
at reducing the power consumed on the wrong path, but do not
manage to reclaim lost performance. To the best of our knowledge,
there is no proposal explicitly tackling the performance impact of
wrong-path on deepmachines in the literature. As as result we chose
to keep the functional units and caches unchanged, but reduced
the size of the ROB/IQ/LSQ to mitigate wrong-path effects. The
final machine configuration, which is depicted in Table 2, remains
aggressive.

We implement 0/1-idiom andmove elimination in gem5 to prevent
MVP/TVP and SpSR from artificially increasing performance. Move
idioms include add/eor/orr with xzr as a source operand. Zero
idioms include eor of a register with itself, movz with 0x0 as the
immediate, and and with the zero register. We only consider movz
with 0x1 as the immediate for one idioms. We assume unlimited
reference counting for move elimination, as existing proposals for
realistic reference counting [5, 36] achieve potential that is close to
ideal. However, we do not support a 64-bit register beingmoved into
a 32-bit register to avoid cases such as add x0, x0, x1 followed by eor
w12, w0, wzr, as a subsequent instruction such as add x15, x12, x14
could read the full-width definition of 𝑥0 which would be incorrect.
In practice, this elimination would be possible if the RAT provided
up to date width information to consumers, allowing them to mask
half the physical register when relevant. In our baseline, 10.5% of
the move idioms are not eliminated due to a width mismatch, on
average.

6This is aggressive but required by the gem5 infrastructure to obtain the 0-cycle taken
branch penalty provided by decoupled fetching [38] and L0BTBs in modern designs
[16].
7L1 TLB latency is accounted for in the L1 caches load to use.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arthur Perais

Table 2: Gem5 Processor configuration (11-stages pipeline,
3Ghz)

Branch
Prediction

32KB, 1+15-table TAGE predictor [44] Min/Max Hist. length :
5/640, 8192-entry BTB 1k-entry Indirect Branch
Target Cache 32-entry Return Address Stack

Value
Prediction

Optional 1+7-table VTAGE predictor [34]
Min/Max Hist. length : 2/128 – Log2 sizes: 12, 9, 9, 8, 8, 8, 7
7 – Tag width: 4, 9, 9, 10, 10, 11, 11, 12
3-bit FPC confidence [34, 39], 2-bit useful field [44]
Gen. VP: 55.2KB (1

16 FPC proba, 250 silenced cycles on misp.)
Tar. VP: 13.9KB (1

16 FPC proba, 250 silenced cycles on misp.)
Min. VP: 7.9KB (1

16 FPC proba, 250 silenced cycles on misp.)

Fetch
16-wide fetch from 64B Line Buffer
32-instruction fetch queue, 1-cycle taken branch
penalty, 3-cycle Fetch to Decode

Decode 8-wide, Mistarget detection (BTB miss)
1-cycle Decode to Rename

Rename
8-wide, 2-cycle Rename to Dispatch
0/1-idiom elimination, move-elimination
Optional support for 9-bit-idiom elimination, SpSR

Dispatch/
Commit

8-wide, 315-entry Reorder Buffer, 92-entry Instruction
Queue, 74-entry Load Queue, 53-entry Store Queue,
292 INT Regs, 292 FP/SIMD Regs

Issue

Up to 15 instructions per cycle into 4 simple ALU,
2 (simple ALU + IntMul(3c)), 1 IntDiv(20c, not pipelined)
3 (simple FP/SIMD(3c) + FP/SIMD Mul(4c mul/5c mac))
1 (simple FP/SIMD(3c) + FP/SIMD Mul(4c mul/5c mac) +
FP/SIMD Div (12c, not pipelined)), 2 Loads, 2 Stores
Store Sets [9] mem. dep. pred. (2k-entry LFST, 2k-entry SSIT)

Caches

128KB 8-way L1D, 64B line size, 4c load-to-use, 56 MSHRs, LRU
128KB 8-way L1I, 64B line size, 1c6 load-to-use, 8 MSHRs, LRU
1MB 8-way L2, 64B line size, 12c load-to-use, 64 MSHRs, LRU
8MB 16-way L3, 64B line size, 37c load-to-use, 64 MSHRs, LRU

TLBs 256-entry 1-way L1I (0c)7 + 256-entry 1-way L1D (0c)4 TLBs
3072-entry 12-way L2TLB, 4 cycles, LRU

Prefetchers L1D : Stride Prefetcher, degree 4 [12], L2 : AMPM Prefetcher [20]

6 ANALYSIS
Prior to analysis, we point out thatmove elimination, 0/1/9-bit signed
integer-idiom elimination and SpSR focus on architectural instruc-
tions. Therefore, it is consistent to reason about the fraction of
architectural instructions that can be eliminated at Rename through
these instances of strength reduction. However, in gem5, several
simple architectural instructions that would flow as a single `-op
in a high-performance pipeline may in fact generate multiple `-ops
(one notable example is load/stores that use pre/post increment ad-
dressing mode). This "expansion ratio" 𝑥 may limit the performance
uplift we can obtain as we reduce one instruction out of 𝑥 × 100𝑀
(with 𝑥 > 1) rather than out of 100𝑀 . Fig. 2 reports the number of
`-ops per retired architectural instructions as well as the baseline
IPC (still reported as architectural instructions per cycle).

6.1 Value Prediction
We run simulations using the VTAGE [34] value predictor depicted
in Table 2. In the case where only 0x0 and 0x1 are eligible for VP
(Minimal VP, or MVP), writing the prediction to the PRF is done
through renaming the destination to the hardwired 0x0/0x1 physical
register. In the case where all 9-bit signed integer values are eligible
(Targeted VP, or TVP), the physical register names are overloaded to

60
0_

p
er

lb
en

ch
_s

_1

60
0_

p
er

lb
en

ch
_s

_2

60
0_

p
er

lb
en

ch
_s

_3

60
2_

g
cc

_s
_1

60
2_

g
cc

_s
_2

60
2_

g
cc

_s
_3

60
3_

b
w

av
es

_s
_1

60
3_

b
w

av
es

_s
_2

60
5_

m
cf

_s

60
7_

ca
ct

u
B

S
S

N
_s

61
9_

lb
m

_s

62
0_

o
m

n
et

p
p
_s

62
1_

w
rf

_s

62
3_

xa
la

n
cb

m
k_

s

62
5_

x2
64

_s
_1

62
5_

x2
64

_s
_2

62
5_

x2
64

_s
_3

62
7_

ca
m

4_
s

62
8_

p
o
p
2_

s

63
1_

d
ee

p
sj

en
g
_s

63
8_

im
ag

ic
k_

s

64
1_

le
el

a_
s

64
4_

n
ab

_s

64
8_

ex
ch

an
g
e2

_s

64
9_

fo
to

n
ik

3d
_s

65
4_

ro
m

s_
s

65
7_

xz
_s

_1

65
7_

xz
_s

_2
m

ea
n

1

1.05

1.1

1.15

B
a

rs
:

U
o

p
s

 p
e

r
A

rc
h

.
In

s
t

0

1

2

3

4

5

6

L
in

e
 : IP

C

Figure 2: Bar: Retired `-ops over retired architectural in-
structions (left y-axis). Line: Baseline IPC (right y-axis). Av-
erage is amean for `-ops per instruction and hmean for IPC.
SPEC2k17 CPU refspeed.

represent the predicted value. In TVP, 9-bit integer idiom elimination
is also enabled as it can use the same inlining mechanism [25] as
TVP itself. Finally, when all values are eligible (Generic VP, or GVP),
predictions that fit on a 9-bit signed integer (including 0x0 and 0x1)
behave as in TVP, however, larger predictions are given a physical
register at rename and we assume that the PRF has enough ports
to write the prediction. Validation is still performed at execute
time, but we assume that the prediction is read from the FIFO
used to perform predictor updates, and therefore no additional PRF
read is incurred. Predictions are used in the pipeline only when
the associated Forward Probabilistic (confidence) Counter (FPC) is
saturated [34, 39], and only instructions that produce one (or more)
general purpose register are eligible for being value predicted. Fig. 3
depicts the speedup we obtain with the different VP flavors from a
baseline with move elimination and 0/1-idiom elimination.

General Trend. While generic VP is able to lift performance sig-
nificantly (+4.67% geomean), MVP and TVP are still able to provide a
modest fraction of the performance uplift using a much smaller pre-
dictor, respectively +0.54% (11.5% of the GVP speedup using 14.4%
of the storage) and +1.11% (23.7% of the GVP speedup using 25.1%
of the storage). The predictor footprint has to be contrasted against
past and currently implemented branch predictors and BTBs which
may occupy tens to hundreds of KBs [16, 45]. Average coverage
(#𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑢𝑠𝑒𝑑#𝑉𝑃−𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒) is respectively 5.3%/12.6%/32.7% for MVP/TVP/GVP,

with average accuracy (#𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑢𝑠𝑒𝑑
(#𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑢𝑠𝑒𝑑+#𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑢𝑠𝑒𝑑)) being above

99.9% in all cases, thanks to the stringent confidence requirements
that must be met before a prediction is used.

To determine the sensitivity of MVP/TVP/GVP to predictor stor-
age, we also run each VP flavor using different storage budgets. The
geomean speedups are reported in Table 3. The numbers suggest
that generic VP is generally a better choice if implementation com-
plexity is not an issue. Indeed, the advantage of MVP and TVP lie
in the fact that they require very limited changes to the renamer

Leveraging Targeted Value Prediction to Unlock New Hardware Strength Reduction Potential MICRO ’21, October 18–22, 2021, Virtual Event, Greece

60
0_

p
er

lb
en

ch
_s

_1

60
0_

p
er

lb
en

ch
_s

_2

60
0_

p
er

lb
en

ch
_s

_3
60

2_
g
cc

_s
_1

60
2_

g
cc

_s
_2

60
2_

g
cc

_s
_3

60
3_

b
w

av
es

_s
_1

60
3_

b
w

av
es

_s
_2

60
5_

m
cf

_s

60
7_

ca
ct

u
B

S
S

N
_s

61
9_

lb
m

_s
62

0_
o
m

n
et

p
p
_s

62
1_

w
rf

_s

62
3_

xa
la

n
cb

m
k_

s
62

5_
x2

64
_s

_1
62

5_
x2

64
_s

_2
62

5_
x2

64
_s

_3
62

7_
ca

m
4_

s
62

8_
p
o
p
2_

s

63
1_

d
ee

p
sj

en
g
_s

63
8_

im
ag

ic
k_

s
64

1_
le

el
a_

s
64

4_
n
ab

_s

64
8_

ex
ch

an
g
e2

_s
64

9_
fo

to
n
ik

3d
_s

65
4_

ro
m

s_
s

65
7_

xz
_s

_1
65

7_
xz

_s
_2

g
m

ea
n

−1

0

1

2

3

4

5

6

7

8

9

10

S
p

e
e

d
u

p
 (

%
)

Min. VP

Tar. VP

Gen. VP

Min. VP

Tar. VP

Gen. VP

+4.67%

+0.54%

+1.11%

+12.55%+52.65%+11.62% +11.58%

Figure 3: Performance uplift brought by MVP/TVP/GVP on top of a baseline featuring move and 0/1-idiom elimination.
SPEC2k17 refspeed.

structure and the physical register file. As a result, we believe that
both MVP and TVP achieve the goal of providing noticeable per-
formance uplift in some cases while having minimal impact on
the existing microarchitecture, save for adding the value predictor
and FIFO update queue. This is especially true for MVP since Table
3 shows that most of the potential (of the VTAGE algorithm) is
already attained even with a 4KB predictor.

Table 3: geomean of speedups for each of MVP/TVP/GVP
over baseline when ran with various budgets (same number
of tables/history bits, only table size is modified.)

Size MVP TVP GVP
0.5 ×MVP budget (≈ 4KB) +0.50% +0.74% +2.54%

MVP budget (≈ 8KB) +0.54% +0.96% +2.86%
TVP budget (≈ 14KB) +0.60% +1.11% +3.51%
GVP budget (≈ 55KB) +0.66% +1.24% +4.67%

Outlier. In xalancbmk, GVP speeds performance up by 52.65%.
The fact that TVP behaves similarly to MVP suggests that 9-bit-
signed-idiom elimination is not responsible for the performance
uplift. Moreover, the coverage of the predictors are respectively
7.30%, 55.97% and 72.32% for MVP/TVP/GVP, while accuracy is
similar (over 99.99%) in all cases. Speedups are +0.52%/+0.41%/
+52.65% respectively. Therefore, the higher VP coverage of TVP
as opposed to MVP does not translate to improved performance,
and the difference in performance cannot be explained by pipeline
flushes due to mispredictions.

We found the limiting factor to be three predictable (with GVP)
yet dependent loads within a loop, that are used to retrieve the base
address of a structure through multiple indirections. The address is
then fed to a fourth load that retrieves a 2B element with a displace-
ment. It should be noted that in this case, Memory Renaming [50]
would likely be beneficial as the first predicted load always depends
on a previous – silent – store to the same address, and both use the
stack pointer and the same offset to compute their address. Those
instructions are located in ValueStore::contains() but may actually

belong to functions inlined into it. Since virtual addresses usually
need more than 9 bits, MVP and TVP cannot capture those critical
predictions.

6.2 Speculative Strength Reduction
Fraction of Optimized Instructions. Figure 4 (a) and (b) report the

fraction of rename-optimized instructions when SpSR is enabled
for MVP and TVP (1.73% and 1.70% respectively).8 TVP also brings
an additional 0.48% eliminated instructions thanks to 9-bit-signed-
idiom elimination.

One can also note a difference in the fraction of eliminated move
instructions. This stems from the fact that as stated in Section 5,
we do not allow a 64-bit register to be moved into a 32-bit register
in our experiments. However, when using 9-bit signed physical
register identifiers for value predictions and eligiblemove immediate
instructions, we are sometimes able to move a 64-bit register into
a 32-bit register if the 64-bit register is predicted or 9-bit-signed-
idiom eliminated, as we can guarantee that the 32 upper bit are 0
when the value is not sign-extended. Therefore TVP has slightly
more potential for ME in our framework, though this would not be
the case with a more aggressive ME implementation.

Performance. The additional fraction of instructions (+1.73% for
MVP and 1.70 + 0.48% for TVP) unfortunately does not often trans-
late to significantly improved performance, as shown in Figure
5. Even worse, in several cases, performance slightly decreases
: perlbench_2/3 (MVP, TVP), x264_2/3 (MVP and TVP) and cam4
(TVP). This is counter-intuitive since SpSR does not introduce new
pipeline stalls or flushes. Our experiments suggest that similarly
to the behavior in roms described in Section 3.4.1, this is caused
by interactions with the L1D Stride prefetcher. On a configuration
without the Stride prefetcher, SpSR provides +0.00%/+0.00%/+0.57%
/+0.00% IPC over TVP for perlbench_2/3, x264_2 and cam4, respec-
tively (geomean improvement is +0.11% compared to +0.06% in Fig.
5). The same effect was observed for MVP in perlbench_2/3 and
x264_3.

8The difference comes from using 250 silencing cycles. This impacts TVP and MVP
differently because they do not always predict/mispredict the same instructions.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arthur Perais
60

0_
p
er

lb
en

ch
_s

_1

60
0_

p
er

lb
en

ch
_s

_2

60
0_

p
er

lb
en

ch
_s

_3

60
2_

g
cc

_s
_1

60
2_

g
cc

_s
_2

60
2_

g
cc

_s
_3

60
3_

b
w

av
es

_s
_1

60
3_

b
w

av
es

_s
_2

60
5_

m
cf

_s

60
7_

ca
ct

u
B

S
S

N
_s

61
9_

lb
m

_s

62
0_

o
m

n
et

p
p
_s

62
1_

w
rf

_s

62
3_

xa
la

n
cb

m
k_

s

62
5_

x2
64

_s
_1

62
5_

x2
64

_s
_2

62
5_

x2
64

_s
_3

62
7_

ca
m

4_
s

62
8_

p
o
p
2_

s

63
1_

d
ee

p
sj

en
g
_s

63
8_

im
ag

ic
k_

s

64
1_

le
el

a_
s

64
4_

n
ab

_s

64
8_

ex
ch

an
g
e2

_s

64
9_

fo
to

n
ik

3d
_s

65
4_

ro
m

s_
s

65
7_

xz
_s

_1

65
7_

xz
_s

_2
am

ea
n

0

5

10

15

%
 D

y
n

a
m

ic
 I
n

s
ts

.
E

li
m

in
a
te

d
 a

t
R

e
n

a
m

e

0-idiom

1-idiom

Move

Non ME move

0-idiom

1-idiom

Move

SpSR

Non ME move

0.72%

0.39%

3.96%

1.73%

0.44%

(a) Fraction of rename-optimized instructions for MVP.

60
0_

p
er

lb
en

ch
_s

_1

60
0_

p
er

lb
en

ch
_s

_2

60
0_

p
er

lb
en

ch
_s

_3

60
2_

g
cc

_s
_1

60
2_

g
cc

_s
_2

60
2_

g
cc

_s
_3

60
3_

b
w

av
es

_s
_1

60
3_

b
w

av
es

_s
_2

60
5_

m
cf

_s

60
7_

ca
ct

u
B

S
S

N
_s

61
9_

lb
m

_s

62
0_

o
m

n
et

p
p
_s

62
1_

w
rf

_s

62
3_

xa
la

n
cb

m
k_

s

62
5_

x2
64

_s
_1

62
5_

x2
64

_s
_2

62
5_

x2
64

_s
_3

62
7_

ca
m

4_
s

62
8_

p
o
p
2_

s

63
1_

d
ee

p
sj

en
g
_s

63
8_

im
ag

ic
k_

s

64
1_

le
el

a_
s

64
4_

n
ab

_s

64
8_

ex
ch

an
g
e2

_s

64
9_

fo
to

n
ik

3d
_s

65
4_

ro
m

s_
s

65
7_

xz
_s

_1

65
7_

xz
_s

_2
am

ea
n

0

5

10

15

%
 D

y
n

a
m

ic
 I
n

s
ts

.
E

li
m

in
a
te

d
 a

t
R

e
n

a
m

e

0-idiom

1-idiom

Move

9-bit-idiom

Non ME move

0-idiom

1-idiom

Move

9-bit-idiom

SpSR

Non ME move

0.72%

0.39%

4.06%

1.70%

0.34%

0.48%

(b) Fraction of rename-optimized instructions for TVP.

Figure 4: Additional fraction of dynamic instructions that can be optimized away at Rename with MVP (DSR+SpSR : 1.73%
avg.) and TVP (DSR+SpSR/9-bit idiom elim. : 1.70%/0.48% avg.). SPEC2k17 refspeed.

60
0_

p
er

lb
en

ch
_s

_1

60
0_

p
er

lb
en

ch
_s

_2

60
0_

p
er

lb
en

ch
_s

_3
60

2_
g
cc

_s
_1

60
2_

g
cc

_s
_2

60
2_

g
cc

_s
_3

60
3_

b
w

av
es

_s
_1

60
3_

b
w

av
es

_s
_2

60
5_

m
cf

_s

60
7_

ca
ct

u
B

S
S

N
_s

61
9_

lb
m

_s
62

0_
o
m

n
et

p
p
_s

62
1_

w
rf

_s

62
3_

xa
la

n
cb

m
k_

s
62

5_
x2

64
_s

_1
62

5_
x2

64
_s

_2
62

5_
x2

64
_s

_3
62

7_
ca

m
4_

s
62

8_
p
o
p
2_

s

63
1_

d
ee

p
sj

en
g
_s

63
8_

im
ag

ic
k_

s
64

1_
le

el
a_

s
64

4_
n
ab

_s

64
8_

ex
ch

an
g
e2

_s
64

9_
fo

to
n
ik

3d
_s

65
4_

ro
m

s_
s

65
7_

xz
_s

_1
65

7_
xz

_s
_2

g
m

ea
n

−1

0

1

2

3

4

5

S
p

e
e

d
u

p
 (

%
)

Min. VP

Min. VP + SpSR

Tar. VP

Tar. VP + SpSR

Min. VP

Min. VP + SpSR

Tar. VP

Tar. VP + SpSR

+1.11%

+0.54%

+0.64%

+1.17%

Figure 5: Performance uplift brought by MVP/TVP with and without SpSR on top of a baseline featuring move and 0/1-idiom
elimination. GVP is not shown as it exhibits the same trend with SpSR as TVP. SPEC2k17 refspeed.

Impact on Activity. In this paper, we do not provide a full estimate
of the power dissipation and energy consumption of the pipeline
as the impact of some modifications (e.g., renamer, interactions
between VP-tracking FIFO and issue/execute) on power would
require a high-end design that is out of our reach. However, we
provide proxymetrics such as the overall number of integer physical
register reads and writes as well as the number of dispatched and
issued instructions in Figure 6. We only report average activity for
configurations of interest for readability.

Through using hardwired registers and physical register inlining,
MVP and TVP are able to significantly reduce integer PRF activity
(-2.41% Rd.6/-4.17% Wr. and -9.51% Rd/-11.32% Wr., respectively).
IQ activity remains similar since value predicted instructions still
need to be dispatched and issued. GVP sees many more integer

6In MVP, we assume that the zero and one registers are not read by consumers since
the physical name in the scheduler entry can serve as the value (Physical Register
Number – PRN – 0 is 0x0, PRN 1 is 0x1), much like in full-blown physical register
inlining, but without the additional bit.

PRF writes as we assume that predictions that cannot leverage
physical register inlining need to be explicitly written to the PRF.
Furthermore, we consider that in GVP, training and validation
do not require an additional PRF read as the prediction is read
from the FIFO used to perform predictor updates and compared
against the result computed by the functional unit. Yet, state-of-
the-art proposals such as EOLE would incur an additional PRF read
since the correct value would need to be read from the PRF at
validation/update time, and compared against the prediction sitting
in the VP-tracking FIFO [33, 34]. In our experiments, this would
account for an additional 22% PRF reads over baseline.

SpSR provides instructions that do not need to dispatch to the
IQ at all. As a result, when applying SpSR on top of MVP/TVP,
we observe a decrease in IQ activity : -1.64%/-1.53% and -2.41%/-
2.04% dispatched/issued instructions, respectively. TVP + SpSR
reduce the number of dispatched and issued instructions slightly
more than MVP + SpSR due to the presence of 9-bit-signed-idiom

Leveraging Targeted Value Prediction to Unlock New Hardware Strength Reduction Potential MICRO ’21, October 18–22, 2021, Virtual Event, Greece

M
in.

 V
P

M
in.

 V
P +

 S
pS

R

Ta
r.

VP

Ta
r.

VP +
 S

pS
R

Gen
. V

P

Gen
. V

P +
 S

pS
R

85

90

95

100

105

110

INTPRFReads INTPRFWrites IQInstsAdded IQInstsIssued

A
ct

iv
ity

 N
or

m
al

iz
ed

 to
 B

as
el

in
e

(in
 %

)

Figure 6: Average INT PRF Read/Writes and IQ dis-
patched/issued instructions normalized to Baseline.
SPEC2k17 refspeed.

elimination. Moreover, GVP + SpSR provides similar reduction,
although the mere fact that it is significantly faster (+4.67% IPC)
already provides a reduction in dispatched instructions. GVP + SpSR
reduces dispatched instructions by 2.66% and issued instructions by
1.90%. The number of issued instructions is higher than inMVP/TVP
due to GVP being much better at breaking data dependencies.

7 RELATEDWORK
Value Prediction. Early/OoO/Late Execution (EOLE) [33] lever-

ages VP to early execute some instructions in the frontend, using
dedicated execution units. Those instructions are not sent to the
scheduler thereby achieving a similar effect as SpSR. However SpSR
does not require execution units and is able to perform eliminations
even when a single input is predicted, whereas EOLE needs all
inputs to be available.

Sheikh et al. introduce DLVP, in which only load addresses are
predicted, and unused D-Cache access slots are used to prefetch
data into a dedicated buffer [46]. Focused Value Prediction attempts
to identify candidates that maximize performance gains and train
the predictor only for those candidates [4], minimizing the predictor
footprint. However, in the context of SpSR, we want to maximize
the number of eliminated instructions and therefore, considering
all register-producing instructions is preferable.

Finally, there exist many variations of value predictors that could
be swapped in to implement MVP/TVP [7, 13, 14, 23, 26, 30, 43, 49,
51, 53]. MVP is especially interesting as it can also leverage branch
prediction algorithms such as perceptron [21].

Strength Reduction. Move elimination [22] was initially proposed
to execute move instructions at rename. This technique is especially
beneficial in the x86 ISA because for most instructions, one of the
sources is the destination.

Speculative memory bypassing leverages renaming to transform
a def-store-load-use chain into a def-use chain by renaming the
destination register of the load to the source register of the store
[50]. Validating speculation implies checking that addresses match

but also that the load value is consistent with what the memory
model allows.

REName Optimizer (RENO) [37] and Continuous Optimization
[10] suggest to monitor instruction sequences to remove redun-
dant computations through the renamer. For instance, two loads
from the same address but to different registers, in which case the
second load can map its destination register to the destination reg-
ister of the first load. Different optimizations may be performed
including constant propagation (CP), redundant load elimination
(RLE), and store forwarding. Some of those optimizations require
additional hardware in the backend (CP) and/or actual execution
of the "eliminated" instruction (RLE).

SpSR is orthogonal to those techniques as it is inherently dy-
namic, that is, inspecting instruction bits is not sufficient to perform
SpSR. However, SpSR does build on the availability of move elimi-
nation and zero/one-idiom elimination.

8 CONCLUSION
In this paper, we present Minimal and Targeted Value Prediction
(MVP and TVP), two implementations of Value Prediction that
leverage register renaming to provide predictions to dependent
instructions at lowered hardware complexity. While those imple-
mentations still require a value predictor to provide values, the
fact that only a very limited number of values are candidate for
prediction greatly limits the footprint of the value predictor. MVP
and TVP provide 0.54% and 1.11% speedup while a generic imple-
mentation provides 4.67% speedup, on average, on SPEC2k17 CPU
speed benchmarks. This demonstrates that a limited value predic-
tion infrastructure can still provide modest speedup even if few
distinct values can be predicted.

We further build on MVP and TVP with Speculative Strength
Reduction, a novel rename-time optimization that makes specific
instructions disappear at Rename if their operands are predicted
to be 0x0 or 0x1. We find that 1.73% of the dynamic instructions
can disappear from Rename in MVP. When adding 9-bit signed
idiom elimination through TVP, this fraction increases to 2.18%.
While SpSR does not improve performance significantly in our
experiments, it decreases the number of instructions dispatched to
and issued from the IQ. Therefore, SpSR appears as a natural add-on
to MVP/TVP to further reduce pressure on the backend structures
such as the PRF and the IQ.

REFERENCES
[1] Haitham Akkary, Ravi Rajwar, and Srikanth T Srinivasan. 2003. Checkpoint

processing and recovery: Towards scalable large instruction window processors.
In Proc. of the IEEE/ACM Intl. Symp. on Microarchitecture. IEEE, 423–434.

[2] Juan L Aragón, José González, and Antonio González. 2003. Power-aware con-
trol speculation through selective throttling. In Proc. of the Intl. Symp. on High-
Performance Computer Architecture. IEEE, 103–112.

[3] Arm Ltd. [n. d.]. Armv8 Reference Manual. https://documentation-
service.arm.com/static/5f20515cbb903e39c84dc459?token=.

[4] S. Bandishte, J. Gaur, Z. Sperber, L. Rappoport, A. Yoaz, and S. Subramoney.
2020. Focused Value Prediction. In Proc. of the ACM/IEEE Intl. Symp. on Computer
Architecture. 79–91. https://doi.org/10.1109/ISCA45697.2020.00018

[5] Steven Battle, Andrew D Hilton, Mark Hempstead, and Amir Roth. 2012. Flexible
register management using reference counting. In Proc. of the IEEE Intl. Symp. on
High-Performance Comp Architecture. IEEE, 1–12.

[6] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:
Next-generation compute benchmark. In Companion of the 2018 ACM/SPEC Intl.
Conf. on Performance Engineering. 41–42.

https://doi.org/10.1109/ISCA45697.2020.00018

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arthur Perais

[7] Martin Burtscher and Benjamin G Zorn. 1999. Exploring last n value prediction.
In Proc. of the IEEE Intl. Conf. on Parallel Architectures and Compilation Techniques.
IEEE, 66–76.

[8] Brad Calder, Glenn Reinman, andDeanMTullsen. 1999. Selective value prediction.
In Proc. of the IEEE/ACM Intl. Symp. on Computer Architecture. 64–74.

[9] G Chrysos and J Emer. 1998. Memory Dependence Prediction using Store Sets.
In Proc. of the ACM/IEEE Intl. Symp. on Computer Architecture. IEEE, 0142–0142.

[10] Brian Fahs, Todd Rafacz, Sanjay J Patel, and Steven S Lumetta. 2005. Continuous
optimization. In Proc. of the Intl. Symp. on Computer Architecture. IEEE, 86–97.

[11] Andrei Frumusanu. [n. d.]. Apple’s Humongous CPU Microarchitecture. https:
//www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

[12] John WC Fu, Janak H Patel, and Bob L Janssens. 1992. Stride directed prefetching
in scalar processors. In Pro. of the IEEE/ACM Intl. Symp. on Microarchitecture.
102–110.

[13] Freddy Gabbay and Avi Mendelson. 1998. Using value prediction to increase
the power of speculative execution hardware. ACM Transactions on Computer
Systems 16, 3 (1998), 234–270.

[14] Bart Goeman, Hans Vandierendonck, and Koenraad De Bosschere. 2001. Dif-
ferential FCM: Increasing value prediction accuracy by improving table usage
efficiency. In Proc. of the IEEE Intl. Symp. on High-Performance Computer Archi-
tecture. IEEE, 207–216.

[15] Antonio Gonzalez, Jose Gonzalez, and Mateo Valero. 1998. Virtual-physical reg-
isters. In Proc. of the IEEE Intl. Symp. on High-Performance Computer Architecture.
IEEE, 175–184.

[16] Brian Grayson, Jeff Rupley, Gerald Zuraski, Eric Quinnell, Daniel A. Jiménez,
Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas Sinha, and
Ankit Ghiya. 2020. Evolution of the samsung exynos CPU microarchitecture. In
Proc. of the ACM/IEEE Intl. Symp. on Computer Architecture. IEEE, 40–51.

[17] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. Simpoint 3.0:
Faster and more flexible program phase analysis. Journal of Instruction Level
Parallelism 7, 4 (2005), 1–28.

[18] Intel Corporation. [n. d.]. Intel 64 and IA-32 Arch. Optim. Reference Man-
ual. software.intel.com/content/dam/develop/public/us/en/ documents/64-ia-32-
architectures-optimization-manual.pdf.

[19] Intel Corporation. [n. d.]. Intel 64 and IA-32 Arch. Soft. Dev. Manuals.
software.intel.com/content/www/us/en/develop/download/ intel-64-and-ia-32-
architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html.

[20] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2009. Access map pattern matching
for data cache prefetch. In Proceedings of the 23rd international conference on
Supercomputing. 499–500.

[21] Daniel A Jiménez and Calvin Lin. 2001. Dynamic branch prediction with percep-
trons. In Proc. of the IEEE Intl. Symp. on High Performance Computer Architecture.
IEEE, 197–206.

[22] Stephan Jourdan, Ronny Ronen, Michael Bekerman, Bishara Shomar, and Adi
Yoaz. 1998. A novel renaming scheme to exploit value temporal locality through
physical register reuse and unification. In Proc. of the Intl. Symp. on Microarchi-
tecture. IEEE, 216–225.

[23] Kleovoulos Kalaitzidis and André Seznec. 2020. Leveraging Value Equality Pre-
diction for Value Speculation. ACM Transactions on Architecture and Code Opti-
mization 18, 1 (2020), 1–20.

[24] Ilhyun Kim andMikko H Lipasti. 2004. Understanding scheduling replay schemes.
In Proc. of the IEEE Intl. Symp. on High Performance Computer Architecture. IEEE,
198–209.

[25] Mikko H Lipasti, Brian R Mestan, and Erika Gunadi. 2004. Physical register
inlining. In Proc. of the IEEE/ACM Intl. Symp. on Computer Architecture. IEEE,
325–335.

[26] Mikko H Lipasti, Christopher B Wilkerson, and John Paul Shen. 1996. Value
locality and load value prediction. In Proc. of the ACM Tntl Conf. on Architectural
Support for Programming Languages and Operating Systems. 138–147.

[27] Gabriel Loh. 2003. Width prediction for reducing value predictor size and power.
In First Value Prediction Workshop, at IEEE/ACM ISCA. Citeseer.

[28] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues
Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Di-
estelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,
Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza
Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias
Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-
ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,
Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.
Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,
Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian

Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator:
Version 20.0+. arXiv:cs.AR/2007.03152

[29] Milo MK Martin, Daniel J Sorin, Harold W Cain, Mark D Hill, and Mikko H
Lipasti. 2001. Correctly implementing value prediction in microprocessors that
support multithreading or multiprocessing. In Proc. of the ACM/IEEE Intl. Symp.
on Microarchitecture. MICRO-34. IEEE, 328–337.

[30] Tarun Nakra, Rajiv Gupta, and Mary Lou Soffa. 1999. Global context-based
value prediction. In Proc. ot the IEEE Intl. Symp. on High-Performance Computer
Architecture. IEEE, 4–12.

[31] Subbarao Palacharla, Norman P Jouppi, and James E Smith. 1997. Complexity-
effective superscalar processors. In Proc. of the IEEE/ACM Intl. Symp. on Computer
architecture. 206–218.

[32] Arthur Perais. 2021. A Case for Speculative Strength Reduction. IEEE Computer
Architecture Letters 20, 1 (2021), 22–25.

[33] Arthur Perais and André Seznec. 2014. EOLE: Paving the way for an effective
implementation of value prediction. In Proc. of the ACM/IEEE Intl. Symp. on
Computer Architecture. IEEE, 481–492.

[34] Arthur Perais and André Seznec. 2014. Practical data value speculation for future
high-end processors. In Proc. of the IEEE Intl. Symp. on High Performance Computer
Architecture. IEEE, 428–439.

[35] Arthur Perais and André Seznec. 2015. BeBoP: A cost effective predictor infras-
tructure for superscalar value prediction. In Proc. of the IEEE Intl. Symp. on High
Performance Computer Architecture. IEEE, 13–25.

[36] Arthur Perais and André Seznec. 2016. Cost effective physical register sharing. In
Proc. of the IEEE Intl. Symp. on High Performance Computer Architecture (HPCA).
IEEE, 694–706.

[37] Vlad Petric, Tingting Sha, and Amir Roth. 2005. Reno: a rename-based instruction
optimizer. In Proc. of the Intl. Symp. on Computer Architecture. IEEE, 98–109.

[38] G Reinman, T Anstin, and B Calder. 1999. A scalable front-end architecture
for fast instruction delivery. In Proc. of the ACM/IEEE Intl. Symp. on Computer
Architecture. IEEE, 234–245.

[39] Nicholas Riley and Craig Zilles. 2006. Probabilistic counter updates for predictor
hysteresis and stratification. In Proc. of the IEEE Intl. Symp. on High-Performance
Computer Architecture, 2006. IEEE, 110–120.

[40] RISC-V Foundation. [n. d.]. RISC-V Unprivileged Spec.
https://github.com/riscv/riscv-isa-manual/releases/latest.

[41] Elham Safi, Andreas Moshovos, and Andreas Veneris. 2010. Two-stage, pipelined
register renaming. IEEE Transactions on Very Large Scale Integration systems 19,
10 (2010), 1926–1931.

[42] Toshinori Sato and Itsujiro Arita. 2000. Table size reduction for data value
predictors by exploiting narrow width values. In Proc. of the Intl. Conf. on Super-
computing. 196–205.

[43] Yiannakis Sazeides and James E Smith. 1997. The predictability of data values. In
Proc. of the IEEE/ACM Intl. Symp. on Microarchitecture. IEEE, 248–258.

[44] André Seznec. 2011. A new case for the tage branch predictor. In Proc. of the
IEEE/ACM Intl. Symp. on Microarchitecture. 117–127.

[45] André Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis Sazeides. 2002.
Design tradeoffs for the Alpha EV8 conditional branch predictor. Proc. of the
ACM/IEEE Intl. Symp. on Computer Architecture 30, 2 (2002), 295–306.

[46] Rami Sheikh, Harold W Cain, and Raguram Damodaran. 2017. Load value
prediction via path-based address prediction: Avoiding mispredictions due to
conflicting stores. In Proc. of the IEEE/ACM Intl. Symp. on Microarchitecture. 423–
435.

[47] Rami Sheikh and Derek Hower. 2019. Efficient load value prediction using
multiple predictors and filters. In Proc. of the IEEE Intl. Symp. on High Performance
Computer Architecture. IEEE, 454–465.

[48] Niranjan Soundararajan, Saurabh Gupta, Ragavendra Natarajan, Jared Stark,
Rahul Pal, Franck Sala, Lihu Rappoport, Adi Yoaz, and Sreenivas Subramoney.
2019. Towards the adoption of local branch predictors in modern out-of-order
superscalar processors. In Proc. of the IEEE/ACM Intl. Symp. on Microarchitecture.
519–530.

[49] Renju Thomas and Manoj Franklin. 2001. Using dataflow based context for
accurate value prediction. In Proc. of the IEEE Intl. Conf. on Parallel Architectures
and Compilation Techniques. IEEE, 107–117.

[50] Gary S Tyson and Todd M Austin. 1997. Improving the accuracy and performance
of memory communication through renaming. In Proc. of the Intl. Symp. on
Microarchitecture. IEEE, 218–227.

[51] Kai Wang and Manoj Franklin. 1997. Highly accurate data value prediction using
hybrid predictors. In Proc. of the IEEE/ACM Intl. Symp. on Microarchitecture. IEEE,
281–290.

[52] Jun Yang and Rajiv Gupta. 2002. Frequent value locality and its applications.
ACM Transactions on Embedded Computing Systems (TECS) 1, 1 (2002), 79–105.

[53] Huiyang Zhou, Jill Flanagan, and Thomas M Conte. 2003. Detecting global
stride locality in value streams. In Proc. of the IEEE/ACM Intl. Symp. on Computer
architecture. 324–335.

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://arxiv.org/abs/cs.AR/2007.03152

	Abstract
	1 Introduction
	2 Generic Value Prediction
	2.1 Value Predictors
	2.2 Predictions in the Pipeline
	2.3 Summary

	3 Targeted Value Prediction
	3.1 Minimal Value Prediction (MVP)
	3.2 Targeted Value Prediction (TVP)
	3.3 Impact on the Value Predictor
	3.4 Handling Mispredictions
	3.5 Potential Gains
	3.6 Other

	4 Speculative Strength Reduction
	4.1 Potential Gains
	4.2 Strength Reducibility
	4.3 Hardware Overhead

	5 Evaluation Framework
	6 Analysis
	6.1 Value Prediction
	6.2 Speculative Strength Reduction

	7 Related Work
	8 Conclusion
	References

