
MithriLog: Near-Storage Accelerator
for High-Performance Log Analytics

Seongyoung Kang
seongyk3@uci.edu

University of California, Irvine
USA

Jiyoung An
jiyouna2@uci.edu

University of California, Irvine
USA

Jinpyo Kim
jkim@vmware.com

VMware
USA

Sang-Woo Jun
swjun@ics.uci.edu

University of California, Irvine
USA

ABSTRACT
This paper presents MithriLog, a log analytics platform with near-
storage accelerators for high-performance, cost- and power-efficient
unstructured log processing.MithriLog offloads log analytics queries
to an efficient near-storage FPGA implementation of a token query-
ing engine, which can take advantage of the high internal band-
width of storage devices within the available chip resource limi-
tations. This engine is flexible enough to handle complex queries
including template search based on user-defined tree-based tem-
plate libraries, as well as concurrent execution of multiple queries.
MithriLog also uses a log-optimized version of a simple, high-
throughput compression algorithm in order to further improve
the effective bandwidth of backing storage.

Evaluated with complex search queries on large real-world log
datasets, MithriLog achieves an order of magnitude higher perfor-
mance over software systems, even against more expensive ma-
chines with enough DRAM to stage the entire dataset. Furthermore,
MithriLog delivers constant performance regardless of query com-
plexity, resulting in further improved performance benefits with
more complex queries. By replacing costly DRAM with storage and
power-hungry CPU threads with FPGAs, MithriLog dramatically
improves the cost-effectiveness and accessibility of log analytics.
ACM Reference Format:
SeongyoungKang, JiyoungAn, JinpyoKim, and Sang-Woo Jun. 2021.MithriLog:
Near-Storage Accelerator for High-Performance Log Analytics. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3466752.3480108

1 INTRODUCTION
Collecting and analyzing log data in both cloud and edge deploy-
ments is a critical tool for large-scale systemmanagement including
monitoring and insight [4, 47, 52, 82], as well as detecting abnormal
behavior and security issues [12, 18, 34, 63, 79], and even program
verification [1]. As such, logs are important components in many

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8557-2/21/10.
https://doi.org/10.1145/3466752.3480108

computer systems, especially in enterprise deployments [7, 70].
As hardware and software systems become exponentially more
complex, the rate and volume of log collection is also increasing
rapidly [19]. Due to their sheer size and rate of collection, typical
use pattern of logs involves firstly storing everything to the storage
and then running queries [66, 68].

One of the biggest hurdles of effective log analytics is the typi-
cally unstructured nature of logs [12, 19, 46, 63, 70]. Logs of interest
are typically generated by wide range of independent software and
hardware sources [46], via various tools spanning from prinf()
and System.out() to specialized logging libraries [9, 14]. The un-
structured nature of log text makes it a bad fit for regularly struc-
tured relational databases and its optimizations [12, 46, 63]. The
algorithmic complexity of processing unstructured text becomes
a primary bottleneck in scaling the performance of log analyt-
ics [53, 54, 70], making it a natural target for improvement.

Figure 1 shows a subset of such a real-world log file from a super-
computing environment [47, 48]. Unlike relational database tables
with pre-determined schemas, each line in an unstructured log can
have its own format and structure, as they are often generated
by different programs using different templates for encoding rele-
vant information into human-readable text. This renders structured
table-based approaches ineffective, and the first step in automated
log analytics is typically parsing unstructured log text to determine
which template each log line belongs to. The example in Figure 1
shows three such templates, with underlines for key words — or
key terms or tokens — used for template identification. For example,
a line with terms RAS, KERNEL, and INFO, but not FATAL can be
determined as belonging to template 2. In the rest of this paper,
term and token are used interchangeably to refer to a textual word
which is separated by delimiters. A library of templates for pars-
ing purposes can be hand-constructed by a programmer or by an
algorithm, and can contain hundreds of templates [41, 84]. The
example templates have been automatically extracted by a tem-
plate tree-based algorithm, which we will describe in more depth
in Section 4.3.

In this paper, we present the design and evaluation of MithriLog,
a log analytics system with near-storage hardware acceleration.
Based on the observation that importantworkloads such as template
identification works in term units instead of individual characters,
MithriLog implements a hardware accelerator for complex token-
based line-wise log filtering based on cuckoo hashing, instead of a

434

https://doi.org/10.1145/3466752.3480108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3466752.3480108
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3466752.3480108&domain=pdf&date_stamp=2021-10-17


17465:- […] 2005-06-04-23.50.37.944342 R24-M0-NC-I:J18-U01 RAS APP FATAL ciod: Error loading /home/[…]: invalid or […]

17466:- […] 2005-06-04-23.50.38.060253 R20-M1-N4-I:J18-U11 RAS APP FATAL ciod: Error loading /home/[…]: invalid or […]

17467:- […] 2005-06-05-00.08.05.726278 R25-M0-N3-C:J09-U11 RAS KERNEL INFO generating core.2682

17468:- […] 2005-06-05-00.08.05.746569 R25-M0-N3-C:J15-U11 RAS KERNEL INFO generating core.2808

[omitting 272 lines]

17741:- […] 2005-06-05-00.08.13.345847 R20-M0-N2-C:J14-U11 RAS KERNEL INFO generating core.3756

17742:KERNDTLB […] 2005-06-05-00.08.13.410695 R20-M0-N2-C:J10-U11 RAS KERNEL FATAL data TLB error interrupt

17743:- […] 2005-06-05-00.08.13.433576 R20-M0-N2-C:J06-U11 RAS KERNEL INFO generating core.3758

17744:- […] 2005-06-05-00.08.13.453844 R20-M0-N2-C:J12-U11 RAS KERNEL INFO generating core.3629

17745:KERNDTLB […] 2005-06-05-00.08.13.577322 R20-M0-N2-C:J14-U01 RAS KERNEL FATAL data TLB error interrupt

Template 1

Template 2

Template 3

Figure 1: Example logs from the HPC4 dataset [47], with highlights for automatically identified keywords and templates [84].

more general-purpose regular expression matching. As a result, it
can take advantage of the highly parallel hash access performance
of hardware accelerators to reach almost 12 GB/s of throughput on
an FPGA prototype.

Since such a high bandwidth far exceeds the performance of the
PCIe-attached NVMe storage on our prototype system, MithriLog
introduces two options to improve the effective bandwidth of back-
ing storage, resulting in balanced performance between system
components. First, MithriLog is configured as a near-storage accel-
erator taking advantage of the relatively high internal bandwidth
of PCIe-attached SSDs compared to the PCIe or network band-
width [5, 27]. It also uses a log-optimized compression algorithm
fast enough to further improve the effective bandwidth of storage,
saturating accelerator performance using the same back-end stor-
age bandwidth. We present a novel, hardware-optimized compres-
sion algorithm for this purpose, that trades compression efficiency
for high performance and low hardware overhead.

The design goal of the filtering engine and compression algo-
rithm was to enable efficient hardware implementation. As a result,
the resulting system is able to achieve significantly higher per-
formance per chip resource compared accelerators implementing
general-purpose approaches designed for software implementation,
such as regular expression parsers [68] or LZ4 [38] compression.

MithriLog also includes software support including an in-storage
inverted index implementation tuned for accelerator performance,
allowing it to run real-world queries and evaluate its realistic end-
to-end performance against popular commercial systems such as
Splunk [62]. We evaluate the performance of MithriLog on various
queries for log discovery and iterative exploration on real-world
logs collected from supercomputers [47], using hundreds of queries
of variable complexity, algorithmically generated from the datasets
using the FT-Tree template extraction method [84, 85]. Queries
generated by FT-Tree are based on a log template library using a
frequency tree, and we demonstrate that the token filter engine is
flexible enough to support multiple such queries with hundreds
of terms, executing concurrently at no performance loss. Com-
paring the performance of the token filter as well as end-to-end
performance, MithriLog demonstrates over an order of magnitude
performance improvements over off-the-shelf systems such as Mon-
etDB and Splunk, while reducing the overall power budget of the
system thanks to power-efficient acceleration.

While queries evaluated for this work focus on the exploration
and discovery aspect of log analytics, more complex analytical oper-
ations such as principal component analysis [79] or clustering [36]

can also be implemented to benefit from the fast data extraction
capability of MithriLog.

This paper claims the following contributions:

• Design of a flexible, high-performance token filtering en-
gine for unstructured data based on cuckoo hashing, and
its evaluation on complex queries such as template-based
queries.

• Design and evaluation of architectural methods of improv-
ing the effective bandwidth of storage, including the near-
storage acceleration configuration and log-optimized com-
pression accelerators.

• Detailed analysis of our approaches in the context of large
unstructured log queries, demonstrating good end-to-end
performance and power efficiency against commercial off-
the-shelf log analytics systems.

The rest of this paper is organized as follows: Section 2 presents
relevant background and related works, and Section 3 describes
the overall system architecture of a complete MithriLog system.
The next three sections describe the prominent components of
MithriLog in detail. Section 4 presents the design of the log token fil-
tering engine, and Section 5 presents our log- and FPGA-optimized
compression algorithm based on LZRW1. Section 6 describes the in-
storage inverted index design. Section 7 presents the performance,
cost, and power-efficiency evaluations of MithriLog. We conclude
with future work in Section 8.

2 RELATEDWORK
2.1 Log Analytics
2.1.1 Log Analytics Systems. Log analytics is typically considered
not a good fit with conventional relational database management
systems (RDBMS) for many reasons, including the unstructured
nature of logs [19, 46, 70, 73], as well as the high overhead of ACID
compliance, which is of less importance for log analytics [40, 72, 81].
As a result, log analytics software is designed specifically to handle
unstructured logs.

Multiple off-the-shelf products support various aspects of log
collection, archiving, and analytics. Examples include Splunk [62],
Facebook LogDevice [7], Apache Kafka [10], Datadog [11], and
Elasticsearch [83]. Most of these tools support collecting, parsing,
indexing, querying, as well as some aggregation and visualization
functionality. These systems typically implement log-optimized
data structures such as inverted indices [26, 62, 83].

For use cases that require complex, application-specific ana-
lytics functions that are outside the scope of these tools, many

435



custom log analytics systems have been built and deployed. Pop-
ular platforms for system development include various NoSQL
databases [39, 52, 81], as well as distributed computing frameworks
such as Hadoop [67] and Spark [52, 72].

2.1.2 Hardware Accelerators. Application-specific hardware accel-
erators, especially those using easily deployable Field-Programmable
Gate Arrays (FPGAs), are under active research due to their poten-
tial to reach superior performance and power efficiency compared
to software running on general-purpose processors [3, 50, 64, 71].

HAWK and HARE are a family of accelerators for unstructured
log analytics [13, 68], which use a parallel implementation of fi-
nite state machines to match string tokens at fast, deterministic
rate. HAWK and HARE’s projected ASIC implementation at 1 GHz
can achieve a deterministic throughput of 32 GB/s for token-based
search into unstructured logs. However, due to their complexity
the FPGA implementation had to reduce parallelism to fit on chip,
resulting in only 400 MB/s while consuming 12% of an Intel Ar-
ria V FPGA. It also did not take indexing structures into account,
restricting itself to full scans into the dataset.

A great amount of research also focuses on FPGA implementa-
tion of regular expressions, a key component in many unstructured
log analytics methods [23, 58, 80]. Such accelerators implemented
on CPU-FPGA hybrid platforms have been integrated into DBMSs
to achieve over an order of magnitude performance improvement
in query performance [59], demonstrating string matching is a
prominent performance bottleneck of database systems.

Other accelerator designs exploring similar computation patterns
include pattern recognition from event streams [75] which also used
an FPGA implementation of finite state machines to achieve net-
work speeds. In the realm of semi-structured data, FPGAs have been
used to parse and filter XML data using regular expressions [43],
tree matching [45], and more.

2.1.3 Log Template Extraction. An important class of log analytics
is template extraction, where patterns in unstructured logs are ex-
tracted in order to recognize log lines that are generated from the
same template. Once a template library is extracted, log exploration
and analytics can be reduced to focusing on their variable param-
eters. There are many proposed methods on template extraction.
Some methods use a prefix tree based method, which extracts more
common terms and organizes them into a tree where terms appear-
ing earlier in a line are closer to the root [6, 15, 17]. Some methods
use the frequency tree method, where positions of terms in each
line are ignored, and terms which globally occur more commonly
are placed closer to the root of the parse tree [16, 84, 85]. Other
methods have used genetic algorithms to discover common pat-
terns [42]. Figure 1 highlights the automatically extracted templates
and their keywords, discovered by the frequency tree-based FT-tree
algorithm [84, 85].

2.1.4 Log Compression. Compressing logs is also an important
topic due to the sheer size of logs.While general-purpose algorithms
such as DEFLATE [49] have also been used, many log-specific al-
gorithms have also been proposed. Many such algorithms take
advantage of the repeated patterns across log lines, and improve
compression by aligning at line boundaries [55, 60], discovering
consistent patterns across lines [37], and clustering lines of similar

structure [8]. The existence of repeated patterns across log lines,
even across different templates, can be seen in Figure 1. Parts of
time stamps and template messages can be efficiently compressed
with this insight. For regularly structured data, column-wise com-
pression also has shown good performance [35].

2.2 Near-Storage Acceleration
For large-volume data typically stored in an array of secondary
storage, placing computation on the storage itself has shown to
be beneficial. Near-storage processing can reduce storage access
latency and data movement overhead [30], as well as take advan-
tage of the relatively high internal bandwidth compared to the
economically provisioned communications link [5, 27]. As storage
performance scaling outpaces interconnect and software perfor-
mance [29], near-storage acceleration that removes these overheads
is expected to continuously become more important.

The new system configuration is also a good opportunity to
introduce power-efficient hardware accelerators [5, 24, 33] along
with the new programming model. The near-storage paradigm
has demonstrated performance, cost, and power efficiency benefits
across many application domains, including machine learning [28],
graph analytics [25, 32], and relational database queries [65, 78].
Many near-storage computation platforms exist, including the com-
mercially released SmartSSD from Samsung [33], MIT’s BlueDBM
prototyping platform [24], and others [69].

3 SYSTEM ARCHITECTURE
Figure 2 shows the overall architecture of the MithriLog system.
The system configuration consists of an off-the-shelf host server
machine augmented with the MithriLog storage device plugged
into PCIe. The storage device is a Solid-state Storage Device (SSD)
equippedwith decompressors and text filtering engines programmed
onto a near-storage accelerator, taking advantage of the typically
higher internal bandwidth of the storage device compared to the
PCIe link. We assume the storage medium is NAND-flash, since it
is the most prominent large-scale SSD technology. However, the
design of MithriLog is still applicable to other high-performance
solid-state storage technologies. Software on the host consists of
the accelerator-aware log analytics software, which also includes
an index structure for effective use of storage and computation re-
sources. The inverted index is designed to minimize host memory
usage during ingestion while still maintaining maximum storage
performance utilization.

Software

Index

Host MithriLog Storage

Page

Req

Page

Resp

PCIe

Filtering Engine

Decompressor

SSD

Figure 2: System architecture with MithriLog.

436



When querying, host software first sends configuration com-
mands to the accelerator to program it with the tokens of interest,
if any, and what to do with them. Once the accelerator is configured,
the software can send page read requests to the storage device nor-
mally. For each query, the software can configure the decompressor
and filter engine pipeline to either forward the raw page directly to
host without doing any special processing, forward the page after
decompressing, or after decompressing and also passing through
the filtering engine. The resulting number of pages returned to host
software may differ from the originally requested number, and the
software is aware of this. The resulting stream of pages consisting
of filtered text can be further processed by the host software to
perform either complex analytics, or to simply display for the user
to explore.

The filtering engine uses multiple pipelines of cuckoo hashing-
based filters to implement wire-speed filtering of complex boolean
combinations of tokens, within the chip resource limitations. The
abstraction is flexible enough to program not only straightforward
filtering based on token presence, but also more complex queries
based on log templates. Many design decisions within the accelera-
tor implementation itself, such as datapath width, are also driven
by performance per chip resource usage.

The following sections present details about the design and im-
plementations of the major system components of MithriLog. More
details about the filtering engine are given in Section 4. The low-
overhead, high-performance log-optimized compression algorithm
and its accelerator is described in Section 5, and the in-storage index
structure in Section 6.

4 TOKEN FILTERING ENGINE
The heart of the MithriLog system is the near-storage accelerator
for filtering tokens in unstructured text. AMithriLog storage instan-
tiates multiple filter pipelines according to performance goals and
resource availability. For example, our FPGA prototype instantiates
four pipelines to achieve near wire-speed, almost 12 GB/s on our
hardware platform. More details regarding this design decision can
be found in Section 7.2.

The token filtering engine compares unstructured log text line-
by-line against a complex query consisting of boolean combinations
of up to hundreds of terms. The token filtering engine supports
queries expressed in the form of unions (the union set, ∪) of one
or more intersection sets (∩) each consisting of one or more tokens,
where each term can also be negated (¬). An example of such a
query is shown in Equation 1, which is a single union set composed
of two intersection sets. We will show that this is a flexible enough
representation for many important applications including template-
based filtering. This format can also be used to either encode one
complex query, or to evaluate multiple queries in parallel by joining
them with unions (∪).

(¬A ∩ B ∩C) ∪ (¬D ∩ ¬E ∩ F ∩G) (1)

Figure 3 describes the internal architecture of a filter pipeline,
which in turn includes multiple sub-modules working in parallel,
connected over wide datapaths. The datapath width is 128 bits in
our prototype implementation. This is a balance between higher

Tokenize

Tokenize

Tokenize

Hash 

Filter

Hash 

Filter

…

Tokenize

8 Tokenizers 2 Hash Filter1 Decompressor

Round-Robin 

Scatter

Round-Robin 

Gather

Round-Robin 

Gather

Decompressed line

Keep?
Decompress

Replicate

Figure 3: A token filter pipeline consists of multiple parallel
sub-modules to achieve wire-speed.

chip resource requirements of a wide bus, and the token length dis-
tribution statistics presented in Section 7.4. The figure also depicts
a decompressor module which will be presented in Section 5.

The token filter consists of two stages, the tokenizers, and hash
filters. The input to the system is first scattered round-robin to an
array of tokenizers, in textual line units. This process is made very
simple by making the decompressor emit line-aligned words, as
described in Section 5. The tokenized output is again collected by
the hash filters in the same, round-robin order to ensure correct
ordering. Hash filters evaluate the tokenized terms against queries
encoded as cuckoo hashes, and emit a stream of boolean values on
whether each line should be kept, or filtered out. The following
subsections describe these components in more detail.

4.1 Tokenizer Design
The filter pipeline uses an array of simple tokenizers operating in
parallel. After design-space exploration we designed our tokenizers
to ingest two bytes per cycle, as it showed better performance per
chip resource usage compared to designs processing one or four
bytes per cycle, due to clock speed and timing issues. Our prototype
instantiates eight such tokenizers per filter pipeline to achieve wire-
speed on the 128-bit (16 byte) datapath. Log data is scattered across
tokenizers line-by-line in a round-robin manner and gathered in
the same order, assuring in-order processing at the hash filter.

“R24-M0-NC-I:J18-U01 RAS APP FATAL […] directory”

R24-M0-NC-I:J18-

U01 RAS APP FATA

L…

…

R24-M0-NC-I:J18-

U01

RAS

APP

FATAL

directory

…      directory

…

Tokenize
Last of token

Last of line

Figure 4: The tokenizer emits each token aligned to the dat-
apath, along with two flags.

437



Figure 4 shows an example input and output for tokenizing a log
line. The input is simply each log line streamed over multiple cycles,
and the tokenizer emits a stream of tokens aligned to the datapath.
Each output token is tagged with two single-bit flags. One tells the
downstream hash filter if this token is the last of the current token,
and is used if a token is larger than the datapath of 16 bytes and
must be sent over multiple cycles. The other flag is set if this token
is the last of the current line.

Emitted tokens are aligned to the datapath, and tokens that
have less data than the datapath are padded with zero bytes. This
means the tokenizer output may suffer data amplification, where
the data rate of tokenized output may be larger than the original
data due to padding bytes. We will show in Section 7.4 that there
is typically a factor of two data amplification, driving our design
decision of having two downstream hash filter modules per pipeline
even though each is capable of sustaining wire-speed. As a result,
each filter pipeline is capable of typically achieving wire-speed
despite the data amplification, processing 16 bytes of unstructured
text per cycle. This is 3.2 GB/s of throughput per pipeline on our
prototype clocked at 200 MHz.

4.2 Hash Filter Design
4.2.1 Cuckoo Hashing. MithriLog uses cuckoo hashes [51] to eval-
uate tokens against multiple queries at wire-speed. Queries are
given to the accelerator in the form of hash tables, into which the
software has encoded one or more queries. The query also includes
a number of bitmaps, which is described in Section 4.2.3.

Cuckoo hashing, a variant of hash tables, resolves collisions by
using two hash functions instead of one. A token can be inserted
into any of the two hash function results, if one or more slots are
empty. If both locations are occupied, the value stored in one slot
is evicted to store the new value. The evicted value is moved to
its alternate location, in turn evicting the already stored value,
if any. Insertion can fail if this chain falls into an infinite loop,
meaning such a query cannot be offloaded to our accelerator and
must fall back to conventional software processing. However, hash
table construction should succeed for typical queries since cuckoo
hashes are known to typically succeed with load factor of 0.5 or
below [31, 56]. We over-provision our hash table resources for this
purpose.

Compared tomore general approaches such as regular expression
matching, a token-based filter requires much less chip resources per
unit bandwidth, which is critical for our goal of extracting the best
performance from storage devices. We present a detailed perfor-
mance evaluation in Section 7.4. While token-based filtering cannot
handle some queries such as those including substring matches, it
still supports enough important query classes to be useful.

The benefit of cuckoo hashes for encoding tokens is twofold:
First, hash lookups can be done in a single cycle using on-chip Block
RAM, unlike an array or tree. Second, because cuckoo hashing
statistically can achieve placement if the number of values is less
than half the hash table capacity [31], it is a more compact method
than a standard hash table which can fail placement at the first
hash collision.

4.2.2 Hash Table Structure. Figure 5 describes the structure of a
cuckoo hash table used by MithriLog. The hash table in our proto-
type implementation has 256 rows, and we demonstrate it is large
enough to support realistic queries. However, it is trivial to make
both it much larger using on-chip Block RAM resources.

Each table entry stores a token, an optional offset into the over-
flow table, and an array of flags. The overflow offset is used if the
token length is longer than the statically sized slot in the hash
table. In our prototype, each hash entry has 16 bytes provisioned
for tokens, which is the same as the datapath width. If the length
of a token is longer than these 16 bytes, the remainder of the token
is stored in contiguous entries in the overflow table, which the
overflow offset points to. The overflow table entries are also flagged
whether each entry is the last entry for this token.

The flag array consists of multiple pairs of valid and negative
flags. The valid flag specifies whether it is a valid entry in the cuckoo
hash, and the negative flag specifies whether this query term is
negative (¬), meaning this token should not exist in the log line.
Each pair of flags is used to encode whether a token exists in each of
the N intersection sets (∩). As a result, the number of intersection
sets MithriLog can support in a query is limited by the number
of flag pairs in the hash table. Our prototype provisions eight flag
pairs, supporting a union set (∪) of up to eight intersection sets.

“rhel_4_amd64/rel” addr …

…

Overflow BufferCuckoo Hash

“Valid” “Negative”

“IdoMarshalerRecv” 0 …

“open_demux” 0 …

“error” 0 …

“Memory” 0 …

“ease/build/panfs” 0

“/ips/pan_ips.c:1” 0

“43” 1

“Last”
Overflow offset

N (8)

Queries

R (256)

Rows

Figure 5: MithriLog achieves wire-speed token matching us-
ing a cuckoo hash, coupled with an overflow buffer for long
tokens.

4.2.3 Query Filtering Process. During querying, each token from
the tokenizer is hashed using the two hash functions in order to
access the hash tables, as well as the overflow table if the query
is longer than the datapath. The two hash entries are compared
against the input token, where at most one token will match. If no
entry matches, this input token can be ignored. If a match exists,
the flag array of the matched entry is used to update an array of
bitmaps used to keep track of whether all query terms in each
intersection set exist in the log line. This process is shown in more
detail in Figure 6, using a simple configuration with only three flag
pairs specifying three intersection sets. The query also includes
three bitmaps of size 256, which will be described in more detail
below.

For each log line, the engine keeps N bitmaps of width R. For
example, when using a hash table configuration with 256 entries
and three flag pairs, the engine will keep track of three bitmaps,

438



N Flag pairs from 

matched hash entry

(e.g., hash idx=2)

…

…

…

Bitmap for each

flag pair

…

…

…

Query bitmap

==?

Keep line if any bitmap

exactly matches

==?

==?

set if valid

256

Figure 6: One bitmap is used to keep track of whether each
intersection set in the query is satisfied. Example shows
three intersection sets in a hash table with 256 rows.

each with 256 bits. Each bitmap corresponds to an intersection set,
and each bit in the bitmap corresponds to an entry in the hash table.

Each input flag pair is first checked whether the valid flag is set.
If not, this token is of no interest to the query and is ignored. If the
valid flag is set, and the negative flag is also set, this line violates
the negative term condition, and the corresponding intersection set
is marked as not satisfied. If avalid flag is set and the negative bit is
not set, then this token is part of the query. The index of this token
in the hash table is used to update the bitmap of the corresponding
intersection set. For example, if the token is from entry number 2
in the hash table, and the first flag pair is valid but not negative, bit
number 2 of the first bitmap is set to 1.

After all tokens of a line has been processed, each line can be
filtered out without forwarding to software if one of two conditions
are met: First, all intersection sets violated the negative term con-
dition. Or, none of the bitmaps exactly match their corresponding
query bitmap, meaning one or more terms of the intersection set
does not exist in the input line. The query bitmap has bits set at all
cuckoo hash indices with both valid bit set and negative bit unset,
representing the positive terms in the intersection set that must be
satisfied. If any of the bitmaps is an exact match while not violating
the negative term condition, the log satisfies the query and can be
forwarded to software.

4.3 Use on Tree-Based Template Filtering
Our cuckoo hash-based filtering is flexible enough to support queries
beyond simple token presence, such as log filtering based on a
frequency tree-based template library. Specifically, we target log
templates based on the Frequent Pattern Tree (FP-Tree) [16], where
tokens that occur more frequently in the dataset are located closer
to the root node. Figure 7 shows a small example parse tree, where
the global frequency of token occurrence in descending order is
A,B,C,D,E.

Normally, determining whether a line of tokens belongs to a
template requires sorting the tokens according to global frequency,
and then traversing the parse tree, each of which is an expensive
operation. Instead, since we are targeting log search and explo-
ration, we can map multiple templates of interest into our unions
of intersections query format. For example, traversing the tree for

template 1 involves visiting A, and then B, but not visiting its sib-
ling, C. However, because C has lower frequency than the leaf
node B, we do not need to explicitly check for ¬C. This can be
expressed with the boolean formula (A ∩ B). Template 3 can simi-
larly be mapped to ((A ∩C ∩ ¬B) ∩ D ∩ E). Since neither of these
two formulas involves using a union (∪) operator, we can join
both queries into the following single, offloadable query:(A ∩ B) ∪
((A ∩C ∩ ¬B) ∩ D ∩ E). This way, MithriLog can support querying
up to N templates at once, as long as the total tokens involved fit
into the R slots of the hash table.

We note that the engine can also trivially support not only
frequency tree-based templates, but also prefix tree-based tem-
plates where tokens appearing earlier in a line appear closer to
the root. To support prefix trees, a small field is added to the hash
table entry specifying the column each token should appear at, and
tokenizer modified to also emit an increasing column counter per
token. This does not change the performance datapath at all, still
supporting near wire-speed throughput.

5 LOG-OPTIMIZED COMPRESSION
MithriLog uses a high-performance hardware implementation of
a log compression algorithm to improve the effective bandwidth
of storage. In principle, any compression algorithm can be used,
as long as it is performant and effective enough to improve the
effective bandwidth of the storage beyond what is supported by
the token filter pipelines. However, most existing algorithms, even
hardware implementations of performance-optimized ones like LZ4,
do not support the multi-GB/s bandwidth MithriLog requires. To
remedy this, we have designed a log- and hardware-optimized com-
pression algorithm which trades a small amount of compression
efficiency for superior performance per chip resource utilization.
We justify our design with a detailed comparison of performance
and resource efficiency between hardware implementations of vi-
able compression algorithms in Section 7.3.

We call our algorithm LZAH, or LZ Aligned Header. We modify
the simple, high-performance LZRW1 compression algorithm [74]
for high performance and low chip resource utilization, while main-
taining effective compression of logs. Much like LZRW1, LZAH
uses a hash table to discover recent occurrence of each word. If a
recent occurrence is discovered, a single-bit header and the table
index are emitted. If not, a single-bit header and the literal word are
emitted. On this basis, LZAH introduces two new characteristics to
facilitate efficient, high-performance compression accelerators: (1)
most of the algorithm is word-aligned, and (2) it groups multiple

A

B C

E D

E

Template 1

Template 2

Template 3

Figure 7: Three templates in an example frequent template
tree.

439



…

Hash

Function

History

Hash Table

\n

Figure 8: LZAHmoves thewindow forward infixed intervals
unless a newline is found.

header-payload pairs into chunks. The performance and efficiency
evaluations of LZAH and the hardware decompressor implementa-
tion are presented in Section 7.3.

First, LZAH removes the requirement of costly variable-amount
shifters in hardware by moving a fixed, word-size window across
the input stream in fixed-size, word-aligned steps. As this word size
dictates the amount of data processed per hardware clock cycle,
our current implementation uses a wide, 16-byte word to match
the width of the filter datapath. Figure 8 illustrates an overview of
this process. However, moving the window in word-aligned steps
instead of sub-words results in a significant drop in compression
efficiency. LZAH reclaims some of this performance by specially
treating the newline (\n) character, exploiting the fact that patterns
in logs appear at similar positions in each line. When a newline
character is encountered, the window moves to the character im-
mediately after the newline character, instead of advancing in the
same fixed-size unit. The current word is padded with zero bits
after the newline for storing in the hash table, such that characters
from the next line are not included.

LZAH achieves further efficiency by grouping multiple headers
and corresponding payloads into larger chunks, and aligning the
chunks at word boundaries. In our implementation, we group 128
header-payload pairs in each chunk to match the size of the col-
lected header to the datapath width. Figure 9 shows an example
LZAH-compressed file with 128 header-payload pairs grouped into
chunks, as well as padding between chunks and at the end of the
page. Since headers are aligned at word boundaries, the decoder
can parse chunk headers without shifting. As a result, parsing pay-
loads can be done with efficient, multy-cycle shifters without losing
performance. Furthermore, each compressed data in each storage
page can be decompressed independently by aligning chunks at
page boundaries.

As a result, LZAH supports extremely simple and efficient de-
coder implementations, as seen in Figure 10. All input word are
either header chunks, which is stored in shift registers, or payload

8 KB Page

16 Byte Header Variable-Length Payload Padding

Figure 9: Compressed files are aligned both at word and page
boundaries. Word size is 16 bytes in our prototype.

chunks, which is iteratively parsed by the multi-cycle shifter ac-
cording to the header bits. The shifter is also aware of chunk sizes,
and flushes remaining padding bits every time all payloads per
chunk are parsed and emitted. According to the header bits, the
shifted value can be interpreted as hash table indices, or as literal
words by the downstream modules.

If the resulting word has a newline character, depending on the
decompressor configuration it can either emit a zero-padded word
to make the tokenizer’s work easier, or another multi-cycle shifter
can be used to shift down the subsequent word and remove the
padding bits added during encoding.

>>

Multi-Cycle Shifter

shamt

Decode Literal?

Figure 10: LZAH allows extremely efficient decoder imple-
mentations.

6 IN-STORAGE INVERTED INDEX
MithriLog also includes an efficient, storage-optimized inverted
index for fast querying, which allows us to realistically evaluate
complex queries on MithriLog against off-the-shelf log analytics
platforms such as Splunk. Inverted index is one of the most popular
methods to quickly locate information in unstructured text data,
and is used by many prominent systems including Splunk and
Elasticsearch [26, 62, 83]. Our in-storage inverted index emphasizes
a simple design with a small memory footprint to maintain low host
resource requirements, especially during ingest. It also focuses on
extensibility and efficient use of storage bandwidth. Our in-memory
footprint is around 256 MB during steady operation, and is fast
enough to saturate even the near-storage accelerator bandwidth.

We also emphasize that while we demonstrate the efficiency and
performance of MithriLog using our inverted index implementation,
the core, near-storage accelerator platform can be coupled with any
indexing strategy that accesses storage, including those used by
other state-of-the-art systems, as long as the index can generate a
stream of page addresses for the accelerator.

Figure 11 shows the overall structure of our inverted index im-
plementation. The storage layout consists of index pages and data
pages, where data pages store the log text in compressed format.
The index implementation includes an in-memory hash table, as
well as a linked list in storage. Each node in the linked list is an
in-storage tree. Each in-memory hash table entry includes a small,
fixed-size buffer of in-storage data page offsets that each token ap-
pears in. The in-storage index is used only for hash indices where
the number of pages exceed the array capacity. In our prototype
implementation, the per-index buffer size is 16 page addresses.

6.1 Using Linked List of Trees
The in-storage index consists of a linked list of shallow trees, each
with height of two. This design aims to take advantage of the sim-
plicity of a linked list-based index, while still saturating flash/SSD

440



Hash 1

Hash 2

Hash

Table

Index

Page 0

Leaf

Page 0
Tokens

…

Storage

count Page

array
Index

offset

Page 1

Page 2

To data pages

…

Figure 11: Inverted index of the MithriLog prototype uses
two hash functions, each pointing to a linked list of tree
nodes.

performance. While the latency of flash storage is superior to me-
chanical disks, traversing a linked list can still result in low per-
formance due to its latency-bound nature. For example, a storage
device with a reasonable 100µs latency can only visit 10,000 in-
dex nodes per second. To saturate a 4 GB/s PCIe SSD within these
boundaries, each index node must store page indices of over 100
4 KB data pages. This simple approach can result in very large mem-
ory requirements. This is because during ingest, partially full index
nodes must be buffered in memory until they are filled, at which
point they can be flushed to storage. Maintaining write buffers for
hundreds of elements for all hash table entries can quickly exceed
multiple GBs of memory footprint.

Our design reduces the memory requirement by making the
index nodes smaller, only 16 entries in the prototype, without sac-
rificing performance. The new in-storage index structure divides
each linked list node into a small N-ary tree with a height of two.
The root nodes of each tree form a linked list, and are stored in index
pages in storage. The leaf nodes are stored in a pool of leaf pages.
This layout is presented in Figure 11. Since each latency-bound
linked list node visit results in many parallel leaf node accesses,
this approach can achieve high performance by retrieving enough
data page addresses per linked list node access, even when root and
leaf node sizes are much smaller than the index node sizes required
by the naive index list approach. In our prototype, the size of the
root and leaf nodes are both 16 elements, resulting in 256 data page
accesses per root node visit. Furthermore, this uniformly growing
structure has very low overhead for append-only data patterns such
as logs.

6.2 Using Two Hash Functions
In order to allow correct operation with small table sizes, we use
the hash table as a probabilistic structure which does not keep track
of the actual tokens hashed to each index. This avoids the issue of
hash table entries running out with many tokens, but also means
more than one token can be mapped to each index. While this still
results in correct operations since unnecessary data will be filtered
out by the filtering engine, it may incur performance overhead if a
query token shares an index with another very common token.

To remedy this issue, the hash table is indexed by two hash
functions. During index construction, the page addresses for each
token is pushed into the index with the lesser number of total pages
so far. Each hash table entry also includes a counter to keep track
of this. During querying, entries for both hash tables are accessed.
By spreading tokens with large occurrences across two indices, our
experiences showed this method has a statistically lower number
of pages accessed compared to using a single hash function.

6.3 Querying Tokens
Constructing the linked list is done by inserting new nodes into
the head of the list, because updating older nodes already in stor-
age will incur performance overhead. As a result, traversing the
list starting from the hash table returns data page addresses in re-
vere chronological order. During querying data page addresses are
first read into memory and their order reversed. Thankfully this
overhead is not very high, first because each element represents
a page, and also because when two or more tokens are given as
query predicates, the intersection of the resulting lists can first be
calculated in read order, before reversing the likely much smaller
list.

In order to support time-based queries, our design also supports
snapshots. Whenever the number of leaf pages created since the
last timestamp created exceeds a certain threshold, the whole in-
memory hash table is flushed to storage, and a separate tree-based
data structure keeps track of the index pages created during the
flush, along with the time of the flush event. This allows coarse-
grained time-based indexing into the log structure.

7 EVALUATION
We evaluate MithriLog in the context of complex search queries,
and show that MithriLog is a desirable system for log analytics.
The near-storage configuration coupled with efficient compression
significantly improves the effective performance of the storage de-
vice, and the hardware implementation of the token-based query
filter can make use of the improved performance by delivering an
order of magnitude higher performance compared to software im-
plementations. Coupled with a compact in-storage inverted index,
MithriLog can not only improve performance, but also dramati-
cally reduce the system resource requirements, as well as power
consumption of high-performance log analytics.

7.1 Datasets and Benchmarks
We evaluate our system using the real-world HPC4 log dataset [47],
which is the largest open system log dataset we could find. The log
dataset consists of log files from four supercomputer deployments in
Sandia National Labs and Lawrence Livermore National Labs. These
logs have been used widely in the research community to evaluate
analytics methods including system fault and alert detection [17,
48, 61, 86]. Table 1 describes the datasets of interest.

In order to evaluate a realistic workload untainted by human
biases, we have used a machine-extracted set of queries generated
by the FT-tree method [84, 85], which constructs a parse tree with
the more commonly occurring terms near the root. FT-tree is a
modern log parsing method, which has shown success in many
log analytics use cases such as anomaly detecting using neural

441



BGL2 Liberty2 Spirit2 Thunderbird
Lines (M.) 4.7 265.5 272.2 211.2
Size (GB) 0.7 30 38 30
Templates 93 197 241 125

Table 1: Logs span hundreds of millions of lines and dozens
of GBs, queried using machine-extracted template queries.

networks [41]. We have used configuration parameters presented
in the original paper to construct a parse tree with hundreds of
templates for each dataset. The number of templates extracted from
each dataset is also presented in Table 1.

We evaluate the performance of each system using all generated
queries, as well as a library of batched queries. Batched queries
include 100 random combinations of two query pairs connected
using OR, as well as 16 random combinations of eight queries. The
same set of randomly generated combinations were used for all
systems tested.

7.2 Evaluation Platforms
We implemented a prototypeMithriLog system usingMIT’s BlueDBM
near-storage accelerator prototyping platform [24], configured for
performance similar to a common NVMe storage device with a PCIe
Gen3 ×4 link, specifically the Samsung SmartSSD platform [33]. We
do not use the SmartSSD for this work since it separates the FPGA
and SSD by a PCIe link, not allowing the FPGA to take advantage
of the high internal bandwidth.

Figure 12 shows the platform configuration. It consists of four
BlueDBM storage cards, each supporting up to 1.2 GB/s bandwidth,
plugged into two Xilinx VC707 FPGA development boards con-
nected over a 20 Gbps Aurora link, collectively emulating a single
storage device. Only one FPGA board is connected to the host via a
PCIe Gen2 ×8 link, delivering up to 3.1 GB/s of useful bandwidth
via DMA.

Four MithriLog pipelines were instantiated across the two FP-
GAs. Each running at 200 MHz, the four pipelines were able to
effectively make use of the backing storage bandwidth, as described
in Section 7.4. Table 2 shows the chip resource utilization of a single
MithriLog pipeline, as well as the total resource utilization of our
prototype on a VC707 FPGA, including PCIe, flash controllers, and
aurora links. The decompressor and tokenizer modules are small
enough to allow wide replication for high performance.

Module LUTs RAMB36 RAMB18
1x Decompr. 4,245 (1.4%) 4 (0.4%) 0 (0%)
1x Tokenizer 1,134 (0.3%) 0 (0%) 0 (0%)

1x Filter 30,334 (10%) 10 (1%) 2 (0.1%)
1x Pipeline 61,698 (20%) 66 (6.4%) 18 (0.9%)

Total 225,793 (74%) 430 (41%) 43 (2%)
Table 2: Chip resource utilization of MithriLog on VC707.

This is a realistic configuration for an SSD device with near-
storage acceleration. Each VC707 board can support up to two
BlueDBM cards, and the two board configuration emulates a de-
vice with internal bandwidth higher than the PCIe link. The four

VC707

BlueDBM Card

BlueDBM Card

VC707

BlueDBM Card

BlueDBM Card

Host Server

Aurora (20 Gbps)
PCIe (3.1 GB/s)

4.8 GB/s total

over 4x cards
MithriLog Storage

Figure 12: Four BlueDBM cards are used to emulate reason-
able performance.

BlueDBM cards add up to 4.8 GB/s of bandwidth, 1.5× the effective
PCIe bandwidth at 3.1 GB/s. This is a realistic performance differen-
tial considering the 1.8× internal to external difference published by
Samsung [27]. The total capacity of the two last-generation Virtex
7 FPGAs are also similar to the single KU15P FPGA used in the
Samsung SmartSSD device [33].

Performance comparisons were done using state-of-the-art data-
base and log analytics platforms MonetDB [2, 21] and Splunk [62],
running on a machine with 12-thread Intel i7-8700K CPU as well as
four DDR-4 2133 DRAM cards adding up to 32 GB. This machine is
also equipped with a RAID-0 array of two Samsung SSD 970 EVO
Plus NVMe storage, adding up to 2 TB of capacity and 7 GB/s of
measured peak storage bandwidth. Table 3 summarizes the relevant
performance numbers. We emphasize that the storage performance
of the comparison system is much higher than MithriLog, to err on
the side of caution in comparing performance.

MithriLog Comparison
Computation 2x Virtex-7 i7-8700K

Storage Bandwidth 3.1 GB/s (PCIe) 7 GB/s
4.8 GB/s (Internal)

Table 3: Computation and storage of compared platforms.

7.3 Compression Evaluation
7.3.1 Accelerator Resource Efficiency. The LZAH compression al-
gorithm enables significantly higher effective bandwidth of stor-
age, via efficient compression and fast decompression performance.
We used a modestly sized 16 KB hash table for compression, and
achieved an average of 5.96× compression over the four datasets.
As for throughput, our decompression accelerator has determin-
istic performance, always emitting a word of decompressed data
per cycle. Running at 200 MHz, it consistently delivers 3.2 GB/s of
uncompressed data regardless of compression efficiency.

Table 4 compares the resource efficiency of FPGA implementa-
tions of prominent performance-oriented compression algorithms,
implemented on similar Xilinx FPGAs. One LZAH pipeline achieves
higher throughput compared to all other algorithms, at a lower re-
source utilization (1,000 LUTs) compared to all but LZRW. LZAH
achieves superior resource efficiency in terms of bandwidth per
LUT. As MithriLog with LZAH already uses 70% of the available

442



Algorithm GB/s KLUT GB/s/KLUT Source
LZ4 1.68 35 0.048 [76]

LZRW 0.175 0.64 0.27 [20]
Snappy 1.72 35 0.049 [77]
LZAH 3.2 4 0.8 This

Table 4: The hardware-optimized LZAH algorithm achieves
superior performance per chip resources (GB/s/KLUT).

chip resources, no other algorithm presented can maintain our target
wire-speed performance within chip resource limitations.

7.3.2 Compression Efficiency. Table 5 compares the compression
ratios of LZAH compared to LZRW1, LZ4, and Gzip. Compared to
other algorithms, LZAH trades more compression effectiveness for
better performance and less chip resource utilization, because its
foremost goal is to improve the effective bandwidth of the storage
device. It achieves its purpose, and provides high enough compres-
sion ratio and decompression performance to saturate the accelera-
tor performance (shown in Section 7.4) at a small enough resource
utilization level to leave space for performant filtering engine de-
ployment, as seen in Table 2. It even achieves better compression
efficiency compared to LZRW1 on some datasets.

7.4 Filtering Engine Performance
7.4.1 Accelerator Throughput Analysis. As discussed in Section 4,
all sub-components of the filtering engine are replicated to support
16 bytes of useful data processed per cycle. The decompressor
invariably emits 16 bytes per cycle, and the eight tokenizers ingest
16 bytes per cycle, each tokenizer ingesting two bytes per cycle.
The only variable in performance is the percentage of tokens that
are shorter than 16 bytes. If too many tokens are short, the number
of padding bits in the tokenized datapath would negatively affect
performance.

Figure 13 shows the percentage of useful bits in the tokenized
datapath, excluding padding bits. Generally, about half of the 16
bytes tokenized datapath is useful data. This observation has driven
the design of the filtering engine. For example, the 16-byte datapath
is a balance between bandwidth and the ratio of padding bits. An
8-byte datapath was too slow, requiring too many pipelines, and the
performance benefits of a 32-byte datapath were limited due to too
many padding bits. Furthermore, the hash filter module is replicated
twice to account for this decrease in effective bandwidth. The eight
tokenizers in each pipeline is divided into exclusive groups of two,
each group connected to one hash filter. Each replicated pipeline

BGL2 Liberty2 Spirit2 Thunderbird
LZAH 2.63x 3.85x 6.60x 7.35x

LZRW1 4.39x 5.79x 6.00x 3.89x
LZ4 5.95x 27.27x 27.14x 9.68x
Gzip 11.82x 47.93x 45.04x 15.79x

Table 5: Compression effectiveness against other algo-
rithms.

ingests 8 bytes of un-tokenized data per cycle, and processes maxi-
mum 16 bytes of tokenized data per cycle including padding bits.
Considering the data amplification, two such pipelines adds up to
statistically 16 bytes of useful data processed per cycle, which is
the maximum bandwidth supported by the datapath.

53.19
48.31 48.54 51.02

0

20

40

60

80

100

BGL2 Liberty2 Spirit2 Thunderbird

%
 o

f 
u

s
e

fu
l 
w

o
rk

Figure 13: Percentage of useful bits in the tokenized datap-
ath.

Figure 14 shows the total effective throughput across the four
filtering engine pipelines, based on howmuch actual, decompressed
text is processed per second. The total throughput of the filtering
engines span between 11 GB/s and 12 GB/s for all datasets, almost
four times the PCIe bandwidth.

The upper bound of achievable performance is set by the four
decompressor pipelines, which can deliver a total of 12.8 GB/s
of decompressed bandwidth given sufficiently high storage band-
width. While the high compression ratio of LZAH coupled with
the 4.8 GB/s internal bandwidth of the backing storage device was
enough to keep the four pipelines completely busy, there is a slight
performance difference between the filtering engines and the max-
imum decompressor performance. This difference comes from
various sources, including the ratio of useful bits in the tokenized
datapath, as presented in Figure 13. It also comes from the im-
balance between lengths of consecutive log lines, causing certain
tokenizers to become the bottleneck for short periods of time.

We also notice that for the datasets Liberty2, Spirit2, and
Thunderbird, LZAH provided enough compression to keep the
four decompressors always completely busy. However, the com-
pression ratio of BGL2 is relatively low, as seen in Table 5, result-
ing in a slightly lower performance of 12.62 GB/s. However, even
then the effective bandwidth of the decompressed stream was fast
enough to keep the filter engine busy. For Liberty2, Spirit2, and
Thunderbird, adding more pipelines to the same storage device
will improve performance, but for BGL2, we have reached to limit
of performance attainable with the backing storage.

7.4.2 Comparison Against Optimized Software. We first evaluate
the performance of our token filtering engine independently from
other database effects such as indexing, against a well-optimized
software implementation. We have chosen MonetDB as it has of-
ten demonstrated to be one of the fastest SQL databases [44]. We
have also experimented with other platforms including grep, but
we present MonetDB as it consistently delivered highest perfor-
mance, especially due to its column-oriented compression helping
overcome the PCIe bottleneck.

443



11.2 11.55 11.8 11.64

0

2

4

6

8

10

12

14

BGL2 Liberty2 Spirit2 Thunderbird

E
ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t 
(G

B
/s

)
4x Decompressor maximum throughput (12.8 GB/s)

PCIe bandwidth (3.1 GB/s)

Figure 14: Near-storage configuration and compression to-
gether support much higher filtering bandwidth than PCIe.

In order to separate the text performance of MonetDB from other
database effects including indexes and column-oriented operations,
we store all lines for each dataset in a table with a single VARCHAR
column, forcing MonetDB to scan the whole table for each query.
We emphasize that performance including indexing effects are com-
pared and presented in the following subsection. MithriLog was
also configured to not use the inverted index, and scan the whole
dataset for each query.

Performance was compared using effective throughput, calculated
by dividing the original size of each dataset by the time elapsed
per query. This means the effective throughput can exceed storage
performance if compression or indexing is used effectively. Each
system executed the single and combination benchmarks described
in Section 7.1.

Figure 15 shows the performance histogram of MonetDB and
MithriLog for the four datasets. We note that the x-axis of Figure 15
is not linear, in order to better present the performance distribution.

Given the higher bandwidth of the storage device equipped for
MonetDB compared to MithriLog (Table 3), the overall lower perfor-
mance of MonetDB shows that processing is largely bottlenecked
by computation performance of the CPU. In contrast, MithriLog
performance is constantly high thanks to the high throughput of
hardware accelerators, reporting over 11 GB/s of effective through-
put regardless of query contents.

For MonetDB, single queries typically show higher performance
compared to larger combinations, showing the histogram distribu-
tion moving left with larger combination queries. This is likely due
to the computation bottleneck of text processing as more terms
are involved. Storage performance profiling also reinforces this
assessment, as typically less than 1 GB/s of bandwidth usage was
observed, while all cores on the CPU were running at maximum
capacity. For BGL2, MonetDB incurred no storage access after the
very first query loaded the small dataset entirely into memory, but
still resulted in similar levels of effective throughput.

Table 6 also presents the average effective bandwidth of the 1-,
2- and 8-query combinations on MonetDB and MithriLog, as well
as the average improvement over total number of queries, for all
datasets. MithriLog demonstrates significantly better performance,
often above an order of magnitude, thanks to not only the hardware
accelerator performance, but also the effective storage performance

improvement due to the near-storage configuration and compres-
sion.

7.4.3 Comparison Against Existing Accelerators. Compared to a
hypothetical log analytics accelerator with state-of-the-art imple-
mentations of general-purpose compression and regular expres-
sion matching, MithriLog achieves superior performance within
resource restrictions.

For example, HARE [13] implements log querying based on
regular expression matching, and achieves 400 MB/s with 12% (~55K
Logic Elements) of an Intel Arria V SoC FPGA. Assuming similar
capabilities betweenArria V Logic Elements and Virtex 7 Logic Cells
for a back-of-the-envelope estimation, a HARE accelerator coupled
with a resource-efficient LZRW accelerator [20] requires about 145K
LUTs per 1 GB/s of bandwidth. On the contrary, MithriLog with
LZAH only requires about 19K LUTs per 1 GB/s, almost an order
of magnitude better efficiency.

7.5 End-To-End Query Evaluation
We also compare the end-to-end query performance of MithriLog
against a prominent log analytics platform, Splunk. MonetDB was
not used for this experiment because it is difficult to effectively
map free-form text, such as the logs under observation, to regularly
structured relational databases such as MonetDB. On the other
hand, log analytics platforms such as Splunk are optimized for free
text processing using structures such as inverted indices. Splunk
was not used for the previous token filtering experiment because
we could not find a way to disable or restrict the indices in Splunk
without changing the quality of the output.

Another characteristic of Splunk is that each search query is
handled by a single thread, meaning the advantage of parallelism
is only available if many search queries are issued concurrently.
In order to perform a fair comparison in favor of Splunk, we first
measured the elapsed time for each query in Splunk, and divided it
by the number of hyper-threads — 12 in our test platform across 6
physical cores — in order to get the amortized, upper-bound per-
formance. Considering Intel’s advertised benefit of hyperthreading
is 30% at most [22] we are choosing to err on the side of caution,
in favor of Splunk by deciding to divide by 12 instead of 7.8, as
(6 × 1.3 = 7.8). We also notice that other management functionali-
ties of Splunk often added almost 100% processing overhead on top
of the search query thread, resulting in two cores being completely
occupied during a single query. However, we decided to again err

System BGL2 Liberty2 Spirit2 Thunderbird
MonetDB1 2.57 0.64 2.84 0.65
MithriLog1 11.2 11.55 11.8 11.64
MonetDB2 1.53 0.24 0.16 0.24
MithriLog2 11.2 11.55 11.8 11.64
MonetDB8 0.58 0.07 0.05 0.06
MithriLog8 11.2 11.55 11.8 11.64

Average 5.82x 23.91x 6.01x 84.79x
Improve.

Table 6: Average effective throughput of batched queries in
GB/s.

444



0

50

100

150

200

250

0-0.05 0.05-0.2 0.2-0.5 0.5-1 1-2 2-4 4-8 8-10 11-12

B
e

n
c
h

m
a

rk
 C

o
u

n
t

Effective Throughput (GB/s)

MithriLog-8

MithriLog-2

MithriLog-1

MonetDB-8

MonetDB-2

MonetDB-1

MithriLog

(a) Query performance with the BGL2 dataset.

0

50

100

150

200

250

300

350

0-0.05 0.05-0.2 0.2-0.5 0.5-1 1-2 2-4 4-8 8-10 11-12

B
e

n
c
h

m
a

rk
 C

o
u

n
t

Effective Throughput (GB/s)

MithriLog-8

MithriLog-2

MithriLog-1

MonetDB-8

MonetDB-2

MonetDB-1

MithriLog

(b) Query performance with the Liberty2 dataset.

0

50

100

150

200

250

300

350

400

0-0.05 0.05-0.2 0.2-0.5 0.5-1 1-2 2-4 4-8 8-10 11-12

B
e

n
c
h

m
a

rk
 C

o
u

n
t

Effective Throughput (GB/s)

MithriLog-8

MithriLog-2

MithriLog-1

MonetDB-8

MonetDB-2

MonetDB-1

MithriLog

(c) Query performance with the Spirit2 dataset.

0

50

100

150

200

250

300

0-0.05 0.05-0.2 0.2-0.5 0.5-1 1-2 2-4 4-8 8-10 11-12

B
e

n
c
h

m
a

rk
 C

o
u

n
t

Effective Throughput (GB/s)

MithriLog-8

MithriLog-2

MithriLog-1

MonetDB-8

MonetDB-2

MonetDB-1

MithriLog

(d) Query performance with the Thunderbird dataset.

Figure 15: Performance histogram shows hardware filtering demonstrating consistently superior performance against Mon-
etDB.
(Right is better)

on the side of caution for fair comparison, and assume each Splunk
search query takes at most a single thread to service.

Figure 16 shows the scatter plot of the query time differences be-
tween MithriLog and Splunk, for all single and combination queries
tested. Thanks to the effectiveness of the inverted index implemen-
tations in both Splunk and MithriLog, most of the queries finish
in sub-second latency. However, the index structures were not al-
ways completely effective, especially with queries with multiple
negative terms (e.g., "NOT A"), requiring a large subset of the log
file to be loaded and processed. Such queries appear as data points
clustered around the left-side edge of the scatter plots, because the
increased processing requirements affect the performance of Splunk
more than they affect MithriLog. Table 7 presents the average per-
formance improvement of MithriLog over Splunk, calculated by
comparing the total execution time for all tested queries per dataset.
MithriLog demonstrates an order of magnitude better performance
and sometimes even more, on the total set of queries we tested.
We further emphasize that the elapsed time for Splunk used for
comparison was after dividing the measured time with the number
of threads (12).

BGL2 Liberty2 Spirit2 Thunderbird
9.93 352.26 201.20 86.32

Table 7: Average performance improvement over Splunk.

For example, one of the shorter automatically generated queries
for the liberty2 dataset is ("failed" AND NOT "pbs_mom:").
Our inverted index implementation was only able to reduce the
number of storage page reads by 30%. This represents 22 GB of
uncompressed data for the token filter to process. We suspect the
index of Splunk had similar levels of success. This query took 561
seconds for Splunk, resulting in the plotted elapsed time to be 561÷
12 = 46 seconds. Meanwhile, MithriLog was able to complete the
query in around two seconds end-to-end, including index structure
access. Considering the lower bound performance for MithriLog is
an elapsed time of 2.6 seconds — when the index completely fails
and the whole file needs to be processed — MithriLog demonstrates
over an order of magnitude performance improvement for large
search queries.

One relevant observation regarding templates generated by FT-
tree, and also how we translate them to queries for Splunk, is that
many of the complex queries involving many query terms included
a very large number of negative terms and a small number of posi-
tive ones. We also tried removing all NOT terms from the queries
and leaving only the potentially small number of partitive terms,
to evaluate the performance impact of such terms on Splunk. This
change resulted in at most 2× performance difference, not signifi-
cantly changing the performance relationship between Splunk and
MithriLog even if such a change was allowed.

445



0

0.5

1

1.5

2

2.5

0 0.1 0.2

S
p

lu
n

k
 E

la
p

s
e

d
 T

im
e

 (
s
)

MithriLog Elapsed Time (s)

Query-1

Query-2

Query-8

y=x

(a) Query performance with
the BGL2 dataset.

0

20

40

60

80

100

120

140

160

0 5 10

S
p

lu
n

k
 E

la
p

s
e

d
 T

im
e

 (
s
)

MithriLog Elapsed Time (s)

Query-1

Query-2

Query-8

y=x

(b) Query performance with
the Liberty2 dataset.

0

20

40

60

80

100

120

140

160

180

200

0 5 10

S
p

lu
n

k
 E

la
p

s
e

d
 T

im
e

 (
s
)

MithriLog Elapsed Time (s)

Query-1

Query-2

Query-8

y=x

(c) Query performancewith the
Spirit2 dataset.

0

50

100

150

200

250

0 5 10 15

S
p

lu
n

k
 E

la
p

s
e

d
 T

im
e

 (
s
)

MithriLog Elapsed Time (s)

Query-1

Query-2

Query-8

y=x

(d) Query performance with
the Thunderbird dataset.

Figure 16: MithriLog consistently demonstrates superior performance against Splunk for complex queries.
(Lower right is better for Splunk, upper left is better for MithriLog. Note the two axes have different scales.)

7.6 Power Performance Evaluation
Table 8 presents the power consumption breakdown of the two
platforms. Each BlueDBM storage is powered via a separate power
plug, whose power consumption can be measured using wall port
power monitors. We measured each of the two VC707 FPGA boards
consuming about 18 Watts during steady state processing, and each
of the four BlueDBM storage cards about 6 to 7Watts. The BlueDBM
storage cards are prototypes that are more power-hungry compared
to the optimized, off-the-shelf storage devices used by the software
systems. MithriLog’s power efficiency should improve even further
with better-optimized hardware platforms. The accelerated stor-
age devices in total consumes about 60 W of power under load, a
similar number as the one published for Samsung’s SmartSSD [33].
Since we did not have a way to measure the PCIe-attached SSDs
used for the software system, we used the numbers published by
Samsung [57], and subtracted them from the total measured power
consumption to calculate the CPU and memory power.

The measurements show that by using power-efficient FPGAs
for computation, the total power consumption of the system actu-
ally decreased. Since performance has improved by over an order
of magnitude, resulting power efficiency is also over an order of
magnitude higher compared to state-of-the-art software systems.

Component MithriLog Software
CPU+Memory (Watt) 90 160
Total Storage (Watt) 24 10

2x FPGA (Watt) 36 0
Total (Watt) 150 170

Table 8: Estimated power consumption breakdown of the
two platforms.

8 CONCLUSION AND FUTUREWORK
We present MithriLog, a log analytics platformwith near-storage ac-
celerators. MithriLog improves the effective bandwidth of the back-
ing storage to match the accelerator performance by positioning
itself near-storage, and also by using a high-throughput compres-
sion accelerator. Coupled with an inverted index implementation,
MithriLog demonstrates over an order of magnitude performance
improvements above state-of-the art log analytics platforms includ-
ing Splunk, for complex queries such as tree-based template search.
MithriLog also reduces the overall power consumption of the sys-
tem by replacing CPU threads with FPGA accelerators, resulting in a
dramatic power efficiency improvement. We project MithriLog can
greatly benefit applications such as large-scale system monitoring
and intrusion detection in both cloud and resource-restricted edge
environments. Furthermore, near-storage acceleration approaches
like MithriLog will become more important in the future, as storage
performance scaling outpace communication and general-purpose
computation.

We are also actively working on building higher-order log ana-
lytics accelerators that process the output of the MithriLog system,
such as neural networks for intrusion detection, join operations,
and data mining. Another ongoing effort is expanding the template-
based query capabilities. Targets include matching other template
structures such as regular expressions, as well as exploring wire-
speed methods for tagging each log line with template IDs.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of MICRO 2021, as well as our
shepherd for his/her help improving the presentation of this paper.
We also thank Christos Karamanolis, Marc Fleischmann, David
Ott and Amy Tai from VMware for their support and industrial
insight. This work has been made possible in part by gifts from
VMware’s University Research Fund, as well as funding from NSF
(CNS-1908507).

446



REFERENCES
[1] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D

Ernst. 2011. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering. 267–277.

[2] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In Cidr, Vol. 5. 225–237.

[3] Christopher Dennl, Daniel Ziener, and Jürgen Teich. 2013. Acceleration of SQL
restrictions and aggregations through FPGA-based dynamic partial reconfigura-
tion. In 2013 IEEE 21st Annual International Symposium on Field-Programmable
Custom Computing Machines. IEEE, 25–28.

[4] Himel Dev and Zhicheng Liu. 2017. Identifying frequent user tasks from applica-
tion logs. In Proceedings of the 22nd International Conference on Intelligent User
Interfaces. 263–273.

[5] Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park, Kwanghyun Park,
and David J DeWitt. 2013. Query processing on smart ssds: Opportunities and
challenges. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. 1221–1230.

[6] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.

[7] Facebook Engineering. 2017. LogDevice: a distributed data store for
logs. https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-
data-store-for-logs/. [Online; accessed 2021-04-14].

[8] Bo Feng, Chentao Wu, and Jie Li. 2016. MLC: an efficient multi-level log compres-
sion method for cloud backup systems. In 2016 IEEE Trustcom/BigDataSE/ISPA.
IEEE, 1358–1365.

[9] Rodrigo Fonseca, George Porter, Randy H Katz, and Scott Shenker. 2007. X-
trace: A pervasive network tracing framework. In 4th {USENIX} Symposium on
Networked Systems Design & Implementation ({NSDI} 07).

[10] Apache Software Foundation. 2017. Apache Kafka. https://kafka.apache.org/.
[Online; accessed 2021-04-14].

[11] Apache Software Foundation. 2021. Apache Datadog. https://www.datadoghq.
com/blog/tag/apache/. [Online; accessed 2021-04-14].

[12] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conference on data mining. IEEE, 149–158.

[13] Vaibhav Gogte, Aasheesh Kolli, Michael J Cafarella, Loris D’Antoni, and Thomas F
Wenisch. 2016. HARE: Hardware accelerator for regular expressions. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
1–12.

[14] Ceki Gülcü. 2003. The complete log4j manual. QOS. ch.
[15] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and

Abdullah Mueen. 2016. Logmine: Fast pattern recognition for log analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1573–1582.

[16] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without
candidate generation. ACM sigmod record 29, 2 (2000), 1–12.

[17] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 33–40.

[18] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience re-
port: System log analysis for anomaly detection. In 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 207–218.

[19] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2020. Loghub: a large
collection of system log datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448 (2020).

[20] Helion. 2008. LZRW Compression cores. https://www.heliontech.com/comp_
lzrw.htm. [Online; accessed 2021-08-17].

[21] S Idreos, F Groffen, N Nes, S Manegold, S Mullender, and M Kersten. 2012. Mon-
etdb: Two decades of research in column-oriented database. IEEEData Engineering
Bulletin (2012).

[22] Intel. 2011. How to Determine the Effectiveness of Hyper-Threading Technology
with an Application. https://software.intel.com/content/www/us/en/develop/
articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-
with-an-application.html. [Online; accessed 2021-04-14].

[23] Zsolt István, David Sidler, and Gustavo Alonso. 2016. Runtime parameterizable
regular expression operators for databases. In 2016 IEEE 24th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
204–211.

[24] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, et al. 2015. Bluedbm: An appliance for big data analytics. In 2015
ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA).
IEEE, 1–13.

[25] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, et al. 2018. GraFBoost:
Using accelerated flash storage for external graph analytics. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). IEEE,
411–424.

[26] Wonmook Jung, Hongchan Roh, Mincheol Shin, and Sanghyun Park. 2015. In-
verted index maintenance strategy for flashSSDs: Revitalization of in-place index
update strategy. Information Systems 49 (2015), 25–39.

[27] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and Chanik Park. 2013. Enabling
cost-effective data processing with smart SSD. In 2013 IEEE 29th symposium on
mass storage systems and technologies (MSST). IEEE, 1–12.

[28] Roman Kaplan, Leonid Yavits, and Ran Ginosar. 2018. Prins: Processing-in-storage
acceleration of machine learning. IEEE Transactions on Nanotechnology 17, 5
(2018), 889–896.

[29] Byungseok Kim, Jaeho Kim, and Sam H Noh. 2017. Managing array of ssds when
the storage device is no longer the performance bottleneck. In 9th {USENIX}
Workshop on Hot Topics in Storage and File Systems (HotStorage 17).

[30] Gunjae Koo, Kiran Kumar Matam, I Te, HV Krishna Giri Narra, Jing Li, Hung-Wei
Tseng, Steven Swanson, and Murali Annavaram. 2017. Summarizer: trading
communication with computing near storage. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 219–231.

[31] Reinhard Kutzelnigg. 2006. Bipartite random graphs and cuckoo hashing. In
Discrete Mathematics and Theoretical Computer Science. Discrete Mathematics
and Theoretical Computer Science, 403–406.

[32] Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi, H Peter Hofstee, Gi-Joon
Nam, Mark R Nutter, and Damir Jamsek. 2017. Extrav: boosting graph processing
near storage with a coherent accelerator. Proceedings of the VLDB Endowment 10,
12 (2017), 1706–1717.

[33] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoorthy, Xi-
aodong Zhao, and Yang Seok Ki. 2020. SmartSSD: FPGAAccelerated Near-Storage
Data Analytics on SSD. IEEE Computer Architecture Letters 19, 2 (2020), 110–113.

[34] Zhou Li and Alina Oprea. 2016. Operational security log analytics for enterprise
breach detection. In 2016 IEEE Cybersecurity Development (SecDev). IEEE, 15–22.

[35] Hao Lin, Jingyu Zhou, Bin Yao, Minyi Guo, and Jie Li. 2015. Cowic: A column-
wise independent compression for log stream analysis. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE, 21–30.

[36] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem identification for online service systems. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 102–111.

[37] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R
Lyu. 2019. Logzip: Extracting hidden structures via iterative clustering for log
compression. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 863–873.

[38] Weiqiang Liu, Faqiang Mei, Chenghua Wang, Maire O’Neill, and Earl E Swartz-
lander. 2018. Data compression device based on modified LZ4 algorithm. IEEE
Transactions on Consumer Electronics 64, 1 (2018), 110–117.

[39] Khalid Mahmood, Kjell Orsborn, and Tore Risch. 2019. Comparison of nosql
datastores for large scale data stream log analytics. In 2019 IEEE International
Conference on Smart Computing (SMARTCOMP). IEEE, 478–480.

[40] Khalid Mahmood, Tore Risch, and Minpeng Zhu. 2015. Utilizing a nosql data
store for scalable log analysis. In Proceedings of the 19th International Database
Engineering & Applications Symposium. 49–55.

[41] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019. LogAnomaly: Unsupervised
Detection of Sequential and Quantitative Anomalies in Unstructured Logs.. In
IJCAI, Vol. 7. 4739–4745.

[42] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A search-based approach for accurate identifica-
tion of log message formats. In 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC). IEEE, 167–16710.

[43] Abhishek Mitra, Marcos R Vieira, Petko Bakalov, Vassilis J Tsotras, and Walid A
Najjar. 2009. Boosting XML filtering through a scalable FPGA-based architecture..
In CIDR.

[44] MonetDB. April 2014 (Accessed Sep 25, 2019). Citus Data cstor_fdw (PostgreSQL
Column Store) vs. MonetDB TPC-H Shootout. https://www.monetdb.org/content/
citusdb-postgresql-column-store-vs-monetdb-tpc-h-shootout.

[45] Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis J Tsotras. 2011.
Massively parallel XML twig filtering using dynamic programming on FPGAs. In
2011 IEEE 27th International Conference on Data Engineering. IEEE, 948–959.

[46] Adam Oliner, Archana Ganapathi, and Wei Xu. 2012. Advances and challenges
in log analysis. Commun. ACM 55, 2 (2012), 55–61.

[47] Adam Oliner and Jon Stearley. 2007. What supercomputers say: A study of five
system logs. In 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07). IEEE, 575–584.

[48] Adam J Oliner, Alex Aiken, and Jon Stearley. 2008. Alert detection in system logs.
In 2008 Eighth IEEE International Conference on Data Mining. IEEE, 959–964.

[49] Savan Oswal, Anjali Singh, and Kirthi Kumari. 2016. Deflate compression al-
gorithm. International Journal of Engineering Research and General Science 4, 1
(2016), 430–436.

447

https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://kafka.apache.org/
https://www.datadoghq.com/blog/tag/apache/
https://www.datadoghq.com/blog/tag/apache/
https://www.heliontech.com/comp_lzrw.htm
https://www.heliontech.com/comp_lzrw.htm
https://software.intel.com/content/www/us/en/develop/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application.html
https://software.intel.com/content/www/us/en/develop/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application.html
https://software.intel.com/content/www/us/en/develop/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application.html
https://www.monetdb.org/content/citusdb-postgresql-column-store-vs-monetdb-tpc-h-shootout
https://www.monetdb.org/content/citusdb-postgresql-column-store-vs-monetdb-tpc-h-shootout


[50] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. 2017. Centaur: A
framework for hybrid CPU-FPGA databases. In 2017 IEEE 25th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 211–218.

[51] Rasmus Pagh and Flemming F1riche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[52] Byung H Park, Saurabh Hukerikar, Ryan Adamson, and Christian Engelmann.
2017. Big data meets hpc log analytics: Scalable approach to understanding sys-
tems at extreme scale. In 2017 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 758–765.

[53] Raphael Polig, Kubilay Atasu, Laura Chiticariu, Christoph Hagleitner, H Peter
Hofstee, Frederick R Reiss, Huaiyu Zhu, and Eva Sitaridi. 2014. Giving text
analytics a boost. IEEE Micro 34, 4 (2014), 6–14.

[54] Raphael Polig, Kubilay Atasu, Heiner Giefers, and Laura Chiticariu. 2014. Com-
piling text analytics queries to FPGAs. In 2014 24th international conference on
Field Programmable Logic and Applications (FPL). IEEE, 1–6.

[55] Balázs Rácz and András Lukács. 2004. High density compression of log files. In
Data Compression Conference, 2004. Proceedings. DCC 2004. IEEE, 557.

[56] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A seven-dimensional
analysis of hashing methods and its implications on query processing. PVLDB 9,
3 (2015), 96–107.

[57] Samsung Semiconductor. 2021. Samsung SSD 970 EVO. https://www.samsung.
com/semiconductor/minisite/ssd/product/consumer/970evo/. [Online; accessed
2021-04-14].

[58] Reetinder Sidhu and Viktor K Prasanna. 2001. Fast regular expression matching
using FPGAs. In The 9th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’01). IEEE, 227–238.

[59] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Accelerat-
ing pattern matching queries in hybrid CPU-FPGA architectures. In Proceedings
of the 2017 ACM International Conference on Management of Data. 403–415.

[60] Przemysław Skibiński and Jakub Swacha. 2007. Fast and efficient log file com-
pression. In proceedings of 11th east-European conference on advances in databases
and information systems (ADBIS). 330–342.

[61] Jon Stearley and Adam J Oliner. 2008. Bad words: Finding faults in spirit’s syslogs.
In 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID). IEEE, 765–770.

[62] Karun Subramanian. 2020. Introducing the Splunk Platform. In Practical Splunk
Search Processing Language. Springer, 1–38.

[63] Candace Suh-Lee, Ju-Yeon Jo, and Yoohwan Kim. 2016. Text mining for security
threat detection discovering hidden information in unstructured log messages.
In 2016 IEEE Conference on Communications and Network Security (CNS). IEEE,
252–260.

[64] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna
Iyer, Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. 2012. Database
analytics acceleration using FPGAs. In 2012 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 411–420.

[65] Gongjin Sun and Sang-Woo Jun. 2020. ColumnBurst: a near-storage accelerator
for memory-efficient database join queries. In Proceedings of the 11th ACM SIGOPS
Asia-Pacific Workshop on Systems. 9–16.

[66] Haoyu Tan, Wuman Luo, and Lionel M Ni. 2012. Clost: a hadoop-based storage
system for big spatio-temporal data analytics. In Proceedings of the 21st ACM
international conference on Information and knowledge management. 2139–2143.

[67] Haoyu Tan, Wuman Luo, and Lionel M Ni. 2012. Clost: a hadoop-based storage
system for big spatio-temporal data analytics. In Proceedings of the 21st ACM
international conference on Information and knowledge management. 2139–2143.

[68] Prateek Tandon, Faissal M Sleiman, Michael J Cafarella, and Thomas F Wenisch.
2016. Hawk: Hardware support for unstructured log processing. In 2016 IEEE
32nd International Conference on Data Engineering (ICDE). IEEE, 469–480.

[69] Mahdi Torabzadehkashi, Siavash Rezaei, Ali Heydarigorji, Hosein Bobarshad,
Vladimir Alves, and Nader Bagherzadeh. 2019. Catalina: in-storage processing
acceleration for scalable big data analytics. In 2019 27th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE,
430–437.

[70] Tal Wagner, Eric Schkufza, and Udi Wieder. 2016. A sampling-based approach
to accelerating queries in log management systems. In Companion Proceedings
of the 2016 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity. 37–38.

[71] Chao Wang, Xi Li, and Xuehai Zhou. 2015. SODA: Software defined FPGA based
accelerators for big data. In 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 884–887.

[72] Teng Wang, Shane Snyder, Glenn Lockwood, Philip Carns, Nicholas Wright, and
Suren Byna. 2018. Iominer: Large-scale analytics framework for gaining knowl-
edge from i/o logs. In 2018 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 466–476.

[73] Kyu-Young Whang, Il-Yeol Song, Taek-Yoon Kim, and Ki-Hoon Lee. 2010. The
ubiquitous DBMS. ACM SIGMOD Record 38, 4 (2010), 14–22.

[74] Ross NWilliams. 1991. An extremely fast Ziv-Lempel data compression algorithm.
In 1991 Data Compression Conference. IEEE Computer Society, 362–363.

[75] Louis Woods, Jens Teubner, and Gustavo Alonso. 2010. Complex event detection
at wire speed with FPGAs. Proceedings of the VLDB Endowment 3, 1-2 (2010),
660–669.

[76] Xilinx. 2018. Xilinx/Applications/data_compression/xil_lz4/. https://github.com/
Xilinx/Applications/tree/master/data_compression/xil_lz4. [Online; accessed
2021-08-17].

[77] Xilinx. 2018. Xilinx/Applications/data_compression/xil_snappy/. https://github.
com/Xilinx/Applications/tree/master/data_compression/xil_snappy. [Online;
accessed 2021-08-17].

[78] Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim, Sungjin Lee, and
Arvind Arvind. 2020. AQUOMAN: An Analytic-Query Offloading Machine.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 386–399.

[79] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 117–132.

[80] Yi-Hua Yang and Viktor Prasanna. 2011. High-performance and compact archi-
tecture for regular expression matching on FPGA. IEEE Trans. Comput. 61, 7
(2011), 1013–1025.

[81] Jongseong Yoon, Doowon Jeong, Chul-hoon Kang, and Sangjin Lee. 2016. Forensic
investigation framework for the document store NoSQL DBMS: MongoDB as a
case study. Digital Investigation 17 (2016), 53–65.

[82] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and Guofei Jiang.
2016. Cloudseer: Workflow monitoring of cloud infrastructures via interleaved
logs. ACM SIGARCH Computer Architecture News 44, 2 (2016), 489–502.

[83] Vlad-Andrei Zamfir, Mihai Carabas, Costin Carabas, and Nicolae Tapus. 2019.
Systems monitoring and big data analysis using the elasticsearch system. In 2019
22nd International Conference on Control Systems and Computer Science (CSCS).
IEEE, 188–193.

[84] Shenglin Zhang, Ying Liu, Weibin Meng, Jiahao Bu, Sen Yang, Yongqian Sun, Dan
Pei, Jun Xu, Yuzhi Zhang, Lei Song, et al. 2020. Efficient and robust syslog parsing
for network devices in datacenter networks. IEEE Access 8 (2020), 30245–30261.

[85] Shenglin Zhang, Weibin Meng, Jiahao Bu, Sen Yang, Ying Liu, Dan Pei, Jun Xu,
Yu Chen, Hui Dong, Xianping Qu, et al. 2017. Syslog processing for switch
failure diagnosis and prediction in datacenter networks. In 2017 IEEE/ACM 25th
International Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[86] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R
Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 121–130.

448

https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970evo/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970evo/
https://github.com/Xilinx/Applications/tree/master/data_compression/xil_lz4
https://github.com/Xilinx/Applications/tree/master/data_compression/xil_lz4
https://github.com/Xilinx/Applications/tree/master/data_compression/xil_snappy
https://github.com/Xilinx/Applications/tree/master/data_compression/xil_snappy

	Abstract
	1 Introduction
	2 Related Work
	2.1 Log Analytics
	2.2 Near-Storage Acceleration

	3 System Architecture
	4 Token Filtering Engine
	4.1 Tokenizer Design
	4.2 Hash Filter Design
	4.3 Use on Tree-Based Template Filtering

	5 Log-Optimized Compression
	6 In-Storage Inverted Index
	6.1 Using Linked List of Trees
	6.2 Using Two Hash Functions
	6.3 Querying Tokens

	7 Evaluation
	7.1 Datasets and Benchmarks
	7.2 Evaluation Platforms
	7.3 Compression Evaluation
	7.4 Filtering Engine Performance
	7.5 End-To-End Query Evaluation
	7.6 Power Performance Evaluation

	8 Conclusion and Future Work
	Acknowledgments
	References

