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ABSTRACT

As current Noisy Intermediate Scale Quantum (NISQ) de-
vices suffer from decoherence errors, any delay in the instruc-
tion execution of quantum control microarchitecture can lead
to the loss of quantum information and incorrect computation
results. Hence, it is crucial for the control microarchitecture
to issue quantum operations to the Quantum Processing Unit
(QPU) in time. As in classical microarchitecture, parallelism
in quantum programs needs to be exploited for speedup. How-
ever, three challenges emerge in the quantum scenario: 1) the
quantum feedback control can introduce significant pipeline
stall latency; 2) timing control is required for all quantum
operations; 3) QPU requires a deterministic operation supply
to prevent the accumulation of quantum errors.

In this paper, we propose a novel control microarchitec-
ture design to exploit Circuit Level Parallelism (CLP) and
Quantum Operation Level Parallelism (QOLP). Firstly, we
develop a Multiprocessor architecture to exploit CLP, which
supports dynamic scheduling of different sub-circuits. This
architecture can handle parallel feedback control and mini-
mize the potential overhead that disrupts the timing control.
Secondly, we propose a Quantum Superscalar approach that
exploits QOLP by efficiently executing massive quantum
instructions in parallel. Both methods issue quantum oper-
ations to QPU deterministically. In the benchmark test of a
Shor syndrome measurement, a six-core implementation of
our proposal achieves up to 2.59x speedup compared with
a single core. For various canonical quantum computing
algorithms, our superscalar approach achieves an average
of 4.04x improvement over a baseline design. Finally, We
perform a simultaneous randomized benchmarking (simRB)
experiment on a real QPU using the proposed microarchitec-
ture for validation.

1. INTRODUCTION

As quantum algorithms for solving problems such as inte-
ger factorization [34] are far beyond the reach of near-term
quantum processors, building a fully-programmable quantum
computer with the Noisy Intermediate Scale Quantum (NISQ)
computing model [28] becomes the near-term goal. To this
end, the quantum software and hardware need to work seam-
lessly. Existing high-level quantum software can provide dif-
ferent types of control flow to quantum algorithms [7,9,37],
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Figure 1: Organization of a full stack superconducting quan-
tum computer. The QISA layer acts as an interface between
quantum software and hardware. The control microarchitec-
ture is implemented in the control processor. The control
stack is composed of a control processor and analog devices,
which issue quantum operations to the quantum processor.

but they are not readily to be implemented by hardware yet.
Like in classical computer systems where between software
and chip lie the instruction set architecture and microarchitec-
ture, quantum instruction set architecture (QISA) [13,35] and
control microarchitecture designs [14] have been proposed
to bridge the gap between quantum software and hardware.
A full-stack quantum computer is illustrated as in Figure 1,
where the post-compilation instructions are executed by the
control microarchitecture to issue quantum operations to the
quantum processing unit (QPU).

Unlike conventional systems, an inefficient quantum con-
trol microarchitecture not only affects the speed, but may
also introduce decoherence errors and make the computation
result incorrect. In current NISQ devices, any delay in quan-
tum operations issued from the microarchitecture can result
in additional accumulated quantum errors. As much dam-
age as this can incur, we also note that this type of delay is
mainly caused by the limited operation issue rate of the con-
trol microarchitecture, which can be significantly alleviated
by exploiting parallelism in the control microarchitecture.

As in classical programs, quantum programs also have
some natural parallelism opportunities at different levels,
with two prominent ones as follows. (1) Many quantum
programs are logically structured as parallel sub-circuits to
be executed. (2) In each sub-circuit, different quantum op-
erations can be executed simultaneously. These pre-defined



parallelism needs to be properly exploited by the control
microarchitecture to avoid additional delays in issuing opera-
tions to the QPU. In this paper, we define these two levels of
parallelism as follows.

(I) Circuit Level Parallelism (CLP): Quantum circuits for
relevant applications may well contain sub-circuits that can
be executed in parallel to certain extent. An ideal control mi-
croarchitecture should be capable to exploit this parallelism
and support parallel processing of the sub-circuits.

(II) Quantum Operation Level Parallelism (QOLP): Op-
erations issued by control microarchitecture can be executed
simultaneously without affecting the semantics, and an ideal
control microarchitecture should be capable to exploit this
parallelism and support issuing quantum operations to dif-
ferent qubits in parallel within a certain period of time. To
estimate the performance of QOLP exploitation, we propose
Cycles Each Step (CES) and Time Ratio (TR) metrics that
measure the execution time of classical control part and quan-
tum execution part.

Previous research has shown that some quantum exper-
iments with only several qubits already require nontrivial
effort to deliver quantum operations [13] due to limited speed
of the control microarchitecture. In the current NISQ era with
dozens or even hundreds of noisy qubits, it is more impor-
tant to exploit CLP and QOLP to reduce the delay in issuing
operations.

To our knowledge, no solution has been proposed to di-
rectly exploit CLP. Regarding QOLP, Fu et al. mainly pro-
vided solutions to improve the instruction information density
at the QISA level [13], but there still lacks a microarchitecture-
level method that can efficiently and effectively exploit QOLP
during run-time.

Many classical solutions for parallelism exploitation exists,
such as multiple-issue and speculation [17]. However, these
solutions cannot be directly applied to quantum microarchi-
tecture. Due to distinctive quantum features, the quantum
microarchitecture design needs to solve the following prob-
lems.

(1) Quantum feedback control is a special control flow for
the quantum scenario. This type of control requires real-time
interaction between QCP and QPU. It refers to intermediate
measurements, and branching according to the measurement
outcomes, in a quantum circuit. This feedback control signif-
icantly complicates the parallelism exploitation by introduc-
ing pipeline stalls. Moreover, it hinders the CLP exploitation
when occurred simultaneously.

(2) Timing control is required in the control microarchitec-
ture to issue quantum operations with accurate timing [14].
This mechanism brings timing dependency for all quantum
instructions, which is a different type of dependency than
auxiliary classical instructions. Hence, the timing control
forms a hurdle for parallelism exploitation.

(3) Deterministic operation delivery. The QPU requires
a deterministic supply of quantum operations [38]. Indeed,
many classical techniques such as branch prediction cannot be
directly translated into quantum microarchitecture, because
the prediction failure can lead to substantial amount of errors
given the short coherence time of superconducting qubits
[23].

To address these challenges, we propose a practical mi-
croarchitecture design, named QuAPE (Quantum control
microArchitecture for Parallelism Exploitation) for super-
conducting qubits to exploit different levels of parallelism.
Overall, our contributions in this work are:

1. To exploit CLP, we design a Multiprocessor architecture
that supports parallel processing of feedback control
by allocating different sub-circuits to multiple process-
ing units. The mechanisms can significantly reduce
potential overhead that hinders the timing control of the
quantum program.

2. To exploit QOLP, we propose a Quantum Superscalar
method which is capable of issuing a large amount
of quantum operations to the QPU in a deterministic
manner. We also introduce a method to absorb the stall
latency caused by simple feedback controls.

A prototype of QuUAPE is implemented on a field pro-
grammable gate array (FPGA), and various experiments are
conducted for performance evaluation. In a benchmark test of
a Shor syndrome measurement, our multiprocessor architec-
ture achieves up to 2.59x speedup in the execution time. We
also evaluate the performance of our superscalar approach
on several benchmarks from ScaffCC [18], Qiskit [2] and
RevLib [41], and observe an average improvement of 4.04 x
in TR. We validate our design by performing a simultaneous
randomized benchmarking (simRB) [15] experiment on a
superconducting QPU, showing that our design is capable of
simultaneously apply quantum gates to different qubits.

2. BACKGROUND

2.1 Quantum Instruction Set Architecture

Similar to classical architectures [17], the QISA is an essen-
tial component of a fully programmable quantum computer
and acts as an interface between the quantum software and
hardware. In this work, we target an executable QISA for
current NISQ hardware which supports the following two
features [13]:

e It provides explicit timing information to help the con-
trol microarchitecture to achieve timing control of the
issued quantum operations (see Section 2.2).

o In addition to quantum instructions, it provides auxiliary
classical instructions to provide control flow, such as
loops and feedback control.

2.2  Quantum Control Processor

The control microarchitecture implemented in the Quan-
tum Control Processor (QCP) accepts post-compilation in-
structions as input. These instructions can be classified into
two main types: (1) classical instructions, mainly used for
constructing different types of control flow, and usually con-
sisting of four kinds of instructions: control, data transfer,
logical, and arithmetic; (2) quantum instructions that de-
scribe quantum operations. These quantum instructions are
executed in the QCP to issue corresponding quantum opera-
tions to the QPU. Here, we emphasize the difference between
quantum instructions and quantum operations: quantum
instructions are executed on QCP, while quantum operations
are executed on QPU. To avoid ambiguity, “issue” is only
used to indicate the procedure of QCP sending quantum op-



erations into QPU in this work.

To achieve timing control of the issued quantum operations,
timing labels are added to the quantum instructions, which
represents the time interval since the issue of the quantum
operation corresponding to the previous quantum instruction.
For example, the following assembly code represents an H
operation applied on qO and also on q1 at the same time, and
a CNOT operation for these two qubits in the next step. The
number at the beginning of each line can be regarded as the
timing label of each instruction. The timeline is constructed
by executing quantum instructions in QCP. The QCP can
issue quantum operations with accurate timing on nanosecond
scales. We refer the interested reader to the original papers
for a detailed introduction [13, 14].

OH q0
0 H ql
1 CNOT q0, ql

2.3 Superconducting Qubits

There are various physical platforms for implementing
qubits [8, 11, 16, 19]. Among them, the Superconducting
Qubits (SQ) are regarded as one of the front-runner technolo-
gies due to its comparatively high scalability and gate fidelity.
This paper focuses on QPUs for superconducting qubits.

The relatively short coherence time of SQ (50-100 us)
gives a huge challenge for classical control. For example, the
feedback control for quantum error correction [26] needs to
be completed within 1% of this coherence time to achieve
the fault-tolerance [12,39]. The typical gate time for single-
qubit operation and two-qubit operation are 20ns and 40ns,
respectively. The measurement operation usually requires a
pulse of 100ns - 2us.

2.4 Feedback Control

Unlike static quantum circuits that use a predetermined list
of sequences, dynamic circuits rely on conditional logic to
respond to measurement results in real time. In the quantum
scenario, the feedback control is a distinctive control flow,
which can be divided into the following stages:

(I) The QCP executes the measurement instruction and
starts to wait for the result to return. The measurement
operation is performed on the QPU.

(II) The Digital Acquisition (DAQ) receives analog results

and performs digital acquisition.

(III) The QCP obtains the classical state and begins to exe-
cute corresponding conditional logic.

(IV) The determined quantum operation is issued to the
QPU.

Figure 2 outlines the timeline of a quantum dynamic circuit.
The latency of Stage I and II are non-deterministic due to
the intrinsic uncertainty of dispersive readout [40]. To avoid
reading an invalid result, previous research implemented a
synchronization protocol to stall the pipeline until the mea-
surement result is ready [13]. The time spent in Stage III
comes from the QCP execution delay of conditional logic and
branching, which depends on the complexity of the classical
operations. The overall latency of feedback control typically
requires at least hundreds of nanoseconds.

With feedback control, the QCP can support a wide range
of dynamic quantum circuits, including active qubit reset [30],
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Figure 2: The latency breakdown for a feedback control pro-
cess to determine whether a R, (7) gate needs to be applied.
The arrows indicate the time when the QCP executes the
quantum instruction.

quantum teleportation [4, 6], and iterative phase estimation
[20,21]. Repeat-Until-Success (RUS) [27] is a special case
of dynamic quantum circuits, which repeatedly execute cer-
tain quantum operations and perform a measurement until a
success measurement outcome occurs. Such circuits bring un-
certainty to the program execution time, and therefore needs
a careful treatment.

3. TWO LEVELS OF PARALLELISM

In this section, we give an overview of the two levels of
parallelism of quantum circuits.

3.1 Circuit Level Parallelism

CLP is defined as the form of parallelism among different
sub-circuits or circuits. We use the term program block in
this paper to refer to a sequence of instructions containing
quantum instructions and control flow of the corresponding
sub-circuit. The CLP can be found in the following two
different scenarios. We use an example to study the impact
of CLP exploitation on microarchitecture design.

3.1.1 Scenario 1: Parallel processing

A typical case for parallel processing is a single quantum
application that needs to be partitioned into multiple paral-
lel sub-circuits. For complex quantum applications, these
divided program blocks may contain feedback control and
loops, whose CLP needs to be exploited. An example of such
application is Shor syndrome measurement (see Section 7).

3.1.2  Scenario 2: Multiprogramming

This situation describes multiple tasks that are relatively
independent and supposed to be executed on the same QPU si-
multaneously. For example, the QCP needs to exploit CLP to
run multiple programs generated through multiprogramming,
especially when these tasks represent dynamic circuits. This
method helps to improve the resource utilization of quantum
cloud services and is discussed in [10] at the software level.

3.1.3 Example

We use a circuit with two parallel RUS sub-circuits as an
example to illustrate the challenge for exploiting CLP. Figure
3(a) shows ideal execution of this circuit on the QPU. The
assembly program adapted to the previous design requires
using one control flow to describe the circuit, as written by
Program 1.
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Figure 3: Different execution results of two parallel repeat-
until-success sub-circuits.

Program 1: Parallel RUS Circuits within one control
flow

1 Branchl : operations of Wi, W,, measure ancilla
qubits g2 and g4

Branch? : operations of Wi, measure ancilla qubits q2

Branch3 : operations of W,, measure ancilla qubit g4

Branch4 : Continue

if Both fails then

perform correction and reset on both sub-circuits

Go to Branchl

else if W fails, W, success then

perform correction and reset on W)

Go to Branch?2

else if W, fails, W; success then

perform correction and reset on W>

Go to Branch3
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else
L Go to Branch4
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Using one feedback control flow to describe all sub-circuits

introduces O(2") (n is the total number of sub-circuits) branches.

Each branch contains the quantum operations of the entire
circuit, which causes additional execution delay and program
size. Obviously, this method is sophisticated and not scal-
able. Therefore, a feasible method is to use independent
program blocks to describe different sub-circuits, which only
require O(2n) branches. The corresponding program is given
in Program 2.

However, the control microarchitecture with uniprocessor
cannot handle such parallel program blocks. The QCP will
not execute any instruction from sub-circuit W, before the
termination of the first program block, because an executing
program “blocks” the processing of other ones. In this case,
the ideal parallel execution is forced into a serial execution
(Figure 3(b)). This situation is unacceptable because the
latency of the entire sub-circuit W; is added to all other qubits.
Hence, it is an open challenge to design microarchitecture-
level methods for CLP exploitation under the structure of
Program 2.

3.2 Quantum Operation Level Parallelism

Quantum Operation Level Parallelism (QOLP) is used to
measure a different level of parallelism other than CLP. The
parallel quantum operations can be defined as operations that
start simultaneously on different qubits, regardless of the du-

Program 2: Parallel RUS Circuits in two blocks

W, : perform quantum operations of sub-circuit W,

Meas : measure ancilla qubits g2

if measurement results represent a failure then
perform correction operation on q2
perform reset on q0 and g1
Go back to W

else

| Continue

® N AW N =

9 W, : perform operations of W,
10 Meas : measure q4
11 if failure then

12 perform correction and reset
13 Go back to W,
14 else

15 L Continue

ration time of operations. To quantify the QOLP exploitation,
we define cycles each step (CES) and TR in the following.

3.2.1 Cycles each step

We define circuit step as a component of quantum circuit,
which contains all parallel quantum operations at a certain
timing point. For example, we can divide the circuit for
deterministic entanglement creation into five steps, as shown
in Figure 4. Different circuit steps can ensure the execution
order of the quantum program.
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Figure 4: The circuit for deterministic entanglement creation
with a feed-forward logic. The grey box indicates different

steps in this circuit.
o measure the QCP performance on QOLP, we define

cycles each step (CES) as the number of clock cycles required
by QCP to execute instructions for each circuit step. The
value of the CES is the sum of the following four parts:
quantum instruction execution cycles, classical instruction
cycles, control stalls caused by loops and subroutines, and
the contribution of feedback control. The ideal cycles each
quantum instruction (CEQI) is 1 in a pipelined processor, and
quantum instruction count each step (QICES) is the number
of quantum instructions contained in one circuit step of the
program. The CES is defined in Equation (1).

CES = (pipeline CEQI) x QICES

+ classical instruction cycles

+classical control stalls

+ QCP execution delay of feedback control
(1)

For example, step 1-4 in Figure 4 only contain the quantum



instruction execution part. Since step 5 involves a feedback
control, it must wait for a period of time as explained in
Section 2.5. The delay of Stage I and II is unavoidable for
both QCP and QPU, and is not calculated in the CES. The
fourth part of the CES comes from the conditional execution
in the QCP, which is equivalent to the delay of Stage III.

3.2.2 Time ratio

The QCP should ensure that the processing of all quantum
instructions in a single circuit step is completed within the
execution time spent on the QPU. Quantifying this target,
we define Time Ratio (TR) as the execution time of QCP
compared to the execution time of QPU. The TR of step i
is defined in Equation (2). In each circuit step, the QPU
executes quantum operations in fully parallel, allowing us to
use the quantum gate time to represent the QPU time.

QCP time step i _ clock time x CES;

TR; = . .=
QPU time step i

gate time @

Since even a small delay of quantum operations can result
in the loss of quantum states and incorrect execution result,
the goal of QOLP exploitation is to reach TR <1 for the
entire program. This requirement poses a challenge for the
control microarchitecture design, because CES will grow
rapidly with the number of qubits while the gate time remain
unchanged.

Since the parallelism of sub-circuits will cause another
level of latency, we only use CES and TR to evaluate the
performance of QOLP exploitation.

4. REQUIREMENTS

This section introduces specific requirements for microar-
chitecture stemmed from quantum computing. We also dis-
cuss the design guidelines for tackling these challenges dur-
ing parallelism exploitation.

4.1 Feedback control

Feedback control occurs frequently in a range of quan-
tum applications. Feedback control in quantum programs
contribute to CES as shown in the later two components in
Equation 1. Even worse, these control flow hinder the CLP ex-
ploitation when occurred simultaneously (see Section 3.1.3).
Moreover, the non-determinism in some special feedback
control (e.g., RUS) can lead to additional execution over-
head during parallelism exploitation. To tackle the problems
caused by feedback control, the microarchitecture needs to
(1) absorb the feedback control latency, (2) manage parallel
feedback control, and (3) eliminate potential overhead caused
by non-deterministic circuits.

4.2 Timing Control

The timing control ensures accurate timing of issued quan-
tum operations by adding pre-determined timing labels to
quantum instructions (see Section 2.3). To comply with the
timing control, the QCP needs to preserve timing dependency
of different quantum instructions during parallelism exploita-
tion. Moreover, the timing of operations can significantly
impact the fidelity of the final results when the pre-scheduled
timing control is disrupted by unexpected overhead. There-
fore, the QCP should eliminate potential overhead caused by

the parallelism exploitation methods.

4.3 Deterministic Operation Supply

Solutions such as branch prediction are widely used to
improve the performance of classical computer architectures.
However, this kind of method is non-deterministic, which
will bring a corresponding penalty when the failure occurs.
Such non-determinism makes it more difficult to meet the
requirement of 7R < 1 for the entire program. To minimize
the uncertainty of classical control, the QCP needs to use
deterministic techniques to exploit CLP and QOLP.

5. MICROARCHITECTURE

In this section, we first give an overview of the QuUAPE
design and then dig into the details of the structure and each
component. We choose a centralized-memory architecture as
the starting point. A timed QASM is chosen as the instruc-
tion set due to its explicit timing definition. QuAPE outputs
signals used to control analog devices, which finally issues
quantum operations for the QPU.

5.1 Design Motivation

CLP exploitation: the CLP cannot be exploited by merely
increasing the instruction execution speed of the microar-
chitecture, because various control will hinder the parallel
execution of instructions. For instance, the program describ-
ing circuits like RUS needs to be structured as a combination
of subroutine and feedback control (see Program 2), because
the entire circuit is non-deterministic. The stall caused by
feedback control is catastrophic for irrelevant qubits due to
the long delay. A feasible method to manage parallel con-
trol flow is to process multiple program blocks concurrently.
Therefore, we adopt a multiprocessor architecture to exploit
CLP in the control microarchitecture. This architecture sup-
port dynamic scheduling of different program blocks during
run-time. We also introduce a mechanism to reduce the po-
tential overhead caused by block switching.

QOLP exploitation: the contribution of classical instruc-
tions to CES mainly comes from control stalls, rather than
the instruction execution. The parallel execution of classical
instructions is less attractive because it introduces additional
complexity but does not effectively reduce CES. Conversely,
the parallel execution of quantum instructions in the QCP
will not encounter data hazards that are difficult to handle
in classical processors. Therefore, the use of multiple-issue
mechanisms can effectively eliminate the increase in QICES.
To meet the requirement of TR, we adopt a quantum super-
scalar architecture to exploit QOLP in the microarchitecture.
We implement a specific instruction scheduling method to
prevent introducing excessive hardware complexity. This ap-
proach allows separate dispatch of quantum instructions and
classical instructions, which can help to absorb the control
stall latency caused by conditional branching.

Simple feedback control: the contribution of feedback con-
trol in the CES can also be reduced. In addition to complex
circuit-level feedback control such as RUS, there are also
many application that only require simple feedback control
e.g., active qubit reset [30]. As describing this type of control
does not require a large number of instructions, we implement
a fast context switch mechanism to eliminate the feedback
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Figure 5: Quantum control microarchitecture implementing the multiprocessor architecture. The grey dotted box represents the
control unit for determining the collaboration among multiple processors.

control stall latency.

Overall, three solutions are introduced in QuAPE. a) The
multiprocessor architecture features multiple processors with
identical access to a centralized shared-memory. b) The quan-
tum superscalar fetches multiple instructions in one cycle and
performs pre-decoding to determine instruction dispatching.
c) The context switch scheme for simple feedback control
uses a series of register to store control information, thereby
allowing QuAPE to continue the execution before the result is
returned. Scheme a) is used to exploit CLP, while the QOLP
exploitation is addressed by b) and c).

5.2 Multiprocessor

The basic structure of the proposed multiprocessor is shown
in Figure 5. In this approach, all instructions generated by a
quantum program are stored in the instruction memory and
shared by all processing units. The post-compilation infor-
mation about the partition of program blocks are stored in
a block information table. Each processing unit has its own
instruction cache, program counter, and execution unit.

The scheduling of multiprogramming can be easily achieved
by pre-determining the allocation of different tasks. In con-
trast, the parallel processing of partitioned sub-circuits needs
to absorb potential overhead caused by the uncertainty of pro-
gram execution. To this end, a dynamic scheduling method is
introduced. To reduce the overhead caused by program block
switching, a mechanism for prefetching the instructions into
private instruction caches is implemented.

5.2.1 Block information table

Information about each program block in the quantum pro-
gram is stored in the block information table before the pro-
cessing starts. Since the execution time of quantum circuits
like RUS cannot be predetermined, we use the dependency
of different program blocks to ensure the execution order of
the quantum program. For example, the quantum circuit of
Figure 6 is divided into four sub-circuits and the information
of corresponding program block is stored in Table 1. The
information includes the number of each program block, the
address of the corresponding instructions in the main memory,
and the dependency relationship. The dependency informa-
tion of W; and W, shows that they can be executed in parallel
immediately, while W3 and W, need to wait for the end of

the previous stage. The information in this table is read by
the scheduler when a program block can be allocated to a
processor.

q0 — —
[11
ql — —
Wiy W,
qQ2 — —
Wo
q3 — —

Figure 6: An example of a quantum circuit that consists of
four sub-circuits.

Program | PC start | PC end

block address | address | Dependency
wi 0 10 None

W 11 20 None

Ws 21 30 Wi, W,

A 31 40 W3

Table 1: An example of the block information table content
of the circuit shown in Figure 6.

5.2.2 Scheduler

The scheduler will continuously read the values in the
block information table when microarchitecture starts to run.
The first stage of scheduling is to perform a dependency check
on the returned block information. By dynamically checking
the status of each processor, the scheduler can determine the
allocation of program blocks during run-time.

The most straightforward way to represent the dependency
is to use direct addressing of all program blocks. This repre-
sentation requires using bit vectors with the same bit width
as the number of circuit blocks. For example, the depen-
dency of block Wj is the address of the first two blocks, while
Wy records the address of Ws. In this scheme, the program
block is ready to be executed when its dependency is zero.
When the execution of W; and W, are finished, the lower
two bits in the dependency information of the entire table are
cleared. Thus, W3 can pass the dependency check and start
the next step. Since the parallelism of program blocks is not
pre-determined, direct correlation provides substantial space
for dynamic scheduling.



However, the direct dependency becomes memory-consuming

when the number of blocks scale up. Therefore, we provide
a relatively simple method to indicate the dependency by
assigning a priority to each block. A program block with a
higher priority means that it needs to be executed first, while
blocks with the same priority signify potential parallelism.
The scheduler uses a priority counter for dependency check.
The counter is incremented once the execution of all blocks
with the old priority is finished. The program blocks that its
priority equal to the counter can pass the dependency check.

Program block | Wi | W | W3 | Wy
Priority 0 |0 1 2

The compiler can choose the appropriate representation for
different scenarios to exploit the CLP in quantum programs.
Regardless of which representation method is chosen, the
modules after the dependency check are the same. The re-
sults of the dependency check are then used to determine the
allocation of each program block to the processor. The non-
deterministic quantum circuits like RUS lead to an uncertain
program execution time. In this case, unexpected overhead
can be caused when the allocation is not effectively sched-
uled. To prevent such situation, we use a dynamic scheduling
method to determine the program block allocation during
run-time.

A series of status registers are used to record the status
of each program block, including wait, in execution, and
done. The initial state of all blocks is "wait". When the block
passes the dependency check, it starts to request for allocation.
its status can be changed to "in execution" when there is
an idle processor, and the corresponding instructions are
fetched into the private instruction cache. During allocation,
the scheduler is busy and do not answer to other requests.
The processor will return a signal to the scheduler when the
execution ends. The state of the corresponding block is then
changed to "done", which also indicates the scheduling of
subsequent blocks. With this method, the program block
allocation can be finished in an efficient way.

5.2.3 Private instruction cache

Prefetching: During allocation, the instructions in the pro-
gram block will be fetched from the centralized main memory
to the private instruction cache of each processor. The pro-
cessor needs to switch to the next program after the current
execution is complete. It takes certain time for the scheduler
to fetch new instructions into the private cache, which may
exceed the expected time for the next quantum operation to
start acting on the QPU. In order to prevent the computational
process from additional accumulated quantum errors, we im-
plement a prefetching mechanism to minimize the overhead
caused by block switching.

Therefore, we added an extra cache to the private instruc-
tion cache for each processor to prefetch the program block
to be executed in the next step. At the same time, a prefetch
stage is added to the status register in scheduler. For instance,
The initial state of the circuit module Wj is "wait". When all
dependent program blocks are in the "in execution" state, the
scheduler will prefetch its corresponding instructions into the
free cache and change the state of W3 to "prefetch”. When

Wi and W, are both finished, the scheduler will notify the
processor to switch to the other cache. Its status is changed
to "done" when the execution completes, which is used to
indicate the scheduling of subsequent blocks. The status flow
in this example is shown in Figure 7.

wait prefetch in execution done
w, Private Instruction Cache
W2 /4 Cache 1 |—>
A Switch
w, W, | Cache 1 |- - >
(@)
wait prefetch in execution  done
w, Private Instruction Cache
w, W,| Cache 1 |- i
W, Switch
w, Wy | Cache 1 |—>

(b)
Figure 7: An example of the status register when the program
block being executed is switched from Wy, W, to W3: (a) the
private instruction cache select the path of Wi, and W is being
prefetched into the second cache; (b) the private instruction
switch to the second cache and W, start prefetching.

Fast block switching is achieved through this prefetch
scheduling method, which usually only consumes a few clock
cycles to switch the cache path. This method helps to mini-
mize the overhead caused sub-circuit switching at the cost of
using additional caches.

5.2.4 Processor

The previously described modules can be regarded as the
control unit for determining the coordination of multiple
processors. An overview of the processing unit is given
below.

(1) Register resource. Each processor has its own dedicated
register for general purpose operations and comparison flags.
Shared registers are also provided for all processors, which
can be used for managing race condition and deadlock.

(2) Measurement result register. The measurement result
register is written by the digital acquisition part. This register
file can be shared by all processor because the processor can
only read it.

(3) Decoder and execution unit. The decoded information
of classical and quantum instructions is sent to different exe-
cution units. A timing queue is used to buffer the generated
timing information and is continuously read by the timing
controller. The timing controller broadcast the label to all op-
eration queues when the assigned timing is reached, thereby
ensuring precise timing control.

(4) Emitter. The last stage of the execution unit is to con-
vert the operation for each qubit into a codeword sent to the
low-level control electronics. For example, the microwave
operation and flux operation for the same qubit need to be
distributed to different analog channels due to the quantum
processor setup. The previous modules of the control proces-
sor are independent of the analog control settings.
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Figure 8: An overview of the quantum superscalar.

5.3 Quantum Superscalar

In each processor of the above-mentioned multiprocessor
architecture, we further employ quantum superscalar to ex-
ploit the parallelism of quantum instructions. Figure 8 shows
an example of a 4-way quantum superscalar structure. In this
architecture, four instructions are fetched into the pre-decoder
in one cycle and then dispatched to different pipelines for
execution.

As mentioned in Section 5.1, the main goal of using the
superscalar approach is to reduce the rapidly-growing QICES.
Since introducing too much complexity in the comparison
stage will limit the number of superscalar ways, our approach
implements a parallel-until-classical scheduling scheme. Po-
tential timing hazards are prevented by performing compar-
ison and recombination in the pre-decoder. A lookahead
strategy is used to allow separate dispatch of different types
of instructions, which helps to absorb the branching latency.

5.3.1 Pre-decoder

The pre-decoder buffers the fetched instructions and dis-
tinguishes whether they are classical or quantum instructions,
and then determines the dispatch of the instructions. In this
mechanism, the following situations occur in the pre-decoder:
(1) All fetched instructions are quantum instructions: Since
the quantum operations of different timing labels should only
enter the operation queue in serial, we only allow instructions
with the same timing label to be issued simultaneously. There-
fore, the timing dependency check of quantum instructions
can be achieved by comparing their timing label with the first
instruction. Quantum instructions with different timing label
are buffered to be dispatched in the next cycle.

The potential parallelism of quantum instructions may be
disrupted if they are fetched in different cycles. For example,
four parallel quantum instructions that are not fetched simul-
taneously cost two cycles for dispatching, which is not the
ideal behavior. Therefore, we implement a series of buffers to
store extra fetched instructions and synchronize instructions
with the same timing label. In this case, parallel quantum in-
structions can be recombined for dispatching. The instruction
fetch is stalled when all buffers are not empty.

(2) Classical instructions in the fetched instructions: Par-
allel quantum instructions are still scheduled as described
above, while the classical instructions can only be dispatched
in serial. The dispatch of classical instructions can be in-
dependent of quantum instructions. For instance, a branch
instruction can be sent into the classical execution unit ahead

of buffered quantum instructions. This lookahead mecha-
nism helps to eliminate the latency caused by branch instruc-
tions and reduce CES. Therefore, we allow separate dispatch
of quantum and classical instructions to exploit potential
instruction-level parallelism.

As shown in Figure 8, we only implement one classical
execution unit for the parallel-until-classical scheme. In prin-
ciple, this method can also be extended to allow parallel
execution of classical instructions, but at the cost of limited
scalability. For classical instructions, it is usually necessary to
compare all pairs of instructions to check the dependency of
input and output registers, which leads to O(w?) comparisons
(w is the issue width).

5.3.2  Classical and Quantum pipeline

To adapt to the separate dispatch of classical and quantum
instructions, the decoder and execution unit as discussed in
Section 5.2.4 is further divided. Each processor has one clas-
sical pipeline and multiple quantum pipelines, which decode
and execute classical and quantum instructions respectively.
Only one timing controller is implemented in the processor
to manage timing information, otherwise the timing control
of different quantum instructions cannot be guaranteed.

5.4 Fast Context Switch

We first define simple feedback control as a special case
that uses the measurement result of a single qubit to control
a small number of quantum operations. Common applica-
tions of this type of control include active qubit reset and
Bell state preparation [31], which are useful primitive for
various scenario. However, the simple feedback control is not
suitable to be processed as a single program block because
(1) frequently occurring parallel control flow can lead to a
bloated number of processors, and (2) the small size of such
program blocks complicates the scheduling mechanism by
frequently requesting block switch.

To absorb the feedback control stall latency, we propose a
mechanism for fast context switch. Since all the information
of this kind of control can be put into one instruction for
processing, the basic idea is to store the state of the system
when the feedback control instructions are executed. Instead
of stalling the pipeline, the processor can continue with in-
structions that are not related to this control.

For instance, we can use a MRCE (Measurement Result
Conditional Execution) instruction to indicate a simple feed-
back control process. An example of the syntax and encoding



is given as follows:
MRCE qr0, ql, gq_opO, q_opl

| Opcode | q_result_addr | q_target_addr | op0 | opl |

This example indicates that the operation to be performed
on qubit 1 should be determined based on the measurement
result of qubit 0. The fast context switch is triggered when
executing this instruction. Relevant information of this feed-
back control is stored, including the quantum operations and
target qubits. The processor then continues to execute sub-
sequent instructions until one of the following occurs: (1)
The valid measurement result is returned, and the processor
switches back to the MRCE instruction. (2) The pipeline
reads an instruction about the stored qubits, and thus stalls
due to the dependence of these quantum instructions. Since
only a small amount of information needs to be stored, the
processor can perform this switching with a short delay. This
mechanism allows parallel execution of simple feedback con-
trol and quantum instructions that are irrelevant to this control.
It also reduces the latency caused by conditional execution,
thereby contributing to a lower CES.

This method provides a flexible and fast execution of the
simple feedback control. In principle, this mechanism can
be extended to the circuit-level feedback control. However,
the switching between large program blocks is much more
complicated and time-consuming. In this work, we only
allocate the parallel complex feedback control to different
processors.

6. IMPLEMENTATION

We implemented QuAPE using FPGA. Various implemen-
tations with different number of processors are prepared for
evaluation. In order to validate the design, a final implemen-
tation is used to perform quantum experiments on the qubits.
In addition, we also implemented (Arbitrary Waveform Gen-
erator) AWG and DAQ modules using customized hardware
to achieve a complete control stack. This section introduces
the implementation of our QCP and system.

6.1 Quantum Control Processor

We use an Altera Stratix10 FPGA chip to implement the
QCP, which contains the QuAPE and communication inter-
face. Due to the relatively small size of current quantum
programs, we directly use FPGA block RAM to implement
all instruction memory and caches. The complete memory
hierarchy is planned for future release. A series of measure-
ment result registers are used to store the classical qubit states,
which are obtained through demodulation, integration and
thresholding in the DAQ module. The QuAPE implements
a block information table with 64 entries, each of which oc-
cupies 32 bits. Other presented modules in Section 5 are
also implemented in the QCP. The core fabric is clocked at
100MHz, and the communication interface uses a high-speed
serial interface for low-latency data transmission.

6.2 System

The schematic of the entire system is given in Figure 9.
The QCP sends codeword to AWGs to trigger the waveform
generation, and receives measurement results from DAQs.

QCP Board

FPGA

QuAPE

Processor

| Communication Interface |

Measurement

Sxciadtullar Result Register

Measurement
Result

DAQ Board 1

v Codeword

AWG Board
FPGA x2 FPGA x2

Measurement
Waveform Table o
Discrimination

bac] w6 [oad] || [[anc] w6 [oc)

Analog Waveform

Figure 9: System structure implementing the control stack.
The orange arrows represent analog signals and the black
arrows represent digital signals.

The system consists of one QCP board, and multiple AWG
and DAQ boards. In our implementation, each AWG has
two aforementioned FPGAs, and each FPGA is connected to
eight Digital-to-Analog Converters (DACs). The DAQ board
has a similar structure, except that DACs are replaced with
Analog-to-Digital Converters (ADCs). All AWGs and DAQs
are also clocked at I00MHz. A backplane is implemented to
provide connections from QCP board to all other boards. The
backplane provides wiring up to 18 AWG boards and 2 DAQ
boards, but not all of them are used in later experiments.

7. EVALUATION

In order to evaluate QuAPE, we perform some benchmark
tests using only the QCP board. In this section, we investigate
the impact of the number of processors on the program exe-
cution time, and evaluate the performance of the superscalar
approach on multiple benchmarks.

Circuit level parallelism evaluation:

Benchmark: We first only focus on evaluate our multipro-
cessor architecture using a benchmark for standard Shor syn-
drome measurement circuits for 7-qubit Steane code [36].
The circuit of this benchmark is given in Figure 10, where
g0 — g6 are encoded data qubit block. Each of its six stabi-
lizer generators can be measured fault-tolerantly via bit-wise
CNOT/CZ between these encoded data qubits block and 4-
qubit ancilla cat state. Each cat state needs to be prepared
followed by verifying certain parities because the prepara-
tion itself is not fault-tolerant. The whole circuit is repeated
until the verification results are 0. This process needs to per-
form the verification for different parities for different ancilla
blocks simultaneously. To establish reliable syndromes, one
should take 3 times measurements followed by a majority
vote.

We use 37 qubits and assume all presented two-qubit con-
nections are valid to avoid introducing unnecessary com-
plexity in this microarchitecture-level test. We also write a
preliminary compiler to generate instructions for the eval-
uation and experiment. In this test, the decision of block
division is made based on potential parallel sub-circuits. For
example, the six stabilizers are assigned the same priority, but
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Figure 10: Circuit diagram for fault-tolerant measurement.

each one is treated as a separate block. The corresponding
assembly program consists of 288 quantum instructions and
252 classical instructions, which indicates the existence of
complex classical control in this benchmark. This quantum
program is divided into 50 blocks with 15 different priorities
to enable potential circuit-level parallelism. We use four dif-
ferent implementations with one, two, four and six processors
to perform the benchmark test. In different implementations,
the scheduler is only allowed to prefetch the first (first two/-
four/six) block(s) before the task starts. A pseudo random
number generator is implemented in the FPGA to generate
measurement results for testing. The feedback control latency
is measured to be approximately 450ns. We take the unipro-
cessor implementation as the baseline design and compared
it with other three designs.

Evaluation metric: The latency of feedback control typi-
cally requires hundreds of nanoseconds, and it is significant
compared to the gate time (usually 20 40ns). Therefore, we
use execution time and the achieved speedup as the metric
for CLP exploitation, because the classical control part limits
the execution time. In the near term, the prolonged execution
time will significantly affect the fidelity due to decoherence
errors. In the long term, with the continuously improving
quality of the quantum chip, speedup will become a dominant
factor for realizing an efficient quantum computer.
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Figure 11: Results of benchmark tests performed using dif-
ferent number of processors: (a) average execution time with
three different failure rates; (b) the actual and ideal speedup.

Results: The results are shown in Figure 11. Figure 11a
shows the execution time of different implementations, and
each result is obtained by averaging the results of 1000 exe-
cutions. The failure rate indicates the probability of failure of
the preparation step, which leads to a longer execution time.
The actual speedup is obtained by comparing the observed
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execution time with the baseline design. As a comparison, we
also calculate the theoretical speedup in Figure 11b by assum-
ing that all block scheduling and allocation can be completed
without taking any clock cycles.

The difference between the actual speedup and theoreti-
cal speedup mainly due to: 1) the scheduling response time
spent in the scheduler, and 2) the allocation time for fetch-
ing instructions into the private cache. Our prefetch mech-
anism works well by itself, though some program blocks
remains unaccelerated due to the frequent block switching.
In this test, the smallest block only has four instructions. This
demonstrate that dividing program into fine-grained blocks
can even have negative impact, because the scheduler can-
not respond to overwhelming concurrent requests. Overall,
our six-processor implementation achieved a 2.59 x speedup
compared to the uniprocessor. This substantial improvement
can significantly reduce the accumulate quantum errors dur-
ing computation.

To conduct a more comprehensive evaluation of the mul-
tiprocessor architecture, we also selected 7 different bench-
marks from Qiskit [2], ScaffCC [18], and RevLib [41] for
testing. We measure the execution time of each benchmark
to calculate the speedup that a two-core implementation can
achieve compared to the uniprocessor implementation. The
results are shown in Figure 12.

4000 EEE two-core

BN uniprocessor
3500
3000
2500
2000

1500

Executyion time (ns)

-
=)
=3
S

«
=)
5]

o

oo

w1 o0 q.‘,exﬁ muf\e“(’ 8 }Aa

G0~

Benchmarks
Figure 12: Execution time for various benchmarks on two-
core and uniprocessor.

In these tests, we simply divide the part of the program with
parallel operations into two blocks, each corresponding to
half of the qubits. Overall, the two-core implementation can
achieve an average 1.30x speedup of these benchmarks. This
result proves that the multiprocessor architecture can help a
variety of applications to obtain performance improvements,
thereby alleviating the limitations of the classic control part
on program execution time.

Quantum operation level parallelism evaluation:

We implemented an 8-way superscalar architecture on the
QCP board. We use the same benchmarks to demonstrate the
performance of our quantum superscalar architecture, while a
scalar processor is used as the baseline design. We measured
the number of clock cycles spent for each circuit step in the
QCP. The TR is then calculated by setting the clock time to
10ns and the gate time to 20ns. We calculated the average TR
for a direct comparison. Figure 13 shows the results of the
8-way superscalar and baseline design on each benchmark.

Overall, our superscalar approach achieve an average 4.04 x
reduction in the average TR of these seven benchmarks. An
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Figure 14: Experiments for RB and simRB on two qubits (q0
and ql). Symbols are experimental data, and solid (dashed)
curves represent the fitting result for RB (simRB).

8.00 reduction is observed in the result of the As/6 bench-
mark, which achieves theoretical upper bound. Due to the
relatively small degree of parallelism that can be exploited,
only 1.60x improvement is achieved for rd84_143. For the
last two benchmarks, the average TR of the baseline design
is less than 1. However, their maximum TR are 4.5 and 9,
respectively. As a comparison, our design reached TR < 1
for all seven benchmarks.

We also verified the fast context switch in QuAPE. We
used a program with an active qubit reset and a randomized
benchmarking (RB) for testing. The RB instructions can be
executed correctly when the active qubit reset waits for its
measurement result. In this implementation, we measured
that it takes three clock cycles to switch the context of the
simple feedback control.

8. EXPERIMENTS

The QuAPE processor implemented for the experiment tar-
gets a 10-qubit one-dimension superconducting chip, which
requires 38 analog channels for control and readout in our
experimental setup. The connection information between
the analog devices and the quantum chip is hard-coded in
QuAPE to provide the appropriate control signals. Details of
our experimental set-up can be found in [42].

We perform the RB experiments both individually [22]
and simultaneously [15] on a pair of qubits (q0 and q1) with
our 10-qubit QPU. As illustrated in Figure 14, the blue star
symbols represent the experimental data for q0, and the red
thin diamond ones for ql respectively. The individual RB
experiments showed in light blue (red) color for qO (q1) are
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performed as a reference, and we extract the average fidelity
of single qubit gates are 99.5% (99.4%) for q0 (q1). The
data for simultaneous randomized benchmarking (simRB) is
shown in dark red (blue) for q0 (q1). The mean gate fidelity
is 98.7% and 99.1% for q0 and ql, respectively. The lower
fidelities comparing with the individual RB is accounted for
the inevitable ZZ interaction between the qubits.

This result demonstrates that the multiprocessor and quan-
tum superscalar architectures in QUAPE can work properly.
This experiment shows that QuAPE is capable of simultane-
ously issuing quantum operations to different qubits, which
can be used to control more qubits. However, our current
experimental setup is restricted by the read-out device. In
this experiment, the simRB is applied to two qubits.

9. RELATED WORK

Comparison with QuMA_v2 [13]: Table 2 shows the char-
acteristics of QUMA_v2 and QuAPE. QuMA_v2 also has a
centralized memory architecture and supports various control
flow by executing e€QASM instructions. QuMA_v2 currently
does not support the direct exploitation of CLP, making it
difficult to handle applications such as the fault tolerant syn-
drome measurement. In the tests of multiprocessor (see Sec-
tion 7), the uniprocessor implementation can be regarded as
QuMA_v2.

QuAPE QuMA_v2,
HPCA 2019 [13]

Target technology | Superconducting | Superconducting
Memory Centralized Centralized
architecture
CLP Multiprocessor N/A
QOLP Superscalar VLIW, SOMQ
Feedback control | Supported Supported

Table 2: Comparison with QUMA_v2

Regarding QOLP, we choose superscalar over the very-
long-instruction-word (VLIW) approach in QUMA_v2 mainly
due to the following three reasons: First, the length of a sin-
gle instruction can remain unchanged when implementing
more execution units, thereby ensuring a fixed-length QISA
design. Such RISC-fashion instruction set enables a compact
and efficient microarchitecture implementation. Second, the
amount of inserted QNOPs in the VLIW bundle will lead to
additional program size. Third, the separate dispatch of clas-
sical and quantum instructions in the superscalar approach
absorbs the potential delay caused by branch instructions.

QuMA_v2 also adopts a single-operation-multiple-qubit
(SOMQ) method to apply a single operation on multiple
qubits simultaneously. This technology can reduce the QICES
in Equation 1 and is beneficial for achieving a lower CES.
However, the analysis in [13] assumes that the QCP can al-
ways provide all the target qubit (pair) list in time, which is
difficult to achieve in some quantum experiments, such as the
quantum random circuit sampling [3].

Other related work: The APS2 system proposed in [32] has
a distributed architecture, which means that a single quantum
program needs to be translated into multiple assembly pro-
grams to run on different modules. Tannu ef al. proposed



QuEST [38], a quantum control processor architecture that
can tame the instruction bandwidth problem mainly caused
by quantum error correction code instructions. A NISQ quan-
tum computer simulator including the classical control system
can help the microarchitecture research to perform a more
comprehensive simulation. Several QC simulators have been
proposed, such as QPDO [29] and SANQ [24], which can be
extended to achieve architectural simulation like traditional
simulators, e.g., GEMS [5].

Recent works on compilers [1,25,33] has also paved the
way for full-stack quantum computers. In this research, we
only wrote a preliminary compiler to generate instructions
for evaluation and experiment. As more advanced compi-
lation techniques can help find more opportunities for par-
allelism exploitation, we can conduct more in-depth explo-
rations based on our microarchitecture-level proposal in the
future, e.g. block division methods and trade-offs between
parallelism and cross-talk.

10. CONCLUSION

In this work, we clarified the requirements for exploiting
CLP and QOLP in the control microarchitecture. To tackle
the limited operation issue rate of quantum control microar-
chitecture, we propose QuUAPE to exploit different levels of
parallelism. In this work, we propose three mechanisms: mul-
tiprocessor, quantum superscalar, and fast context switch for
simple feedback control. A multiprocessor architecture can
achieve concurrent processing of multiple program blocks.
Quantum superscalar architecture reduces the CES in an ef-
fective way. The context switch mechanism contributes to a
fast and flexible feedback control, which helps the quantum
computing to benefit from dynamic quantum circuits.

We implemented a QuAPE prototype on FPGA. Multiple
benchmarks are tested to demonstrate the capability of our
microarchitecture. The design is validated by performing a
simRB experiment on a superconducting QPU. In conclusion,
our proposal offers insights for building a scalable quantum
control microarchitecture for larger NISQ systems.
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