
Improving Streaming Graph Processing Performance using
Input Knowledge

Abanti Basak
abasak@ucsb.edu
UC Santa Barbara

USA

Zheng Qu
zhengqu@ucsb.edu
UC Santa Barbara

USA

Jilan Lin
jilan@ucsb.edu

UC Santa Barbara
USA

Alaa Alameldeen
alaa@cs.sfu.ca

Simon Fraser University
Canada

Zeshan Chishti
zeshan.a.chishti@intel.com

Intel Labs
USA

Yufei Ding
yufeiding@cs.ucsb.edu

UC Santa Barbara
USA

Yuan Xie
yuanxie@ucsb.edu
UC Santa Barbara

USA

ABSTRACT
Streaming graphs are ubiquitous in today’s big data era. Prior work
has improved the performance of streaming graph workloads with-
out taking input characteristics into account. In this work, we
demonstrate that input knowledge-driven software and hardware
co-design is critical to optimize the performance of streaming graph
processing. To improve graph update efficiency, we first character-
ize the performance trade-offs of input-oblivious batch reordering.
Guided by our findings, we propose input-aware batch reordering
to adaptively reorder input batches based on their degree distri-
butions. To complement adaptive batch reordering, we propose
updating graphs dynamically, based on their input characteristics,
either in software (via update search coalescing) or in hardware (via
acceleration support). To improve graph computation efficiency, we
present input-aware work aggregation which adaptively modulates
the computation granularity based on inter-batch locality character-
istics. Evaluated across 260 workloads, our input-aware techniques
provide on average 4.55× and 2.6× improvement in graph update
performance for different input types (on top of eliminating the
performance degradation from input-oblivious batch reordering).
The graph compute performance is improved by 1.26× (up to 2.7×).

KEYWORDS
Graph analytics, Streaming graphs

ACM Reference Format:
Abanti Basak, Zheng Qu, Jilan Lin, Alaa Alameldeen, Zeshan Chishti, Yufei
Ding, and Yuan Xie. 2021. Improving Streaming Graph Processing Per-
formance using Input Knowledge. In MICRO’21: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’21), October 18–22,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8557-2/21/10.
https://doi.org/10.1145/3466752.3480096

2021, Virtual Event, Greece. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3466752.3480096

1 INTRODUCTION
Streaming graph processing involves batched updates and analytics
on graphs that evolve over time. This scenario is critical in applica-
tions such as graph convolutional networks [52], social network
analysis [23, 37, 48], financial fraud detection [53], anomaly de-
tection [30], and recommendation systems [28, 35, 61]. Streaming
graph processing also lies at the heart of national security problems
such as cyber attack detection and entity resolution. This has led
to large-scale national initiatives (e.g., DARPA HIVE) to develop
optimized streaming graph systems [1, 4, 5].

Effective handling of streaming graph data requires high perfor-
mance solutions for 1) update (ingestion of new edges contained in
input batches), and 2) compute (analytics on the latest snapshot of
the graph). Numerous competitive streaming graph systems have
recently proposed novel data structures and computation models
[18, 20, 23, 26–28, 30, 32–35, 38–42, 44, 48, 53, 58–63, 67, 68]. The
shortcoming of existing systems is that they do not consider the
issue of input sensitivity which is critical to optimize both update
and compute performances. Input batches may exhibit variations
in structural properties, such as degree distributions of individual
input batches or locality characteristics between consecutive input
batches. These diverse input properties give rise to challenging
trade-offs in software performance which, if ignored, can lead to
a substantially sub-optimal performance. It is possible to signifi-
cantly optimize the system performance through a design approach
where input knowledge-driven adaptive software and hardware
solutions complement each other. For example, batch reordering
(RO) is a software optimization which reorganizes an input batch to
remove lock-based operations in streaming graph updates [26, 42].
The state-of-the-art input-oblivious RO improves the update per-
formance for wiki’s input batches by 2.7× but severely degrades
the update performance for uk’s input batches (0.69×) (Fig. 1(a) and
1(b)). Our proposed input-aware adaptive software recovers uk’s
lost update performance (from 0.69× to 0.92×) by capturing RO’s

1036

https://doi.org/10.1145/3466752.3480096
https://doi.org/10.1145/3466752.3480096
https://doi.org/10.1145/3466752.3480096
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3466752.3480096&domain=pdf&date_stamp=2021-10-17

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Abanti Basak, ZhengQu, Jilan Lin, Alaa Alameldeen, Zeshan Chishti, Yufei Ding, and Yuan Xie

input-dependent performance trade-offs (Fig. 1(c)). Our proposed
complementary input-aware hardware solution further increases
uk’s update performance improvement to 1.60× (Fig. 1(d)), improv-
ing the overall system performance across both the workloads.

0
0.5

1
1.5

2
2.5

3

(a) wiki SW
(2.7X)

(b) uk SW
(0.69X)

(c) uk Input
aware SW

(0.92X)

(d) uk Input
aware SW +
HW (1.6X)

sp
ee

du
p

Figure 1: (a)/(b): Speedup in update performance from
input-oblivious batch reordering for wiki and uk at input
batch size=100K. (c)/(d): Input-aware software and
hardware design recover and improve uk’s update
performance. See Section 6.1 for benchmarks and
evaluation setup.

For efficient graph updates, we propose input-aware batch re-
ordering with software/hardware dynamic execution modes (Sec-
tion 4). We characterize RO across 260 workloads and find that its
impact on the update performance depends on the degree distribu-
tion of the input batches. Our experiments show that RO perfor-
mance varies from high speedups to significant degradations. This
study motivates the need to adaptively reorder incoming batches
based on their input characteristics. We propose adaptive batch
reordering (ABR) which uses a low-overhead online technique to
collect information on the degree distribution of incoming batches.
Specifically, we propose the concept of order-λ clusterable aver-
age degree (CADλ) which is used by ABR to predict whether an
input batch is suitable for batch reordering. Compared to a naive
always-RO solution, ABR can save the update performance from
degradation in reordering-adverse cases without compromising the
high speedup of reordering-friendly cases.

We propose two additional case-specific optimizations which
complement ABR during the update phase: software-level up-
date search coalescing (USC) for reordering-friendly cases and
hardware-accelerated update (HAU) for reordering-adverse cases.
USC leverages the degree distribution and the reordered organiza-
tion of reordering-friendly input batches to substantially reduce the
amount of search operations during edge updates. Since reordering
clusters the incoming edges of a vertex, it is possible to search
for all the incoming edges in the current edge data of the vertex
in one go. ABR and USC cooperatively provide effective software
optimizations for the updates of reordering-friendly input batches.

HAU complements ABR during the update phase of input batches
with reordering-adverse degree distributions. Although ABR suc-
cessfully recovers the RO performance degradation for these cases,
it is unable to provide any additional benefit over the baseline. ABR
turns off the optimizations of batch reordering and associated USC
because their software overheads are expensive. Hence, reordering-
adverse batches are still limited by 1) lock-based updates and 2)
overheads of update search operations. HAU accelerates graph
updates to remove these two bottlenecks. To remove lock-based
software updates, HAU introduces enhancements to the cache con-
troller and the on-chip processor-network interface to map each

update task to a specific core. To mitigate search overheads, HAU
uses simple dedicated logic in the cache controller to scan edge
data cachelines, removing CPU instruction overhead for search
operations. ABR and HAU cooperatively provide high-performance
updates in reordering-adverse cases.

ABR makes
reorder/don’t
reorder decision

reorder

don’t reorder

Software execution mode:
1) Batch reordering (RO) eliminates locks
2) Search coalescing (USC) makes update
searches work-efficient

Hardware execution mode (HAU):
1) Update-to-core mapping eliminates locks
2) Cacheline scans mitigate software
search overheads

Input
batch

Figure 2: Input-aware SW/HW graph updates

As summarized in Fig. 2, ABR, USC, and HAU together optimize
the update performance by dynamically adopting the best suited
execution mode based on the input batch characteristics. Input
batches with reordering-friendly degree distributions (identified
by ABR) are updated in the software execution mode with two
optimizations: batch reordering and USC. In contrast, reordering-
adverse input batches are updated with HAU. We quantitatively
show that input-aware dynamic software/hardware execution for
graph updates outperforms input-oblivious updates with either
exclusively software or exclusively hardware execution mode.

For higher streaming graph computation performance, we pro-
pose input-aware work aggregation (Section 5). Consecutive input
batches sometimes exhibit a large overlap in graph modifications
(i.e., inter-batch locality). Scheduling two separate computation
rounds/phases to analyze these high-overlap input batches leads to
work redundancy. We propose overlap-based compute aggregation
(OCA) which adaptively modulates the computation granularity
based on the inter-batch locality characteristics in input batches.
OCA uses a low-cost online technique to identify inter-batch local-
ity, and, for high locality, aggregates the computation. Thus, two
input batches of similar graph modifications can be analyzed by
scheduling a single computation round, increasing the compute
efficiency.

2 NOVELTY AND IMPACT
We discuss the ways in which our overall approach and techniques
advance the state-of-the-art prior work.
Streaming graph systems. We propose a novel perspective for
efficient streaming graph processing: using input knowledge to
optimize the performance for a given underlying data structure
and computation model. This is orthogonal to the conventional
approach [18, 20, 23, 26, 27, 27, 28, 30, 32–35, 38–42, 44, 48, 53, 58–
63, 67, 68] of presenting a new system composed of input-oblivious
data structures and/or computation models to outperform the state-
of-the-art. We perform a novel characterization study across 260
workloads (Section 4.1) and show that input-oblivious software
optimizations degrade performance in many cases. Our proposed
input-dependent optimizations are applicable to most standard data
structures and computation models.
Input-dependent graph processing. Existing input-aware solu-
tions focus on static graph processing [7, 8, 11, 50] and are not read-
ily reusable for streaming graphs. They 1) operate on static input
whole graph, 2) typically make a decision once in the preprocessing

1037

Improving Streaming Graph Processing Performance using Input Knowledge MICRO ’21, October 18–22, 2021, Virtual Event, Greece

step, and 3) only capture the trade-offs for the graph computation
phase. In contrast, the requirements for streaming graphs are sub-
stantially different. Our proposed ABR 1) operates on input batches
whose size is much smaller than a whole graph, 2) makes online
decisions multiple times during the execution on continuously in-
coming input batches, and 3) captures the performance trade-offs
for the graph update phase (i.e., whether RO overhead pays off in
terms of performance gains from lock-free updates). Hence, our
designed ABR is an extremely lightweight (due to requirements 1
and 2) input-dependent algorithm with a novel and minimally intru-
sive CADλ metric which captures the update phase’s performance
trade-offs. Furthermore, another novelty in our input-dependent
approach is using input batch characteristics to dynamically decide
between software and hardware execution modes to achieve a higher
update performance than a SW-only or a HW-only solution.
Hardware support for graph processing. Prior domain-
specialized solutions for graph analytics are valuable but restricted
to static graph computation [9, 10, 12, 24, 36, 45–47, 49, 51, 54, 57,
64, 65, 69–72]. Although a few papers [24, 45] provide APIs for
graph updates, the discussion is limited to a subsidiary feature for
a design targeted at static graphs and does not address the specific
challenges for streaming updates. In contrast to prior proposals, we
focus in-depth on the dynamic nature which is indispensable in real-
world graphs. We tackle unique acceleration considerations which
arise due to the characteristics in streaming graph updates. First,
by treating input properties as the first-class design determinant,
we provide insights that hardware acceleration is beneficial and
meaningful for reordering-adverse input batches where software
overheads are too high. Second, we selectively trigger HAU for
these input batches to resolve the relevant challenges (overheads of
software locks and search operations). Concerning HAU’s specific
design techniques (Section 4.4), HAU’s concept of “task” bears some
resemblance to GraphPulse’s event-driven approach [54]. Although
an important work for static graph computation, GraphPulse is
not a drop-in replacement for HAU because 1) its events cannot
represent and process streaming graph updates, 2) its design cannot
solve update search overheads, and 3) it is a fully customized stand-
alone ASIC, whereas HAU acceleration is CPU-coupled where the
introduced changes are aware of the CPU architecture.

3 BACKGROUND
We describe the stages in the execution pipeline of streaming graph
processing and the basics of batch reordering.

3.1 Streaming Graph Processing
The input to a streaming graph processing system is a stream of
incoming edges. An input batch contains a given number of incom-
ing edges represented by <source, destination> tuples (also weight
for weighted graphs). Once a batch of edges enters the system, two
stages are executed which provide newly computed results. First,
the update phase ingests the incoming edges in the input batch
into the graph data structure. Second, in the compute phase, an
algorithm such as PageRank is performed on the latest snapshot
of the graph data structure. The system handles dynamism by per-
forming repeated and interleaved update and compute in response
to continuous batches of incoming edges [23, 40, 44, 59, 63, 68].

The concepts of vertex degree and degree distribution, typically
used to describe the whole graph structure of a static graph, can be
extended to an input batch in a streaming graph. Vertex degree of
v refers to the number of incoming edges of v in the input batch.
The degree distribution P(k) (or N(k)) of an input batch refers to the
fraction (or number) of vertices in the input batch with degree k.
3.2 Batch Reordering (RO) Basics
RO is a pre-update operation where the input batch of edges is
reorganized to ensure lock-free edge updates [26, 42]. In the baseline
input batch, during parallel edge updates, two separate threads may
update edges for the same vertex, requiring locks to protect against
shared memory access conflict. In contrast, in the reordered input
batch, the edges of the same vertex v are clustered (parallel stable
sort from C++ Boost library [3]) and a carefully designed work
division ensures that a specific thread updates all the input edges
of v (dynamic OpenMP scheduling ensures load balancing).

The baseline (non-reordered) and RO-based update methodolo-
gies possess different benefits and costs, giving rise to RO’s input-
dependent performance trade-offs. Baseline: The benefit of the base-
line is that it offers fine-grained edge-level parallelism and requires
no change to the input batch format. The edge-centric work divi-
sion is in perfect alignment with the input batch format. Incoming
graph changes arrive as edges and the baseline treats the edge as
the granularity of parallelism by assigning one thread per edge.
However, the baseline’s cost constitutes lock operations because
separate threads may update edges for the same vertex. RO: RO’s
benefit involves completely eliminating locks by adopting vertex-
centric updates (i.e., a thread updates all the edges of a given vertex).
However, this comes at the cost of software overheads because the
input batch format is inherently organized as edges instead of in
a vertex-centric fashion. First, the input batch must be sorted to
cluster edges belonging to the same vertex. Second, sorting should
be carried out with respect to both source vertices and destination
vertices to account for both in-edges and out-edges. This results in
two reordered input batches which must each be updated separately.
Finally, lock elimination involves additional scheduling overheads
(scheduling must ensure that each thread updates all the edges
belonging to a given vertex before moving on to another vertex in
its task list). Our characterization in Section 4.1 shows how input
batches of different degree distributions are affected by the relative
costs and benefits of the two update methodologies.
4 INPUT-AWARE STREAMING GRAPH

UPDATES
We first present our characterization study of the performance
trade-offs of RO. After explaining ABR, USC, and HAU, we discuss
input-aware SW/HW dynamic execution.

4.1 Characterization of RO Performance
Trade-offs

Characterization across 260 workloads shows that the performance
from RO exhibits input sensitivity (Fig. 3, left y-axis). Topcats, talk,
berkstan, yt, superuser, and wiki indeed achieve up to about 3×
improvement in update and overall performances at higher batch
sizes of 100K and 500K (also at 10K for talk, yt, and wiki). However,
at smaller batch sizes of 100 and 1K, these datasets experience

1038

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Abanti Basak, ZhengQu, Jilan Lin, Alaa Alameldeen, Zeshan Chishti, Yufei Ding, and Yuan Xie

Figure 3: Left y-axis: Effect of RO on update and overall (i.e., update and compute combined) performances (see Section 6.1 for
the evaluation methodology). Right y-axis: Maximum in/out degree in an input batch (average across all batches).

Figure 4: Input batch degree distributions of lj and wiki at
batch size = 100K (log-log plot)

degradations in update and overall performances. The remaining
datasets (lj, patents, fb, flickr, amazon, stack, friendster, and uk)
experience performance degradation from RO at all batch sizes.

We observe that high-degree input batches are reordering-friendly,
whereas low-degree input batches are reordering-adverse. We define
“high (low)-degree input batch” as an input batch where the top
degrees are high (low). For example, Fig. 4 shows the degree distri-
butions of representative input batches of lj and wiki at batch size
of 100K. Lj’s input batch is low-degree (e.g., top ten degrees lie in
the range of 7-30, 30 being the maximum degree), whereas wiki’s
input batch is high-degree (e.g., top ten degrees lie in the range of
401-1881, 1881 being the maximum degree)1. Since the maximum
degree represents the upper bound of an input batch’s top degrees,
we use it as an indicator metric in Fig. 3 (right y-axis) to show the
correlation with the RO performance (left y-axis). Compared to the
reordering-adverse cases, the reordering-friendly cases exhibit a
higher maximum in-degree or out-degree, indicating a high-degree
input batch. For a given dataset, a smaller batch size naturally leads
to a low-degree input batch (maximum possible degree = batch size).

1Terminology clarification: We consistently use the term top degree to refer to
an intra-input-batch large degree. In contrast, the term high/low-degree is used to
differentiate between the top degrees across different input batches. Thus, a top-degree
vertex in a high-degree input batch has a larger edge count than a top-degree vertex
in a low-degree input batch.

Therefore, small batches suffer from performance degradationwhen
RO is applied (Fig. 3).

The performance trade-offs of RO can be understood by con-
necting the degree distribution of the input batches to the relative
costs and benefits of RO (Section 3.2). High-degree input batches
are reordering-friendly because:

• In the baseline, a large number of locks need to be acquired
to update a top-degree vertex v. High-degree batch means v
possesses a very high edge count. Updating each incoming edge
of v needs a lock to be acquired on v’s edge data because multiple
threads may update v’s incoming edges.

• In the baseline, in addition to the large number of locks described
above, the cost of acquiring a lock is high for v. The cost of a
lock acquisition involves waiting for another thread to finish
updating an incoming edge for v. The wait time is proportional
to the length of v’s edge data array because updating involves a
search scan for duplicate check (Section 4.3). The length of v’s
edge data array is large because v is a top-degree vertex in a
high-degree input batch.

The above two factors together lead to high lock overheads for
high-degree input batches in the baseline scheme. RO can eliminate
these serious lock overheads. The cost of RO is small compared to
the savings from baseline’s lock overheads. In contrast, low-degree
input batches are reordering-adverse because lock overheads in
the baseline technique are not serious (i.e., top degrees are rela-
tively small) and RO’s extra software overheads are larger than the
potential savings.

In addition to the above performance trade-offs, we find temporal
stability in the input batch degree distribution for a given dataset and
batch size combination. As shown with an example in Fig. 5 for lj
at input batch size of 100K, the input batches consistently show
stable degree distribution over time with increasing batch numbers.
However, across different dataset-batch size combinations (lj-100K
versuswiki-100K), the degree distribution is clearly different (Fig. 4).
In the next section, we discuss how these insights are used to design
a low-cost and effective adaptive batch reordering technique.

In addition to the above characterization, Fig. 6 shows that, on
average (geomean), 19% and 33% of the total time is spent on graph
updates in the baseline and RO, respectively. RO (input-oblivious

1039

Improving Streaming Graph Processing Performance using Input Knowledge MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0
20
40

60
80

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6%
 o

f e
dg

es
 o

rig
in

at
in

g
fro

m
 v

er
tic

es
 o

f a
 g

iv
en

de

gr
ee

batch id

degree = 1 degree = 2 degree = 3
degree = 4 5 <= degree <= 10 10 < degree <= 20
20 < degree <= 30 30 < degree <= 40 40 < degree <= 50

Figure 5: Input batch degree distribution over time for
dataset LJ and input batch size 100K

batch reordering) increases the percentage of time spent on updates
because many benchmarks are reordering-adverse (Fig. 3), motivat-
ing our proposed RO-targeted software and hardware optimizations
(Sections 4.2-4.4). More recent streaming graph systems [26, 42]
are equipped with system-specific techniques on top of RO (e.g.,
dual versioning, data compression, specialized memory allocation)
which may reduce the update time to less than 33%. However, in
this work, we isolate and study the RO technique.

4.2 Adaptive Batch Reordering (ABR)
ABR is an online technique that adaptively reorders input batches
depending on their degree distributions. As shown in Fig. 7, ABR
instruments the update phase of every nth input batch (called ABR-
active batch) to collect information on the input batch’s degree
distribution. Using this information, ABR makes a binary decision
(reorder/don’t reorder) and, for the next n update batches (called
ABR-inert batch), the latest ABR decision is applied. ABR’s overhead
is low for two reasons:
• Small number of ABR-active batches:ABR leverages the tem-
poral stability of input batch degree distribution (Section 4.1) to
reduce required instrumentation. A reordering decision made
by observing one ABR-active batch applies to many subsequent
ABR-inert batches.

• Low-cost degree distribution collection in ABR-active
batches: Instrumentation in ABR-active batches is overlapped
with the actual edge updates. We propose a low-cost and mini-
mally intrusive metric for instrumentation.
We propose a metric called order-λ clusterable average degree

(CADλ) which is computed by ABR during instrumentation in the
ABR-active batches to make accurate reordering decisions with
small overhead:

order − λ clusterable average degree (CADλ) =
b − y

x

where,

b = input batch size
y = number of edges from vertices with 1 ≤ degree ≤ λ

x = number of unique vertices with degree > λ

If CADλ ≥ TH , reorder. Else don’t reorder.
TH = some experimentally determined threshold.

ABR Algorithm: The following pseudocode represents the ABR
algorithm:
|reordering = true //default RO

|if (currentBatch is ABR-active) {

| if (reordering == true) {

| for each vertex v in batch {

| count totalEdges for vertex v

| if (1 <= degree(v) <= λ)

| y = y + totalEdges

| if (degree(v) > λ) x=x+1

| } // for

| } // reordering == true

| else { // reordering == false

| for each edge in batch {

| Populate concurrent hash map H with

| (key: vertex ID; value: degree)

| }

| for each entry in hash map H {

| if (1 <= degree(v) <= λ)

| y = y + totalEdges

| if degree(v) > λ

| x=x+1

| }

| } // reordering == false

| Compute CADλ = (b − y)/x

| if (CADλ >= threshold)

| reordering = true

| else reordering = false

|} // ABR-active

|else { // ABR-inert

| if (reordering == true)

| reorder incoming batch

|} // ABR-inert

The concurrent hash map above is implemented using Intel TBB [6]
so multiple threads may update edges for the same vertex. Above,
x and y are incremented atomically.

CADλ intuition. CADλ is a measure of the average degree of
the top-degree vertices in an input batch (i.e., the average degree
computed using the intra-batch vertices with large edge counts). A
high CADλ for an input batch indicates a high-degree input batch
which is essential to achieve performance benefit from RO (Section
4.1). ABR decides to reorder if CADλ is greater than or equal to
some experimentally determined threshold (TH). The design pa-
rameters of ABR are n (determines the instrumentation frequency),
λ (distinguishes the top-degree vertices in the input batch), andTH
(distinguishes between high CADλ and low CADλ). λ parameter is
a cutoff applied to locate an individual input batch’s top degrees.
In contrast, TH parameter is used to understand the relative val-
ues of the top degrees across different input batches. Section 6.2.3
shows 1) how the parameter values are determined, and 2) the high
decision-making accuracy.

Choice of CADλ and general applicability. CADλ fulfills the
two essential requirements for a good metric: 1) high decision ac-
curacy and 2) low overhead (see Section 6.2.3). We also consid-
ered other alternatives. For example, average degree exhibits poor
decision-making accuracy. It is always a consistently low value be-
cause most vertices in an input batch possess low degrees. This ob-
scures the distinction between high-degree/low-degree input batch.
Rigorous mathematical measures of skewness and heavy-tailedness
have been proposed in areas of network and probability theory

1040

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Abanti Basak, ZhengQu, Jilan Lin, Alaa Alameldeen, Zeshan Chishti, Yufei Ding, and Yuan Xie

0

50

100

150

200

250

0
20
40
60
80
100
120

10
0

10
00

0
50

00
00

10
00

10
00

00 10
0

10
00

0
50

00
00

10
00

10
00

00 10
0

10
00

0
50

00
00

10
00

10
00

00 10
0

10
00

0
50

00
00

10
00

10
00

00 10
0

10
00

0
50

00
00

10
00

10
00

00 10
0

10
00

0
50

00
00

10
00

10
00

00 10
0

10
00

0
50

00
00

10
00

10
00

00

lj patents topcats talk berkstan fb flickr yt amazon stack superuser wiki friendster uk

tim
e

sp
en

t i
n

up
da

te
s

(s
)

tim
e

sp
en

t i
n

up
da

te
s

(%
)

dataset and batch size

baseline update (%) RO update (%) baseline update (s) RO update (s)

Figure 6: Total time spent in updates (percentage and absolute) for baseline and RO (always batch reordering) for all datasets
and batch sizes (see Section 6.1 for the evaluation methodology)

.

ABR-active batch ABR-inert batch

………Update
Batch 0

Compute Update
Batch 1

Compute Update
Batch n Compute

Update
Batch
n+1

Compute
Update
Batch
n+2

Compute

time

Figure 7: Adaptive Batch Reordering (ABR) design

[17, 19, 29]. However, they are computationally heavyweight for our
streaming graphs scenario where measurements needs to be made
online and multiple times. The lightweight and accurate CADλ is a
better choice for practical system design where performance is a
key metric. Moreover, these proposed measures [17, 19, 29] have
been applied to large-scale whole graph instead of to input batches.
A rigorous statistical analysis of their applicability to input batches
is beyond the scope of this work. In addition to being accurate,
practical, and low-overhead, CADλ is widely applicable. It has been
developed by observing the examples of thousands of input batches
from our large evaluation suite.

4.3 Update Search Coalescing (USC)
USC complements ABR in reordering-friendly cases to reduce up-
date search overheads during duplicate checking. Duplicate check-
ing is a common procedure in graph updates. Before updating an
incoming edge A→B, a search through the edge data of A checks
for B so that B is not duplicated (the edge may have appeared in an
earlier batch or may have already appeared earlier in the current
batch). We identify that a high-degree input batch reordered by
ABR provides the opportunity to substantially reduce the number
of search scans for duplicates through search coalescing. Since a
given thread updates all the input edges of a given vertex A, it is
possible to search for all of A’s incoming target vertices during a
single scan of A’s edge data. The effectiveness of USC depends on
the underlying highly clusterable degree distribution (i.e., very high
top degrees in high-degree batches). The higher the clusterability
of the input batch, the higher the scope of search savings through
search coalescing (see below and Section 6.2.3). These high-degree
input batches are also reordering-friendly (hence reordered by ABR)
and USC conveniently leverages their reordered data organization.

Fig. 8 shows the implementation of USC taking the example of
updating three edges for source vertex A.

USC applies the following steps:

(1) As an update thread walks through the chunk of a reordered
input batch consisting of the edges of A, it populates a small
hash table with A’s targets and weights (Section 6.2.3 shows
this incurs little overhead).

(2) A’s edge data are scanned only once. Each neighbor ID in the
edge data array is searched for in the hash table using the
neighbor ID as the key.

(3) A match in the hash table leads to updating the weight only (for
weighted graphs). The specific target’s entry is deleted from
the hash table.

(4) Once the scan is complete, the remaining (non-matching) <tar-
get, weight> pairs in the hash table are inserted into A’s edge
array. Insertions are done either in some empty slot identified
during the scan or at the end of the array.
In contrast, a non-reordered batch requires three separate scans

through the edge data of A because multiple threads update the
edges. Therefore, the higher the clusterability (i.e., per-vertex edges),
the higher the benefits of USC. USC does not impact the granularity
or amount of parallelism with respect to batch reordering. The con-
tribution of USC is that it saves search-related work for individual
threads participating in the parallel update process.

R
eo

rd
er

ed
 in

pu
t

ba
tc

h
(s

or
te

d
by

so

ur
ce

 v
er

tic
es

)

B

Thread
starts scan

Thread
stops scan

A T1A
w1

A T2A
w2

A T3A
w3

target weight
Populate hash table

1

2

Scan A’s edge data
once and compare
with the hash table.

Figure 8: Overview of update search coalescing (USC)

4.4 Hardware-Accelerated Update (HAU)
HAU provides architectural support for the update of reordering-
adverse input batches. Although their RO performance degradation
is successfully recovered by ABR, they are still limited by 1) lock-
based updates and 2) update search overheads. To resolve the former,
HAU assigns each incoming update to a specific core. To resolve
the latter, HAU uses specialized logic in the cache controller to scan
cachelines, removing CPU instruction overhead for searches.

4.4.1 Design overview. (Fig. 9). The task-producing core trig-
gers the HAU by feeding update tasks from the software ①. An

1041

Improving Streaming Graph Processing Performance using Input Knowledge MICRO ’21, October 18–22, 2021, Virtual Event, Greece

update task for an incoming edge <src, target> takes the form of
<src’s edge data start address, src’s current degree, target>. It is routed
through the network-on-chip (NOC) to a task-consuming core ②2

obtained by src mod N where N is the number of task-consuming
cores (Section 4.4.3 discusses this algorithm). The task-consuming
core’s cache controller uses the task description received from the
NOC to fetch the edge data cachelines ③. Upon each cacheline’s
return to the L1D cache, the cache controller captures and searches
it for target (duplicate check) using its dedicated scan logic ④. For
example, we consider a toy graph consisting of vertices V0, V1, V2,
and V3. We also consider a small input batch of size 1 consisting of
the incoming edge V1->V2. The update task <V1’s edge data start ad-
dress, V1’s current degree, V2> is assigned to core 1 (V1 mod 2). Core
1’s cache controller fetches V1’s edge data cachelines, searches for
the target V2 before updating the edge. A similar set of operations
needs to be performed to update V2’s edge list to include V1.

4.4.2 Design details. We take the reference network interface in
[25] and highlight our enhancements (Fig. 10/11).

Task production (Fig. 10): Driven by the software, the core initi-
ates a request of a new type called task ① (already existing types
are read, write, etc.). The address corresponding to this request is
the start address of the edge data of vertex src and the data fields en-
code src’s current degree and target. We use the tag field to encode
the destination core ID (in a conventional request, this field helps
the core identify the corresponding reply). Unlike a read or write
request, the address field of a task request does not mean this core
expects data from this address. It only encodes some information,
together with the data field, that needs to be sent to another core.
The control flow for a task request involves bypassing caches ② and
initializing a new miss status handling register (MSHR) entry with
a new type of status called task pending ③. Allocating an MSHR
entry is essential because the message transmit unit only reacts to
MSHR status changes [25]. The message transmit unit formats the
NOC message of the update task and injects it into the network ④.
The MSHR entry status is changed to idle and it is freed ⑤.

Task consumption (Fig. 11): Upon receiving a TaskReq message
from the NOC at the message receive unit ①, a new MSHR entry is
allocated with the status task received ②. The protocol FSM takes ap-
propriate actions on the MSHR status change: the task is forwarded
to a FIFO buffer to the cache controller ③ and the MSHR entry is
freed ④. Simple dedicated logic in the controller ⑤ uses the edge
data start address to fetch the edge data cachelines. Each returning
cacheline to the L1D cache is scanned to check for the target node.
If found, the loop stops. Otherwise, the controller brings in con-
secutive cachelines until the number of scanned elements matches
the degree. If the target is not found even after the entire edge data
has been exhausted, the controller hands over the write operation
to the core through the FIFO buffer ⑥. The core takes over this
action because new memory region may need to be allocated to
accommodate the target.
4.4.3 Discussion. We discuss HAU’s important details.
Task assignment: Hashing-based task scheduling is very low-cost
and requires no tracking overhead of scheduling history or progress

21) A core can be both task-producing and task-consuming. Fig. 9 illustrates a decoupled
behavior only for clarity. 2) For weighted graphs, HAU includes an extra field weight
in the update task.

status of large core counts in amodernmulticore architecture. More-
over, this scheduling ensures that all incoming edges for vertex v
are updated at the same core where v’s edge data resides, implicitly
guaranteeing safety against race conditions from concurrent ac-
cesses (allowing us to eliminate software lock overheads). A more
complex assignment requires expensive design to explicitly guar-
antee race-safe accesses (e.g., GraphPulse [54] requires additional
cycles to coalesce events for identical vertex in large hierarchical
queues). Minimizing design complexity and scheduling overheads
is critical because, in contrast to static whole graph processing
[54], acceleration granularity for dynamic graph updates is a much
smaller input batch, making the design constraints tighter. Section
6.2.3 discusses workload distribution.
Interaction with SW: To achieve the interaction between software
and HAU, we adopt the technique used in previous work [46] where
low-level software API methods translate to two specific instruc-
tions. On the task-sending side, the core uses a supply_task in-
struction to communicate the information related to the update task
to HAU. On the task-receiving side, the core uses a fetch_task
instruction to get the information from the FIFO buffer.
Virtual memory: The cache controller logic requires virtual-to-
physical address translation for the address it obtains from the
task description in the FIFO buffer. We adopt the approach of previ-
ous work [10, 46] to ensure this. The cache controller logic shares
the core’s address translation machinery and handles page faults
like [46].
Coherence protocol: HAU does not affect the cache coherence pro-
tocols. An update task request is a cache-bypassing point-to-point
push-style communication between well-defined sender and desti-
nation cores and does not involve any additional coherence mes-
sages (Fig. 10/11). To process the task, changes are confined to the
cache controller after edge data cachelines return through tradi-
tional coherence protocols.
Update ordering: HAU maintains the same consistency as software
graph updates because, in the execution model we consider, the
programmer expects that consistency is guaranteed at the granular-
ity of an input batch. In a batch, individual updates (i.e., incoming
edges) for vertex v may arrive and be processed at task-consuming
core c in any order. The final result (i.e., at the end of the update
phase for this input batch) is the same (and equivalent to software
updates) because all the updates show up in v’s edge data (the order
of showing up does not matter). To maintain consistency in case the
input batch contains both edge insertions and deletions, software
triggers HAU to perform all insertions first before performing dele-
tions (deletion requires that the edge already exists). Since tasks
are independent, this update ordering policy ensures that updates
are deadlock-free, i.e., no circular dependencies exist between any
subset of tasks.
MSHR management: Keeping the baseline NOC topology, routing,
and buffering unchanged, we introduce a new request/response
type and show how it fits into the reference processor-network
interface [25]. We add ten newMSHR entries (2× increase) reserved
for outgoing/incoming tasks to avoid MSHRs becoming a perfor-
mance bottleneck. Task-MSHRs are proactively freed, making space
for new tasks. A task pending MSHR is freed as soon as the task is
released into the network (Fig. 10 ④, ⑤). A task received MSHR is

1042

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Abanti Basak, ZhengQu, Jilan Lin, Alaa Alameldeen, Zeshan Chishti, Yufei Ding, and Yuan Xie

Core 0 Core 1

Task-producing core

Task-consuming core

Route task to
consuming
core

Interconnection network

Fetch
edge data
cachelines

Capture
returning
cachelines
and scan
them.

Update task movement
Edge data movement

Changes to cache
controller and
processor-network
interface

Trigger HAU
from SW

Software interface to
trigger HAU

1

2

3 4

Figure 9: HAU overview

core

cache

Message format and transmit

MSHRs

Interpretation of request fields
type tag addr data

Task Dest
core

Edge data
start addr

Degree,
target

Bypass
caches

1

2

status tag addr data
Task
pending

Dest
core

Edge data
start addr

Degree,
target

3
Initialize MSHR
status to task
pending

To network

4Form task
message and
inject into network

TaskReqDest
core

Edge data
start addr

Degree,
target

5
Change status to idle
and free MSHR entry

Figure 10: Task production

Message receive

Edge data
start addr

Degree,
target

1From network
TaskReq Edge data

start addr
Degree,
target

Protocol Finite State Machine
3

cache Cache
Controller

4

Logic performs
search in a loop

status tag addr data
Task received N/A Edge data

start addr
Degree,
target

MSHR status
initialized to
task received

FSM reacts to MSHR
status change. Populates
FIFO buffer.

Change status
to idle and
free MSHR entry

logic workflowcacheline
addr fetch scan

Target found stop
Target not found

Increment addr if scanned elements < degree

6
Write operation handed over
to core through FIFO buffer

core

2

5

Figure 11: Task consumption

freed as soon as the FIFO buffer is populated (Fig. 11 ③, ④). The
total volume of task traffic is limited to input batch size, which is
much smaller than a whole graph (Fig. 3).
Hardware overhead: HAU incurs small hardware overhead. Using
McPAT integrated with Sniper [21], the area of the baseline chip
(Table 1) is 212 mm2 in a 22nm technology node. We implement
the cache controller logic in RTL and synthesize it with Synopsys
Design Compiler. We obtain an area of 0.0058 mm2, leading to an
overhead of ~0.044%. Each FIFO buffer entry consists of four 64-
bit fields (fourth field is weight to account for weighted graphs).
Ten new MSHR entries and two 32-entry FIFO buffers lead to an
additional 1KB and 2KB storage per core tile, respectively.
Generality: Since graph processing is an important application
domain, domain specialization for higher performance and effi-
ciency is a common approach in previous work on static graphs
[10, 12, 31, 45, 46, 56]. HAU follows the similar approach of special-
ization to handle the more general case of dynamic graphs which is
important but remains unexplored in prior proposals.

4.5 Input-Aware SW/HW Dynamic Execution
To address the software performance trade-offs arising from input
sensitivity (Section 4.1), we adopt input-aware SW/HW dynamic
execution for optimized performance and efficiency across all in-
put types (experiments in Section 6.2.2). A SW-only approach (i.e.,
RO+USC) is sub-optimal for low-degree input batches because the
SW overheads are higher than the performance gains. Without
RO and USC, low-degree batches are still bottlenecked by soft-
ware locks and search. HAU removes these bottlenecks and further
improves graph update performance for low-degree batches. A
HW-only approach (HAU) is sub-optimal for high-degree batches
because HAU design is sophisticated only enough for low-degree
batches, minimizing its hardware overhead and functional complex-
ity. For example, HAU does not support search coalescing because it
is not necessary (e.g., lj’s input batches mostly contain of degree=1
vertices (Fig. 5), making search coalescing superfluous and a source
of inefficiency). Adding more functionality to HAU is possible but
only increases engineering effort, design complexity, and overhead
when effective software solutions are realizable.

5 INPUT-AWARE STREAMING GRAPH
COMPUTATION

Input-aware computation aggregation adaptively modulates the
streaming computation granularity during the runtime based on
the locality characteristics between consecutive input batches. Fig.
12 explains how it differs from the baseline computation work-
flow. In the latter (Fig. 12 (a)), update and streaming computation
are interleaved like numerous previous streaming graph systems
[23, 40, 44, 48, 59, 63, 68]. Once a batch of updates are applied to
the graph, an algorithm re-executes on the latest snapshot of the
graph to reflect the changed data structure. Thus, the update batch
size indicates the streaming computation granularity because the
computation considers the changes to the graph data structure
caused directly and indirectly by an amount of modifications equal
to the batch size. On the other hand, the proposed input-aware
computation aggregation (Fig. 12 (b)) uses overlap-based compute
aggregation (OCA) technique to adaptively increase the computa-
tion granularity when there is high inter-batch locality, i.e., high
overlap between the graph modifications contained in batches n
and n + 1. OCA increases compute efficiency for high inter-batch
locality because TCagg is less than TCn +TCn+1, i.e., aggregating
computation helps amortize the scheduling and data access over-
heads of launching two separate computation rounds.

time

Update
batch n

Compute
round n

Update
batch n+1

Compute
round n+1

TCn TCn+1TUn TUn+1

Update
batch n

Update
batch n+1

Aggregate compute
rounds n and n+1

TCaggTUn TUn+1

time

Large overlap in graph modifications Overlap-based
compute aggregation
(OCA)

TU = update time;
TC = compute time

(a) Baseline workflow (b) OCA

Figure 12: Overview of OCA
Design details. We classify the inter-batch locality between

batches n and n + 1 to be high when a large percentage of the
unique vertices in batch n + 1 also appeared in batch n (i.e., edge
updates affect a lot of identical vertices across the two batches).
This is reasonable because incremental computationmodels concen-
trate computation at or around the affected vertices. So, identical
affected vertices across two input batches means that consecutive
computation rounds touch similar regions of the graph. Scheduling
two separate computation rounds to perform operations on similar
regions of the graph leads to work redundancy in scheduling and

1043

Improving Streaming Graph Processing Performance using Input Knowledge MICRO ’21, October 18–22, 2021, Virtual Event, Greece

data accesses. Computation aggregation eliminates this redundancy
with a single aggregated round. We implement a low-cost online
mechanism for measuring inter-batch locality. The graph represen-
tation is augmented with an additional per-vertex field latest_bid
which tracks the last batch where a vertex appeared. This field is
updated along with edge updates during each update phase. Dur-
ing an ABR-active batch (Section 4.2) (batch n + 1), an update
for vertex src increments a global counter overlap_counter if the
latest_bid field for src readsn. In addition, another global counter
node_counter is incremented to record the total number of unique
vertices that appear in the ABR-active batch. When the updates of
the ABR-active batch are over, the ratio of overlap_counter and
node_counter provides the value of inter-batch locality. It is high
if it exceeds a certain threshold which is determined empirically
as follows: starting from a high threshold of 0.5, we progressively
decrease the threshold and note the batch sizes where aggregation
is activated and the corresponding level of speedup. We choose a
value of 0.25 where most of the larger batch sizes experience high
performance improvement. Below 0.25, we note that aggregation
is triggered for smaller batch sizes. However, we avoid granular-
ity aggregation for smaller batch sizes (see below). In addition, the
speedup from these smaller batch sizes is small due to a low overlap.
For example, yt dataset at a batch size of 10K experiences computa-
tion aggregation at a threshold of 0.15 (but not at higher thresholds)
but the corresponding speedup is only 8%.

Application scenarios. Extremely latency-sensitive applica-
tions (e.g., security applications such as financial fraud detection)
utilize a fine-grained computation granularity or small batch size
for faster reaction to graph modifications. Trading off granular-
ity for a higher computation performance is not a good choice
in these application scenarios. We experimentally show that the
adaptive OCA deactivates at small batch sizes and only activates at
relatively larger batch sizes. A larger batch size indicates an appli-
cation scenario which can trade off some granularity for a higher
compute efficiency. Moreover, when OCA is activated, we coarsen
the granularity by only one additional batch size worth of graph
modifications. In addition, OCA is an adaptive optimization and
can be easily entirely turned off if the application does not tolerate
any sacrifice in granularity even for the larger batch sizes.

6 EVALUATION
6.1 Experimental Setup and Methodology
ABR, USC, and OCA are evaluated on a dual-socket Intel Xeon
Platinum 8180 (Skylake) server with a total of 112 hardware execu-
tion threads (28 cores per socket, 2-way SMT). The server contains
38.5MB last-level cache per socket and 768GBmemory. Performance
evaluation of HAU is done on Sniper-7.2 [21] with the baseline ar-
chitecture in Table 1.

Table 2 shows the evaluated datasets. The first seven (talk-uk)
are static datasets that are randomly shuffled to break any order-
ing in the input files (they are often ordered in increasing source
vertex ID, which is not the likely scenario of edge appearance for
real-world streaming graphs). The remaining datasets (fb-wiki)
are timestamped, i.e., the input file specifies the order in which
the edges appear in the graph. We use SAGA-Bench [13] and per-
form experiments on the adjacency list data structure because it is

Table 1: Simulated Baseline Architecture on Sniper-7.2

core 16 cores, 2.5GHz, 4-issue
L1D/I 32KB private, 8-way, 3 cycles
L2 256KB private, 8-way, 8 cycles
L3 16MB NUCA (2MB slices), 16-way, 8 cycles bank access

latency
NOC 4x4 mesh, 2-cycle hop, per-link per-direction bandwidth =

256 bits/cycle
DRAM 4 memory controllers, 17GB/s per controller, 40ns device

access latency, queue delay modeled

Table 2: Evaluated Datasets

dataset (short name) vertices edges
Wiki-Talk (Talk) [43] 2,394,385 5,021,410
WebBerkStan (BerkStan) [43] 685,230 7,600,595
cit-Patents (Patents) [43] 3,774,768 16,518,948
Wiki-Topcats (Topcats) [43] 1,791,489 28,511,807
soc-LiveJournal (LJ) [43] 4,847,571 68,993,773
com-Friendster (Friendster) [43] 65,608,366 1,806,067,135
UK-Union-2006-2007 (UK) [2, 16] 133,633,040 5,507,679,822
Facebook-wall (FB) [66] 46,952 876,993
Flickr-photo (Flickr) [22] 11,730,773 34,734,221
Youtube (YT) [55] 3,223,589 12,223,774
Amazon-ratings (Amazon) [55] 2,146,057 5,838,041
Stack-overflow (Stack) [43] 2,601,977 63,497,050
Superuser (Superuser) [43] 194,085 1,443,339
Wiki-talk-temporal (Wiki) [43] 1,140,149 7,833,140

used in multiple existing systems [32, 42, 67]. Four algorithms are
evaluated: incremental PageRank (PR), incremental Single Source
Shortest Paths (SSSP), static PR (start-from-scratch), and static SSSP.
SAGA-Bench uses the computation model proposed in prior work
[23, 67] for incremental algorithms and takes the static versions
from GAP [14]. The evaluated input batch sizes are 100, 1K, 10K,
100K, and 500K. Combining 14 datasets, 5 batch sizes, and 4 al-
gorithms, we run 260 workloads. The largest datasets friendster
and uk are run on only the incremental algorithms because prior
work [13] has shown that incremental compute models provide
significantly better performance for larger datasets. The speedup
in update/compute performance for each workload represents the
ratio (between the baseline and the proposed technique) of the
total update/compute time across all the batches (we start from
an empty graph). Real hardware experiments of ABR, USC, and
OCA are repeated three times. For simulation-based evaluation of
HAU, it is not feasible to perform experiments as extensively as on
a real hardware. Each of the 260 workloads consists of hundreds of
batches; months of simulation time would be required. Therefore,
we evaluate HAU on a subset of 8 datasets and 4 batch sizes (Table
3). The datasets cover different sizes (vertex/edge counts) and types
(shuffled/timestamped).

6.2 Experimental Results
6.2.1 Performance. Fig. 13 shows that ABR does not substan-
tially compromise the high RO update performance of reordering-
friendly cases. As summarized in the table-inset, the geomet-
ric mean across reordering-friendly cases shows that the update

1044

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Abanti Basak, ZhengQu, Jilan Lin, Alaa Alameldeen, Zeshan Chishti, Yufei Ding, and Yuan Xie

0
1
2
3
4
5
6
7
8
9

10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00

lj patents topcats talk berkstan fb flickr

Sp
ee

du
p

in
 u

pd
at

e
pe

rfo
rm

an
ce

dataset and batch size

RO update
adaptive batch reordering (ABR)
perfect ABR
ABR + update search coalescing (USC)

0
1
2
3
4
5
6
7
8
9

10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00

yt amazon stack superuser wiki friendster uk

Sp
ee

du
p

in
 u

pd
at

e
pe

rfo
rm

an
ce

dataset and batch size

~22.74

~19.62

0
1
2
3
4
5
6
7
8

10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00 10
0

10
00

10
00

0
10

00
00

50
00

00

lj patents topcats talk berkstan fb flickr

Sp
ee

du
p

in
 o

ve
ra

ll
pe

rfo
rm

an
ce

dataset and batch size

0
1
2
3
4
5
6
7
8

10
0

10
00

10
00

0

10
00

00

50
00

00 10
0

10
00

10
00

0

10
00

00

50
00

00 10
0

10
00

10
00

0

10
00

00

50
00

00 10
0

10
00

10
00

0

10
00

00

50
00

00 10
0

10
00

10
00

0

10
00

00

50
00

00 10
0

10
00

10
00

0

10
00

00

50
00

00 10
0

10
00

10
00

0

10
00

00

50
00

00

yt amazon stack superuser wiki friendster ukSp
ee

du
p

in
 o

ve
ra

ll
pe

rfo
rm

an
ce

dataset and batch size

~16.68~16.82

Figure 13: Speedup in update (top two charts) and overall (bottom two charts) performance from ABR and USC. Each bar is
the average across runs with different algorithms. ABR parameters are n=10, λ=256, andTH=465 (Section 6.2.3). The inset-table
shows the average update/overall performances for both the categories (averaged across all dataset and batch size combinations
which fall under the given category).

1045

Improving Streaming Graph Processing Performance using Input Knowledge MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 3: Speedup in update, overall (average), and overall (max) performances fromABR+USC+HAU (normalized toABR+USC).

Dataset lj patents topcats berkstan
Batch Size 100 1K 10K 100K 100 1K 10K 100K 100 1K 10K 100K 100 1K 10K 100K
Update 3.32 3.99 3.17 1.84 2.73 4.09 2.11 3.44 1.14 2.16 1.45 1 1.48 2.46 1.82 1

Overall (average) 1.02 1.04 1.03 1.03 1.02 1.08 0.96 1.11 1.00 1.06 1.03 1 1.01 1.04 1.09 1
Overall (max) 1.04 1.09 1.06 1.07 1.05 1.15 1.10 1.22 1.03 1.30 1.08 1 1.03 1.18 1.14 1

Dataset fb flickr amazon superuser
Batch Size 100 1K 10K 100K 100 1K 10K 100K 100 1K 10K 100K 100 1K 10K 100K
Update 1.88 3.22 1.88 2.90 2.87 7.54 4.47 1.96 2.45 4.59 2.27 2.10 1.44 2.94 1.69 1

Overall (average) 1.01 1.03 1.05 1.23 1.06 1.48 2.01 1.68 1.02 1.12 1.06 1.11 1.00 1.03 1.06 1
Overall (max) 1.02 1.04 1.21 1.30 1.22 1.77 3.21 3.29 1.07 1.21 1.11 1.29 1.01 1.07 1.10 1

0
0.5

1
1.5

2
2.5

3

10
0

10
00

0

50
00

00

10
00

10
00

00 10
0

10
00

0

50
00

00

10
00

10
00

00 10
0

10
00

0

50
00

00

10
00

10
00

00 10
0

10
00

0

50
00

00

10
00

10
00

00 10
0

10
00

0

50
00

00

10
00

10
00

00 10
0

10
00

0

50
00

00

10
00

10
00

00 10
0

10
00

0

50
00

00

10
00

10
00

00

lj patents topcats talk berkstan fb flickr yt amazon stack superuser wiki friendster uk

sp
ee

du
p

in
 c

om
pu

te

pe
rfo

rm
an

ce

dataset and batch size

Figure 14: Speedup in compute performance from OCA for all datasets and batch sizes

speedups of always-RO and ABR are 1.92× and 1.85×, respectively.
For reordering-adverse cases, ABR successfully recovers the up-
date performance from degradation in a naive always-RO solution.
Geometric mean across reordering-adverse cases shows that ABR
pushes up the update performance closer to the baseline (0.37×
to 0.87×). The table-inset, together with the bottom two charts,
shows that the benefits of ABR are carried over to the overall per-
formance (i.e., update and compute combined), providing evidence
that graph updates have an important contribution to the over-
all performance (Fig. 6). ABR saves the overall performance from
degradation for reordering-adverse cases (0.78× to 0.91×) while
minimally disturbing the overall speedup of reordering-friendly
cases (1.77× to 1.71×). Fig. 6 shows that, for reordering-adverse
cases, RO increases the percentage of execution time spent in up-
date. ABR helps such reordering-adverse cases and recovers most
of the performance loss. The perfect ABR bars and inset column
show that ABR performs close to a perfect adaptive technique with
zero overheads. ABR performs at 93%, 85%, 94%, and 91% of per-
fect ABR for reordering-friendly update, reordering-adverse update,
reordering-friendly overall, and reordering-adverse overall perfor-
mance, respectively. For the updates of reordering-friendly input
batches, ABR and USC together provide average speedups of 4.55×
(max 23× for wiki-100K and 20× for wiki-500K) and 3.49× (max 17×
for wiki-100K, 500K) in update and overall performance, respec-
tively. Reordering and USC software optimizations are not applied
on reordering-adverse cases. Instead, HAU complements ABR in
these scenarios to improve the update performance (Table 3). The
update speedup obtained from ABR+USC+HAU is normalized to
ABR+USC running on the simulated architecture in Table 1 (note
that ABR+USC+HAU means reordering-adverse input batches un-
dergo ABR and HAU, whereas reordering-friendly ones undergo
ABR and USC). Compared to ABR only, HAU provides on average
2.6× (max 7.5×) improvement in update performance across the

reordering-adverse cases. For each case, the average and maximum
improvements in overall performance are also shown in Table 3.
The overall performance improvement from HAU depends on the
importance of the update phase in the overall latency (Fig. 6 shows
the percentage breakdown). For cases like patents-100K, fb-100K,
flickr-10K, flickr-100K, and amazon-100K, the update phase is costly
due to the large batch size, leading to a relatively higher overall
performance improvement (e.g., 11% average and 29% max for ama-
zon-100K). Usually, for smaller batch sizes, the update operation
is relatively less costly because it is limited to a few input edges,
explaining the relatively lower overall performance improvements.
However, several smaller batch sizes do experience high overall per-
formance improvements (e.g., flickr and amazon). Note that Table 3
does not include the batch size of 500K (reason explained in Section
6.1) where the update phase is generally very costly (Fig. 6). Larger
overall performance improvements are expected at 500K batch size.
HAU is not applied to reordering-friendly topcats-100K, berkstan-
100K, and superuser-100K, as shown by the 1× speedup. They are
executed in software mode with reordering and USC optimizations
(Fig. 13).

For streaming graph computation, OCA is activated in cases of
higher inter-batch overlap and can provide up to 2.7× speedup in
compute performance (Fig. 14). Averaged across all datasets and
batch sizes, the performance benefits experienced by incremental
PR and incremental SSSP are 1.24× and 1.26×, respectively. OCA is
predominantly triggered at relatively larger batch sizes (a desirable
feature as explained in Section 5). This happens because of: 1)
inherent traits of large batches, and 2) our choice of a relatively
high overlap threshold. Larger input batches inherently contain
larger number of vertices, leading to an increased possibility of high
overlap in unique vertices between consecutive batches. Smaller
input batches also exhibit some inter-batch overlap which fails to
satisfy the overlap threshold.

1046

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Abanti Basak, ZhengQu, Jilan Lin, Alaa Alameldeen, Zeshan Chishti, Yufei Ding, and Yuan Xie

0

0.2

0.4

0.6

0.8

1

RO ABR +
USC

RO +
USC

sp
ee

du
p

in
 u

pd
at

e
pe

rfo
rm

an
ce

(a)

0
0.2
0.4
0.6
0.8

1
1.2

ABR + USC
+ HAU

HAU

sp
ee

du
p

in
 u

pd
at

e
pe

rfo
rm

an
ce

Figure 15: Left: Extension of Fig. 13 across reordering-
adverse cases; shows impact of enforcing software opti-
mizations (RO+USC). Right: Extension of Table 3 across
reordering-friendly cases; shows impact of enforcing HAU.

6.2.2 Dynamic SW/HW graph updates. We quantitatively
show that input-aware SW/HW execution mode outperforms an
input-oblivious HW-only or SW-only update technique (see Section
4.5 for insights and explanation). SW-only: Our input-aware solu-
tion deviates from an input-oblivious SW-only solution by apply-
ing HAU on reordering-adverse input batches. We instead enforce
RO+USC on them (Fig. 15 (left)) and find that RO+USC performs
almost as poorly as RO. Since ABR+USC outperforms RO+USC (Fig.
15 (left)) and ABR+USC+HAU outperforms ABR+USC (Table 3),
it follows that ABR+USC+HAU outperforms RO+USC. HW-only:
Our solution deviates from a HW-only solution by dynamically
applying RO+USC on reordering-friendly input batches. We extend
Table 3 by enforcing HAU on them and show that the performance
degrades (Fig. 15 (right)).

6.2.3 Further analysis. We further quantitatively analyze differ-
ent techniques. Any overheads analyzed in this section are already
included in the speedups reported in Section 6.2.1.

ABR and OCA overheads (Fig. 16): Reordered ABR-active batches
experience negligible overhead (0.90×) due to CADλ collection.
Non-reordered ABR-active batches experience a higher overhead
on average (0.54×) because of instrumentation with a concurrent
hash map. However, a small number of ABR-active batches en-
sures a small combined overhead across all batches. Normalized to
ABR+USC, the average overhead incurred by OCA is very small
(Fig. 16 (b)).

0

0.2

0.4

0.6

0.8

1

non-reordered reorderedsp
ee

du
p

in
 u

pd
at

e
pe

rfo
rm

an
ce

(a)

0.96
0.97
0.98
0.99

1
1.01

ABR + USC ABR + USC +
OCAsp

ee
du

p
in

 u
pd

at
e

pe
rfo

rm
an

ce

(b)

Figure 16: Overhead of (a) ABR and (b) OCA

USC insights and overheads:We study the examples of superuser-
100K and wiki-500K to provide two key insights:
• High/low-degree input batches: Wiki-500K predominantly
achieves a larger speedup than superuser-100K (Fig. 17) because
the input batches of the former are high-degree in terms of both
CADλ (1072 vs. 528) and maximum degree (43992 vs 3171). The
exception are the first two batches of wiki-500K which are low-
degree and where the graph is small (see below). A high-degree

input batch means more coalescing, leading to more search sav-
ings.

• Negligible overhead: USC does not degrade the update perfor-
mance even when the scope of speedup is smaller. This provides
evidence that USC incurs negligible overhead of preparing the
hash table (Fig. 8).

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sp
ee

du
p

in
 u

pd
at

e
pe

rfo
rm

an
ce

 fr
om

 U
S

C

(n
or

m
al

iz
ed

 to
 A

B
R

)

batch id

superuser-100K
wiki-500K

Figure 17: Temporal speedup from USC

ABR parameters/accuracy: The design parameters of ABR are n,
λ, and TH . By analyzing the batches from different combinations
of dataset and batch size, we choose the combination of λ and TH
which maximizes the decision-making accuracy at 97% (λ=256 and
TH=465) (Fig. 18(a)). The parameter n impacts both the decision
accuracy and the overhead. A large n can reduce ABR overhead
by reducing the frequency of instrumentation. However, it leads
to coarse-grained decision-making which can miss temporal fluc-
tuations in degree distributions, compromising ABR accuracy and
performance. Fig. 18(b) shows that a larger n leads to a slightly bet-
ter update performance on average (1.04× at n=10 versus 1.07× at
n=100). However, flickr-500K, yt-100K, and stack-500K experience
a poorer performance. For example, stack-500K has 127 batches in
total, leading to 2 ABR decisions at n=100 and 12 ABR decisions at
n=10. Therefore, n=100 misses some over-time fluctuations.

The ABR parameters are found by expanding the search space
until a good enough ABR accuracy is attained. Fig. 18 (a) leaves
out three datasets: yt, friendster, and uk since ABR is effective at
recommending reordering decisions for these three datasets at all
batch sizes (Fig. 13). To ensure parameter robustness, we choose a
large number of workloads (after excluding yt, friendster, uk) when
determining ABR parameters (11 datasets each at 5 batch sizes
resulting in hundreds of example batches). Since these datasets are
widely used in the graph research community and are representative
of real-world scenarios, we believe that our developed parameters
should be sufficiently robust. In future work, ABR could be extended
with an online feedback tuning method.

HAU analysis: We study uk-100K at a batch number of 100. For
work distribution, the maximum value of vertices/core (core 6)
is 3% higher than the minimum (core 11) and 1.3% higher than
the average across all cores (Fig. 19; since core 0 hosts the master
thread in SAGA-Bench setup, we show the information on cores
1-15 which host the worker threads for graph updates). The maxi-
mum number of cachelines accessed per dedicated cache controller
logic (core 13) is 600% higher than the minimum (core 11) and 148%
higher than the average across all cores. A heavy-workload core
does not straggle substantially because HAU eliminates i) remote
cache accesses and ii) CPU instruction overheads for searches. In
other words, HAU substantially minimizes time per unit of work

1047

Improving Streaming Graph Processing Performance using Input Knowledge MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0.8

0.85

0.9

0.95

1

10 20 35 65 90 140 240 465 770

2 4 8 16 32 64 128 256 512A
B

R
 d

ec
is

io
n

ac
cu

ra
cy

top value = TH; bottom value = λ

(a)

0

0.5

1

1.5

2

sp
ee

du
p

in
 u

pd
at

e
pe

rfo
rm

an
ce

n = 10 n = 100

average flickr-
500K

yt-100K stack-
500K

(b)

Figure 18: (a) ABR accuracy as a function of λ-TH combina-
tion. (b) Sensitivity of update performance to n.

(cacheline access + cacheline search), ensuring that non-uniform
work distribution is not the most significant performance limiter
for HAU (Table 3 shows HAU’s existing design can achieve on aver-
age 2.6× update performance improvement). First, our update task
assignment ensures that 98%-99% of the accessed edge data cache-
lines hit in the local core tile (Fig. 20), eliminating straggling due
to more expensive remote cache accesses. In fact, HAU eliminates
all remote cache accesses that would otherwise be present in the
baseline software updates. Second, specialized logic in the cache
controller eliminates the overheads of several CPU instructions
for searches, limiting straggling due to time-consuming searches.
We believe that, in future, HAU can easily be optimized with well-
known load balancing schemes such as work-stealing [15]. Finally,
Fig. 20 shows the impact of using NOC for update task distribution.
The increase in average packet latency is within 10%, and some
cores also experience a decrease in packet delay, depending on the
relative change in the number of different types of packets.

0

200000

400000

600000

800000

12800

13000

13200

13400

13600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nu
m

be
r o

f e
dg

e
da

ta
 c

ac
he

lin
es

nu
m

be
r o

f
up

da
te

 ta
sk

s

core ID

update tasks edge data cachelines

Figure 19: Work distribution among cores in HAU

Impact of other data structures: The baseline (i.e., without RO)
of some reordering-friendly cases performs better with Degree-
Aware Hashing (DAH) than with Adjacency List (AS). However, for
these cases, the performance of AS with batch reordering is on par
with the performance of DAH (e.g., for wiki-100K, AS with batch
reordering provides 1.8× speedup over AS, whereas DAH provides
1.95× speedup over AS. Note that AS with batch reordering and
search coalescing provides 2.1× speedup and outperforms DAH
performance). However, applying batch reordering degrades the

-10

-5

0

5

10

98

98.5

99

99.5

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

in
cr

ea
se

 in
 a

vg
 p

ac
ke

t
la

te
nc

y
(%

)

lo
ca

l/r
em

ot
e

ac
ce

ss
es

 (%
)

core ID

% edge data cachelines from local core tile in HAU
% reduction in remote cache accesses in HAU
% increase in average packet latency

Figure 20: Remote cache accesses and NOC performance

performance of the remaining cases (e.g, lj, patents, etc.) where AS
is the best data structure. Hence, we propose ABR which helps a
system maintain only one data structure with an effective adaptive
technique based on input characteristics.

Discussion of Recent Streaming Graph Frameworks: This paper
focuses on optimizing batch reordering (RO) for streaming graphs
based on input knowledge. Recent streaming graph frameworks
such as GraphOne [42] and Aspen [26] use RO among other features
that further improve streaming graph performance. GraphOne [42]
uses RO (referred to as edge sharding) in addition to dual versioning,
multi-level storage for edge and adjacency lists, optimized memory
allocation based on cachelines, and data access at two different
granularities. Aspen [26] uses a new compressed functional tree
data structure (C-tree) where batch reordering is performed during
updates, in addition to data compression (to optimize storage) and
the use of flat snapshots (to optimize edge access latency). Imple-
menting all these optimizations as part of our baseline will have
substantial impact on streaming graph performance which will
change our speedup results. For example, dual versioning in Gra-
phOne would overlap some of the update latency with compute
latency. Aspen’s focus is to provide concurrent computations and
graph updates. Unfortunately, since these optimizations target both
the update and compute phases and overlap their latencies, it is
hard to isolate their impact on just the update phases of streaming
graphs. For example, Aspen’s results on BFS [26] shows a 3% latency
increase for concurrent updates and computes compared to latency
with no updates. So just optimizing the update phase (our focus in
this paper) may have a lower impact on performance in this case.
However, our mechanisms would still provide significant speedups
in cases where updates are dominant, or for graph algorithms and
applications where computations cannot execute concurrently with
updates. Furthermore, optimizations in prior work did not consider
input knowledge to improve update performance. We focus on the
batch reordering optimization in this work to gain insight about
the impact of input knowledge.

7 CONCLUSION
We propose input-aware software and hardware solutions to im-
prove the performance of streaming graph workloads. Evaluated
across 260 workloads, our proposed techniques provide on average
4.55× and 2.6× speedup in graph update for different input types
(on top of eliminating the performance degradation from input-
oblivious batch reordering). The graph compute performance is
improved by 1.26× (up to 2.7×).

1048

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Abanti Basak, ZhengQu, Jilan Lin, Alaa Alameldeen, Zeshan Chishti, Yufei Ding, and Yuan Xie

ACKNOWLEDGMENTS
We thank the anonymous reviewers and the anonymous shepherd
for their valuable feedback. This work was supported in part by
NSF 1816833.

REFERENCES
[1] [n. d.]. https://www.darpa.mil/program/hierarchical-identify-verify-exploit.
[2] [n. d.]. Laboratory for Web Algorithms. http://law.di.unimi.it/datasets.php.
[3] 2017. https://www.boost.org/doc/libs/1_67_0/libs/sort/doc/html/sort/parallel/

parallel_stable_sort.html.
[4] 2019. DARPA ERI: HIVE and Intel PUMA Graph Processor. https://fuse.wikichip.

org/news/2611/darpa-eri-hive-and-intel-puma-graph-processor/.
[5] 2020. https://graphchallenge.mit.edu/darpa-hive.
[6] 2020. https://software.intel.com/en-us/node/506191.
[7] Masab Ahmad, Halit Dogan, Christopher J Michael, and Omer Khan. 2019. Het-

eromap: A runtime performance predictor for efficient processing of graph ana-
lytics on heterogeneous multi-accelerators. In 2019 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE, 268–281.

[8] Masab Ahmad and Omer Khan. 2016. Gpu concurrency choices in graph analytics.
In 2016 IEEE International Symposium onWorkload Characterization (IISWC). IEEE,
1–10.

[9] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2016. A scalable processing-in-memory accelerator for parallel graph processing.
ACM SIGARCH Computer Architecture News 43, 3 (2016), 105–117.

[10] Sam Ainsworth and Timothy M. Jones. 2016. Graph Prefetching Using Data
Structure Knowledge. In Proceedings of the 2016 International Conference on
Supercomputing (ICS ’16). ACM, New York, NY, USA, Article 39, 11 pages. https:
//doi.org/10.1145/2925426.2926254

[11] Vignesh Balaji and Brandon Lucia. [n. d.]. When is graph reordering an optimiza-
tion? studying the effect of lightweight graph reordering across applications and
input graphs. In 2018 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 203–214.

[12] Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie, Li Zhao,
Xiaowei Jiang, and Yuan Xie. 2019. Analysis and Optimization of the Memory
Hierarchy for Graph ProcessingWorkloads. In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 373–386. https://doi.org/10.
1109/HPCA.2019.00051

[13] Abanti Basak, Jilan Lin, Ryan Lorica, Xinfeng Xie, Zeshan Chishti, Alaa
Alameldeen, and Yuan Xie. 2020. SAGA-Bench: Software and Hardware Char-
acterization of Streaming Graph Analytics Workloads. In IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).

[14] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[15] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multithreaded
computations by work stealing. Journal of the ACM (JACM) 46, 5 (1999), 720–
748.

[16] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A Large Time-Aware
Graph. SIGIR Forum 42, 2 (2008), 33–38.

[17] Anna D Broido and Aaron Clauset. 2019. Scale-free networks are rare. Nature
communications 10, 1 (2019), 1–10.

[18] Federico Busato, Oded Green, Nicola Bombieri, and David A. Bader. 2018. Hornet:
An Efficient Data Structure for Dynamic Sparse Graphs and Matrices on GPUs.
In 2018 IEEE High Performance extreme Computing Conference (HPEC). 1–7. https:
//doi.org/10.1109/HPEC.2018.8547541

[19] György Buzsáki and Kenji Mizuseki. 2014. The log-dynamic brain: how skewed
distributions affect network operations. Nature Reviews Neuroscience 15, 4 (2014),
264–278.

[20] Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos. 2012. Facilitating real-
time graph mining. In Proceedings of the fourth international workshop on Cloud
data management. ACM, 1–8.

[21] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the Level of Abstraction for Scalable andAccurate ParallelMulti-Core Simulations.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 52:1–52:12.

[22] Meeyoung Cha, Alan Mislove, and Krishna P. Gummadi. 2009. A Measurement-
driven Analysis of Information Propagation in the Flickr Social Network. In
In Proceedings of the 18th International World Wide Web Conference (WWW’09).
Madrid, Spain.

[23] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph: taking
the pulse of a fast-changing and connected world. In Proceedings of the 7th ACM
european conference on Computer Systems. ACM, 85–98.

[24] Guohao Dai, Tianhao Huang, Yu Wang, Huazhong Yang, and John Wawrzynek.
2019. HyVE: Hybrid vertex-edge memory hierarchy for energy-efficient graph
processing. IEEE Trans. Comput. 68, 8 (2019), 1131–1146.

[25] William James Dally and Brian Patrick Towles. 2004. Principles and practices of
interconnection networks. Elsevier.

[26] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-latency Graph
Streaming Using Compressed Purely-functional Trees. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2019). ACM, New York, NY, USA, 918–934. https://doi.org/10.1145/3314221.
3314598

[27] David Ediger, Rob McColl, Jason Riedy, and David A Bader. 2012. Stinger: High
performance data structure for streaming graphs. In 2012 IEEE Conference on
High Performance Extreme Computing. IEEE, 1–5.

[28] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018. Pixie: A System for Rec-
ommending 3+ Billion Items to 200+ Million Users in Real-Time. In Proceedings of
the 2018 World Wide Web Conference (WWW ’18). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, Switzerland,
1775–1784. https://doi.org/10.1145/3178876.3186183

[29] Young-Ho Eom and Hang-Hyun Jo. 2015. Tail-scope: Using friends to estimate
heavy tails of degree distributions in large-scale complex networks. Scientific
reports 5 (2015), 09752.

[30] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. 2018. Spot-
light: Detecting anomalies in streaming graphs. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM,
1378–1386.

[31] Priyank Faldu, Jeff Diamond, and Boris Grot. 2020. Domain-Specialized Cache
Management for Graph Analytics. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 234–248.

[32] Guanyu Feng, Zixuan Ma, Daixuan Li, Xiaowei Zhu, Yanzheng Cai, Wentao
Han, and Wenguang Chen. 2020. RisGraph: A Real-Time Streaming System for
Evolving Graphs. arXiv preprint arXiv:2004.00803 (2020).

[33] Guoyao Feng, Xiao Meng, and Khaled Ammar. [n. d.]. DISTINGER: A distributed
graph data structure for massive dynamic graph processing. In 2015 IEEE Inter-
national Conference on Big Data (Big Data). IEEE, 1814–1822.

[34] Oded Green and David A Bader. 2016. cuSTINGER: Supporting dynamic graph al-
gorithms for GPUs. In 2016 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 1–6.

[35] Ajeet Grewal, Jerry Jiang, Gary Lam, Tristan Jung, Lohith Vuddemarri, Quannan
Li, Aaditya Landge, and Jimmy Lin. 2018. Recservice: Distributed Real-time
Graph Processing at Twitter. In Proceedings of the 10th USENIX Conference on
Hot Topics in Cloud Computing (HotCloud’18). USENIX Association, Berkeley, CA,
USA, 3–3. http://dl.acm.org/citation.cfm?id=3277180.3277183

[36] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A high-performance and energy-efficient accel-
erator for graph analytics. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 1–13.

[37] Wentao Han, YoushanMiao, Kaiwei Li, MingWu, Fan Yang, Lidong Zhou, Vijayan
Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: a graph engine
for temporal graph analysis. In Proceedings of the Ninth European Conference on
Computer Systems. ACM, 1.

[38] Keita Iwabuchi, Scott Sallinen, Roger Pearce, Brian Van Essen, Maya Gokhale, and
Satoshi Matsuoka. 2016. Towards a distributed large-scale dynamic graph data
store. In 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 892–901.

[39] Anand Iyer, Li Erran Li, and Ion Stoica. 2015. Celliq: Real-time cellular network
analytics at scale. In 12th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 15). 309–322.

[40] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. 2016. Time-
evolving graph processing at scale. In Proceedings of the Fourth International
Workshop on Graph Data Management Experiences and Systems. ACM, 5.

[41] Wole Jaiyeoba and Kevin Skadron. 2019. GraphTinker: A High Performance
Data structure for Dynamic Graph Processing. In 2019 IEEE International Parallel
Distributed Processing Symposium (IPDPS).

[42] Pradeep Kumar and H Howie Huang. 2019. GraphOne: A data store for real-time
analytics on evolving graphs. In 17th {USENIX} Conference on File and Storage
Technologies ({FAST} 19). 249–263.

[43] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[44] Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-driven syn-
chronous processing of streaming graphs. In Proceedings of the Fourteenth EuroSys
Conference 2019. 1–16.

[45] Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali
Annavaram. 2019. GraphSSD: graph semantics aware SSD. In Proceedings of the
46th International Symposium on Computer Architecture. 116–128.

[46] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sanchez. 2018. Exploiting locality in graph analytics through hardware-
accelerated traversal scheduling. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1–14.

[47] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI: Archi-
tectural Support for Synchronization- and Bandwidth-Efficient Commutative
Scatter Updates. In 2019 52nd Annual IEEE/ACM International Symposium on

1049

https://www.darpa.mil/program/hierarchical-identify-verify-exploit
http://law.di.unimi.it/datasets.php
https://www.boost.org/doc/libs/1_67_0/libs/sort/doc/html/sort/parallel/parallel_stable_sort.html
https://www.boost.org/doc/libs/1_67_0/libs/sort/doc/html/sort/parallel/parallel_stable_sort.html
https://fuse.wikichip.org/news/2611/darpa-eri-hive-and-intel-puma-graph-processor/
https://fuse.wikichip.org/news/2611/darpa-eri-hive-and-intel-puma-graph-processor/
https://graphchallenge.mit.edu/darpa-hive
https://software.intel.com/en-us/node/506191
https://doi.org/10.1145/2925426.2926254
https://doi.org/10.1145/2925426.2926254
https://doi.org/10.1109/HPCA.2019.00051
https://doi.org/10.1109/HPCA.2019.00051
https://doi.org/10.1109/HPEC.2018.8547541
https://doi.org/10.1109/HPEC.2018.8547541
https://doi.org/10.1145/3314221.3314598
https://doi.org/10.1145/3314221.3314598
https://doi.org/10.1145/3178876.3186183
http://dl.acm.org/citation.cfm?id=3277180.3277183
http://snap.stanford.edu/data

Improving Streaming Graph Processing Performance using Input Knowledge MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Microarchitecture (MICRO-52),. IEEE.
[48] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 439–455.

[49] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. 2017. Graphpim: Enabling instruction-level pim offloading in
graph computing frameworks. In 2017 IEEE International symposium on high
performance computer architecture (HPCA). IEEE, 457–468.

[50] Hamza Omar, Masab Ahmad, and Omer Khan. 2017. GraphTuner: An input
dependence aware loop perforation scheme for efficient execution of approx-
imated graph algorithms. In 2017 IEEE International Conference on Computer
Design (ICCD). IEEE, 201–208.

[51] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,
Steven Burns, and Ozcan Ozturk. 2016. Energy efficient architecture for graph
analytics accelerators. In 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA). IEEE, 166–177.

[52] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence.

[53] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin,
and Jingren Zhou. 2018. Real-time constrained cycle detection in large dynamic
graphs. Proceedings of the VLDB Endowment 11, 12 (2018), 1876–1888.

[54] Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. 2020. GraphPulse: An
Event-Driven Hardware Accelerator for Asynchronous Graph Processing. In 2020
52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
53),. IEEE.

[55] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive GraphAnalytics and Visualization. InAAAI. http://networkrepository.
com

[56] A. Samara and J. Tuck. 2020. The Case for Domain-Specialized Branch Predictors
for Graph-Processing. IEEE Computer Architecture Letters 19, 2 (2020), 101–104.
https://doi.org/10.1109/LCA.2020.3005895

[57] Albert Segura, Jose-Maria Arnau, and Antonio González. 2019. SCU: a GPU
stream compaction unit for graph processing. In 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 424–435.

[58] Dipanjan Sengupta and Shuaiwen Leon Song. 2017. Evograph: On-the-fly efficient
mining of evolving graphs on gpu. In International Supercomputing Conference.
Springer, 97–119.

[59] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L Willke, Jeffrey
Young, Matthew Wolf, and Karsten Schwan. 2016. Graphin: An online high
performance incremental graph processing framework. In European Conference
on Parallel Processing. Springer, 319–333.

[60] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017. Accelerating dynamic
graph analytics on gpus. Proceedings of the VLDB Endowment 11, 1 (2017), 107–
120.

[61] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy
Lin. 2016. GraphJet: real-time content recommendations at twitter. Proceedings
of the VLDB Endowment 9, 13 (2016), 1281–1292.

[62] Feng Sheng, Qiang Cao, Haoran Cai, Jie Yao, and Changsheng Xie. 2018. GraPU:
Accelerate Streaming Graph Analysis Through Preprocessing Buffered Updates.
In Proceedings of the ACM Symposium on Cloud Computing (SoCC ’18). ACM, New
York, NY, USA, 301–312. https://doi.org/10.1145/3267809.3267811

[63] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A system
for real-time iterative analysis over evolving data. In Proceedings of the 2016
International Conference on Management of Data. ACM, 417–430.

[64] Shreyas G Singapura, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K Prasanna.
2017. OSCAR: Optimizing SCrAtchpad reuse for graph processing. In 2017 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[65] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018. GraphR:
Accelerating graph processing using ReRAM. In 2018 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE, 531–543.

[66] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. 2009.
On the Evolution of User Interaction in Facebook. In Proceedings of the 2nd ACM
SIGCOMMWorkshop on Social Networks (WOSN’09).

[67] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2016. Synergistic analysis of evolving
graphs. ACM Transactions on Architecture and Code Optimization (TACO) 13, 4
(2016), 32.

[68] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations. ACM SIGOPS
Operating Systems Review 51, 2 (2017), 237–251.

[69] Mingyu Yan, Xing Hu, Shuangchen Li, Abanti Basak, Han Li, Xin Ma, Itir Akgun,
Yujing Feng, Peng Gu, Lei Deng, et al. 2019. Alleviating irregularity in graph
analytics acceleration: A hardware/software co-design approach. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
615–628.

[70] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing communi-
cation for PIM-based graph processing with efficient data partition. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 544–557.

[71] Jinhong Zhou, Shaoli Liu, Qi Guo, Xuda Zhou, Tian Zhi, Daofu Liu, Chao Wang,
Xuehai Zhou, Yunji Chen, and Tianshi Chen. 2017. Tunao: A high-performance
and energy-efficient reconfigurable accelerator for graph processing. In 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 731–734.

[72] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang,
and Xuehai Qian. 2019. GraphQ: Scalable PIM-based Graph Processing. In 2019
52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
52),. IEEE.

1050

http://networkrepository.com
http://networkrepository.com
https://doi.org/10.1109/LCA.2020.3005895
https://doi.org/10.1145/3267809.3267811

	Abstract
	1 Introduction
	2 Novelty and Impact
	3 Background
	3.1 Streaming Graph Processing
	3.2 Batch Reordering (RO) Basics

	4 Input-Aware Streaming GraphUpdates
	4.1 Characterization of RO PerformanceTrade-offs
	4.2 Adaptive Batch Reordering (ABR)
	4.3 Update Search Coalescing (USC)
	4.4 Hardware-Accelerated Update (HAU)
	4.5 Input-Aware SW/HW Dynamic Execution

	5 Input-Aware Streaming GraphComputation
	6 Evaluation
	6.1 Experimental Setup and Methodology
	6.2 Experimental Results

	7 Conclusion
	Acknowledgments
	References

