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ABSTRACT
Online meta-learning is emerging as an enabling technique for

achieving edge intelligence in the IoT ecosystem. Nevertheless, to

learn a good meta-model for within-task fast adaptation, a single

agent alone has to learn over many tasks, and this is the so-called

‘cold-start’ problem. Observing that in a multi-agent network the

learning tasks across different agents often share some model simi-

larity, we ask the following fundamental question: “Is it possible

to accelerate the online meta-learning across agents via limited

communication and if yes how much benefit can be achieved? "

To answer this question, we propose a multi-agent online meta-

learning framework and cast it as an equivalent two-level nested
online convex optimization (OCO) problem. By characterizing the

upper bound of the agent-task-averaged regret, we show that the

performance of multi-agent online meta-learning depends heavily

on how much an agent can benefit from the distributed network-

level OCO for meta-model updates via limited communication,

which however is not well understood. To tackle this challenge, we

devise a distributed online gradient descent algorithm with gradient
tracking where each agent tracks the global gradient using only

one communication step with its neighbors per iteration, and it

results in an average regret 𝑂 (
√︁
𝑇 /𝑁 ) per agent, indicating that a

factor of

√︁
1/𝑁 speedup over the optimal single-agent regret𝑂 (

√
𝑇 )

after 𝑇 iterations, where 𝑁 is the number of agents. Building on

this sharp performance speedup, we next develop a multi-agent

online meta-learning algorithm and show that it can achieve the

optimal task-average regret at a faster rate of𝑂 (1/
√
𝑁𝑇 ) via limited

communication, compared to single-agent online meta-learning.

Extensive experiments corroborate the theoretic results.

CCS CONCEPTS
• Networks → Network performance analysis; • Computing
methodologies→Online learning settings; • Theory of com-
putation → Online learning theory;Multi-agent learning.

KEYWORDS
multi-agent network, online meta-learning, distributed online con-

vex optimization, gradient tracking

1 INTRODUCTION
Meta-learning [8, 20, 30] has recently emerged as a promising ap-

proach for few-shot learning, aiming to solve new learning tasks

quickly with only a few data samples by leveraging the prior knowl-

edge from many related tasks. In particular, the gradient-based

meta-learning [8, 21] has become popular because of its simplicity

yet great effectiveness. Specifically, a meta-model is learnt across a

set of training tasks sampled from some task distribution, such that

the task-specific model for a new task can be quickly adapted from

this meta-model via gradient descent using a few local samples.

Such a fast learning capability with small datasets is critical for

achieving artificial intelligence locally in resource-constrained de-

vices, paving the way to edge intelligence in the Internet-of-Things

(IoT) ecosystem [19].

To enable continual lifelong learning as human beings do, much

attention is being paid to online meta-learning [6, 9, 14, 15], which

can be viewed as a synergy of two distinct learning methods, i.e.,

meta-learning and online learning [28]. Specifically, in online meta-

learning, online learning tasks arrive one at a time, and the agent

intends to learn good priors based on its own experience about past

tasks in a sequential manner so as to adapt quickly to the current

task, and thus has a strong flavor of continual lifelong learning.

Notably, [14, 15] study the gradient-based meta-learning algorithms

in the framework of online convex optimization (OCO), where both

within-task adaptation and update of the meta-models across tasks

are treated as a OCO problem.

Despite the superior fast learning performance of online meta-

learning, to learn a good meta-model for within-task fast adapta-

tion, a single agent alone still has to learn over many tasks, which

inevitably encounters the cold-start problem. Observe that in a

multi-agent network, the learning tasks across different agents

in the same environment often share some model similarity [29].

For example, different robots may perform similar coordination

behaviors according to the environment changes. In fact, one of

the most remarkable abilities of human being is to continuously

speed up learning of new tasks based on previous experiences from

oneself as well as from others. Thus inspired, one may wonder if

the cold-start problem for a single agent could be mitigated via

limited collaboration among multiple agents by leveraging the task

similarity therein. Here by “limited collaboration" we mean limited

communication between neighboring agents only, as the commu-

nication cost usually is a bottleneck in wireless communication

systems. To be more specific, we seek to answer the following open

questions: 1) Can we accelerate the online meta-learning at a single
agent on average in a multi-agent network, with only one communi-
cation step among neighbors per learning task? 2) If yes, how much
can we improve upon the single-agent case?

In this work, we give an affirmative answer to the first question,

and show that the optimal task-average regret can be achieved at a

faster rate for each agent in the multi-agent network via limited

communication, compared to single-agent online meta-learning.

More specifically, we propose MAOML, a multi-agent online meta-

learning framework, which generalizes the single-agent online

meta-learning framework, ARUBA, in [15] to a multi-agent online
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meta-learning setting. In particular, we cast the multi-agent online

meta-learning into an equivalent two-level nested OCO problem,

where we treat the within-task adaptation as a standard task-level
OCO problem, and the meta-model update as a distributed network-
level OCO problem across the multi-agent network. Mathematically,

it can be shown that the performance ceiling of the multi-agent

online meta-learning, in terms of the task-average regret, heav-

ily depends on the performance of the distributed network-level

OCO for the meta-model update. This is intuitive as a good meta-

model should be able to capture the most important information

across different tasks in the multi-agent network for enabling fast

learning of a new task. Therefore, the problem of accelerating online
meta-learning boils down to improving the performance per agent of
distributed network-level OCO via limited communication.

Then, the next key question is “how much can an agent benefit
from distributed OCO through limited communication with its neigh-
bors?” To this end, consider a multi-agent network with 𝑁 agents.

Intuitively, the more agents there are and the more information

exchange, the smaller the average regret would be, and this is of

interest particularly in a networked system. It is well known that

the optimal regret in single-agent OCO is of order 𝑂 (
√
𝑇 ) after

𝑇 iterations, achievable by either online gradient descent (OGD)

or follow-the-regularized-leader (FTRL) [10, 28]. Interestingly, [5]

and [13] suggest that an average regret of 𝑂 (
√︁
𝑇 /𝑁 ), i.e., a factor

of

√︁
1/𝑁 speedup, can be obtained at each agent for multi-agent

stochastic OCO, by performing the synchronizations of local model

predictions after each (or multiple) iteration. However, the required

synchronization (for themodel predictions) where all agents need to

communicate until reaching consensus [5] [13], incurs a significant

communication burden, requiring Θ(Q𝑇 ) communication steps

with Q being the diameter of the network, and hence inevitably

suffers from the latency which degrades the learning performance.

In a nutshell, it remains unclear a priori if distributed OCO algorithms
can achieve significant improvement in terms of the average regret
per agent, with only one communication step per iteration.

The main contributions in this paper can be summarized as

follows.

• We propose a multi-agent online meta-learning framework

to address the cold-start problem in single-agent online meta-

learning, by leveraging the task similarity, i.e., the tasks fol-

low some unknown distribution as in standardmeta-learning

[8], across multiple agents via limited communication. Along

the line of the ARUBA framework introduced in [15], we

treat the multi-agent online meta-learning as a two-level

nested OCO problem, where the within-task adaptation and

the meta-model update are formulated as a standard task-
level OCO problem and a distributed network-level OCO
problem across the multi-agent network, respectively.

• We characterize the performance upper bound ofmulti-agent

online meta-learning in terms of the agent-task-averaged re-
gret, and show that it heavily depends on how much an

agent can benefit from the distributed network-level OCO

for updating the meta-models through limited communica-

tion with its neighbors, which is unclear a priori. To tackle

this challenge, we further consider a distributed online gra-

dient descent algorithm (DOGD-GT) with gradient tracking

[23, 24]. We show that by carefully tracking of the accumu-

lated gradient consensus error through only limited com-

munication among multiple agents, the average regret per

agent can be significantly reduced to 𝑂 (
√︁
𝑇 /𝑁 ) compared

with the single-agent case, thus revealing a linear speedup

of the learning performance.

• Building on the agent-level performance speedup benefiting

from the multi-agent collaboration via gradient tracking in

the distributed network-level OCO, we next propose a multi-

agent online meta-learning algorithm called MAOML. It can

be shown that each agent in MAOML can achieve a notable

performance improvement in terms of the average regret per

agent, i.e., approaching the optimal within-task regret at a

faster rate of𝑂 (1/
√
𝑁𝑇 ) compared with the rate of 𝑂̃ (1/

√
𝑇 )

in the single-agent online meta-learning ARUBA. To the best

of our knowledge, this is the first work to the address the cold-

start problem by studying multi-agent online meta-learning

under limited communication.

• We conduct extensive experiments on various datasets to

demonstrate the performance of DOGD-GT and MAOML.

The experimental results clearly indicate the improvement

of MAOML over the single-agent online meta-learning in

terms of the agent-task-averaged performance, corroborat-

ing the benefits of utilizing the task similarity across multiple

agents through limited communication in both convex and

nonconvex setups.

The rest of the paper is organized as follows. We present the

related work in Section 2, and introduce the multi-agent online

meta-learning framework in Section 3. In Section 4, we take a closer

look to the distributed network-level OCO, and study the DOGD-

GT algorithm. Building on the agent-level performance speedup

achieved in the distributed network-level OCO, we next propose a

multi-agent online meta-learning algorithm MAOML in Section 5

with the performance analysis. The experimental study is presented

in Section 6, followed by the conclusion in Section 7.

2 RELATEDWORK
Online meta-learning. Meta-learning has achieved great success in

few-shot learning under the batch statistical setting [8, 21, 25]. A

gradient-based meta-learning algorithm called MAML is proposed

in the seminal work [8], where a model initialization is learnt based

on a lot of training tasks sampled from some task distribution, such

that maximal performance at a new task can be achieved with the

task-specific model quickly adapted from the model initialization

via only one gradient descent step. To circumvent the need of

Hessian computation in MAML, [21] studies a first-order meta-

learning algorithm named Reptile.

Online meta-learning has recently received much attention. Par-

ticularly, [9] extends the MAML algorithm [8] to the online setting

and proposes a follow-the-meta-leader algorithm. By applying the

stochastic gradient descent to a proxy of true risk for a task based

on a bias vector, [6] proposes an online meta-algorithm by incre-

mentally updating the bias when new tasks arrive, and quantifies

the average excess risk bound. By building a decent connection
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between online meta-learning and OCO, [14, 15] study the gradient-

based meta-learning algorithms in the framework of OCO. More-

over, [7] considers a general class of within-task learning based on

primal-dual online learning, and [37] extends the general online

meta-learning to the non-convex setting and evaluates the perfor-

mance in terms of the local regret. In this paper, we make a first

attempt to study the online meta-learning in a multi-agent scenario

aiming to improve task-average performance.

Distributed OCO. Distributed OCO [34] in a multi-agent network

has recently garnered much interest, where each agent first learns

the model parameters based on its local data and then commu-

nicates its local model information with its neighbors. However,

little attention has been paid to understand the impact of the net-

work size on the average regret achievable at each individual agent

therein. To reap the potential benefits that an agent can achieve

when carrying out distributed OCO, a convex loss function with

both adversarial and stochastic components is considered in [36].

Assuming that the expected gradient is bounded above by𝐺 and the

stochastic variance is bounded above by 𝜎2
, they have shown that

the network expected regret is 𝑂 (
√
𝑁 2𝐺2𝑇 + 𝑁𝑇𝜎2). In contrast,

[5] studies distributed OCO in a stochastic setup and proposes a

distributed mini-batch algorithm, which leads to a network regret

of order 𝑂 (
√
𝑁𝑇 ), i.e., an agent-average regret of 𝑂 (

√︁
𝑇 /𝑁 ), indi-

cating a possible linear speed-up of the average regret per agent.

However, there is a hidden cost associated with the needed syn-

chronization among all agents, required at each iteration, which

could incur a significant communication burden and learning per-

formance degradation. To reduce the communication cost, a dy-

namic synchronization strategy is proposed in [13] by reducing the

frequency of synchronization, which however requires a central

coordinator and still suffers from learning latency because of the

synchronization.

A gradient-tracking based distributed OGD algorithm is con-

sidered in [35] for distributed OCO problem. However, the results

therein are different from ours, as outlined next: 1) [35] aims to

show that the dynamic regret of distributed OCO has no explicit

dependence on the time horizon, as in the centralized case, whereas

we focus on characterizing the performance speedup by cleverly ex-

ploiting the limited multi-agent collaboration. 2) The results in [35]

rely on the assumption that the loss function is strongly-convex,

which is required even in the centralized case so as to remove the

dependence on the time horizon. Since our focus is on the multi-

agent speedup, strong-convexity is not a necessity and we consider

convex loss functions instead. 3) The dynamic regret defined in

[35] cannot simply generalize to the problem setup in our setting,

and a non-trivial analysis of the regret bound is needed to quantify

the performance speedup.

3 MULTI-AGENT ONLINE META-LEARNING
In this section, we first introduce the multi-agent online meta-

learning framework, and cast it into an equivalent two-level nested

OCO problem. By characterizing the upper bound of the agent-task-

averaged regret, we show that the performance of the distributed

network-level OCO for the meta-model update, is the bottleneck

for the performance of multi-agent online meta-learning.

Figure 1: The framework of multi-agent online meta-
learning. Each agent in the multi-agent network has a se-
quence of online learning tasks, and it shares the learned
model knowledge (𝜙𝑡,𝑛 and 𝛼𝑡,𝑛) with its neighbors to facili-
tate the learning of new tasks at time 𝑡 .

3.1 Problem Formulation
As is standard in a multi-agent network, we assume that the agents

communicate in an undirected and connected communication graph

G = (V, E), where V ≜ N = {1, ..., 𝑁 } is the set of vertices

(agents) and E ⊂ V×V is the set of edges connecting agents. Agent

𝑖 and 𝑗 can communicate with each other if and only if (𝑖, 𝑗) ∈ E.
We further denote N𝑖 = { 𝑗 | 𝑗 ≠ 𝑖, (𝑖, 𝑗) ∈ E} as the set of neighbors
of agent 𝑖 . Each agent can make its decision based on the local

information and the information obtained from its neighbors via

weighted averaging. To model this ‘weighting’ process, a consensus

weight matrix,𝑊 = [𝑤𝑖 𝑗 ] ∈ R𝑁×𝑁
, is usually introduced with the

following properties:

• For any (𝑖, 𝑗) ∈ E, we have 𝑤𝑖 𝑗 > 0; otherwise, 𝑤𝑖 𝑗 = 0. In

particular,𝑤𝑖𝑖 > 0.

• Matrix𝑊 is doubly stochastic, i.e.,

∑
𝑖′ 𝑤𝑖′ 𝑗 =

∑
𝑗 ′ 𝑤𝑖 𝑗 ′ = 1

for all 𝑖, 𝑗 ∈ N .

In the multi-agent online meta-learning framework, each agent

𝑛 ∈ N faces with a sequence of online learning tasks T𝑡,𝑛 indexed

by 𝑡 = 1, ...,𝑇 , as illustrated in Figure 1. We assume that all agents

are synchronized at the task level, i.e., new tasks arrive at all agents

at the same time. For each learning task T𝑡,𝑛 , the agent 𝑛 must

sequentially choose𝑚𝑡,𝑛 actions 𝜃𝑖𝑡,𝑛 from some convex compact set

Θ and incur loss 𝑙𝑖𝑡,𝑛 : Θ → Rwhich is convex and Lipschitz, for 𝑖 ∈
[1,𝑚𝑡,𝑛]. After learning one task, each agent would share learned

model knowledge with its neighbors through one communication

step to facilitate the learning of new tasks.

Let 𝜃∗𝑡,𝑛 denote the optimal model parameter for task T𝑡,𝑛 , i.e.,
𝜃∗𝑡,𝑛 = arg min𝜃 ∈Θ

∑𝑚𝑡,𝑛

𝑖=1
𝑙𝑖𝑡,𝑛 (𝜃 ). Following the standard assump-

tion in meta-learning [8], we assume that all the optimal model

parameters 𝜃∗𝑡,𝑛 for any 𝑡 ∈ [1,𝑇 ] and 𝑛 ∈ N follow some unknown

distribution PT , so as to capture the task similarity across the net-

work. In multi-agent online meta-learning, the agents aim to obtain

good learning performance for each individual task. In the same
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spirit with [15], we study the agent-task-averaged regret (ATAR)
after each agent encounters 𝑇 tasks:

R𝑎 =
1

𝑁𝑇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

(
𝑚𝑡,𝑛∑︁
𝑖=1

𝑙𝑖𝑡,𝑛 (𝜃𝑖𝑡,𝑛) −
𝑚𝑡,𝑛∑︁
𝑖=1

𝑙𝑖𝑡,𝑛 (𝜃∗𝑡,𝑛)
)
.

A low ATAR ensures that the individual task regret of an algorithm

is small on average over the network, compared to that of the opti-

mal within-task parameter. To this end, every agent in the network

can collaboratively learn, through limited communications with

neighboring agents, the meta-models, i.e., a model initialization 𝜙𝑡,𝑛
and a task-dedicated learning rate 𝛼𝑡,𝑛 by utilizing other agents’ in-

formation, such that good within-task performance can be achieved

with 𝜃𝑖𝑡,𝑛 adapted from 𝜙𝑡,𝑛 during the online meta-learning.

3.2 Two-Level Nested OCO
Based on the ARUBA framework [15], we treat the multi-agent

online meta-learning as a two-level nested OCO problem, and de-

velop a theoretical framework for understanding the performance

of multi-agent meta-learning through the lens of distributed OCO.

For simplicity, we assume𝑚𝑡,𝑛 =𝑚, for any 𝑡 ∈ [1,𝑇 ] and 𝑛 ∈ N .

3.2.1 Task-level OCO. For the task T𝑡,𝑛 at the agent 𝑛, given the

model initialization 𝜙𝑡,𝑛 and within-task learning rate 𝛼𝑡,𝑛 learned

jointly based on the previous tasks, the agent seeks to determine

the action 𝜃𝑖𝑡,𝑛 so as to minimize the within-task regret after 𝑚

rounds:

R𝑡,𝑛 =
∑︁𝑚

𝑖=1

𝑙𝑖𝑡,𝑛 (𝜃𝑖𝑡,𝑛) −
∑︁𝑚

𝑖=1

𝑙𝑖𝑡,𝑛 (𝜃∗𝑡,𝑛).

For a convex and 𝐺-Lipschitz loss function, it is well-known that

the best upper bound for R𝑡,𝑛 of online mirror descent (OMD),

regularized by Bregman divergence, is given as follows [28]:

R𝑡,𝑛 ≤ 1

𝛼𝑡,𝑛
B𝑅 (𝜃∗𝑡,𝑛 | |𝜙𝑡,𝑛) + 𝛼𝑡,𝑛𝐺

2𝑚 = R̂𝑡,𝑛, (1)

where for a continuously-differentiable strictly convex function

𝑔 : Θ → R, the Bregman divergence is defined as

B𝑅 (𝜃 | |𝜙) = 𝑔(𝜃 ) − 𝑔(𝜙) − ⟨∇𝑔(𝜙), 𝜃 − 𝜙⟩.
This step corresponds to the within-task adaptation from the ini-

tial model 𝜙𝑡,𝑛 using gradient descent regularized by the Bregman

divergence, i.e., the inner loop of meta-learning. In order to use

OCO for the meta-update of initial model 𝜙𝑡,𝑛 , we only consider the

regularization as the set of Bregman divergence that is convex and
smooth in the second argument, i.e., B𝑅 (𝜃 | |·) is convex and smooth

for any fixed 𝜃 ∈ Θ. For example, when 𝑔(·) is the negative gen-
eralized entropy function defined for the expected loss of convex

proper loss functions, the corresponding Bregman divergence sat-

isfies the above condition [22]. The widely used 𝐿2 regularization

also satisfies this condition.

3.2.2 Network-level OCO. Based on the definition of ATAR, it is

clear that ATAR can be bounded above by the average of {R̂𝑡,𝑛}:

R𝑎 =
1

𝑁𝑇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

R𝑡,𝑛 ≤ 1

𝑁𝑇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

R̂𝑡,𝑛 ≜ R̄𝑎, (2)

which indicates that the ATAR is small if the average regret-upper-

bound R̄𝑎 is small. Observe that each agent chooses one action pair

(𝜙𝑡,𝑛 , 𝛼𝑡,𝑛) and incurs the loss R̂𝑡,𝑛 for each task T𝑡,𝑛 . It follows

that the outer loop of multi-agent online meta-learning, i.e., meta-

update of the model initialization 𝜙𝑡,𝑛 and the learning rate 𝛼𝑡,𝑛 ,

can be cast as a distributed network-level OCO among all 𝑁 agents.

The objective here is to learn good meta-models (𝜙𝑡,𝑛 , 𝛼𝑡,𝑛) for

each agent via the multi-agent collaboration so as to minimize the

following regret:

R𝑜𝑢𝑡 =
1

𝑁𝑇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

[
R̂𝑡,𝑛 (𝜙𝑡,𝑛, 𝛼𝑡,𝑛) − R̂𝑡,𝑛 (𝜙∗, 𝛼∗)

]
(3)

where (𝜙∗, 𝛼∗) = arg minEPT [R̂𝑡,𝑛 (𝜙, 𝛼)]. This distributed network-
level OCO enables the task-similarity to be learned on-the-fly, which

is encapsulated in an adaptive learning rate by utilizing the infor-

mation across the multi-agent network.

Note that the average regret-upper-bound R̄𝑎 corresponds to the

average loss in the distributed network-level OCO for updating the

meta-models. It is clear that R̄𝑎 is small if the regret R𝑜𝑢𝑡 is small

for the distributed network-level OCO, which consequently results

in a small ATAR based on (2). This is intuitive as the performance

of online meta-learning directly depends on how good the meta-

models are. In other words, if we could quickly learn good meta-

models, i.e., the model initialization and learning rate, by utilizing

the knowledge across the multi-agent network, good performance

can be guaranteed for each task in online meta-learning, without

the need of learning over many tasks at a single agent. Therefore,

the problem of accelerating distributed online meta-learning boils

down to the problem of improving the performance per agent

of distributed network-level OCO, i.e., quickly learn good meta-

models, via limited communication.

4 DISTRIBUTED NETWORK-LEVEL ONLINE
CONVEX OPTIMIZATION

As alluded to earlier, it remains unclear a priori if any distributed

OCO algorithms can achieve significant improvement in terms of

the average regret per agent, with only one communication step

per iteration. To tackle this challenge and also accelerate online

meta-learning, we take a closer look to the distributed network-

level OCO in this section, and devise a distributed OGD algorithm

with gradient tracking.

For ease of exposition, we consider a more general formulation

[3, 5, 12, 33] for the distributed network-level OCO (3): In iteration

𝑡 the agent 𝑖 makes a local model prediction 𝑥𝑡,𝑖 from a convex

compact set K ⊂ R𝑑 and incurs convex loss 𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) that follows
some unknown distribution P, i.e., 𝑓𝑡,𝑖 ∼ P, for any 𝑡 and 𝑖 ∈ N .

The stochastic assumption about the loss function corresponds to

the underlying task distribution PT of meta-learning in an implicit

manner. The objective here is to make a sequence of predictions

{𝑥𝑡,𝑖 } given the knowledge of previous ones and possibly additional
information so as to minimize the average regret (achieved at each

agent) compared with the best predictor, given as:

R =
1

𝑁

[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥∗)
]
, (4)

where 𝑥∗ = arg minE𝑓𝑡,𝑖∼P [𝑓𝑡,𝑖 (𝑥)]. Note that the above problem
formulation is closely related to but different from the classical
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stochastic optimization in the following sense [5]: Stochastic opti-

mization is primarily concerned with finding the optimal solution

efficiently, for a given underlying model distribution. In stark con-

trast, for the (stochastic) online convex optimization, each agent

makes a sequence of decisions in a real-time manner when new

data arrives, and the objective is to make a sequence of model pre-

dictions that results in a small cumulative loss along the way. In

this study, distributed OCO algorithms are devised to reduce the

average regret per agent with limited communication, compared

with the single agent case.

Since the regret depends on the distribution of 𝑓𝑡,𝑖 , we focus on

the expected regret E[R], which is the same across agents because

{𝑓𝑡,𝑖 } follow the same unknown distributionP. It is well known that

in the centralized case OGD can achieve the optimal regret E[R] =
𝑂 (

√︁
𝑇 /𝑁 ) after totally 𝑁𝑇 iterations are executed sequentially. In

the distributed case where each agent runs OGD alone with no

communication, it is clear that the regret E[R] at each agent has the
order of𝑂 (

√
𝑇 ), which is a factor of

√
𝑁 worse than the centralized

case. This performance gap points to the need of the collaboration

among agents in order to obtain the optimal regret per agent.

4.1 Distributed OGD with Gradient Tracking
Gradient tracking has shown great potentials in distributed opti-

mization to improve the convergence rate through the collaboration

among agents [18, 23, 24, 31]. Particularly, by taking advantage of

the smoothness of the local functions, an accurate estimation of

the global gradient can be obtained as a better descent direction

based on the history information, in contrast to gradient descent

with local gradients. Nevertheless, the benefit of gradient tracking,

especially the acceleration capability, is not well understood in

distributed online learning where one cares about the learning pro-

cess. To fully unleash the potential of gradient tracking, we explore

a distributed OGD algorithm with gradient tracking (DOGD-GT)

in order to achieve the performance speedup at each agent for

distributed OCO, as outlined in Algorithm 1.

More specifically, an auxiliary variable 𝑠𝑡,𝑖 is introduced for each

agent to track the average gradients over the network by leveraging

history information:

𝑠𝑡,𝑖 =
∑︁
𝑗 ∈N𝑖

𝑤𝑖 𝑗𝑠𝑡−1, 𝑗 + ∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) − ∇𝑓𝑡−1,𝑖 (𝑥𝑡−1,𝑖 ),

which serves as a more accurate estimation of the global gradient

1

𝑁

∑
𝑖 ∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), in contrast to the local gradient ∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ). As a

result, the local model at each agent is updated based on 𝑠𝑡,𝑖 using

the gradient descent:

𝑥𝑡+1,𝑖 =
∑︁
𝑗 ∈N𝑖

𝑤𝑖 𝑗𝑥𝑡, 𝑗 − 𝜂𝑠𝑡,𝑖 .

Compared with the standard distributed OGD (DOGD) algorithms,

DOGD-GT has the same order of the communication cost, which

is much smaller than that in the distributed mini-batch algorithm

proposed in [5], where additional consensus steps are needed in

the network after every iteration.

Algorithm 1 Distributed OGD with gradient tracking

1: Initialize 𝑥1,𝑖 = 0 for all 𝑖 ∈ N ;

2: for 𝑡 = 1, 2, ...,𝑇 do
3: for each agent 𝑖 do
4: Apply local model 𝑥𝑡,𝑖 and incur loss 𝑓𝑡,𝑖 (𝑥𝑡,𝑖 );
5: Compute gradient ∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 );
6: if 𝑡 = 1 then
7: Query the local model 𝑥𝑡, 𝑗 from neighbors 𝑗 ∈ N𝑖 ;

8: Compute 𝑠𝑡,𝑖 = ∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 );
9: else
10: Query the local model 𝑥𝑡, 𝑗 and 𝑠𝑡−1, 𝑗 from neighbors

𝑗 ∈ N𝑖 ;

11: Update 𝑠𝑡,𝑖 =
∑

𝑗 ∈N𝑖
𝑤𝑖 𝑗𝑠𝑡−1, 𝑗 + ∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) −

∇𝑓𝑡−1,𝑖 (𝑥𝑡−1,𝑖 );
12: end if
13: Update 𝑥𝑡+1,𝑖 =

∑
𝑗 ∈N𝑖

𝑤𝑖 𝑗𝑥𝑡, 𝑗 − 𝜂𝑠𝑡,𝑖 ;

14: end for
15: end for

4.2 Performance Analysis
We next quantify the performance speedup brought by the limited

collaboration among agents in DOGD-GT. We first impose the

following standard assumptions.

Assumption 1. Each 𝑓𝑡,𝑖 (𝑥) is convex and 𝐿-smooth. And there
exists some constant 𝐷 such that E[∥∇𝑓𝑡,𝑖 (𝑥)∥2] ≤ 𝐷 .

Assumption 2. Let 𝐹 (𝑥) = E[𝑓𝑡,𝑖 (𝑥)]. The stochastic gradient
∇𝑓𝑡,𝑖 (𝑥) has a 𝜎2-bounded variance, i.e., there exists a constant 𝜎 ≥ 0

such that

E[∥∇𝑓𝑡,𝑖 (𝑥) − ∇𝐹 (𝑥)∥2] ≤ 𝜎2 .

Let 𝜌 denote the spectral norm of𝑊 − 1

𝑁
11𝑇 where 1 denotes

an 𝑁 -dimensional all one column vector, then 𝜌 ∈ (0, 1). Moreover,

it can be shown that [24]

∥𝑊𝑥 − 1𝑥 ∥ ≤ 𝜌 ∥𝑥 − 1𝑥 ∥ (5)

where 𝑥 = 1

𝑁
1𝑇 𝑥 .

Let 𝑥𝑡 =
1

𝑁

∑𝑁
𝑖=1

𝑥𝑡,𝑖 , and 𝑥𝑡 = [𝑥 ′
𝑡,1
, 𝑥 ′

𝑡,2
, · · · , 𝑥 ′

𝑡,𝑁
] ′. To analyze

the regret of DOGD-GT, we note that the techniques in stochas-

tic optimization [23] cannot be directly applied here, because it

is necessary to track the regret accumulated within the learning

process instead of the optimality gap lim𝑡→∞ (𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) − 𝑓𝑡,𝑖 (𝑥∗)).
In light of this, we decompose the regret into two parts: (a) the

regret

∑𝑁
𝑖=1

∑𝑇
𝑡=1

[𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) − 𝑓𝑡,𝑖 (𝑥𝑡 )] resulted from the consensus

error among agents, and (b) the regret

∑𝑁
𝑖=1

∑𝑇
𝑡=1

[𝑓𝑡,𝑖 (𝑥𝑡 )− 𝑓𝑡,𝑖 (𝑥∗)]
accumulated over the iterations of 𝑥𝑡 .

For (a), we first have the following lemma to characterize the

relationship between the regret and the consensus gap between

model parameters.

Lemma 1. Under Assumption 1, the following inequality holds:

E

[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 )
]
≤ 2𝐿

𝑇∑︁
𝑡=1

E
[
∥𝑥𝑡 − 1𝑥𝑡 ∥2

]
.
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The proofs for all Lemmas and Theorems in this work can be

found in the appendix. Next, we follow a similar way as in [23] to

build a linear system to bound the consensus error 𝐸 [∥𝑥𝑡,𝑖 −𝑥𝑡 ∥2].

Lemma 2. Let 𝛼 =
3+𝜌2

4
. Under Assumptions 1 and 2, the following

inequality holds for some constant 𝐴1 and 𝐴2:
𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] ≤ 𝐴1

𝛼 − 𝛼𝑇

1 − 𝛼
+ ∥𝑥1 − 1𝑥1∥2

+𝐴2𝜂
2

1 + 𝜌2

1 − 𝜌2
[18𝜂2𝜎2𝐿2 + 18𝑁𝜂2𝐿2𝐷 + (1 + 𝜂𝐿𝑁 + 𝑁 )𝜎2]𝑇 .

The challenge lies in the characterization of the convergence

rate of the consensus error, which needs a careful manipulation

and analysis of the coefficient matrices in the linear system.

For (b), the key question is how to analyze this regret term

without strong convexity. The techniques from [24] and [23] cannot

be applied, as the former considers that each agent has the same

loss function in the entire learning process and the later assumes

the strong convexity. To resolve this issue, we quantify both the

optimaltiy gap at iteration 𝑡 +1, i.e., 𝑓𝑡,𝑖 (𝑥𝑡+1)− 𝑓𝑡,𝑖 (𝑥∗), and the one-
iteration gap between iteration 𝑡 and iteration 𝑡 + 1, i.e., 𝑓𝑡,𝑖 (𝑥𝑡 ) −
𝑓𝑡,𝑖 (𝑥𝑡+1). In this way, we can characterize the relationship between

the optimality gap and the consensus error, and bound the one-

iteration gap by the norm of global gradients, which leads to the

following result.

Lemma 3. Under Assumptions 1 and 2, the following inequality
holds:

E

[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥∗)
]

≤ 4𝑁 ∥𝑥1 − 𝑥∗∥2

𝜂
+ 26𝐿

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 𝑁𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2]

+ 2𝜎2𝜂𝑇 + 24𝐿E[∥𝑥𝑇+1 − 1𝑥𝑇+1∥2] .
Based on Lemma 1, 2 and 3, we have the following result about

the average regret per agent.

Theorem 1. Under Assumptions 1 and 2, when 𝜂 satisfies that

𝜂 ≤ min

{
(1 − 𝜌2)1.5

32𝐿
√︁

1 + 𝜌2

,
1

2𝐿

√︂
𝑁

𝑇

}
with 𝑁 = 𝑜 (𝑇 1/3), the DOGD-GT algorithm attains the following
regret bound:

E[R] =𝑂
(
𝜂2𝑇 + 𝜂𝑇

𝑁
+ 1

𝜂

)
= 𝑂

(√︂
𝑇

𝑁

)
.

Remark 1. (1) Theorem 1 indicates that each agent can achieve

a factor of

√︁
1/𝑁 speedup in terms of the average regret E[R],

through only one communication step per iteration by leveraging

gradient tracking, compared to the case where a single agent can

achieve a regret of order 𝑂 (
√
𝑇 ) without collaboration with other

agents. (2) The overall regret obtained by DOGD-GT, i.e., 𝑂 (
√
𝑁𝑇 ),

also matches the optimal regret in the centralized case where 𝑁𝑇

iterations are processed sequentially. (3) Note that the learning rate

𝜂 requires the knowledge of the time horizon 𝑇 , which however

can be relaxed by applying a standard doubling trick [1].

Remark 2. The classical DOGD algorithm [36] cannot achieve

such performance gain in the setting here, because essentially

DOGD performs a consensus step followed by a gradient descent

along the local gradient ∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ). For a fixed learning rate, DOGD
only converges to a neighborhood of the optimizer 𝑥∗, because
the local gradient is data-driven and hence random. Such an os-

cillation around 𝑥∗ slows down the convergence and results in a

larger regret, calling for a more elegant consensus algorithm. This

is also corroborated by the consensus schemes in the work on

distributed multi-armed bandits [17, 27]. In contrast, gradient track-

ing provides an efficient way to communicate local estimations of

the global gradient with the neighbors, and each agent is able to

quickly construct a more accurate estimate of the global gradient

1

𝑁

∑
𝑖 ∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) with only one communication step per iteration

as the information diffuses in the network until consensus. And

the global gradient estimation clearly serves as a better direction

than the local gradient no matter the stochasticity is in place or not,

leading to a better regret bound.

5 MAOML
Thanks to gradient tracking, the proposed DOGD-GT algorithm

clearly showcases the potential for accelerating the learning process

in distributed OCO through limited collaboration among agents.

To reap the potential benefits, we next devise a multi-agent online

meta-learning (MAOML) algorithm based on DOGD-GT, to mitigate

the cold-start problem.

Algorithm 2 MAOML

1: Initialize 𝜙1,𝑛 and 𝛼1,𝑛 for all 𝑛 ∈ N ;

2: for 𝑡 = 1, 2, ...,𝑇 do
3: for each agent 𝑛 do
4: Receive task T𝑡,𝑛 which would be learnt for𝑚 rounds;

5: for round 𝑖 ∈ [𝑚] do
6: Run online mirror descent with 𝜙𝑡,𝑛 and 𝛼𝑡,𝑛 =

𝑣𝑡,𝑛

𝐺
√
𝑚

to obtain 𝜃𝑖𝑡,𝑛 ; // (within-task adaptation)

7: Incur loss 𝑙𝑖𝑡,𝑛 (𝜃𝑖𝑡,𝑛);
8: end for
9: Run DOGD-GT with all agents to update 𝜙𝑡+1,𝑛 and

𝛼𝑡+1,𝑛 =
𝑣𝑡+1,𝑛

𝐺
√
𝑚
; // (multi-agent meta-update of OMD ini-

tialization and learning rate)
10: end for
11: end for

As shown in (1), R̂𝑡,𝑛 is a joint function for 𝜙𝑡,𝑛 and 𝛼𝑡,𝑛 , and it

would be easier to learn 𝜙𝑡,𝑛 and 𝛼𝑡,𝑛 separately [15]. Specifically,

the distributed network-level OCO can be decoupled as two sepa-

rate distributed OCOs over the following two function sequences

{𝑓 𝑖𝑛𝑖𝑡𝑡,𝑛 }𝑡,𝑛 and {𝑓 𝑟𝑎𝑡𝑒𝑡,𝑛 }𝑡,𝑛 for every task at each agent:

𝑓 𝑖𝑛𝑖𝑡𝑡,𝑛 (𝜙) = B𝑅 (𝜃∗𝑡,𝑛 | |𝜙)𝐺
√
𝑚,

𝑓 𝑟𝑎𝑡𝑒𝑡,𝑛 (𝑣) =
(
B𝑅 (𝜃∗𝑡,𝑛 | |𝜙𝑡,𝑛)

𝑣
+ 𝑣

)
𝐺
√
𝑚.

In what follows, we make a few further remarks on the algorithm

design:
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• Here for each agent 𝑛 at every task T𝑡,𝑛 , the model initializa-

tion 𝜙𝑡,𝑛 is updated based on DOGD-GT over the function

𝑓 𝑖𝑛𝑖𝑡𝑡,𝑛 for 𝜙𝑡,𝑛 ∈ Θ, and the learning rate 𝛼𝑡,𝑛 =
𝑣𝑡,𝑛

𝐺
√
𝑚

where

𝑣𝑡,𝑛 is updated based on DODG-GT over the function 𝑓 𝑟𝑎𝑡𝑒𝑡,𝑛

for 𝑣𝑡,𝑛 ≥ 𝜖 > 0. By assuming that B𝑅 (𝜃 | |𝜙) ≤ 𝐻2
for any

𝜃 , 𝜙 ∈ Θ, it is easy to check that 𝑓 𝑟𝑎𝑡𝑒𝑡,𝑛 (𝑣) is convex and

2𝐻 2

𝜖3
-smooth for 𝑣 ∈ [𝜖,∞).

• Note that although the global optimal 𝜙∗ and 𝛼∗ exist for
all tasks, at each iteration 𝑡 different agents would have

distinct model initialization 𝜙𝑡,𝑛 and learning rate 𝛼𝑡,𝑛 for

their current tasks.

• And for implementation, one can use the last iterate 𝜃𝑚𝑡,𝑛 to

replace the optimal 𝜃∗𝑡,𝑛 , which incurs an additional 𝑜 (
√
𝑚)

regret term only for many practical settings [15].

The details are summarized in Algorithm 2.

5.1 Performance Analysis
Based on Theorem 1, we have the following result about the per-

formance of MAOML.

Theorem 2. Suppose that the model initialization 𝜙𝑡,𝑛 and 𝑣𝑡,𝑛
are updated based on DOGD-GT with 𝛼𝑡,𝑛 =

𝑣𝑡,𝑛

𝐺
√
𝑚
. Then, the ATAR

achieved by each agent in the multi-agent online meta-learning satis-
fies that

E[R𝑎] ≤ E[R̄𝑎] = 𝑂
©­«

1 + 1

𝑉𝜙√
𝑁𝑇

+𝑉𝜙
ª®¬
√
𝑚

where 𝑉 2

𝜙
= min𝜙 ∈Θ E[B𝑅 (𝜃∗𝑡,𝑛 | |𝜙)].

To obtain a more concrete sense about the performance im-

provement of MAOML, we compare it with the single-agent online

meta-learning, i.e., 𝑁 = 1 (thus ignore the subscript 𝑛). In particular,

we apply the general algorithm (Algorithm 1 therein) [15] to our

setting here, which yields the following proposition.

Proposition 1. Suppose that the model initialization is updated
based on𝜙𝑡 = 1

𝑡−1

∑𝑡−1

𝑗=1
𝜃∗
𝑗
, and the learning rate 𝛼𝑡 =

𝑣𝑡
𝐺
√
𝑚

where 𝑣𝑡
is updated using simplified exponentially-weighted online-optimization
(EWOO) [11] with parameter 𝜖 = 1

𝑇 1/4
. Then, the ATAR achieved by

the single-agent online meta-learning satisfies that

E[R𝑎] ≤ E[R̄𝑎] = 𝑂̃
©­«min


1 + 1

𝑉𝜙√
𝑇

,
1

𝑇 1/4

 +𝑉𝜙
ª®¬
√
𝑚

where 𝑉 2

𝜙
= min𝜙 ∈Θ E[B𝑅 (𝜃∗𝑡 | |𝜙)].

Remark 3. (1) It can be seen from Proposition 1 that for the single-

agent online meta-learning, if 𝑉𝜙 , the average deviation of 𝜃∗𝑡,𝑛 ,

is Ω𝑇 (1), then the ATAR approaches 𝑂 (𝑉𝜙
√
𝑚) at rate 𝑂̃ (1/

√
𝑇 ).

In contrast, with the same number 𝑇 of online learning tasks,

each agent in multi-agent online meta-learning can achieve a clear

performance gain by utilizing the task similarity across multiple

agents through the limited collaboration, i.e., the ATAR approaches

𝑂 (𝑉𝜙
√
𝑚) at a faster rate of 𝑂 (1/

√
𝑁𝑇 ). Although we consider

𝑚𝑡,𝑛 =𝑚 for simplicity, it is worth to note that the results still hold

as long as all {𝑚𝑡,𝑛} follow some distribution across all tasks.

(2) Moreover, the result shown in Theorem 2 also matches the

optimal performance in the centralized case with 𝑁𝑇 tasks in total.

It is worth to note that, for the set Θ with diameter 𝐻 , the single-

task regret achieved by OGD is 𝑂 (𝐻
√
𝑚), whereas in online meta-

learning the optimal regret for each task is smaller, i.e., 𝑂 (𝑉𝜙
√
𝑚)

when the optimal 𝜃∗𝑡,𝑛 are close, especially for the few-shot setting

of a small𝑚 [15].

(3) Built on joint learning of the model initialization and the

learning rate from all past tasks, online meta-learning is intimately

related to the regularization-based methods, particularly the prior-

focused methods, in continual learning [4]. This strong connection

indicates that the multi-agent online meta-learning methods can

be used to speed up learning in continual learning, in particular,

few-shot continual learning where each task only has a few data

samples.

6 EXPERIMENTS
In what follows, we present extensive experiments on both DOGD-

GT andMAOMLwhich corroborate the theoretic results in previous

sections, respectively.

We first introduce the setup of the communication graph for

the multi-agent network. More specifically, we consider that 𝑁

agents communicate in a random network [23, 33], where each two

agents are linked with probability 0.5 (discard the graphs that are

not connected). And the weight matrix𝑊 is defined based on the

Metropolis rule [26]:

𝑤𝑖 𝑗 =


1/max{deg(𝑖), deg( 𝑗)} if 𝑗 ∈ N𝑖 ,

1 − ∑
𝑗 ∈N𝑖

𝑤𝑖 𝑗 if 𝑖 = 𝑗,

0 otherwise,

where deg(𝑖) is the degree of agent 𝑖 . We also consider a complete

communication graph where all agents are connected with each

other for evaluating the performance of MAOML.

6.1 Performance of DOGD-GT
As in [23, 24], we study the online Ridge regression problem, where

each agent 𝑖 at each iteration 𝑡 incurs the following loss:

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) = (𝑢𝑇𝑡,𝑖𝑥𝑡,𝑖 − 𝑣𝑡,𝑖 )2 + 𝜌 ∥𝑥𝑡,𝑖 ∥2

for a given model 𝑥𝑡,𝑖 and the data sample (𝑢𝑡,𝑖 , 𝑣𝑡,𝑖 ). Here 𝜌 > 0 is

a penalty parameter.

In the experiments, each𝑢𝑡,𝑖 is uniformly sampled from [0.3, 0.4]𝑝
with dimension 𝑝 , and 𝑣𝑡,𝑖 is generated according to 𝑣𝑡,𝑖 = 𝑢𝑇

𝑡,𝑖
𝑥𝑡,𝑖 +

𝜖𝑡,𝑖 , where 𝑥𝑡,𝑖 is a predefined parameter, and 𝜖𝑡,𝑖 are independent

Gaussian randomnoiseswithmean 0 and variance 0.5. For complete-

ness, we evaluate the performance of DOGD-GT in both stochastic

and adversarial setups: (1) Stochastic setup: all 𝑥𝑡,𝑖 are the same in

this case, set as a constant from [0, 5]𝑝 ; (2) Adversarial setup: 𝑥𝑡,𝑖 are
randomly and independently located in [0, 10]𝑝 in this case. More-

over, 𝜌 = 0.001, 𝑝 = 10, and the learning rate 𝜂 = 0.001. We evaluate

the average learning performance by measuring the average loss

1

𝑁𝑇

∑𝑁
𝑖=1

∑𝑇
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) as in [36] over multiple simulations.

To demonstrate the performance gain achieved by gradient track-

ing, we compare the performance of DOGD-GT with both DOGD

and the single agent approach. Clearly, as shown in Figure 2(a) and

2(c), DOGD-GT outperforms DOGD and the single agent approach
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(a) Performance comparison in stochastic

setup for 𝑁 = 8.

(b) Impact of 𝑁 in stochastic setup on

DOGD-GT.

(c) Performance comparison in adversarial

setup for 𝑁 = 12.

(d) Impact of 𝑁 in adversarial setup on

DOGD-GT.

Figure 2: Performance evaluations of DOGD-GT on synthesic data.

(a) Performance comparison for 5-way 10-

shot MNIST.

(b) Impact of𝑚 on MAOML for 5-way 10-

shot MNIST.

(c) Performance comparison for 5-way 5-

shot Omniglot.

(d) Impact of 𝑚 on MAOML for 5-way 5-

shot Omniglot.

Figure 3: Performance evaluations of MAOML on MNIST and Omniglot.

in both stochastic and adversarial setups, indicating the benefits

brought by collaborating with neighbors to track the global gra-

dient via limited communication. We also evaluate the impact of

the network size 𝑁 on the performance of DOGD-GT. As expected,

it can be seen from Figure 2(b) and 2(d) that the learning perfor-

mance improves with 𝑁 for both stochastic and adversarial setups,

validating the results in Theorem 1.

To further validate the performance of DOGD-GT, we study the

online multiclass logistic regression on the MNIST dataset. For a

batch B𝑡,𝑖 of data samples 𝑗 = (𝑢 𝑗
𝑡,𝑖
, 𝑣

𝑗
𝑡,𝑖
) ∈ R𝑑 × {0, ..., 9} where

𝑢
𝑗
𝑡,𝑖

is the feature and 𝑣
𝑗
𝑡,𝑖

is the label, the logistic loss function for

𝑥𝑡,𝑖 ∈ R𝑑×10
is defined as:

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) =
−1

|B𝑡,𝑖 |
∑︁
𝑗 ∈B𝑡,𝑖

9∑︁
𝑣=0

1{𝑣 𝑗
𝑡,𝑖

= 𝑣} log

exp(𝑥𝑇
𝑡,𝑖
𝑢
𝑗
𝑡,𝑖
)∑

9

𝑘=0
exp(𝑥𝑇

𝑡,𝑖
(𝑘)𝑢 𝑗

𝑡,𝑖
)
.

Specifically, each batchB𝑡,𝑖 is randomly and independently sampled

from the entire MNIST dataset. We set 𝑑 = 784 and 𝜂 = 0.0001. As

shown in Figure 4(a), DOGD-GT outperforms both DOGD and the

single agent case. When𝑁 increases, the performance of DOGD-GT

will be better, as illustrated in Figure 4(b).

6.2 Performance of MAOML
Next, we evaluate the performance of MAOML in both convex

and nonconvex setups: (1) Convex setup: we consider the online
multiclass logistic regression [33] on theMNIST dataset as an online

learning task T𝑡,𝑛 at each agent. For a batch B𝑖
𝑡,𝑛 of data points

𝑗 = (𝑢 𝑗
𝑡,𝑛, 𝑣

𝑗
𝑡,𝑛) ∈ R𝑑 × {0, ..., 9} where 𝑢 𝑗

𝑡,𝑛 is the feature and 𝑣
𝑗
𝑡,𝑛 is

the label, the logistic loss function for 𝜃 ∈ R𝑑×10
is defined as:

𝑙𝑖𝑡,𝑛 (𝜃 ) =
−1

|B𝑖
𝑡,𝑛 |

∑︁
𝑗 ∈B𝑖

𝑡,𝑛

9∑︁
𝑣=0

1{𝑣 𝑗𝑡,𝑛=𝑣 }
log

exp(𝜃𝑇𝑢 𝑗
𝑡,𝑛)∑

9

𝑘=0
exp(𝜃𝑇 (𝑘)𝑢 𝑗

𝑡,𝑛)
.

And for each agent we consider 5-way 10-shot classification with

the dataset randomly sampled from the entire dataset. (2)Nonconvex
setup: we study 5-way 5-shot classification on Omniglot [16] as the

online learning task T𝑡,𝑛 using a deep neural network (DNN). The

DNN architecture for each task consists of two 2𝐷 convolutional

layers (first with 6 output channels and second with 16 output

channels) with kernel sizes 5 × 5. Each convolution operation is

followed first by ReLu non-linearity, and then by 2𝐷 max-pooling

operation with stride of 2. The final layer is a fully connected layer

with input of size 16 × 4 × 4 and output of size 10. We deploy the

cross entropy to quantify the loss with respect to a single sample. In

the experiments, we evaluate the average learning performance by

measuring the average loss
1

𝑁𝑇𝑚

∑𝑁
𝑛=1

∑𝑇
𝑡=1

∑𝑚
𝑖=1

𝑙𝑖𝑡,𝑛 (𝜃𝑖𝑡,𝑛). Along
the same line in [14], we use OGD as the learning algorithm within

each task.

When applying DOGD-GT to update the model initialization

𝜙𝑡,𝑛 and 𝑣𝑡,𝑛 , in the experiments, we set the learning rate 𝜂 = 0.001

for the outer loop meta-update with DOGD-GT. For the selection

of 𝐺 , we test different values and choose the one with the best

performance for every experimental setup. For example, when we

use the logistic regression for the few-shot classification on MNIST,

we set 𝐺 = 80. We further clarify the parameters used in different

experiments: (1) For Figure 3(a), we set𝑚 = 10; (2) For Figure 3(b)

and 3(d), we set 𝑁 = 8; (3) For Figure 3(c), we set𝑚 = 5.
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(a) Performance comparison for 𝑁 = 8.

(b) Impact of 𝑁 on DOGD-GT.

Figure 4: Performance evaluation of DOGD-GT on MNIST.

We first compare the performance of MAOML under different

number of agents with the single-agent general algorithm ARUBA

in [15]. As shown in Figure 3(a) and 3(c), MAOML clearly outper-

forms ARUBA, by utilizing the task similarity across multiple agents

through limited communication in both convex and nonconvex se-

tups. More specifically, compared with ARUBA, MAOML learns

good model priors at a faster rate, and performs significantly better

after each agent learns over the same number of tasks. Moreover,

with more agents collaborating in the network, the performance of

MAOML increases further, corroborating the results in Theorem

2. We next examine the impact of𝑚, i.e., the number of iterations

within each task, on the learning performance of MAOML. As ex-

pected, the average loss per task decreases with𝑚 because each

task has a sublinear regret on average, as illustrated in Figure 3(b)

and 3(d).

Following the same line as in [14, 15], we also evaluate the per-

formance of MAOML in a meta-testing setup. More specifically,

for each pair of (𝜙𝑡,𝑛, 𝑣𝑡,𝑛) obtained at each iteration 𝑡 , we test its

performance on a set of testing tasks. For each testing task T 𝑡𝑒
𝑡,𝑛

Figure 5: Meta-testing performance evaluation of MAOML
on 5-way 2-shot Omniglot.

at each agent with a training dataset D𝑡𝑟
𝑡,𝑛 and a testing dataset

D𝑡𝑒
𝑡,𝑛 , we first run online gradient descent from the model initial

𝜙𝑡,𝑛 with the learning rate 𝛼𝑡,𝑛 =
𝑣𝑡,𝑛

𝐺
√
𝑚

for𝑚 iterations using the

training dataset D𝑡𝑟
𝑡,𝑛 , and obtain the task specific model parameter

𝜃𝑡𝑒𝑡,𝑛 . Next, we evaluate the accuracy of 𝜃𝑡𝑒𝑡,𝑛 on the testing dataset

D𝑡𝑒
𝑡,𝑛 for each testing task T 𝑡𝑒

𝑡,𝑛 .

We run the experiments for 5-way 2-shot classification and 5-

way 5-shot classification on Omniglot, and evaluate the average

testing accuracy over 10 testing tasks after each iteration 𝑡 for every

agent. Particularly, we consider a complete graph where all agents

are connected with each other, and set𝑚 = 50. As shown in Figure

5 and 6, MAOML clearly achieves a better meta-testing accuracy

compared with ARUBA, and its performance further increases as

the number of agents 𝑁 increases. Therefore, by utilizing the task

similarity across different agents through limited collaboration

among them, each agent can achieve good testing performance in

MAOML after learning over a smaller number of tasks, in contrast

to learning alone by itself.

7 CONCLUSION
In single-agent online meta-learning, the agent has to learn over

many tasks so as to obtain good meta-models, based on which

within-task fast adaptation can be achieved. Nevertheless, this

would inevitably lead to the cold-start problem. To address this

problem, we propose a multi-agent online meta-learning frame-

work to leverage the task similarity across multiple agents, and

cast it into an equivalent two-level nested OCO problem. By pin-

pointing that the performance bottleneck lies in the distributed

network-level OCO, where it still remains unclear that how much

an agent can benefit from it through limited communication with

neighboring agents, we further explore a DOGD algorithmwith gra-

dient tracking. We show that the average regret 𝑂 (
√︁
𝑇 /𝑁 ) can be

achieved at each agent, thus revealing a linear speedup of the learn-

ing performance compared with the single-agent case. Building on

the foundation of the agent-level performance speedup achieved in

the distributed network-level OCO, we next propose a multi-agent
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Figure 6: Meta-testing performance evaluation of MAOML
on 5-way 5-shot Omniglot.

online meta-learning algorithmMAOML, and show that the optimal

within-task regret can be achieved at a faster rate of 𝑂 (1/
√
𝑁𝑇 )

compared with the rate of 𝑂̃ (1/
√
𝑇 ) in the single agent case. The

theoretic results have been clearly verified in the experimental

studies on different datasets.
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APPENDIX
For ease of exposition, we define the following average sequences:

𝑥𝑡 =
1

𝑁

𝑁∑︁
𝑖=1

𝑥𝑡,𝑖 , 𝑠𝑡 =
1

𝑁

𝑁∑︁
𝑖=1

𝑠𝑡,𝑖 , 𝑔𝑡 =
1

𝑁

𝑁∑︁
𝑖=1

∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ),

and further, rewrite {𝑥𝑡,𝑖 }, {𝑠𝑡,𝑖 } and {∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 )} in vector form, i.e.,

𝑥𝑡 =


𝑥𝑡,1
𝑥𝑡,2
.
.
.

𝑥𝑡,𝑁


, 𝑠𝑡 =


𝑠𝑡,1
𝑠𝑡,2
.
.
.

𝑠𝑡,𝑛


, ∇𝑡 =


∇𝑓𝑡,1 (𝑥𝑡,1)
∇𝑓𝑡,2 (𝑥𝑡,2)

.

.

.

∇𝑓𝑡,𝑛 (𝑥𝑡,𝑛)


.

Based on Algorithm 1, the update rule can be reformulated as

𝑠𝑡 =𝑊𝑠𝑡−1 + ∇𝑡 − ∇𝑡−1, (6)

𝑥𝑡+1 =𝑊𝑥𝑡 − 𝜂𝑠𝑡 , (7)

where 𝑠1 = ∇1. We define 𝐺𝑡 =


∇𝐹 (𝑥𝑡,1)

.

.

.

∇𝐹 (𝑥𝑡,𝑁 )

 as the expected gradient at 𝑥𝑡 .

A PRELIMINARIES
To facilitate the regret analysis, we first restate some useful results in the literature. More specifically, to understand the updates of the

average sequences 𝑠𝑡 and 𝑥𝑡 , based on Lemma 7 in [24], we have

Lemma 4. The following equalities hold.

(a) 𝑠𝑡+1 = 𝑠𝑡 + 𝑔𝑡+1 − 𝑔𝑡 = 𝑔𝑡+1;
(b) 𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑠𝑡 = 𝑥𝑡 − 𝜂𝑔𝑡 .

Proof. Since𝑊 is doubly stochastic, it follows that 1𝑇𝑊 = 1𝑇 . To prove (a), we have

𝑠𝑡+1 =
1

𝑁
1𝑇 𝑠𝑡+1

=
1

𝑁
1𝑇 (𝑊𝑠𝑡 + ∇𝑡+1 − ∇𝑡 )

=𝑠𝑡 + 𝑔𝑡+1 − 𝑔𝑡 .

Telescoping the above equation, we have 𝑠𝑡+1 = 𝑠1 + 𝑔𝑡+1 − 𝑔1. Since 𝑠1 = 𝑔1, we can obtain 𝑠𝑡+1 = 𝑔𝑡+1.

To prove (b), we have

𝑥𝑡+1 =
1

𝑁
1𝑇 𝑥𝑡+1

=
1

𝑁
1𝑇𝑊𝑥𝑡 − 𝜂𝑠𝑡

=𝑥𝑡 − 𝜂𝑠𝑡

=𝑥𝑡 − 𝜂𝑔𝑡 .

□

Denote F𝑡 as the 𝜎-algebra generated by the sequence {𝑓1, 𝑓2, ..., 𝑓𝑡−1} where 𝑓𝑡 = [𝑓 𝑇
𝑡,1
, ..., 𝑓 𝑇

𝑡,𝑁
]𝑇 , and define E[·|F𝑡 ] as the conditional

expectation given F𝑡 . Based on[23], we have the following two lemmas.

Lemma 5. The following inequality holds:

E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,𝐺𝑡 − ∇𝑡 ⟩|F𝑡 ] ≤ 𝜎2 .

Lemma 6. The following inequality holds:

E[⟨𝐺𝑡+1,𝐺𝑡 − ∇𝑡 ⟩|F𝑡 ] ≤ 𝜂𝐿𝑁𝜎2 .

We also need the following standard[2, 5, 32].
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Lemma 7. Let 𝑉 be a closed convex set, 𝜙 be a convex function on 𝑉 , and ℎ be a differentiable, strongly convex function on 𝑉 . Let 𝑑 be the
Bregman divergence generated by ℎ. Given 𝑢 ∈ 𝑉 , if

𝑤+ = arg min

𝑤∈𝑉
{𝜙 (𝑤) + 𝑑 (𝑤,𝑢)},

then

𝜙 (𝑤) + 𝑑 (𝑤,𝑢) ≥ 𝜙 (𝑤+) + 𝑑 (𝑤+, 𝑢) + 𝑑 (𝑤,𝑤+) .

B REGRET ANALYSIS
In order to prove Theorem 1, based on (4), we can first rewrite the regret as

𝑁R = R𝑠 =
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥∗)

=

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 )︸                                      ︷︷                                      ︸
𝑅1

+
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥∗)︸                                    ︷︷                                    ︸
𝑅2

, (8)

where 𝑥∗ = arg min 𝐹 (𝑥). It can be seen from (8) that the regret can be decomposed into two terms: 1) 𝑅1, the regret resulted by the difference

between local model 𝑥𝑡,𝑖 and the global average 𝑥𝑡 , and 2) 𝑅2, the regret accumulated over the iteration of the global average 𝑥𝑡 .

B.1 Analysis of 𝑅1

To analyze 𝑅1, we first have the following lemma to characterize the relationship between the regret and the consensus gap between model

parameters.

Lemma 1. Under Assumption 1, the following inequality holds:

E

[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 )
]
≤ 2𝐿

𝑇∑︁
𝑡=1

E
[
∥𝑥𝑡 − 1𝑥𝑡 ∥2

]
.

Proof. For any 𝑥 , we can have

1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑡,𝑖 (𝑥) ≤
1

𝑁

𝑁∑︁
𝑖=1

{
𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥 − 𝑥𝑡,𝑖 ⟩ +

𝐿

2

∥𝑥 − 𝑥𝑡,𝑖 ∥2

}
=

1

𝑁

𝑁∑︁
𝑖=1

{
𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥𝑡 − 𝑥𝑡,𝑖 ⟩ + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥 − 𝑥𝑡 ⟩ +

𝐿

2

∥𝑥 − 𝑥𝑡,𝑖 ∥2

}
=

1

𝑁

𝑁∑︁
𝑖=1

{
𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥𝑡 − 𝑥𝑡,𝑖 ⟩

}
+ ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩ +

𝐿

2𝑁

𝑁∑︁
𝑖=1

∥𝑥 − 𝑥𝑡,𝑖 ∥2

=
1

𝑁

𝑁∑︁
𝑖=1

{
𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥𝑡 − 𝑥𝑡,𝑖 ⟩

}
+ ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩ +

𝐿

2𝑁

𝑁∑︁
𝑖=1

∥𝑥 − 𝑥𝑡 + 𝑥𝑡 − 𝑥𝑡,𝑖 ∥2

≤ 1

𝑁

𝑁∑︁
𝑖=1

{
𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥𝑡 − 𝑥𝑡,𝑖 ⟩

}
+ ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩ + 𝐿∥𝑥 − 𝑥𝑡 ∥2 + 𝐿

𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2 . (9)

Moreover, based on the convexity and smoothness of 𝑓𝑡,𝑖 , it can be shown that

𝑓𝑡,𝑖 (𝑥𝑡 ) ≥𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥𝑡 − 𝑥𝑡,𝑖 ⟩ +
1

2𝐿
∥∇𝑓𝑡,𝑖 (𝑥𝑡 ) − ∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 )∥2

≥𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥𝑡 − 𝑥𝑡,𝑖 ⟩.
Continuing with (9) and taking expectation at both sides, it follows that

E

[
1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑡,𝑖 (𝑥)
]
≤E

[
1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑡,𝑖 (𝑥𝑡 ) + ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩ + 𝐿∥𝑥 − 𝑥𝑡 ∥2 + 𝐿

𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2

]
,

such that

E[𝐹 (𝑥)] ≤ E[𝐹 (𝑥𝑡 )] + E[⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩] + 𝐿E[∥𝑥 − 𝑥𝑡 ∥2] + 𝐿

𝑁
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] . (10)
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Since (10) holds for any 𝑥 , we can have

E[𝐹 (𝑥𝑡,𝑖 )] ≤ E[𝐹 (𝑥𝑡 )] + E[⟨𝑔𝑡 , 𝑥𝑡,𝑖 − 𝑥𝑡 ⟩] + 𝐿E[∥𝑥𝑡,𝑖 − 𝑥𝑡 ∥2] + 𝐿

𝑁
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2],

which indicates that

1

𝑁

𝑁∑︁
𝑖=1

E[𝐹 (𝑥𝑡,𝑖 )] ≤
1

𝑁

𝑁∑︁
𝑖=1

{
E[𝐹 (𝑥𝑡 )] + E[⟨𝑔𝑡 , 𝑥𝑡,𝑖 − 𝑥𝑡 ⟩] + 𝐿E[∥𝑥𝑡,𝑖 − 𝑥𝑡 ∥2] + 𝐿

𝑁
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]

}
=

1

𝑁

𝑁∑︁
𝑖=1

E[𝐹 (𝑥𝑡 )] +
1

𝑁

𝑁∑︁
𝑖=1

E[⟨𝑔𝑡 , 𝑥𝑡,𝑖 − 𝑥𝑡 ⟩] +
𝐿

𝑁

𝑁∑︁
𝑖=1

E[∥𝑥𝑡,𝑖 − 𝑥𝑡 ∥2] + 𝐿

𝑁
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]

=
1

𝑁

𝑁∑︁
𝑖=1

E[𝐹 (𝑥𝑡 )] + E
[
⟨𝑔𝑡 ,

1

𝑁

𝑁∑︁
𝑖=1

(𝑥𝑡,𝑖 − 𝑥𝑡 )⟩
]
+ E

[
𝐿

𝑁

𝑁∑︁
𝑖=1

∥𝑥𝑡,𝑖 − 𝑥𝑡 ∥2

]
+ 𝐿

𝑁
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]

=
1

𝑁

𝑁∑︁
𝑖=1

E[𝐹 (𝑥𝑡 )] +
2𝐿

𝑁
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] .

Therefore, 𝑅1 can be bounded above as follows:

E

[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 )
]
=

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

E[𝐹 (𝑥𝑡,𝑖 )] −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

E[𝐹 (𝑥𝑡 )]

≤2𝐿

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2],

thereby completing the proof of Lemma 1. □

Based on Lemma 1, to analyze 𝑅1, it suffices to analyze the consensus error E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]. To this end, it can be first seen that the average

of 𝑠𝑡,𝑖 , i.e., 𝑠𝑡 , is equal to the global stochastic gradient average 𝑔𝑡 =
1

𝑁

∑𝑁
𝑖=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) from Lemma 4. Since 𝑠𝑡,𝑖 is designed to estimate the

global gradient average 𝑔𝑡 , it is necessary to quantify the estimation gap ∥𝑠𝑡 − 1𝑔𝑡 ∥. Through careful manipulations, we have the following

result regarding the consensus error.

Lemma 8. For any 𝛽 > 0, we have the following result:

[
E[∥𝑥𝑡+1 − 1𝑥𝑡+1∥2]
E[∥𝑠𝑡+1 − 1𝑔𝑡+1∥2]

]
≤

[
1+𝜌2

2
𝜂2 1+𝜌2

1−𝜌2

(2 + 1

𝛽
)𝐿2∥𝑊 − 𝐼 ∥2 𝜌2 + 2𝛽𝜌2 + 2𝐿𝜌𝜂 + 2𝜂2𝐿2

]
·
[
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]
E[∥𝑠𝑡 − 1𝑔𝑡 ∥2]

]
+

[
0

(2 + 1

𝛽
)𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2

]
.

Proof. Based on the update rule, we can have

∥𝑥𝑡+1 − 1𝑥𝑡+1∥2 ≤∥𝑊𝑥𝑡 − 𝜂𝑠𝑡 − 1(𝑥𝑡 − 𝜂𝑔𝑡 )∥2

=∥𝑊𝑥𝑡 − 1𝑥𝑡 ∥2 − 2𝜂⟨𝑊𝑥𝑡 − 1𝑥𝑡 , 𝑠𝑡 − 1𝑔𝑡 ⟩ + 𝜂2∥𝑠𝑡 − 1𝑔𝑡 ∥2

≤𝜌2∥𝑥𝑡 − 1𝑥𝑡 ∥2 + 𝜂
[

1 − 𝜌2

2𝜂𝜌2
∥𝑊𝑥𝑡 − 1𝑥𝑡 ∥2 + 2𝜂𝜌2

1 − 𝜌2
∥𝑠𝑡 − 1𝑔𝑡 ∥2

]
+ 𝜂2∥𝑠𝑡 − 1𝑔𝑡 ∥2

≤𝜌2∥𝑥𝑡 − 1𝑥𝑡 ∥2 + (1 − 𝜌2)𝜌2

2𝜌2
∥𝑥𝑡 − 1𝑥𝑡 ∥2 + 2𝜂2𝜌2

1 − 𝜌2
∥𝑠𝑡 − 1𝑔𝑡 ∥2 + 𝜂2∥𝑠𝑡 − 1𝑔𝑡 ∥2

≤ 1 + 𝜌2

2

∥𝑥𝑡 − 1𝑥𝑡 ∥2 + 𝜂2
1 + 𝜌2

1 − 𝜌2
∥𝑠𝑡 − 1𝑔𝑡 ∥2 . (11)
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Besides, for the global gradient estimation gap, it follows that

∥𝑠𝑡+1 − 1𝑔𝑡+1∥2 =∥𝑊𝑠𝑡 + ∇𝑡+1 − ∇𝑡 − 1𝑔𝑡+1∥2

=∥𝑊𝑠𝑡 − 1𝑔𝑡 + ∇𝑡+1 − ∇𝑡 + 1𝑔𝑡 − 1𝑔𝑡+1∥2

=∥𝑊𝑠𝑡 − 1𝑔𝑡 ∥2 + 2⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,∇𝑡+1 − ∇𝑡 + 1𝑔𝑡 − 1𝑔𝑡+1⟩ + ∥∇𝑡+1 − ∇𝑡 + 1𝑔𝑡 − 1𝑔𝑡+1∥2

=∥𝑊𝑠𝑡 − 1𝑔𝑡 ∥2 + ∥∇𝑡+1 − ∇𝑡 + 1𝑔𝑡 − 1𝑔𝑡+1∥2 + 2⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,∇𝑡+1 − ∇𝑡 ⟩
+ 2⟨𝑊𝑠𝑡 − 1𝑔𝑡 , 1𝑔𝑡 − 1𝑔𝑡+1⟩

≤𝜌2∥𝑠𝑡 − 1𝑔𝑡 ∥2 + ∥∇𝑡+1 − ∇𝑡 ∥2 + 2⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,∇𝑡+1 − ∇𝑡 ⟩ (12)

where the last inequality holds because

∥∇𝑡+1 − ∇𝑡 + 1𝑔𝑡 − 1𝑔𝑡+1∥2

=∥∇𝑡+1 − ∇𝑡 ∥2 + 𝑛∥𝑔𝑡+1 − 𝑔𝑡 ∥2 − 2⟨∇𝑡+1 − ∇𝑡 , 1𝑔𝑡+1 − 1𝑔𝑡 ⟩
≤∥∇𝑡+1 − ∇𝑡 ∥2 − 𝑛∥𝑔𝑡+1 − 𝑔𝑡 ∥2

≤∥∇𝑡+1 − ∇𝑡 ∥2,

and

⟨𝑊𝑠𝑡 − 1𝑔𝑡 , 1𝑔𝑡 − 1𝑔𝑡+1⟩ =
𝑁∑︁
𝑖=1

〈
𝑁∑︁
𝑗=1

𝑤𝑖 𝑗𝑠𝑡, 𝑗 − 𝑔𝑡 , 𝑔𝑡 − 𝑔𝑡+1

〉
=

〈
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑤𝑖 𝑗𝑠𝑡, 𝑗 − 𝑁𝑔𝑡 , 𝑔𝑡 − 𝑔𝑡+1

〉
=

〈
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑤𝑖 𝑗𝑠𝑡, 𝑗 −
𝑁∑︁
𝑖=1

𝑠𝑡,𝑖 , 𝑔𝑡 − 𝑔𝑡+1

〉
=0.

We next bound the three terms in (12) separately. To bound ∥∇𝑡+1 − ∇𝑡 ∥2
, we consider the conditional expectation E[∥∇𝑡+1 − ∇𝑡 ∥2 |F𝑡 ]. It

is clear that

E[∥∇𝑡+1 − ∇𝑡 ∥2 |F𝑡 ] =E[∥𝐺𝑡+1 −𝐺𝑡 + ∇𝑡+1 −𝐺𝑡+1 +𝐺𝑡 − ∇𝑡 ∥2 |F𝑡 ]
=E[∥𝐺𝑡+1 −𝐺𝑡 ∥2 |F𝑡 ] + 2E[⟨𝐺𝑡+1 −𝐺𝑡 ,∇𝑡+1 −𝐺𝑡+1 − ∇𝑡 +𝐺𝑡 ⟩|F𝑡 ]
+ E[∥∇𝑡+1 −𝐺𝑡+1 − ∇𝑡 +𝐺𝑡 ∥2 |F𝑡 ]

≤E[∥𝐺𝑡+1 −𝐺𝑡 ∥2 |F𝑡 ] + 2E[⟨𝐺𝑡+1,𝐺𝑡 − ∇𝑡 ⟩|F𝑡 ] + 2𝑁𝜎2 .

Since

∥𝐺𝑡+1 −𝐺𝑡 ∥2 ≤𝐿2∥𝑥𝑡+1 − 𝑥𝑡 ∥2

≤𝐿2∥𝑊𝑥𝑡 − 𝜂𝑠𝑡 − 𝑥𝑡 ∥2

=𝐿2 (∥(𝑊 − 𝐼 ) (𝑥𝑡 − 1𝑥𝑡 )∥2 − 2⟨(𝑊 − 𝐼 ) (𝑥𝑡 − 1𝑥𝑡 ), 𝜂𝑠𝑡 ⟩ + 𝜂2∥𝑠𝑡 ∥2)
≤2∥𝑊 − 𝐼 ∥2𝐿2∥𝑥𝑡 − 1𝑥𝑡 ∥2 + 2𝜂2𝐿2∥𝑠𝑡 − 1𝑔𝑡 + 1𝑔𝑡 ∥2

≤2∥𝑊 − 𝐼 ∥2𝐿2∥𝑥𝑡 − 1𝑥𝑡 ∥2 + 2𝜂2𝐿2∥𝑠𝑡 − 1𝑔𝑡 ∥2 + 2𝑁𝜂2𝐿2∥𝑔𝑡 ∥2,

we use Lemma 6 to conclude that

E[∥∇𝑡+1 − ∇𝑡 ∥2 |F𝑡 ]
≤2∥𝑊 − 𝐼 ∥2𝐿2E[∥𝑥𝑡 − 1𝑥𝑡 ∥2 |F𝑡 ] + 2𝜂2𝐿2E[∥𝑠𝑡 − 1𝑔𝑡 ∥2 |F𝑡 ] + 2𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2 |F𝑡 ] + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2 . (13)

To bound ⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,∇𝑡+1 − ∇𝑡 ⟩, we consider the conditional expectation E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,∇𝑡+1 − ∇𝑡 ⟩|F𝑡 ] given F𝑡 , such that

E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,∇𝑡+1 − ∇𝑡 ⟩|F𝑡 ]
=E[E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,∇𝑡+1 − ∇𝑡 ⟩|F𝑡+1] |F𝑡 ]
=E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,𝐺𝑡+1 − ∇𝑡 ⟩|F𝑡 ]
=E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,𝐺𝑡+1 −𝐺𝑡 ⟩|F𝑡 ] + E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,𝐺𝑡 − ∇𝑡 ⟩|F𝑡 ] . (14)
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For the term E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,𝐺𝑡+1 −𝐺𝑡 ⟩|F𝑡 ], we can obtain

E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,𝐺𝑡+1 −𝐺𝑡 ⟩|F𝑡 ]
≤𝐿𝜌E[∥𝑠𝑡 − 1𝑔𝑡 ∥∥𝑥𝑡+1 − 𝑥𝑡 ∥|F𝑡 ]
≤𝐿𝜌E[∥𝑠𝑡 − 1𝑔𝑡 ∥∥𝑊𝑥𝑡 − 𝜂𝑠𝑡 − 𝑥𝑡 ∥|F𝑡 ]
=𝐿𝜌E[∥𝑠𝑡 − 1𝑔𝑡 ∥∥(𝑊 − 𝐼 ) (𝑥𝑡 − 1𝑥𝑡 ) − 𝜂 (𝑠𝑡 − 1𝑔𝑡 + 1𝑔𝑡 )∥ |F𝑡 ]
≤𝐿𝜌E[∥𝑠𝑡 − 1𝑔𝑡 ∥(∥𝑊 − 𝐼 ∥∥𝑥𝑡 − 1𝑥𝑡 ∥ + 𝜂∥𝑠𝑡 − 1𝑔𝑡 ∥ + 𝜂∥1𝑔𝑡 ∥) |F𝑡 ]

=𝐿𝜌E[∥𝑊 − 𝐼 ∥∥𝑠𝑡 − 1𝑔𝑡 ∥∥𝑥𝑡 − 1𝑥𝑡 ∥ + 𝜂∥𝑠𝑡 − 1𝑔𝑡 ∥2 + 𝜂
√
𝑁 ∥𝑠𝑡 − 1𝑔𝑡 ∥∥𝑔𝑡 ∥|F𝑡 ] . (15)

For the term E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,𝐺𝑡 − ∇𝑡 ⟩|F𝑡 ], it follows from Lemma 5 that

E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,𝐺𝑡 − ∇𝑡 ⟩|F𝑡 ] ≤ 𝜎2 . (16)

Therefore, by substituting (15) and (16) into (14), we have

E[⟨𝑊𝑠𝑡 − 1𝑔𝑡 ,∇𝑡+1 − ∇𝑡 ⟩|F𝑡 ]

≤𝐿𝜌E[∥𝑊 − 𝐼 ∥∥𝑠𝑡 − 1𝑔𝑡 ∥∥𝑥𝑡 − 1𝑥𝑡 ∥|F𝑡 ] + 𝐿𝜌𝜂E[∥𝑠𝑡 − 1𝑔𝑡 ∥2 |F𝑡 ] + 𝐿𝜌𝜂
√
𝑁E[∥𝑠𝑡 − 1𝑔𝑡 ∥∥𝑔𝑡 ∥|F𝑡 ] + 𝜎2 . (17)

Combining (17) with (12) and (13), we conclude that for any 𝛽 > 0,

E[∥𝑠𝑡+1 − 1𝑔𝑡+1∥2 |F𝑡 ]
≤𝜌2E[∥𝑠𝑡 − 1𝑔𝑡 ∥2 |F𝑡 ] + E[2∥𝑊 − 𝐼 ∥2𝐿2∥𝑥𝑡 − 1𝑥𝑡 ∥2 + 2𝜂2𝐿2∥𝑠𝑡 − 1𝑔𝑡 ∥2 + 2𝑁𝜂2𝐿2∥𝑔𝑡 ∥2 |F𝑡 ]
+ 2𝐿𝜌E[∥𝑊 − 𝐼 ∥∥𝑠𝑡 − 1𝑔𝑡 ∥∥𝑥𝑡 − 1𝑥𝑡 ∥|F𝑡 ] + 2𝐿𝜌𝜂E[∥𝑠𝑡 − 1𝑔𝑡 ∥2 |F𝑡 ]

+ 2𝐿𝜌𝜂
√
𝑁E[∥𝑠𝑡 − 1𝑔𝑡 ∥∥𝑔𝑡 ∥|F𝑡 ] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2

≤(𝜌2 + 𝛽𝜌2 + 2𝐿𝜌𝜂 + 2𝜂2𝐿2)E[∥𝑠𝑡 − 1𝑔𝑡 ∥2 |F𝑡 ] + (2 + 1

𝛽
)𝐿2∥𝑊 − 𝐼 ∥2E[∥𝑥𝑡 − 1𝑥𝑡 ∥2 |F𝑡 ]

+ 2𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2 |F𝑡 ] + 2𝐿𝜌𝜂
√
𝑁E[∥𝑠𝑡 − 1𝑔𝑡 ∥∥𝑔𝑡 ∥|F𝑡 ] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2

≤(𝜌2 + 2𝛽𝜌2 + 2𝐿𝜌𝜂 + 2𝜂2𝐿2)E[∥𝑠𝑡 − 1𝑔𝑡 ∥2 |F𝑡 ] + (2 + 1

𝛽
)𝐿2∥𝑊 − 𝐼 ∥2E[∥𝑥𝑡 − 1𝑥𝑡 ∥2 |F𝑡 ]

+ (2 + 1

𝛽
)𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2 |F𝑡 ] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2

Taking expectation and combining with (11), we can obtain the following result:[
E[∥𝑥𝑡+1 − 1𝑥𝑡+1∥2]
E[∥𝑠𝑡+1 − 1𝑔𝑡+1∥2]

]
≤

[
1+𝜌2

2
𝜂2 1+𝜌2

1−𝜌2

(2 + 1

𝛽
)𝐿2∥𝑊 − 𝐼 ∥2 𝜌2 + 2𝛽𝜌2 + 2𝐿𝜌𝜂 + 2𝜂2𝐿2

]
·
[
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]
E[∥𝑠𝑡 − 1𝑔𝑡 ∥2]

]
+

[
0

(2 + 1

𝛽
)𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2

]
≜𝐴𝑡

[
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]
E[∥𝑠𝑡 − 1𝑔𝑡 ∥2]

]
+ 𝐵𝑡 (18)

where

𝐴𝑡 =

[
1+𝜌2

2
𝜂2 1+𝜌2

1−𝜌2

(2 + 1

𝛽
)𝐿2∥𝑊 − 𝐼 ∥2 𝜌2 + 2𝛽𝜌2 + 2𝐿𝜌𝜂 + 2𝜂2𝐿2

]
and

𝐵𝑡 =

[
0

(2 + 1

𝛽
)𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2

]
,

completing the proof of Lemma 8.

□

Telescoping (18), we have for 𝑡 ≥ 2[
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]
E[∥𝑠𝑡 − 1𝑔𝑡 ∥2]

]
≤

(
𝑡−1∏
𝑙=1

𝐴𝑙

) [
E[∥𝑥1 − 1𝑥1∥2]
E[∥𝑠1 − 1𝑔1∥2]

]
+
𝑡−1∑︁
𝑙=1

©­«𝐵𝑙
𝑡−1∏
𝑗=𝑙+1

𝐴 𝑗
ª®¬ (19)
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where E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] and E[∥𝑠𝑡 − 1𝑔𝑡 ∥2] would converge to a neighborhood of 0, if the spectral radius of 𝐴𝑡 , i.e., 𝜌𝑠 (𝐴𝑡 ), is smaller than 1

for any 𝑡 ≥ 1. The next lemma characterizes the conditions for 𝜌𝑠 (𝐴𝑡 ) < 1.

Lemma 9. When 𝜂 ≤ (1−𝜌2)1.5

32𝐿
√

1+𝜌2

and 𝛽 =
1−𝜌2

4𝜌2
− 𝐿𝜂

𝜌 − 𝐿2𝜂2

𝜌2
, we can have

𝜌𝑠 (𝐴𝑡 ) ≤
3 + 𝜌2

4

< 1.

Proof. To ensure 𝜌𝑠 (𝐴𝑡 ) < 1, the eigenvalues 𝜆 of 𝐴𝑡 , i.e., the solutions of det(𝐴𝑡 − 𝜆𝐼 ) = 0, must be smaller than 1. By computing

det(𝐴𝑡 − 𝜆𝐼 ), we first need the following holds for some 𝛽 > 0:

1 + 𝜌2

2

= 𝜌2 + 2𝛽𝜌2 + 2𝐿𝜌𝜂 + 2𝜂2𝐿2 < 1.

Clearly, when 𝜂 ≤ (1−𝜌2)1.5

32𝐿
√

1+𝜌2

≤ 1−𝜌2

8𝐿
, it can be seen that the selection of 𝛽 satisfying the above equality is positive:

𝛽 =
1 − 𝜌2

4𝜌2
− 𝐿𝜂

𝜌
− 𝐿2𝜂2

𝜌2

≥ 1 − 𝜌2

4𝜌2
− 1 − 𝜌2

8𝜌
− (1 − 𝜌2)2

64𝜌2

≥ 3

32𝜌2
> 0.

Therefore, for any 𝜆 satisfying det(𝐴𝑡 − 𝜆𝐼 ) = 0, the following is true:

𝜆 ≤ 1

2

©­«1 + 𝜌2

2

+ 𝜌2 + 2𝛽𝜌2 + 2𝐿𝜌𝜂 + 2𝐿2𝜂2 + 2𝐿𝜂

√︄
1 + 𝜌2

1 − 𝜌2
(8 + 4

𝛽
)ª®¬

=
1 + 𝜌2

2

+ 𝐿𝜂

√︄
1 + 𝜌2

1 − 𝜌2
(8 + 4

𝛽
)

≤ 1 + 𝜌2

2

+ 𝐿𝜂

√︄
1 + 𝜌2

1 − 𝜌2
(8 + 44𝜌2)

≤ 1 + 𝜌2

2

+ 𝐿
(1 − 𝜌2)1.5

32𝐿
√︁

1 + 𝜌2

√︄
1 + 𝜌2

1 − 𝜌2
(8 + 44𝜌2)

≤ 3 + 𝜌2

4

< 1.

□

Next, we are ready to prove Lemma 2.

Lemma 2. Let 𝛼 =
3+𝜌2

4
. Under Assumptions 1 and 2, the following inequality holds for some constant 𝐴1 and 𝐴2:

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] ≤ 𝐴1

𝛼 − 𝛼𝑇

1 − 𝛼
+ ∥𝑥1 − 1𝑥1∥2

+𝐴2𝜂
2

1 + 𝜌2

1 − 𝜌2
[18𝜂2𝜎2𝐿2 + 18𝑁𝜂2𝐿2𝐷 + (1 + 𝜂𝐿𝑁 + 𝑁 )𝜎2]𝑇 .

Proof. Let 𝛼 =
3+𝜌2

4
. With the same spirit in [24], we can show that

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] ≤ 𝐴1𝛼
𝑡−1 +𝐴2𝜂

2
1 + 𝜌2

1 − 𝜌2
(6𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2] + 𝜎2 + 𝜂𝐿𝑁𝜎2 + 𝑁𝜎2), (20)
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for some 𝐴1 and 𝐴2. This can be achieved through diagonalization of 𝐴, which needs tedious calculations. To start with, for the selection of

𝛽 , we first have

E[∥𝑠𝑡+1 − 1𝑔𝑡+1∥2 |F𝑡 ]

≤ 1 + 𝜌2

2

E[∥𝑠𝑡 − 1𝑔𝑡 ∥2 |F𝑡 ] + (2 + 1

𝛽
)𝐿2∥𝑊 − 𝐼 ∥2E[∥𝑥𝑡 − 1𝑥𝑡 ∥2 |F𝑡 ] + (2 + 1

𝛽
)𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2 |F𝑡 ] + 2𝜎2

≤
[

1 + 𝜌2

2

+ 2𝐿2𝜂2
1 + 𝜌2

1 − 𝜌2
(2 + 1

𝛽
)
]
E[∥𝑠𝑡 − 1𝑔𝑡 ∥2 |F𝑡 ] + (2 + 1

𝛽
)𝐿2∥𝑊 − 𝐼 ∥2E[∥𝑥𝑡 − 1𝑥𝑡 ∥2 |F𝑡 ]

+ (2 + 1

𝛽
)𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2 |F𝑡 ] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2 . (21)

Combining (21) and (11), we can obtain[
E[∥𝑠𝑡+1 − 1𝑔𝑡+1∥2]
E[∥𝑥𝑡+1 − 1𝑥𝑡+1∥2]

]
≤


1+𝜌2

2
+ 2𝐿2𝜂2 1+𝜌2

1−𝜌2
(2 + 1

𝛽
) 4𝐿2 (2 + 1

𝛽
)

𝜂2 1+𝜌2

1−𝜌2

1+𝜌2

2

 ·
[
E[∥𝑠𝑡 − 1𝑔𝑡 ∥2]
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]

]
+

[
(2 + 1

𝛽
)𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2

0

]
.

For the matrix 𝐴̃ =


1+𝜌2

2
+ 2𝐿2𝜂2 1+𝜌2

1−𝜌2
(2 + 1

𝛽
) 4𝐿2 (2 + 1

𝛽
)

𝜂2 1+𝜌2

1−𝜌2

1+𝜌2

2

 , we can diagonalize it as 𝐴̃ = 𝑉Λ𝑉 −1
, where Σ =

[
𝜆1 0

0 𝜆2

]
with

𝜆1 =

1 + 𝜌2 + 2𝐿2𝜂2 1+𝜌2

1−𝜌2
(2 + 1

𝛽
) −

√︂
4𝐿4𝜂4

(
1+𝜌2

1−𝜌2

)
2

(2 + 1

𝛽
)2 + 16𝐿2𝜂2

1+𝜌2

1−𝜌2
(2 + 1

𝛽
)

2

,

𝜆2 =

1 + 𝜌2 + 2𝐿2𝜂2 1+𝜌2

1−𝜌2
(2 + 1

𝛽
) +

√︂
4𝐿4𝜂4

(
1+𝜌2

1−𝜌2

)
2

(2 + 1

𝛽
)2 + 16𝐿2𝜂2

1+𝜌2

1−𝜌2
(2 + 1

𝛽
)

2

.

And matrix 𝑉 and 𝑉 −1
are

𝑉 =


2𝐿2𝜂

√︂
1+𝜌2

1−𝜌2
(2+ 1

𝛽
)−𝐿

√︂
2(2+ 1

𝛽
) [8+2𝐿2𝜂2

1+𝜌2

1−𝜌2
(2+ 1

𝛽
) ]

2𝜂

√︂
1+𝜌2

1−𝜌2

2𝐿2𝜂

√︂
1+𝜌2

1−𝜌2
(2+ 1

𝛽
)+𝐿

√︂
2(2+ 1

𝛽
) [8+2𝐿2𝜂2

1+𝜌2

1−𝜌2
(2+ 1

𝛽
) ]

2𝜂

√︂
1+𝜌2

1−𝜌2

1 1


and

𝑉 −1 =



−
𝜂

√︂
1+𝜌2

1−𝜌2

𝐿

√︂
2(2+ 1

𝛽
) [8+2𝐿2𝜂2

1+𝜌2

1−𝜌2
(2+ 1

𝛽
) ]

1

2
+ 1

2

√√√
2𝐿2𝜂2

1+𝜌2

1−𝜌2
(2+ 1

𝛽
)

8+2𝐿2𝜂2
1+𝜌2

1−𝜌2
(2+ 1

𝛽
)

𝜂

√︂
1+𝜌2

1−𝜌2

𝐿

√︂
2(2+ 1

𝛽
) [8+2𝐿2𝜂2

1+𝜌2

1−𝜌2
(2+ 1

𝛽
) ]

1

2
− 1

2

√√√
2𝐿2𝜂2

1+𝜌2

1−𝜌2
(2+ 1

𝛽
)

8+2𝐿2𝜂2
1+𝜌2

1−𝜌2
(2+ 1

𝛽
)


.

Let 𝐵̃1 =

[
E[∥𝑠𝑡 − 1𝑔𝑡 ∥2]
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]

]
. We can show that the second row of 𝐴̃𝑝 𝐵̃1 is smaller than 𝐶𝛼𝑝 for some constant 𝐶 .

Moreover, it can be shown that

𝑡−1∑︁
𝑝=0

𝐴̃𝑝 = (𝐼 − 𝐴̃)−1 (𝐼 − 𝐴̃𝑡−1) = 1

det(𝐼 − 𝐴̃)
adj(𝐼 − 𝐴̃) (𝐼 − 𝐴̃𝑡−1)

where det(𝐼 − 𝐴̃) > 0 since 𝜌 (𝐴̃) < 1, and adj(𝐼 − 𝐴̃) is the adjugate matrix of 𝐼 − 𝐴̃.

Let 𝐵̃𝑡 =

[
(2 + 1

𝛽
)𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2

0

]
. The following holds for the second row of

∑𝑡−1

𝑝=0
𝐴̃𝑝 𝐵̃𝑙 :

𝑡−1∑︁
𝑝=0

𝐴̃𝑝 𝐵̃𝑙 ≤
1

det(𝐼 − 𝐴̃)
𝜂2

1 + 𝜌2

1 − 𝜌2
[(2 + 1

𝛽
)𝑁𝜂2𝐿2E[∥𝑔𝑡 ∥2] + 2𝜎2 + 2𝜂𝐿𝑁𝜎2 + 2𝑁𝜎2] .
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Let 𝐴1 = 𝐶 and 𝐴2 = 1

det(𝐼−𝐴̃) , we can obtain (20).

Next, we need to bound the term E[∥𝑔𝑡 ∥2]. It follows that

E[∥𝑔𝑡 ∥2] =E






 1

𝑁

𝑁∑︁
𝑖=1

∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 )





2

≤ 1

𝑁

𝑁∑︁
𝑖=1

E[∥∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 )∥2]

≤𝐷.

For a constant learning rate 𝜂, from (20), it follows that

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] ≤
𝑇∑︁
𝑡=2

[
𝐴1𝛼

𝑡−1 +𝐴2 [18𝜂2𝐿2𝜎2 + 18𝑁𝜂2𝐿2𝐷 + (1 + 𝜂𝐿𝑁 + 𝑁 )𝜎2]𝜂2
1 + 𝜌2

1 − 𝜌2

]
+ E[∥𝑥1 − 1𝑥1∥2]

=𝐴1

𝛼 − 𝛼𝑇

1 − 𝛼
+𝐴2 (18𝜂2𝐿2𝜎2 + 18𝑁𝜂2𝐿2𝐷 + (1 + 𝜂𝐿𝑁 + 𝑁 )𝜎2)𝜂2

1 + 𝜌2

1 − 𝜌2
(𝑇 − 1) + E[∥𝑥1 − 1𝑥1∥2]

≤𝐴2𝜂
2

1 + 𝜌2

1 − 𝜌2
[18𝜂2𝜎2𝐿2 + 18𝑁𝜂2𝐿2𝐷 + (1 + 𝜂𝐿𝑁 + 𝑁 )𝜎2]𝑇

+𝐴1

𝛼 − 𝛼𝑇

1 − 𝛼
+ E[∥𝑥1 − 1𝑥1∥2] .

□

Based on Lemma 1, we can obtain the upper bound of 𝑅1.

B.2 Analysis of 𝑅2

Next, we analyze 𝑅2. First, denote 𝑓𝑡 (·) = 1

𝑁

∑𝑁
𝑖=1

𝑓𝑡,𝑖 (·), then we can have

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥∗) = 𝑁

𝑇∑︁
𝑡=1

[
𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥∗)

]
.

And the following lemma gives an upper bound on 𝑅2.

Lemma 3. Under Assumptions 1 and 2, the following inequality holds:

E

[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥∗)
]

≤ 4𝑁 ∥𝑥1 − 𝑥∗∥2

𝜂
+ 26𝐿

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 𝑁𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2]

+ 2𝜎2𝜂𝑇 + 24𝐿E[∥𝑥𝑇+1 − 1𝑥𝑇+1∥2] .

Proof. Following the same line as in [24], we can first have

𝑓𝑡 (𝑥) ≥ ˆ𝑓𝑡 + ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩ (22)

and

𝑓𝑡 (𝑥) ≤ ˆ𝑓𝑡 + ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩ + 𝐿∥𝑥 − 𝑥𝑡 ∥2 + 𝐿

𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2

(23)

where

ˆ𝑓𝑡 =
1

𝑁

𝑁∑︁
𝑖=1

[𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥𝑡 − 𝑥𝑡,𝑖 ⟩] .
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To show this, for (22), we have

𝑓𝑡 (𝑥) =
1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑡,𝑖 (𝑥)

≥ 1

𝑁

𝑁∑︁
𝑖=1

[𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥 − 𝑥𝑡,𝑖 ⟩]

=
1

𝑁

𝑁∑︁
𝑖=1

[𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥𝑡 − 𝑥𝑡,𝑖 ⟩] +
1

𝑁

𝑁∑︁
𝑖=1

⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥 − 𝑥𝑡 ⟩

= ˆ𝑓𝑡 + ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩,

and for (23), it follows that

𝑓𝑡 (𝑥) =
1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑡,𝑖 (𝑥)

≤ 1

𝑁

𝑁∑︁
𝑖=1

[𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥 − 𝑥𝑡,𝑖 ⟩ +
𝐿

2

∥𝑥 − 𝑥𝑡,𝑖 ∥2]

=
1

𝑁

𝑁∑︁
𝑖=1

[𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) + ⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥𝑡 − 𝑥𝑡,𝑖 ⟩] +
1

𝑁

𝑁∑︁
𝑖=1

⟨∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ), 𝑥 − 𝑥𝑡 ⟩ +
𝐿

2𝑁

𝑁∑︁
𝑖=1

∥𝑥 − 𝑥𝑡,𝑖 ∥2

≤ ˆ𝑓𝑡 + ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩ + 𝐿∥𝑥 − 𝑥𝑡 ∥2 + 𝐿

𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2 .

Next, we can show that

∥𝑥𝑡 − 𝑥∗∥2 =∥𝑥𝑡+1 − 𝑥∗ − 𝑥𝑡+1 + 𝑥𝑡 ∥2

=∥𝑥𝑡+1 − 𝑥∗∥2 − 2⟨𝑥𝑡+1 − 𝑥𝑡 , 𝑥𝑡+1 − 𝑥∗⟩ + ∥𝑥𝑡+1 − 𝑥𝑡 ∥2

(𝑎)
= ∥𝑥𝑡+1 − 𝑥∗∥2 + 2𝜂⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑥∗⟩ + 𝜂2∥𝑔𝑡 ∥2

=∥𝑥𝑡+1 − 𝑥∗∥2 + 2𝜂⟨𝑔𝑡 , 𝑥𝑡 − 𝑥∗⟩ + 2𝜂⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑥𝑡 ⟩ + 𝜂2∥𝑔𝑡 ∥2

(𝑏)
≥ ∥𝑥𝑡+1 − 𝑥∗∥2 + 2𝜂 [ ˆ𝑓𝑡 − 𝑓𝑡 (𝑥∗)] + 2𝜂 [⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑥𝑡 ⟩ +

𝜂

2

∥𝑔𝑡 ∥2]

(𝑐)
≥ ∥𝑥𝑡+1 − 𝑥∗∥2 + 2𝜂 [ ˆ𝑓𝑡 − 𝑓𝑡 (𝑥∗)] + 2𝜂 [𝑓𝑡 (𝑥𝑡+1) − ˆ𝑓𝑡 + (𝜂

2

− 𝜂2𝐿)∥𝑔𝑡 ∥2 − 𝐿

𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2]

=∥𝑥𝑡+1 − 𝑥∗∥2 + 2𝜂 [𝑓𝑡 (𝑥𝑡+1) − 𝑓𝑡 (𝑥∗)] + 2𝜂 [(𝜂
2

− 𝜂2𝐿)∥𝑔𝑡 ∥2 − 𝐿

𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2]

Here (a) is based on the update rule, (b) is based on (22), and (c) is based on (23) by setting 𝑥 = 𝑥∗. Therefore,

𝑇∑︁
𝑡=1

[𝑓𝑡 (𝑥𝑡+1) − 𝑓𝑡 (𝑥∗)] ≤
∥𝑥1 − 𝑥∗∥2

2𝜂
+

𝑇∑︁
𝑡=1

[ 𝐿
𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2 − (𝜂

2

− 𝜂2𝐿)∥𝑔𝑡 ∥2] (24)

which indicates that

𝑇∑︁
𝑡=1

E[𝐹 (𝑥𝑡+1) − 𝐹 (𝑥∗)] ≤ ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 𝐿

𝑁

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] . (25)

Moreover, it can be seen that

𝑇∑︁
𝑡=1

[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥𝑡+1)] ≤
𝑇∑︁
𝑡=1

⟨∇𝐹 (𝑥𝑡+1), 𝑥𝑡 − 𝑥𝑡+1⟩ +
𝐿

2

𝑇∑︁
𝑡=1

∥𝑥𝑡 − 𝑥𝑡+1∥2

=𝜂

𝑇∑︁
𝑡=1

⟨∇𝐹 (𝑥𝑡+1), 𝑔𝑡 ⟩ +
𝜂2𝐿

2

𝑇∑︁
𝑡=1

∥𝑔𝑡 ∥2

≤𝜂

2

𝑇∑︁
𝑡=1

∥∇𝐹 (𝑥𝑡+1)∥2 + 𝜂

2

𝑇∑︁
𝑡=1

∥𝑔𝑡 ∥2 + 𝜂2𝐿

2

𝑇∑︁
𝑡=1

∥𝑔𝑡 ∥2 . (26)
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Combing (25) and (26), we can obtain that

𝑇∑︁
𝑡=1

E[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥∗)]

≤ ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 𝐿

𝑁

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 𝜂

2

𝑇∑︁
𝑡=1

E[∥∇𝐹 (𝑥𝑡+1)∥2] + 𝜂 + 𝜂2𝐿

2

𝑇∑︁
𝑡=1

E[∥𝑔𝑡 ∥2]

≤ ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 𝐿

𝑁

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2] + 𝜂

2

𝑇∑︁
𝑡=1

E[∥∇𝐹 (𝑥𝑡 )∥2] + 𝜂 + 𝜂2𝐿

2

𝑇∑︁
𝑡=1

E[∥𝑔𝑡 ∥2]

≤ ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 𝐿

𝑁

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2] + 𝜂
𝑇∑︁
𝑡=1

E[∥∇𝐹 (𝑥𝑡 ) − 𝑔𝑡 ∥2] + 3𝜂 + 𝜂2𝐿

2

𝑇∑︁
𝑡=1

E[∥𝑔𝑡 ∥2]

≤ ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 𝐿

𝑁

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2] + 2𝜂

𝑇∑︁
𝑡=1

E[∥∇𝐹 (𝑥𝑡 ) − ∇𝑓𝑡 (𝑥𝑡 )∥2]

+ 2𝜂

𝑇∑︁
𝑡=1

E[∥∇𝑓𝑡 (𝑥𝑡 ) − 𝑔𝑡 ∥2] + 3𝜂 + 𝜂2𝐿

2

𝑇∑︁
𝑡=1

E[∥𝑔𝑡 ∥2]

≤ ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 𝐿

𝑁

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2] + 2𝜎2𝜂𝑇

𝑁
+ 2𝜂

𝑇∑︁
𝑡=1

E[∥∇𝑓𝑡 (𝑥𝑡 ) − 𝑔𝑡 ∥2]

+ 3𝜂 + 𝜂2𝐿

2

𝑇∑︁
𝑡=1

E[∥𝑔𝑡 ∥2],

where the last inequality holds because

E[∥∇𝑓𝑡 (𝑥𝑡 ) − ∇𝐹 (𝑥𝑡 )∥2] = 1

𝑁 2

𝑁∑︁
𝑖=1

E[∥∇𝑓𝑡,𝑖 (𝑥𝑡 ) − ∇𝐹 (𝑥𝑡 )∥2] ≤ 𝜎2

𝑁
.

For the term E[∥∇𝑓𝑡 (𝑥𝑡 ) − 𝑔𝑡 ∥2], it is clear that

∥𝑔𝑡 − ∇𝑓𝑡 (𝑥𝑡 )∥ = ∥
𝑁∑︁
𝑖=1

∇𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) − ∇𝑓𝑡,𝑖 (𝑥𝑡 )
𝑁

∥

≤ 𝐿

𝑁∑︁
𝑖=1

∥𝑥𝑡,𝑖 − 𝑥𝑡 ∥
𝑁

≤ 𝐿
√
𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥ . (27)

Therefore,

E

[
𝑇∑︁
𝑡=1

[
∥𝑔𝑡 − ∇𝑓𝑡 (𝑥𝑡 )∥2

] ]
≤ E

[
𝑇∑︁
𝑡=1

𝐿2

𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2

]
=
𝐿2

𝑁
E

[
𝑇∑︁
𝑡=1

∥𝑥𝑡 − 1𝑥𝑡 ∥2

]
. (28)

To obtain an upper bound on

∑𝑇
𝑡=1
E[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥∗)], it suffices to bound

∑𝑇
𝑡=1
E[∥𝑔𝑡 ∥2] from above. To this end, based on (23), we have

𝑓𝑡 (𝑥𝑡,𝑖 ) ≤ ˆ𝑓𝑡 + ⟨𝑔𝑡 , 𝑥𝑡,𝑖 − 𝑥𝑡 ⟩ + 𝐿∥𝑥𝑡,𝑖 − 𝑥𝑡 ∥2 + 𝐿

𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2

≤𝑓𝑡 (𝑥𝑡 ) + ⟨𝑔𝑡 , 𝑥𝑡,𝑖 − 𝑥𝑡 ⟩ + 𝐿∥𝑥𝑡,𝑖 − 𝑥𝑡 ∥2 + 𝐿

𝑁
∥𝑥𝑡 − 1𝑥𝑡 ∥2 .

Therefore,

E[𝐹 (𝑥𝑡,𝑖 )] ≤ E[𝐹 (𝑥𝑡 )] + E[⟨𝑔𝑡 , 𝑥𝑡,𝑖 − 𝑥𝑡 ⟩] + 𝐿E[|𝑥𝑡,𝑖 − 𝑥𝑡 ∥2] + 𝐿

𝑁
E[∥𝑥𝑡 − 1𝑥𝑡 ∥2],
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and

𝑇∑︁
𝑡=1

[ 1

𝑁

𝑁∑︁
𝑖=1

E[𝐹 (𝑥𝑡+1,𝑖 ) − 𝐹 (𝑥∗)]]

≤
𝑇∑︁
𝑡=1

E[𝐹 (𝑥𝑡+1) − 𝐹 (𝑥∗)] +
𝑇∑︁
𝑡=1

E[ 1

𝑁

𝑁∑︁
𝑖=1

⟨𝑔𝑡+1, 𝑥𝑡+1,𝑖 − 𝑥𝑡+1⟩] +
𝐿

𝑁

𝑁∑︁
𝑖=1

𝑇+1∑︁
𝑡=1

E[∥𝑥𝑡,𝑖 − 𝑥𝑡 ∥2] + 𝐿

𝑁

𝑇+1∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]

≤
𝑇∑︁
𝑡=1

E[𝐹 (𝑥𝑡+1) − 𝐹 (𝑥∗)] + 2𝐿

𝑁

𝑇+1∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] .

Based on (24), we can obtain that

𝑇∑︁
𝑡=1

E[𝐹 (𝑥𝑡+1) − 𝐹 (𝑥∗)] ≤ ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 𝐿

𝑁

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] − (𝜂
2

− 𝜂2𝐿)
𝑇∑︁
𝑡=1

E[∥𝑔𝑡 ∥2] .

Continuing with

∑𝑇
𝑡=1

[ 1

𝑁

∑𝑁
𝑖=1
E[𝐹 (𝑥𝑡+1,𝑖 ) − 𝐹 (𝑥∗)]], we can have that

𝑇∑︁
𝑡=1

[ 1

𝑁

𝑁∑︁
𝑖=1

E[𝐹 (𝑥𝑡+1,𝑖 ) − 𝐹 (𝑥∗)]]

≤ ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 3𝐿

𝑁

𝑇+1∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] − (𝜂
2

− 𝜂2𝐿)
𝑇∑︁
𝑡=1

E[∥𝑔𝑡 ∥2] .

Since

∑𝑇
𝑡=1

[ 1

𝑁

∑𝑁
𝑖=1
E[𝐹 (𝑥𝑡+1,𝑖 ) − 𝐹 (𝑥∗)]] ≥ 0, it follows that

(𝜂
2

− 𝜂2𝐿)
𝑇∑︁
𝑡=1

E[∥𝑔𝑡 ∥2] ≤ ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 3𝐿

𝑁

𝑇+1∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] .

For 𝜂 < 1

4𝐿
, it is clear that

𝑇∑︁
𝑡=1

E[∥𝑔𝑡 ∥2] ≤ 2∥𝑥1 − 𝑥∗∥2

𝜂2
+ 12𝐿

𝜂𝑁

𝑇+1∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]

In a nutshell, we can obtain the upper bound for 𝑅2:

E

[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥∗)
]

=E

[
𝑁

𝑇∑︁
𝑡=1

[
𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥∗)

] ]
=𝑁E

[
𝑇∑︁
𝑡=1

[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥∗)]
]

≤𝑁 ∥𝑥1 − 𝑥∗∥2

2𝜂
+ 𝐿

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 𝑁𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2] + 2𝜎2𝜂𝑇 + 2𝜂𝐿2E

[
𝑇∑︁
𝑡=1

∥𝑥𝑡 − 1𝑥𝑡 ∥2

]
+ 𝑁 (3𝜂 + 𝜂2𝐿)

2

(
2∥𝑥1 − 𝑥∗∥2

𝜂2
+ 12𝐿

𝜂𝑁

𝑇+1∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2]
)

≤ 4𝑁 ∥𝑥1 − 𝑥∗∥2

𝜂
+ 26𝐿

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 𝑁𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2] + 2𝜎2𝜂𝑇 + 24𝐿E[∥𝑥𝑇+1 − 1𝑥𝑇+1∥2] .

□
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B.3 Proof of Theorem 1
Based on the analysis of 𝑅1 and 𝑅2, we can obtain the regret as follows:

E[R𝑠 ] =E
[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥∗)
]

=E

[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡,𝑖 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 )
]
+ E

[
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥𝑡 ) −
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑓𝑡,𝑖 (𝑥∗)
]

≤28𝐿

𝑇∑︁
𝑡=1

E[∥𝑥𝑡 − 1𝑥𝑡 ∥2] + 4𝑁 ∥𝑥1 − 𝑥∗∥2

𝜂
+ 𝑁𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2] + 2𝜎2𝜂𝑇 + 24𝐿E[∥𝑥𝑇+1 − 1𝑥𝑇+1∥2]

≤28𝐿𝐴2𝜂
2

1 + 𝜌2

1 − 𝜌2
[18𝜂2𝜎2𝐿2 + 18𝑁𝜂2𝐿2𝐷 + (1 + 𝜂𝐿𝑁 + 𝑁 )𝜎2]𝑇 + 28𝐿𝐴1

𝛼 − 𝛼𝑇

1 − 𝛼
+ 28𝐿∥𝑥1 − 1𝑥1∥2

+ 4𝑁 ∥𝑥1 − 𝑥∗∥2

𝜂
+ 𝑁𝜂

2

E[∥∇𝐹 (𝑥𝑇+1)∥2] + 2𝜎2𝜂𝑇 + 24𝐿E[∥𝑥𝑇+1 − 1𝑥𝑇+1∥2]

=𝑂 (𝜂2𝑇 + 𝜂2𝑁𝑇 + 𝑁

𝜂
+ 𝜂𝑇 )

=𝑂 (
√
𝑁𝑇 )

where 𝜂 ≤ 1

2𝐿

√︃
𝑁
𝑇

and 𝑁 = 𝑜 (𝑇 1/3). Therefore, we conclude that the optimal regret can be achieved and the average regret per agent

E[R] = 1

𝑁
E[R𝑠 ] ≤ 𝑂 (

√︃
𝑇
𝑁
).

C DISTRIBUTED CONVEX STOCHASTIC OPTIMIZATION
As a byproduct, we can achieve the following convergence guarantee of DOGD-GT for distributed convex stochastic optimization.

Corollary 1. Suppose Assumptions 1, 2, and 3 hold, and let 𝑥𝑖 = 1

𝑇

∑𝑇
𝑡=1

𝑥𝑡,𝑖 be the final output of DOGD-GT for each agent 𝑖 . It follows that

1

𝑁

𝑁∑︁
𝑖=1

E[𝐹 (𝑥𝑖 ) − 𝐹 (𝑥∗) ] = 𝑂

(
1

√
𝑁𝑇

)
.

Proof. Based on the convexity of 𝐹 (·) and Jensen’s inequality, we can have

1

𝑁

𝑁∑︁
𝑖=1

E[𝐹 (𝑥𝑖 ) − 𝐹 (𝑥∗)] ≤ 1

𝑁

𝑁∑︁
𝑖=1

E

[
1

𝑇

𝑇∑︁
𝑡=1

𝐹 (𝑥𝑡,𝑖 ) − 𝐹 (𝑥∗)
]

=
1

𝑁

𝑁∑︁
𝑖=1

E

[
1

𝑇

𝑇∑︁
𝑡=1

𝐹 (𝑥𝑡,𝑖 ) −
1

𝑇

𝑇∑︁
𝑡=1

𝐹 (𝑥∗)
]

=
1

𝑇
E[R]

=𝑂

(
1

√
𝑁𝑇

)
.

□

Corollary 1 indicates that the optimal convergence rate of 𝑂 (1/
√
𝑁𝑇 ) can be obtained by DOGD-GT for convex stochastic optimization

problems. In contrast to standard stochastic gradient descent algorithms, it is clear that DOGD-GT can achieve a factor of

√︁
1/𝑁 speedup

compared with the single-agent case.

D PROOF OF THEOREM 2
Define the regret for the network-level OCO about 𝜙𝑡,𝑛 with respect to any reference point 𝜙 as

R𝑖𝑛𝑖𝑡 (𝜙) = 1

𝑁

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

𝑓 𝑖𝑛𝑖𝑡𝑡,𝑛 (𝜙𝑡,𝑛) −
1

𝑁

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

𝑓 𝑖𝑛𝑖𝑡𝑡,𝑛 (𝜙),
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and the regret about 𝑣𝑡,𝑛 with respect to any reference point 𝑣 as

R𝑟𝑎𝑡𝑒 (𝑣) = 1

𝑁

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

𝑓 𝑟𝑎𝑡𝑒𝑡,𝑛 (𝑣𝑡,𝑛) −
1

𝑁

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

𝑓 𝑟𝑎𝑡𝑒𝑡,𝑛 (𝑣) .

Therefore, according to Theorem 1 in Section 4, it follows that

E[R𝑖𝑛𝑖𝑡 (𝜙∗)] = 𝑂

(√︂
𝑚𝑇

𝑁

)
for 𝜙∗ = arg min𝜙 ∈Θ E[𝑓 𝑖𝑛𝑖𝑡𝑡,𝑛 (𝜙)], and that

E[R𝑟𝑎𝑡𝑒 (𝑣∗)] = 𝑂

(√︂
𝑚𝑇

𝑁

)
for 𝑣∗ = arg min𝑣≥𝜖 E[𝑓 𝑟𝑎𝑡𝑒𝑡,𝑛 (𝑣)].

Based on Theorem 3.1 in [15], we can have

E[R𝑎] ≤E
[

1

𝑁𝑇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

(
B𝑅 (𝜃∗𝑡,𝑛 | |𝜙𝑡,𝑛)

𝑣𝑡,𝑛
+ 𝑣𝑡,𝑛

)
𝐺
√
𝑚

]
≤ 1

𝑇

{
E[R𝑟𝑎𝑡𝑒 (𝑣∗)] + min

𝑣
E

[
1

𝑁

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

(
B𝑅 (𝜃∗𝑡,𝑛 | |𝜙𝑡,𝑛)

𝑣
+ 𝑣

)
𝐺
√
𝑚

]}
≤E[R

𝑟𝑎𝑡𝑒 (𝑣∗)]
𝑇

+ min

𝑣

1

𝑇

{
E[R𝑖𝑛𝑖𝑡 (𝜙∗)]

𝑣
+ E

[
1

𝑁

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

(
B𝑅 (𝜃∗𝑡,𝑛 | |𝜙∗)

𝑣
+ 𝑣

)
𝐺
√
𝑚

]}
(𝑎)
≤ E[R

𝑟𝑎𝑡𝑒 (𝑣∗)]
𝑇

+ 1

𝑇
min

{
E[R𝑖𝑛𝑖𝑡 (𝜙∗)]

𝑉𝜙
, 2

√︃
E[R𝑖𝑛𝑖𝑡 (𝜙∗)]𝐺𝑇

√
𝑚

}
+ 2𝑉𝜙𝐺𝑇

√
𝑚

=𝑂
©­«

1 + 1

𝑉𝜙√
𝑁𝑇

+𝑉𝜙
ª®¬
√
𝑚

where (a) is true for 𝑉𝜙 =
√︃
E[B𝑅 (𝜃∗𝑡,𝑛 | |𝜙∗)] and 𝑣 = max

{
𝑉𝜙 ,

√︂
E[R𝑖𝑛𝑖𝑡 (𝜙∗) ]

𝐺𝑇
√
𝑚

}
.
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