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ABSTRACT
Intel and AMD processors have long supported more than one large
page sizes – 1GB and 2MB, to reduce address translation overheads
for applications with large memory footprints. However, previous
works on large pages have primarily focused on 2MB pages, partly
due to a lack of evidence on the usefulness of 1GB pages to real-
world applications. Consequently, micro-architectural resources
devoted to 1GB pages have gone underutilized for a decade.

We quantitatively demonstrate where 1GB pages can be valuable,
especially when employed in conjunction with 2MB pages. Unfor-
tunately, the lack of application-transparent dynamic allocation of
1GB pages is to blame for the under-utilization of 1GB pages on
today’s systems. Toward this, we design and implement Trident in
Linux to fully harness micro-architectural resources devoted for
all page sizes in the current x86 hardware by transparently allo-
cating 1GB, 2MB, and 4KB pages as suitable at runtime. Trident
speeds up eight memory-intensive applications by 18%, on aver-
age, over Linux’s use of 2MB pages. We then propose Tridentpv, an
extension to Trident that virtualizes 1GB pages via copy-less pro-
motion and compaction in the guest OS. Overall, this paper shows
that adequate software enablement brings practical relevance to
even GB-sized pages, and motivates micro-architects to continue
enhancing hardware support for all large page sizes.
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1 INTRODUCTION
It is not uncommon for hardware features to require software
enablement. Unfortunately, it is also common to find the micro-
architectural resources to remain underutilized due to the lack of
adequate software support. One pays for the underutilized hard-
ware through both – the runtime cost (e.g., power dissipation), and
the design and verification cost. Further, architects are left in the
dark about the extent to which those features are beneficial to ap-
plications in practice, and whether they should continue enhancing
them or drop them in future products.

In this work, we shed light on one such hardware feature –
1GB pages, that has been mostly languishing for a decade due to
inadequate system software (here, Linux and KVM) enablement.
Big-memory workloads are well known to witness significant slow-
downs due to virtual to physical address translation (e.g., up to
20-50%). Modern processors support large pages to help reduce this
overhead [35, 36, 42, 43]. A large page TLB (Translation Lookaside
Buffer) entry maps a larger contiguous virtual address region to
contiguous physical address region (e.g., 2MB compared to default
4KB). Consequently, the use of a large page increases TLB coverage
and reduces the number of TLB misses that is the primary source
of translation overheads.

The x86-64 processors have long supported two large page sizes
– 2MB and 1GB, for over a decade. Intel’s Sandybridge launched
in 2010 first supported 1GB pages and had a four-entry L1 TLB
dedicated for 1GB pages in each core [10]. Since then, both large
page sizes have found patronage of the processor vendors. Recent
Cascade Lake processors support 32-entries in L1 TLB and up to
1536 entries in L2 TLB for 2MB pages. It also has 4 and 16 entries
for 1GB pages, in L1 and L2 TLB respectively [11]. The lastest Ice
Lake Xeon processors can hold up to 1024 entries each for both
2MB and 1GB pages, per core, in its L2 TLBs [14].

While hardware vendors continue to enhance TLB capacities for
both large page sizes; more so for 1GB pages in recent times, the
system software – operating systems and hypervisors – continues
to focus only on 2MB large pages. For example, Linux’s Transparent
Huge Pages (THP) for application-transparent dynamic allocation of
large pages limits itself to only 2MB pages. Prior academic research
works on improving large page support in software similarly ignore
1GB pages [36, 42, 43].

It is thus pertinent to wonder if micro-architects are justified in
continuing to invest hardware resources for both 1GB and 2MB
large pages. Our first contribution is an empirical analysis to answer
the above question. We quantify the usefulness of 1GB pages, over
and above 2MB pages, to various applications, with and without
virtualization. We find that while most memory-intensive applica-
tions benefit from 2MB pages over 4KB, a subset of them speeds
up further with 1GB pages. Even for applications in that subset,

1106

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3466752.3480062
https://doi.org/10.1145/3466752.3480062


MICRO ’21, October 18–22, 2021, Virtual Event, Greece Venkat Sri Sai Ram, Ashish Panwar, and Arkaprava Basu

use of the other large page size(s) (here, 2MB) alongside the largest
page size (here, 1GB) is important. Mapping a virtual address range
with a large page size requires the address range to be at least as
long as that page size and to be aligned at that page size boundary.
Consequently, larger the page size, lesser is the number of virtual
address ranges that are mappable by that page size.

Often a significant portion of an application’s address space is
not mappable with 1GB pages, but mappable with 2MB. Impor-
tantly, such address ranges often witness relatively frequent TLB
misses. Thus, if only the largest page size is used, then those address
ranges would have to be mapped with the smallest (4KB) pages.
Consequently, TLB misses would increase significantly.

A larger page size also needs equally longer contiguous physical
memory chunk. The larger the page size, shorter is the supply for
necessary physical memory chunks. Thus, it may not be possible
to map a virtual address range with the largest page size even if it
is mappable by that page size.

Besides our own analysis, Google recently reported that nearly
20% of CPU cycles across its data centers are attributed to serving
TLB misses, even after deploying 2MB large pages [35]. Further,
the advent of denser non-volatile memory (NVM) technologies
promises to significantly increase the physical memory size [27, 38].
The ability to efficiently address a large amount of memory is
essential to harness its full benefit.

While we find usefulness of 1GB beyond 2MB pages, the hard-
ware support alone is not enough. Applications cannot use a large
page size unless the system software maps its virtual address ranges
with it. Importantly, the ease at which an application can leverage
a given large page size determines its practical usefulness. For ex-
ample, if modifications to application code and/or reservation of
free physical memory are necessary for allocating larger page sizes,
then hardware resources devoted for that large page are likely to
remain underutilized.

Unfortunately, users willing to leverage 1GB page today need
to apriori reserve free physical memory and may need application
modifications or recompilation. Applications that incrementally
allocate memory during their execution, e.g., in-memory object
stores, are especially ill suited for such a static approach.

Towards this, our second contribution is to build Trident ∗ in
Linux to dynamically allocate all available page sizes in x86-64
processors to fully harness processor’s TLB resources, without ne-
cessitating apriori reservation of physical memory or application
modifications. A key challenge in dynamically allocating 1GB pages
is the hardship in ensuring availability of 1GB contiguous physi-
cal memory chunks when needed. As the free physical memory
gets naturally fragmented over time, finding 1GB chunks becomes
more difficult than 2MB chunks. Thus, the dynamic allocation of
large pages needs to periodically compact physical memory for
making free memory contiguous. However, compaction for 1GB
memory requires significantly more work than 2MB. Moreover, a
compaction attempt fails if it encounters even a single page frame
with unmovable contents, e.g., kernel objects like inodes, in a 1GB
region. In short, compaction at the granularity of 1GB pages needs
a new approach.

∗The name draws from the fact that Trident uses three page sizes.

Trident introduces a smart compaction technique. We observe
that the current approach of sequential scanning and moving con-
tents of occupied page frames is not scalable to 1GB. This approach
incurs a large amount of avoidable data movement. The smart com-
paction tracks the number of occupied bytes (i.e., the number of
mapped page frames) within each 1GB physical memory region.
Instead of scanning, smart compaction then frees a region with the
least number of occupied bytes, which significantly reduces data
movement. It also tracks unmovable contents, e.g., Linux’s own
data, within a 1GB region to avoid unnecessary data movement.

Even with smart compaction, 1GB memory chunks are not al-
ways immediately available. About a third of the attempts to allocate
1GB page fail due to the unavailability of contiguous physical mem-
ory. Unsurprisingly, 2MB chunks are more easily available. Trident
thus maps address ranges with 2MB pages if it fails to map with
1GB pages. These 2MB page mappings are later promoted to 1GB
pages, when suitable.

We then propose Tridentpv, an extension to Trident under vir-
tualization for copy-less 1GB page promotion and compaction in
the guest OS. The guest copies contents of guest physical pages to
create contiguity in guest physical address space for page promo-
tion and compaction. We observe that copying can be mimicked by
exchanging the mapping between the guest physical address (gPA)
and the host physical address (hPA) of the source and destination.
This copy-less technique makes the promotion of 2MB pages to a
1GB page significantly faster than the traditional copy-based ap-
proach. The guest OS and the hypervisor coordinate to alter the
desired gPA to hPA mappings via a hypercall for the purpose.

On a bare-metal system, Trident speeds up eightmemory-intensive
applications by 18%, over Linux’s THP, on average. Tridentpv further
improves performance under virtualization, by up to 10%.

In summary, we make the following contributions:

• We evaluate the usefulness of 1GB pages across various
applications, both without and with virtualization.

• We empirically demonstrate why it is important to deploy
all large page sizes, not only the largest one.

• We created Trident in Linux to dynamically allocate all page
sizes available on x86-64 processors to speed up applications
with large memory footprint.

• We then propose an optional extension to Trident called
Tridentpv that employs paravirtualization to enable copy-
less 1GB page promotion and compaction in the guest OS.

2 BACKGROUND
Applications with large memory footprints often spend significant
time in address translation [19, 35, 42]. Translation overhead is pri-
marily due to slow page table walks on TLB misses. Hits in the TLB
are fast, but a page table walk may need up to four memory accesses
to lookup the hierarchical page table. Newer processors require up
to five memory accesses due to deeper page table structures [25].
Large pages help reduce translation overhead in two ways. 1○ It re-
duces the frequency of TLB misses by increasing the TLB coverage
since a single entry for a large page maps a larger address range.
2○ It quickens individual walks by reducing the number of levels
in the page table that need to be accessed. For example, a walk for
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Table 1: Specification of the experimental system

Processor Intel Xeon Gold 6140 @2.3GHz
Skylake Family with 2 Sockets

Number of cores 18 cores (36 threads) per socket

L1-iTLB 4KB pages, 8-way, 128 entries
2MB pages, fully associative, 8 entries

L1-dTLB
4KB pages, 4-way, 64 entries
2MB pages, 4-way, 32 entries
1GB pages, fully associative, 4 entries

L2 TLB 4KB/2MB pages, 12-way, 1536 entries
1GB pages, 4-way, 16 entries

Cache 32K L1-d, 32K L1-i, 1MB L2, 24MB L3
Main Memory 384GB (192GB per socket)
OS / Hypervisor Ubuntu with Linux kernel version 4.17.3 / KVM

Table 2: Specifications of the benchmarks

Name Threads Memory Description

XSBench 36 117GB Monte Carlo particle transport algorithm
for nuclear reactors [55]

SVM 36 67.9GB Support Vector Machine, kdd2012 dataset [7]

Graph500 36 63.5GB Breadth-first-search and single-source-shortest-
path over undirected graphs [5]

CC/BC/PR 36 72GB Graph algorithms from GAPBS [20]

CG.D 36 50GB Congruent Gradient algorithm from NAS
Parallel Benchmarks [15]

Btree 1 10.5GB Random lookups in a B+tree
GUPS 1 32GB Irregular, memory-intensive microbenchmark [2]
Redis 1 43.6GB An in-memory key-value store [24]
Memcached 36 79GB An in-memory key-value caching store [29]
Canneal 1 32GB Simulated cache-aware annealing from PARSEC [23]

a 1GB page requires up to 2 memory accesses, compared to 3 for a
2MB page and 4 for a 4KB page, in typical x86 processors.
Large pages under virtualization: Address translation involves
two layers under virtualization through nested page tables. First, a
guest virtual address (gVA) is mapped to a guest physical address
(gPA) through the guest page tables (gPT) managed by the guest
OS running on a virtual machine. gPA is then translated to host
physical address (hPA) through host page tables (hPT) maintained
by the hypervisor. Two layers of indirection increase the number of
memory accesses required for a page walk. For example, with four-
level page tables, a TLB miss requires up to 24 memory accesses
for 4KB pages. Use of 2MB and 1GB pages at both layers reduce the
number of accesses to 15 and 8, respectively.
OS support for large page allocation: OSes typically provide
three mechanisms to allocate large pages. In the pre-allocation
based mechanism, users are required to reserve physical memory
for large pages and a helper library (e.g., libHugetlbfs) maps specific
segments of an application’s memory with large pages from the
reserved memory. Unfortunately, this static approach constrains
the usability of large pages. The second approach needs explicit
system calls to map certain virtual address ranges with large pages.
This requires application modification (e.g.,madvise syscall or extra
flags in mmap). In the third approach, the OS allocates large pages
without the user or programmer involvement. Linux’s support for
Transparent Huge Pages (THP) is an example of this approach.

Internally, THP employs two mechanisms. On a page fault, it
checks if the faulting address falls within a virtual address range
that is at least as big as and aligned with the large page size. If yes,
and a free contiguous physical memory chunk is available, THP
maps the address with a large page. For address regions that were

not immediately mappable with large pages during page faults,
THP employs a background thread khugepaged to locate virtual ad-
dress ranges mapped with 4KB pages and promote (remap) them to
large pages, when possible. To ensure enough supply of contiguous
physical memory, THP also compacts physical memory. Compaction
moves contents of occupied pages to one end of the physical mem-
ory for creating contiguous free memory regions on the other
end. Unfortunately, THP currently supports only 2MB large pages.
Hosted hypervisors, such as KVM, use THP for allocating 2MB large
pages in the host.

3 METHODOLOGY
Table 1 details the configuration of our experimental platform. We
evaluate 12 multi-GB workloads (Table 2) across various domains
such as machine-learning, graph algorithms, key-value stores, HPC,
and micro-benchmarks (GUPS and Btree). We use Linux’s perf
tool [8] to collect relevant microarchitectural events. Specifically,
we measure the number of cycles spent on page walks via hard-
ware performance counters DTLB_LOAD_MISSES.WALK_ACTIVE and
DTLB_STORE_MISSES.WALK_ACTIVE [6].

To study performance under different states of the system, we
used an opensource tool to fragment the physical memory [57].
Fragmentation is measured using Free Memory Fragmentation
Index (FMFI [36]) that lies between 0 (no fragmentation) and 1
(full fragmentation). Following the methodology used in [41], we
fragmentmemory by first caching a large file inOS’s page-cache and
then reading it at random offsets for 10 minutes via 24 user threads.
Caching file increases FMFI to 0.95 and random accesses ensure that
page reclamation frees memory pages in non-contiguous chunks.

4 HOW USEFUL ARE 1GB LARGE PAGES?
Hardware support for 1GB pages is not free, and the software
running on x86 processors pays the price, irrespective of its use of
1GB pages. For example, modern Intel processors have 4-entry L1
TLB and 16-entry L2 TLB dedicated to 1GB pages. Those four L1
entries for 1GB pages are accessed on every load and store since
the page size is not known apriori. Due to frequent accesses, L1
TLBs can contribute to a thermal hotspot in processors [50] and
can account for 6% of a processor’s total power [53]. The presence
of dedicated TLBs for 1GB pages adds to the cost. The continued
increase in the number of TLB entries for 1GB pages would worsen
it. It is, thus, natural to wonder if applications can benefit from 1GB
pages. We analyze various applications under different execution
scenarios to understand the usefulness of 1GB pages.

4.1 1GB pages in native execution
Figure 1a shows the normalized fraction of execution cycles spent
on page walks for each application while using different page sizes.
The four bars for each application represent walk cycles with 1○
4KB pages, 2○ dynamically allocated 2MB pages via THP, 3○ stati-
cally pre-allocated 2MB pages via libHugetlbfs, and, 4○ statically
pre-allocated 1GB pages via libHugetlbfs. The fourth bar approxi-
mates the performance achievable if the 1GB pages are deployed
but not 2MB. Application-transparent dynamic allocation of 1GB
pages (i.e., THP like) is not supported in Linux today.
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Figure 1: Analysis of different page sizes under native exe-
cution. Applications in shade benefit from 1GB pages.

Note that THP often performs as good as 2MB-libHugetlbfs. For
Redis, THP reduces more walk cycles than libHugetlbfs. This is
because Redis’s stack memory is TLB sensitive, which cannot be
mapped using libHugetlbfs. Importantly, THP does not require pre-
allocation of physical memory, nor does it need users to statically
decide which program segment(s) to be mapped with large pages.

Reduction in page walk cycles does not always lead to propor-
tional performance gain on out-of-order cores. Rather, the speed up
depends upon what portions of walk cycles are on the critical path
of execution. Figure 1b shows the normalized performance. For all
workloads, except Redis andMemcached, performance is calculated
as the inverse of the execution time. For Redis andMemcached, we
report performance in terms of throughput.

We observe non-negligible performance improvement (at least
3%) for eight applications (shaded left part of the figure) with use
of 1GB pages over 2MB pages. For example, Canneal speeds up
by 30% over THP. These eight applications’ performance improves
by 12.5%, on average, when 1GB pages are used via libHugetlbfs,
relative to THP using 2MB pages. Rest of the applications witness
benefits of using 2MB pages over 4KB, but barely gain any further
with 1GB pages. This is not surprising; the walk cycles were already
low with 2MB pages, and an out-of-order CPU could hide the rest.
Henceforth, we thus focus on the first eight (shaded) applications.

We also observe that with THP, applications perform within 0.5%
of that with libHugetlbfs using 2MB pages, even though it does
not requires memory pre-allocation or user hints. This emphasizes
the importance of THP for the wide deployment of 2MB pages;
something that is lacking for 1GB pages.

4.2 1GB pages under virtualized execution
Two levels of translations under virtualization increase overheads.
Each level may use a different page size. Thus, nine combinations of
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Figure 2: Analysis of different page sizes under virtualiza-
tion. Applications in shade benefit from 1GB pages.

page sizes are possible. While we explored all, we discuss only 4KB-
4KB, 2MB-2MB, and 1GB-1GB combinations where the first and
second terms denote the page size used in the guest and in the host,
respectively. We chose these configurations as they demonstrate
the best performance achievable with a given page size.

Figure 2a shows the normalized fraction of page walk cycles
under three different page size combinations. We notice significant
reductions in walk cycles with 2MB and 1GB pages. For example,
the fraction of walk cycles reduced by 80% for XSBench. Even a
couple of 1GB page agnostic applications (e.g., PR, CC) experience
a large reduction in walk cycles. Figure 2b shows the performance
under virtualization. We observe that 1GB pages provide a bit more
benefit here. The eight 1GB page sensitive applications speed up
by 17.6% over 2MB pages, on average. The application BC, which
did not benefit from 1GB pages under native execution, becomes
slightly sensitive to 1GB pages under virtualization.

4.3 Importance of using all large page sizes
In the analysis so far, only one of the large page sizes was deployed
as is the norm in today’s software. However, we find that using all
large page sizes together, can bring benefits that are not achievable
using any one of them.

A virtual address range is mappable by a large page only if: 1○
it is at least as long as that large page, and 2○ the starting address
is aligned at the boundary of that page size. All 1GB-mappable
address ranges are, thus, mappable by 2MB pages but not vice-
versa. When an application allocates, de-allocates, and re-allocates
memory (e.g., Graph500), the virtual address space gets fragmented.
Consequently, an application’s entire address space may not be
mappable by the largest page size.

We empirically find that often GBs of an application’s virtual
memory is 2MB-mappable but not 1GB-mappable. This depends on
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Figure 4: Relative TLB-miss frequency.

the application’s memory allocation strategy – whether the appli-
cation pre-allocates memory in large chunks (low virtual memory
fragmentation) or incrementally allocate/de-allocate memory over
time (high fragmentation).

We measure the size of 1GB-mappable and 2MB-mappable ad-
dress regions with a kernel module that periodically scans the
virtual address space of an application. Figure 3 shows the size of
allocated virtual memory that is mappable with 2MB and 1GB over
time for two representative applications – Graph500 and SVM. The
x-axis represents the post-initialization execution timeline, and the
y-axis is the size of allocated virtual memory in GB. The two lines in
each graph show the amount of 1GB and 2MB-mappable memory.
We observe that several GBs of memory is mappable by 2MB pages
but not by 1GB (the gap between the two lines). If only 1GB pages
are used, these memory regions have to be mapped with 4KB pages
while wasting 2MB TLB resources.

We then analyzed the importance of mapping the regions that
are un-mappable by 1GB pages, with 2MB. We wrote another mod-
ule to measure the relative (sampled) TLB miss frequencies to the
addresses that are mappable by 2MB but not by 1GB and those by
both. We periodically un-set the access bits in PTEs (4KB) and then
track which ones get set again by the hardware, signifying a TLB
miss. Figure 4 presents the measurement. The x-axis shows the allo-
cated virtual address regions, and the y-axis shows the relative TLB
miss frequencies to pages in those regions. We use different colors
for addresses that are 2MB-mappable but 1GB-unmappable, and
those that are 1GB-mappable.We observe that the 1GB-unmappable
regions witness frequent TLB misses. Particularly for Graph500,
the spike in miss frequency on a relatively small 1GB-unmappable
region (about 800MB) stands out (circled). Therefore, it is important
to map these 1GB un-mappable address ranges with 2MB pages to
reduce TLB misses.

Furthermore, it may not always be possible tomap a 1GB-mappable
address range with a 1GB page due to unavailability of 1GB contigu-
ous physical memory. However, 2MB contiguous physical memory
regions are more easily available. In short, it is important to utilize
all available page sizes.

We also studied the usage of 1GB pages to Linux kernel itself.
The kernel direct maps entire physical memory with the largest
page size (here, 1GB). Using OS intensive workloads (e.g., apache
web server and filebench [4, 54]), we found that 1GB pages improve
kernel’s performance by 2-3% over 2MB pages.
Summary of observations: 1○ A set of niche but important big-
memory applications speeds up with 1GB pages over 2MB pages.
In contrast, 2MB pages universally benefit memory-intensive appli-
cations. 2○ Application-transparent allocation of 2MB pages brings
benefits of 2MB pages without user intervention – a capability that
is lacking for 1GB pages. 3○ It is important to utilize all large page
sizes not only the largest.
Why the lack of 1GB software enablement? It is natural to
wonder why there has not been an effort for wider enablement of
1GB pages.We hypothesize at least three reasons behind it. 1○There
was no significant quantification of the usefulness of 1GB pages,
over and above 2MB pages. The above analysis tries to address
that gap. 2○ Early processor designs had a limited number of TLB
entries for 1GB pages (e.g., four in Sandy Bridge). Therefore, there
was apprehension about the possible thrashing of TLB if 1GB pages
were used by applications with poor locality [18, 44]. However,
with newer processors accommodating 1GB pages in L2 TLB, we
find no evidence of such thrashing in real-world applications. 3○
Finally, with the advent of denser NVM technologies and five-level
page tables, the need for low-overhead address translation has never
been greater. Nevertheless, as the rest of the paper will demonstrate,
managing 1GB pages in software needs special care, and thus, the
bar for software enablement is non-negligible. However, given the
necessity, it is imperative to eschew the software complexity for
wider adoption of 1GB pages.

5 TRIDENT: DYNAMIC ALLOCATION OF ALL
PAGE SIZES

Wedesign and implement Trident in Linux for application-transparent
dynamic allocation of all large page sizes on x86 processors without
needing apriori reservation of physical memory. Trident minimizes
TLB misses by mapping most of an application’s address space with
1GB pages, failing which 2MB, and finally, 4KB pages are used.
Challenges: While the dynamic allocation of 2MB pages is not
new, that for 1GB pages gives rise to new challenges. First, Trident
needs to ensure a steady supply of free contiguous 1GB physical
memory chunks even in the presence of fragmentation. We found
that Linux’s sequential scanning based memory compaction for
creating 2MB chunks is not scalable to 1GB as it incurs excessive
data copying.

Linux tracks only up to 4MB free physical memory chunks. How-
ever, the dynamic allocation of 1GB pages would require maintain-
ing free memory up to 1GB granularity. Allocating 1GB pages
during page faults are much slower than that for 2MB or 4KB pages
due to the latency of zeroing entire 1GB memory. Low-latency 1GB
page fault is necessary for an aggressive deployment of 1GB pages.
Finally, Trident should map a virtual address range with the largest
large page size deployable at any given time. It should then peri-
odically look for opportunities to promote address ranges mapped
with a smaller large page to a larger one wherever possible.
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5.1 Design and implementation
At a high-level, Trident modifies four major parts of Linux. 1○ It
enhances Linux to track up to 1GB free physical memory chunks.
2○ It updates the page fault handler to allocate a 1GB page on
a fault when possible and fall back to smaller pages if needed.
3○ Trident extends THP’s khugepaged daemon thread to promote
virtual address ranges to 1GB pages when possible. 4○ Trident
employs a novel smart compaction technique for a steady supply
of 1GB physical memory chunks at low overhead.

5.1.1 Managing 1GB physical memory chunks. Linux’s buddy allo-
cator keeps an array of free lists of physical memory chunks of sizes
4KB up to 4MB in the power of 2 [9]. When free memory is needed,
the buddy allocator provides a memory chunk from one of its lists
based on the request size. Freed physical memory is returned to
the buddy, and coalesced with neighboring free memory chunks
to create larger ones. Unfortunately, the buddy only keeps track of
regions up to 4MB. We thus extended it to include separate lists for
tracking up to 1GB memory chunks.

5.1.2 Allocating large pages during page fault. Like THP, Trident
allocates large pages either 1○ during a page fault (e.g., when a
process accesses a virtual address for the first time) or 2○ later
during attempts to promote an address range to a large page. We
here detail the former. If the faulting virtual address falls in a 1GB-
mappable address range, then Trident attempts to map it with a
1GB page. If it fails, Trident attempts to map the address with a
2MB page, and on failure, with 4KB. If the faulting address falls in
a region that is 2MB-mappable but not 1GB-mappable Trident tries
to map it with 2MB.
Asynchronous zero-fill: A 1GB page fault takes around 400milli-
seconds; compare that to 850micro-seconds for 2MB. The additional
latency is due to zero-filling of 1GB memory instead of 2MB†. We
instead employ asynchronous zero-fill to speed up 1GB faults. A
kernel thread periodically zero-fills free 1GB regions and Trident
allocates a zero-filled region, if available. This reduces the aver-
age 1GB fault latency from 400 milli-seconds to 2.7 milli-seconds.
While prior works [1, 42] explored asynchronous zero-fill for 2MB
pages, we find it to be a necessity for 1GB pages in latency-critical
workloads. For example, the boot time of a 70GB virtual machine
dropped from 25 seconds to 13 seconds with asynchronous zero-fill.

Table 3 shows the portion of applications’ memory footprints
mapped by 1GB and 2MB pages under Trident’s various allocation
mechanisms that we will discuss in this section. The first data
column shows applications’ memory footprint. The first set of sub-
columns capture the behavior with un-fragmented physical memory
while the next set represents that under fragmentation. Physical
memory is said to be fragmented if the free memory is scattered
in small holes i.e., non-contiguous. Typically, physical memory is
un-fragmented only if the system is freshly booted and/or there is
little memory usage. But, the memory gets quickly fragmented as
applications/OS allocate and de-allocate memory.

The sub-columns under un-fragmented shows that the page fault
handler alone (Page-fault only) can map a large portion of applica-
tion’s memory with 1GB pages for three out of eight applications

†Zero-fill ensures application’s leftover data does not leak out.
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Figure 5: Trident’s large-page promotion algorithm.

(XSBench, GUPS, Graph500). If an application pre-allocates mem-
ory in large chunks, then the fault handler would often find the
faulting address to be in a 1GB-mappable region, and use 1GB pages.
However, Redis andMemcached incrementally allocate memory
while inserting key-value pairs. Thus, the fault handler could map a
small portion of its memory with 1GB pages. SVM, Btree, Canneal
also, do not pre-allocate their entire memory needs.

The behavior is different if physical memory is fragmented. Even
if the fault handler finds a 1GB-mappable address range, it is un-
likely to find a free 1GB physical memory chunk. Thus, it often falls
back to smaller pages. This is evident from data in sub-columns for
“Page-fault only” under fragmentation (Table 3) as only a few 1GB
pages are allocated.

5.1.3 Large page promotion. If an application does not pre-allocate
memory or when physical memory is fragmented, it becomes impor-
tant to later re-map (promote) address ranges to larger pages, when
possible. Trident extends THP’s khugepaged thread to promote to
both 1GB and 2MB pages.

Figure 5 shows a flowchart of Trident’s page promotion algo-
rithm (changes to THP are shaded). khugepaged first selects a can-
didate process for page promotion and sequentially scans its virtual
address space. During scanning, Trident looks for 1GB-mappable
virtual address ranges that are mapped with smaller pages. Sub-
sequently, it looks for 2MB-mappable regions mapped with 4KB
pages. If a candidate 1GB-mappable range is found, khugepaged
requests the buddy allocator for a free 1GB physical memory chunk.
If a 1GB chunk is unavailable, khugepaged requests compaction
of the physical memory to create one. Trident extends THP’s com-
paction functionality to create a 1GB physical memory chunk (will
be detailed shortly). If the compaction fails, it attempts to map it
with 2MB pages (if not already mapped with 2MB). Trident’s policy
of preferring 1GB pages but falling back to 2MB pages makes the
most out of TLB resources.

Table 3’s sub-columns under “normal compaction” shows the
number of 1GB and 2MB pages allocatedwhen the above-mentioned
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Table 3: Comparison of 1GB and 2MB pages allocated via different mechanisms employed in Trident
Memory
footprint
(in GB)

Un-fragmented (all data in GB) Fragmented (all data in GB)
Page-fault
only

Promotion
Normal compaction

Promotion
Smart compaction

Page-fault
only

Promotion
Normal compaction

Promotion
Smart compaction

1GB 2MB 1GB 2MB 1GB 2MB 1GB 2MB 1GB 2MB 1GB 2MB
XSBench 117 114 2.94 116 1.2 116 1.2 6 5.3 79 38.1 80 37.1
GUPS 32 31 1 31 1 31 1 9 2.5 31 1 31 1
SVM 68.5 54 14.3 65 3.5 65 3.5 6 5 53 12.2 54 9.9
Redis 44 0 0.5 39 3.4 39 3.4 0 0 25 10.3 28 14.3
Btree 25 0 16.7 16 5.8 16 5.8 0 11.7 8 12.73 12 8.91
Graph500 63.5 59 4.01 60 3.35 60 3.35 5 5.8 37 24.2 38 23.6
Memcached 137 16 121 121 16 121 16 9 60 12 55 16 60
Canneal 32 8 1 30 2 30 2 6 1 6 21 8 22
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Figure 6: Comparison between Linux’s (traditional) com-
paction of physical memory and smart compaction.

promotion policy is applied alongwith the page fault handler (under
both un-fragmented and fragmented memory). For example, in the
un-fragmented case, khugepaged is able to promote about 39GB
of memory using 1GB pages for Redis, when the fault handler
alone failed to allocate even a single 1GB page. SVM, Canneal also
enjoyed many more 1GB pages due to page promotion.

When the physical memory is fragmented, page promotion helps
applications get some 1GB pages, although slightly smaller in num-
ber compared to the un-fragmented case. For example, 1GB pages
allocated to SVM drop from 65 to 53. This is expected; free 1GB
memory chunks are scarce even after compaction.

Overheads of compaction for 1GB, however, can negate benefits
of 1GB pages. Creating even a single 1GB chunk often requires
significant memory copying. Copying data creates contention in
memory controllers and pollutes caches. It also requires scanning
large portions of physical memory. The applications threads could
get a smaller fraction of CPU cycles as they can contend with kernel
threads performing compaction. In short, it is necessary to reduce
the cost of compaction for 1GB pages to harness its benefits.
Smart compaction: We, thus, propose a new compaction tech-
nique, called smart compaction, to reduce the cost of 1GB com-
paction while creating enough 1GB physical memory chunks. The
primary goal is to reduce the number of bytes copied. This directly
reduces the cost of compaction.

Figure 6 illustrates the difference between normal compaction
as employed in Linux today and the smart compaction employed in
Trident. Figure 6(a) shows the working of the normal compaction.
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Figure 7: Reduction in bytes copied by smart compaction.

On a compaction request, the khugepaged thread starts sequentially
scanning physical memory from where it left last time it attempted
to compact (remembered in source pointer). Scanning starts from
the low to high physical addresses. As it finds an occupied physical
page frame (4KB) it copies its contents to a free page frame found
by scanning in the opposite direction from the target pointer. This
continues until a free memory chunk of the desired size (e.g., 2MB)
is created, or the entire memory is scanned without success.

We observe that this strategy is agnostic to how full or empty a
physical memory region is. Consequently, this leads to redundant
copying. Let us consider the example in Figure 6(a). The 1GB region
starting at address S is mostly occupied and has only 256 free 4KB
page frames. Thus, to free that 1GB region, Linux would require
copying 999MB of data (512 × 512 - 256 4KB pages). Instead, if
a mostly free region was freed, then the number of bytes copied
would be much smaller. While such sub-optimal compaction could
be fine for 2MB, it is not so for 1GB, as data copying increases with
the page size.

Moreover, if the scan encounters a page frame with unmovable
contents (e.g., inodes, DMA buffers), then all copying so far for a
region, is wasted [42]. A free chunk cannot have any unmovable
contents. The probability of encountering unmovable contents is
much more for a 1GB region.

To address these shortcomings, we propose smart compaction.
The key idea is to divide the physical memory into 1GB regions
and select (not scan for) a region with the least number of occupied
page frames for freeing (i.e., the source of copying). Similarly, a
region with the most number of occupied page frames is preferred
as the target for copying. This strategy minimizes data copy. We
also track if a given 1GB region contains any unmovable contents.
We avoid selecting regions with unmovable content for freeing
(i.e, source). This eliminates unnecessary data copying in futile
compaction attempts.

To implement the above idea, we first introduced two counters
for each 1GB physical memory regions. One counter tracks the
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Figure 8: Traditional copy-based versus Tridentpv’s copy-less page promotion.

number of free page frames, and the other one tracks the number
of unmovable pages within a region. Whenever a page is returned
to the buddy allocator (i.e., freed), we increment the counter for
free frames of the encompassing 1GB region. Further, we decre-
ment the counter for unmovable pages if the freed page frame(s)
contained unmovable data. Whenever a page frame(s) is allocated
from the buddy allocator the free counter for the encompassing
region is decremented. We increment its unmovable page counter
if the allocated page frame(s) would contain unmovable data (e.g.,
requested for allocating kernel data structures). Note that a 1GB
region can also have a 2MB page allocated within it. We treat it as
512 base pages for ease of keeping statistics.

As depicted in Figure 6(b) the smart compaction starts by se-
lecting a 1GB region with largest number of free page frames and
without any unmovable pages as the source (S). It then selects a
target region (T) to move the contents of occupied page frames in
the source. The region with the least number of free page frames is
selected as the target. It can happen that T may not have enough
free frames to accommodate all of S’s page frames. If so, a region
with next least number of free frames is selected to accommodate
the remaining pages (and, so on).

The sub-columns for smart compaction in Table 3 shows the
number of 1GB and 2MB pages that were allocated under un-
fragmented and fragmented physical memory. The number of 1GB
pages allocated to each application is the same as that under nor-
mal compaction in the un-fragmented case. Under fragmentation,
smart compaction typically provides even more 1GB pages. This is
because the smart compaction always selects a 1GB region that is
easiest to free, and thus, compaction succeeds more often.

Figure 7 shows the percentage reduction in the number of bytes
copied with smart compaction over normal compaction. This mea-
surement is performed when physical memory is fragmented as
otherwise compaction is unnecessary. We observe that smart com-
paction often reduces the number of bytes copied by up to 85%. This
demonstrates that smart compaction performs less work to create
the same or more number of 1GB chunks. Only for XSBench, the
improvement is less. XSBench uses a large fraction of total mem-
ory in the system and thus, even the ideal compaction algorithm
would not be able to avoid data copy under fragmentation. All com-
paction algorithm will behave the same if the physical memory is
fragmented, and an application needs all memory.

6 TRIDENTPV: PARAVIRTUALIZING TRIDENT
Under virtualization, Trident can be deployed both in the guest OS
and in the hypervisor to bring benefits of dynamic allocation of

all page sizes, including 1GB pages, to both the levels of address
translation. We observe that it is possible to further optimize certain
guest OS operations with paravirtualization.

The guest OS copies contents of memory pages to 1○ to compact
gPAs, and 2○ to promote address mapping between gVA and gPA
to larger pages. While the cost of copying 4KB pages is not high,
copying 2MB pages in order to compact or promote them to a 1GB
page is slow. We observe that the effect of copying guest physical
pages can be mimicked by simply altering the mapping between
corresponding gPAs and hPAs. This copy-less approach quickens
both compaction and 1GB page promotion in the guest but needs
paravirtualization. We call this extension Tridentpv.

For brevity, we explain the idea behind Tridentpv with the help
of large page promotion only (Figure 8). Let us assume that two
contiguous guest virtual pages, v1 and v2, are currently mapped
to two non-contiguous smaller pages g1 and g3 in guest physical
memory (Figure 8(b)). For simplicity, we assume that a large page is
twice the size of a small page. To remap gVA encompassing v1 and
v2 with a large page, the guest OS first copies their content to two
contiguous guest physical pages – g7 and g8. It then updates the
mapping between gVA and gPA. This traditional way of promoting
large pages by copying contents is shown in Figure 8(a).

Figure 8(c) shows Tridentpv’s approach for page promotion with-
out actual copy. Instead of copying g1 to g7, the hypervisor ex-
changes the gPA to hPAmappings for g1 and g7. After the exchange,
g1 maps to h6 and g7 maps to h2. Since, h2 contains the data origi-
nally mapped by g1, this is same as copying g1 to g7. Similarly, the
hypervisor exchanges the gPA to hPA mappings for g3 and g8 to
create the effect of copying g3 to g8. Later, gVA encompassing v1
and v2 is mapped by the guest with a large page to contiguous gPA
encompassing g7 and g8.

The guest OS and the hypervisor need to coordinate for copy-less
page promotion and, thus, the need for paravirtualization. Specifi-
cally, the guest OS supplies the hypervisor with a list of source and
target guest physical pages via a hypercall. The hypervisor then
updates the mapping from gPA to hPA in the manner explained
above to create the effect of copying guest physical pages. Besides
promotion, Tridentpv uses the same hypercall for compacting guest
physical memory to create 1GB pages in the guest.

While promising, the cost of hypercall (≈ 300ns) to switch be-
tween guest and the hypervisors can outweigh the benefits of copy-
less promotion. We thus batch requests for multiple page mapping
exchanges in a single hypercall. Since a 1GB page is promoted via
512 2MB pages, batch size is known apriori and statically config-
ured. We pre-define two 4KB pages for passing the list of page
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Figure 9: Performance under no fragmentation.

addresses to exchange between the guest and the hypervisor. One
page contains source gPAs (here, g1 and g3) and the other contains
the target gPAs (here, g7 and g8). In a single hypercall it is thus
possible to request exchange for all 512 page addresses. Thus, a
single hypercall is sufficient to promote entire 1GB region in gVA
mapped with 2MB pages. The hypercall returns after switching all
the requested pages or logs any failure in the same shared page
used for passing list of pages. On failure, the guest falls back to
individually copy contents of pages.

We empirically found that promoting 2MB pages to a 1GB page
in the guest takes ≈ 600ms in the copy-based technique. Without
batching, Tridentpv can promote the same in less than 30ms while
batching reduces the time to ≈ 500µs. Note that Tridentpv’s copy-
less promotion is less useful for promoting 4KB pages to 2MB since
the cost of copying 4KB pages is not significant. Hence, we employ
copy-less promotion and compaction for 1GB pages only.

7 EVALUATION
Our evaluation answers the following questions. 1○ Can Trident im-
prove performance of memory-intensive applications over Linux’s
default THP and over a recent workHawkEye [42]? 2○What are the
sources of performance improvement for Trident? 3○ How does Tri-
dent perform under virtualization? 4○ Finally, how does Tridentpv
impact page promotion/compaction the guest OS?
Performance under un-fragmented physical memory: Fig-
ure 9a shows the normalized performance for three configurations
(higher is better) – 1○ Linux’s THP (baseline), 2○ HawkEye, and
3○ Trident. HawkEye is a recent related work that improved upon
THP and other previous works (e.g., [36]). It does so by efficiently
allocating 2MB pages to address regions that experience most TLB
misses [42]. This allows us to compare against the academic state-
of-the-art proposal. For each application, there are three bars in the
cluster corresponding to three configurations. The height of each
bar is normalized to the performance of the application under THP
(Linux’s default configuration). Measurements in Figure 9a were
performed with un-fragmented physical memory.
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Figure 10: Performance under fragmentation.

First, we observe that Trident improves performance over Linux’s
THP by 14%, on average and up to 47% for GUPS. Applications like
XSBench, SVM, Btree and Canneal witnessed 4.1%, 11.2%, 15% and
30% performance improvement, respectively. Even if we exclude
the micro-benchmark GUPS, performance improvement is 12%, on
average, over THP. Next, we observe that Trident also outperforms
HawkEye by 14%, on average. This is expected due to the similarities
between huge page management in Linux andHawkEye. Both these
systems employ 2MB pages aggressively in the page-fault handler
when physical memory is un-fragmented.
Performance under fragmented physical memory: Arguably,
performance analysis under fragmented physical memory paints a
more realistic execution scenario. Figure 10a shows the normalized
performance under fragmented physical memory for the same three
configurations as before. Trident speeds up applications even more
under fragmentation. This is unsurprising since Trident’s smart
compaction adds a further edge here. On average, it improves per-
formance by 18% over THP and GUPS quickens by over 50%. Even
excluding GUPS, the improvement is 13% over THP.

Trident also outperforms HawkEye in all cases. In some cases
under fragmentation, HawkEye performed worse than THP (e.g.,
Redis, Memcached). This might happen for large memory applica-
tions due to: 1○ CPU overhead of kbinmanager kernel thread that
estimates relative TLB miss rates in HawkEye and 2○ potential lock
contention between kbinmanager and khugepaged kernel threads
and the page-fault handler.

We also measured how often the fragmented physical memory
prevents Trident from mapping an address range with a 1GB page.
Table 4 shows the percentage of attempts to allocate a 1GB page that
fails due to fragmentation. The “NA"s under page fault for Redis
and Btree signify that fault handler never attempts to allocate 1GB
pages for them due to lack of 1GB-mappable virtual address ranges
during faults. We observe that 71-94% of 1GB page allocations fail
due to lack of contiguous physical memory. Even during promotion,
1GB allocations fail often. This reinforces the need to utilize all
large page sizes. Even if the largest page size cannot be used, a
smaller large page (2MB) could be deployed.
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Table 4: Percentage 1GB memory allocation failures
Page fault Promotion Page fault Promotion

XSBench 94% 32% GUPS 71% 0%
SVM 88% 19% Redis NA 36%
Graph500 91% 38% Btree% NA 25%
Memcached 43% 81% Canneal 12% 92%

Table 5: Tail latency (ms) for Redis and Memcached
Redis Memcached

4KB THP Trident 4KB THP Trident
No-fragmentation 47.3 50.3 46.6 1.53 1.52 1.53
Fragmentation 53.3 53.3 52 1.55 1.55 1.54

Impact on page walk cycles: Figure 9b and Figure 10b show the
normalized fraction of walk cycles for THP, HawkEye, and Trident
under un-fragmented and fragmented physical memory, respec-
tively. The reductions in the page walk cycles with Trident over THP
are significant – 38-85% and 40-97%, under no fragmentation and
fragmentation, respectively. Across all configurations, the relative
speedups largely correspond to relative reductions in walk cycles.
Impact on tail latency: Tail latency is an important metric for
transnational interactive applications (e.g., Redis,Memcached) that
should abide by strict SLAs [36]. Table 5 reports 99 percentile la-
tency of Redis and Memcached under different configurations.
Trident does not hurt tail latency relative to both 4KB and THP even
though it employs 1GB pages dynamically. Trident reduced TLB
misses in the critical path and ensured compaction, promotion and
zeroing of 1GB pages happen in background to avoid affecting the
tail latency.
Evaluating Trident’s design components: Two of the key as-
pects of Trident’s design philosophy are 1○ the use of all three
page sizes, including 1GB pages, and 2○ smart compaction. It is nat-
ural to wonder how important are they in Trident’s performance?

Figure 11 teases out the impact of these two factors in Trident’s
performance, with and without fragmentation (subfigures). Specifi-
cally, we introduce two new configurations. Trident-1Gonly denotes
the configuration where Trident is disallowed to use 2MB pages.
The difference between Trident-1Gonly and Trident highlights the
importance of leveraging all large page sizes. Trident-NC denotes
the configuration where Trident is allowed to use all three page
sizes but barred from employing the smart compaction. Instead, it
uses normal compaction available in Linux. The difference between
Trident-NC and Trident shows the direct performance implications
of smart compaction, beside reducing data movement. Smart com-
paction enables Trident to compact fragmented physical memory
faster and thus, applications can get 1GB pages sooner in their
execution, aiding performance.

First, we focus on the performance when the memory is un-
fragmented (e.g., a freshly booted system) in Figure 11a. We observe
that there is a significant performance gap between Trident-1Gonly
and Trident, justifying the need for using all three page sizes. Tri-
dent-1Gonly loses performance even relative to THP for several
applications (e.g., Graph500, SVM). In hindsight, this is expected.
Our analysis in § 4.3 revealed that these applications have sig-
nificant portions of their virtual memory that is 2MB-mappable
but not 1GB-mappable. Further, these portions also witness a rel-
atively larger number of TLB misses. Trident-1Gonly is forced to
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Figure 11: Analysis of different components of Trident.

map these 1GB-unmappable regions with 4KB pages and thus ex-
periences higher translation overheads compared to Trident that
could deploy 2MB pages. In the process, Trident-1Gonly’s benefits
from using 1GB pages are more than negated by the overheads of
mapping frequently accessed memory with 4KB pages.

Next, we observe no difference in performance between Tri-
dent-NC and Trident, i.e., no impact of smart compaction when
the memory is un-fragmented (Figure 11a). This is expected since
compaction is not required when the memory is un-fragmented
(contiguous). Figure 11b shows the behavior when the physical
memory is fragmented. Here, we see significant performance im-
provement with smart compaction for several applications. For
example, smart compaction alone speeds up XSBench by 6%. Simi-
larly, smart compaction is instrumental in improving performances
of SVM, Btree, Graph500,Memcached, and Canneal by 2-5%. Only
GUPS and Redis show no significant performance uplift with smart
compaction. In short, the use of all large page sizes and smart
compaction both play major roles in Trident’s performance.
Comparison with static allocation: Since Trident is a dynamic
page allocation technique, we compared it against alternative dy-
namic approaches such as THP, HawkEye. However, one may won-
der how Trident compares against static technique of allocating
1GB pages via 1GB-Hugetlbfs (§ 4.1).

Unfortunately, 1GB-Hugetlbfs needs apriori reservation of con-
tiguous physical memory for 1GB pages. Consequently, it fails when
the memory is fragmented, as it often happens in real execution
scenarios. Thus, 1GB-Hugetlbfs can be compared only when the
physical memory is un-fragmented as in a freshly booted system
(performance reported in Figure 1b). Here, also, Trident performs
3% better than 1GB-Hugetlbfs, on average, even though Trident
does not require user intervention, recompilation or apriori reser-
vation of the physical memory. This was possible since Trident
could even map the stack portions using large pages, unlike 1GB-
Hugetlbfs, and applications such as GUPS and Redis are sensitive
to TLB misses on the stack region. Only in one application Btree,
1GB-Hugetlbfs performs better than Trident. This is because Btree
allocates virtual memory incrementally over time. Thus, 1GB pages
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Figure 12: Performance under virtualization.
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Figure 13: Tridentpv’s performance under fragmented gPA.

are allocated only during page promotion by Trident and not during
page faults upon first access. In contrast, 1GB-Hugetlbfs uses 1GB
pages irrespective of virtual memory allocation size at the cost of
bloating memory footprint.
Performance under virtualization: We measured the perfor-
mance of applications running inside a virtual machine with Tri-
dent deployed both at the guest OS and at the hypervisor (KVM).
We do not fragment memory. For comparison, we do the same with
HawkEye too. Figure 12 shows the speedups, normalized to THP
deployed in the guest OS and KVM. Under virtualization, Trident
improves performance by 16% on average, over THP and by 15%
over HawkEye. Canneal saw biggest improvement (50%), but other
applications also benefited significantly. For example, SVM and
Graph500 witnessed 6% improvement each.
Performance with Tridentpv: When the gPA is fragmented, the
guest OSmust compact and promote pages using THP’s khugepaged
thread. However, a significant CPU usage in the guest OS could
mean wasted vCPU time (cost) for a tenant in the cloud. In fact,
Netflix reported how their deployments on Amazon EC2 can get
adversely effected by high CPU utilization due to THP’s threads [33].
We, therefore, evaluate Tridentpv with fragmented gPA but limit
khugepaged’s CPU utilization in the guest to maximum of 10% of
a vCPU. This setup helps to find out whether Tridentpv’s faster
copy-less promotion/compaction can be useful to use 1GB pages.

Figure 13 shows the performance of Trident and Tridentpv nor-
malized to THP. Tridentpv is more effective than Trident for XS-
Bench, GUPS, Memcached, and SVM by 5%, on average and by
up to 10%. We observe that Tridentpv does not always improve
performance over Trident. Recall that Tridentpv’s hypercall-based
copy-less approach is quicker than the copy-based approach only
during promotion/compaction of 2MB pages to 1GB pages. Oth-
erwise, the overhead of the hypercall and that of altering PTEs
overshadows the benefits of avoiding copy. In applications such
as BTree, Graph500, Canneal, 4KB pages are often promoted di-
rectly to 1GB pages without needing to go via 2MB pages limiting
Tridentpv’s scope for improving their performance.

Memory bloat: Large pages are well-known to increase memory
footprint (bloat) due to internal fragmentation. Larger the page
size more is the bloat. Trident causes bloat in two out of eight
workloads. It adds 38GB and 13GB bloat for Memcached and Btree
over THP. We were able to recover the bloat by simply incorporat-
ing HawkEye’s technique for dynamic detection and recovery of
bloat by demoting large pages and de-deuplicating zero-filled small
pages [42]. However, we do not make any new contribution here
and the tradeoff between bloat and large pages is well explored in
the literature [36, 42]

8 RELATEDWORK
Address translation overheads is a topic of several recent research
efforts [12, 13, 18, 21, 30, 32, 35, 37, 45, 46, 49, 51, 52, 56].
Proposals that require hardware support: Hardware optimiza-
tions focus on reducing TLB misses and on accelerating page walks.
Multi-level TLBs, and multiple page sizes are found in today’s com-
mercial CPUs [3, 26]. Further, page walk caches are used to make
page walks faster [16, 22].

Direct segments [19] can significantly reduce address translation
overheads through segmentation hardware. Coalesced-Large-Reach
TLBs increase TLB coverage through contiguity-aware hints en-
coded in the page tables [48]. This approach can also be combined
with page walk caches and large pages [22, 26, 47]. POM-TLB re-
duces page walk latency by servicing a TLB miss using a single
memory lookup with a large in-memory TLB [51]. SpecTLB spec-
ulatively provides address translation on a TLB miss by guessing
virtual to physical address mappings [17]. ASAP prefetches trans-
lations to reduce page walk latency to that of a single memory
lookup [39]. It first orders page table pages to match that of the
virtual memory pages and then uses a base-plus-offset arithmetic
that directly indexes into the page tables. Large page support for
non-contiguous physical memory has also been proposed [28]. Tai-
lor page sizes use whatever contiguity OS can afford to allocate [34].
Park et. al. proposed to use large pages to allocate page table entries
to reduce the height of the page table [46]. Skarlatos et. al. demon-
strated benefits of using Elastic cuckoo hash table as the page tables
data structure instead of radix tree [52]. In contrast, Trident needs
no new hardware; new hardware enhancements are orthogonal to
Trident’s goal of fully utilizing current hardware.
Proposals with only software support: Software-only solutions
mainly focus on better use of large pages. Navarro et. al., proposed
reservation-based large page promotion in FreeBSD as compared
to proactive large page allocation in Linux [40]. Ingens proposes
to mix THP’s aggressive large page allocation with FreeBSD’s con-
servative approach to reduce memory bloat and latency while still
leveraging large pages. Illuminator showed how unmovable kernel
objects hinder compaction [43]. Quicksilver uses hybrid strategies
across different stages in the lifetime of a large page. Specifically, it
employs aggressive allocation, hybrid preparation, relaxed mapping
creation, on-demand mapping destruction and preemptive dealloca-
tion to achieve high performance and lower latency and bloat [61].
Carrefour-LP showed how large pages can degrade performance
in NUMA systems due to remote DRAM accesses and unbalanced
traffic [31]. Trident is complementary to these works; while these
works focused on KBs and MBs-sized pages, Trident focuses on
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1GB pages which brings its unique challenges for compaction and
page promotion. Many insights from these works on 2MB pages
are applicable to Trident too e.g., HawkEye’s fine-grained page
promotion and Ingens’s adaptive approach of balancing trade-offs
with large pages can be applied to Trident too.

Translation Ranger proposed a new OS service that actively cre-
ates contiguity in physical memory [60]. Parts of this work have
been posted on Linux mailing lists. For example, in-place com-
paction of physical memory can be performed using the approach
discussed in [58]. This functionality, however, requires applica-
tion modifications and is unsuitable for applications that incre-
mentally allocate memory (e.g., Redis). Another part of this work
provided a preliminary patch set to extend Linux’s THP support to
1GB pages [59]. Their approach, however, always promote address
regions to 1GB pages through a background service – even if con-
tiguous memory is available during page faults. Consequently, it
incurs unnecessary data movement even when physical memory
is un-fragmented or moderately fragmented. In large-memory sys-
tems, this could amount to migrating terabytes of data to allocate
1GB pages. Further, the inability to immediately deploy 1GB pages,
even when it was possible, leaves significant performance on the
table. This patch set, however, is not fully functional and frequently
causes kernel crashes when the physical memory is fragmented.
We are therefore unable to present a full quantitative comparison.
Wherever the patch set ran, Trident outperformed it by 2%-15% by
deploying all large page sizes more efficiently.

9 CONCLUSION
While OS support for 2MB pages has matured over the years, 1GB
pages have received little attention despite being present in the
hardware for a decade. We propose Trident to leverage architectural
support of all page sizes available on x86 processors, while also
dealing with the latency and fragmentation challenges. Our evalua-
tion shows that 1GB pages, in tandemwith 2MB pages, significantly
speed up several applications. Further, the paravirtualized extension
of Trident, called Tridentpv, can effectively virtualize 1GB pages
with copy-less page promotion and compaction. Trident’s 18% per-
formance gain over Linux THP is likely to motivate researchers to
further explore the role of large pages, beyond 2MB.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact provides source of Trident (modified Linux kernel
v4.17.3) and evaluated benchmark binaries with their input files
where appropriate. The measurement infrastructure is provided
through bash and python scripts which allow reproducing exper-
imental results on an Intel Skylake machine with 18 cores (36
threads) and 192GB of main memory.

A.2 Artifact Check-List (Meta-information)
• Compilation: GCC version 7.4.0.
• Binary: Included for x86-64.
• Data set: Scripts provided to generate datasets.
• Run-time environment: Provided by the supplied Linux ker-
nel binaries for x86-64 hardware, source code given. Scripts re-
quire sudo privileges.

• Execution: Using bash and python scripts on a Linux/KVM
platform. Scripts to be executed on the host.

• Output: A CSV file for each experiment.
• Disk space required: 280GB including all datasets. 80GB ex-
cluding fragmentation related experiments.

• Time needed to prepare workflow: 3-4 hours.
• Time needed to complete experiments: 6-7 days.
• Archived: Yes. DOI: 10.5281/zenodo.5149740

A.3 Description
A.3.1 Availability. All scripts are available in the GitHub reposi-
tory https://github.com/csl-iisc/Trident-MICRO21-artifact. All sources
are included as public git submodules. The artifact is also available
at https://doi.org/10.5281/zenodo.5149740.

A.3.2 Hardware dependencies. We recommend an Intel Skylake
node with 18 cores (36 threads) and 192GB memory. Other x86-
64 servers with similar memory and compute capability should
produce comparable results.

A.3.3 Software dependencies. The compilation environment, bina-
ries and scripts assume Ubuntu 18.04 LTS running Linux Kernel
v4.17.3. Similar Linux distributions are also expected to work. In
addition to the packages shipped with Ubunty 18.04 LTS, additional
packages need to be installed as follows:

$ sudo apt install build-essential bison bc \
libncurses-dev flex libssl-dev automake \
libelf-dev libnuma-dev python3 git \
wget libncurses5-dev libevent-dev \
libreadline-dev libtool autoconf \
qemu-kvm libvirt-bin bridge-utils \
virtinst virt-manager hugepages \
libgfortran3 libhugetlbfs-dev sshfs

A.4 Installation
To install, download the artifact from Zenodo or clone the GitHub
repository. The repository contains scripts required to run the arti-
fact along with all pre-compiled binaries. Sources (i.e., Trident and
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HawkEye kernels) are included as public submodules in ./sources/.
Pre-compiled binaries are placed in ./bin/.

A.4.1 Download artifact and compile kernel images. Execute:

$ git clone https://github.com/csl-iisc/ \
Trident-MICRO21-artifact

$ cd Trident-MICRO21-artifact
$ PROJECT_DIR=$(pwd)
$ git submodule init
$ git submodule update

$ cd $PROJECT_DIR/sources/Trident
$ git fetch --all; git checkout trident
$ make menuconfig; make -j $(nproc)
$ sudo make modules_install; sudo make install

$ cd $PROJECT_DIR/sources/Trident
$ git fetch --all; git checkout hawkeye
$ make menuconfig; make -j $(nproc)
$ sudo make modules_install; sudo make install

A.4.2 Install and configure a virtual machine. Install a virtual ma-
chine using libvirt on your test machine. An example using com-
mand line installation is provided below (choose ssh-server when
prompted for package installation). Once installed, run the second
command to generate three VM configurations. The scripts will
configure the number and affinity of vCPUs, memory size and de-
fault large page size. The appropriate configuration will be loaded
by the run scripts themselves.

$ virt-install --name trident --ram 4096 \
--disk path=~/trident.qcow2,size=50 \
--vcpus 4 --os-type linux --os-variant \
generic --network bridge=virbr0 \
--graphics none --console pty, \
target_type=serial --location 'URL' \
--extra-args 'console=ttyS0,115200n8 serial'

$ ./scripts/gen_vmconfigs.py trident

We recommend installing Ubuntu18.04 in the VM. To do so,
use http://archive.ubuntu.com/ubuntu/dists/bionic/main/installer-
amd64/ for URL in the installation command above. In addition, do
the following to finish setting up the platform:

• In ./scripts/configs.sh, edit guest user name and IP address
(GUESTUSER and GUESTIP) and libvirt’s ID of the VM image
(VMIMAGE) as per your installation.

• Setup password-less authentication between guest and host. This
can be done, for example, by adding the RSA key of the host
user in $HOME/.ssh/authorized_keys of guest and vice-versa
(ssh-copy-id $USER@$ADDRESS).

• Install sshfs in the guest (sudo apt install sshfs). Set up
guest Linux to auto-mount the artifact directory in the same path
as the host using a network file system such as SSHFS (e.g., user’s
home directory). See GitHub README.md for an example.

• Grant sudo privileges to users in both host and guest; they should
be able to execute sudo without entering password.

• Add user to libvirtd group in the host (sudo adduser 'id -un'
libvirtd).

A.4.3 Prepare datasets. Prepare datasets as follows:

$ ./scripts/prep_all_datasets.sh

The datasets (approximately 4.4GB for Canneal, 21GB for SVM
and 190GB for fragmentation related experiments) will be redirected
to ./datasets/.

A.5 Experimental Workflow
Run experiments exclusively i.e., no compute or memory-intensive
application should be running concurrently. Use kernel command-
line parameter default_hugepagesz=2MB by default. Running con-
figuration 1GBHUGE (in Figure 1 and Figure 2) requires booting
kernel with default large page size of 1GB. To run this config-
uration: (1) uncomment it in ./scripts/run_figure_1.sh and
./scripts/run_figure_2.sh, (2) append default_hugepagesz=1G
parameter to the host kernel’s command-line (/etc/default/grub
file), and (3) reboot the host. All scripts are to be executed on the
host. Run individual experiments as:

$ ./scripts/run_figure_1.sh
$ ./scripts/run_figure_2.sh
$ ./scripts/run_figure_9.sh
$ ./scripts/run_figure_10.sh
$ ./scripts/run_figure_11.sh
$ ./scripts/run_figure_12.sh
$ ./scripts/run_figure_13.sh

A.5.1 Estimated completion time. Approximate completion time
for Figure 1, Figure 2, Figure 10, Figure 11 and Figure 13 is about 24
hours each. Figure 9 and Figure 12 require about 12 hours each.

A.5.2 Generate report. The raw output logs of the experiments are
redirected to ./evaluation/, in separate sub-directories for each
benchmark. Process logs into CSV files (redirected to ./report/)
by executing:

$ ./scripts/compile_report.py
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