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Loop compilation for Tightly Coupled Processor Arrays (TCPAs), a class of massively parallel loop accelerators, entails solving NP-

hard problems, yet depends on the loop bounds and number of available processing elements (PEs), parameters known only at runtime

because of dynamic resource management and input sizes. Therefore, this article proposes a two-phase approach called symbolic

loop compilation: At compile time, the necessary NP-complete problems are solved and the solutions compiled into a space-efficient

symbolic configuration. At runtime, a concrete configuration is generated from the symbolic configuration according to the parameters

values. We show that the latter phase, called instantiation, runs in polynomial time with its most complex step, program instantiation,

not depending on the number of PEs.

As validation, we performed symbolic loop compilation on real-world loops and measured time and space requirements. Our

experiments confirm that a symbolic configuration is space-efficient and suited for systems with little memory—often, a symbolic

configuration is smaller than a single concrete configuration—and that program instantiation scales well with the number of PEs—for

example, when instantiating a symbolic configuration of a matrix-matrix multiplication, the execution time is similar for 4 × 4 and

32 × 32 PEs.
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its engineering → Compilers.
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1 INTRODUCTION

Tightly Coupled Processor Arrays (TCPAs) [9] are loop accelerators with the goal to be energy efficient by offering

comprehensive loop acceleration, meaning they handle all parts of loop execution: computation, control, and commu-

nication. For this purpose, TCPAs have a grid of numerous, simple processing elements (PEs) to exploit task- (multiple

loops in parallel), loop- (multiple parts of a loop in parallel), iteration- (multiple subsequent iterations in parallel),
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and instruction-level parallelism; they have global controllers to centrally compute control flow and unburden the

PEs, a circuit-switched interconnect network to locally communicate intermediate data, and I/O buffers with address

generators to autonomously stream I/O data only at the borders.

Synchronization and efficient utilization of these components rely on a parallelizing compiler, in particular cycle-

accurate scheduling of operations as well as high-quality register allocation and routing, all of which are NP-complete

problems. Because of this tight synchronization, the components require distinct programs and configuration data for

any distinct combination of loop bounds and number of allocatedPEs, but these two parameters are in general unknown

a priori. The number of allocated PEs is unknown because multiple applications may dynamically allocate regions of

PEs sized in accordance with, for example, non-functional properties such as latency and energy consumption.We face

a conundrum: Both programs and configuration data must be generated at runtime despite the NP-complete problems

compilation involves. This renders just-in-time compilation unsuitable. Instead, we propose to split compilation into

two phases, as illustrated in Figure 1:

(1) Symbolic mapping (Section 5) is performed off-line and solves the involved NP-complete problems, generating a

symbolic configuration. A symbolic configuration is a novel compact representation of configurations parameter-

ized in the loop bounds and number of PEs. Here, we contribute the first solution to allocating and representing

routes on the interconnect network (Section 5.4) despite not yet knowing the number of allocated PEs. The PE

programs are represented symbolically and compactly by a polyhedral syntax tree [24].

(2) Instantiation (Section 6) is performed once the parameter values are known and generates a concrete configu-

ration from a symbolic configuration. In particular, we show for the first time how to instantiate PE programs

from a polyhedral syntax tree and that it is possible to instantiate them in polynomial time independently of

the number of PEs (Sections 6.1–6.3).

In Section 7, we present experimental results showing the time and space efficiency of this hybrid compilation

approach for a number of real-world loop programs—but first, we distinguish our work from related approaches to

loop parallelization.

2 RELATED WORK

Loop acceleration is a wide field of research; as for related work, we are interested in two aspects: How are loops

mapped to architectures similar to TCPAs, and what other symbolic compilation approaches for parallelizing loops

have been proposed?

2.1 Loop mapping on similar architectures

Like TCPAs, the following classes of architectures are characterized by a grid of processing elements: massively parallel

processor arrays (MPPAs), coarse-grain reconfigurable arrays (CGRAs), and systolic neural network accelerators.

MPPAs are aimed at accelerating entire applications, not only loops; consequently, the PEs of an MPPA are more

complex, close to a general-purpose CPU, and usually communicate via shared memory and message passing. Because

cycle-accurate synchronization is not necessary then, an MPPA allows for more traditional compilation flows, such

as the Kalray MPPA-256 [6], which is programmed using OpenCL or POSIX multi-threading with automatic loop

parallelization via OpenMP. Another example is the KiloCore [1], which is programmed using C++ or assembly, but

requires manual parallelization. While the compilation flow proposed in this article only applies to a certain class of

loops (see Section 4), they are automatically and comprehensively parallelized up to the loop level. This includes the
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Fig. 1. Hybrid compilation flow for symbolically compiling loop programs for TCPAs. It is divided into symbolic mapping, performed

offline, and instantiation, in general performed at runtime.

generation of programs and configuration data of tightly synchronized components dedicated to energy-efficient loop

acceleration, whereas on MPPAs, the corresponding functionalities are usually part of the PE programs.

CGRAs, on the other hand, only accelerate the kernel of a loop, that is, the body of the innermost level of a loop nest.

Their processing elements are usually simple, reconfigurable functional units interconnected by a circuit-switched net-

work. We refer to the survey [23] for details on CGRA architectures. Simply put, loops are mapped onto a CGRA by

embedding the data flow graph of the loop body onto the CGRA (nodes onto processing elements, edges onto inter-

connections). While this type of mapping allows for arbitrary loop bodies, it not only disregards the vast parallelism

offered by the regularity of a loop, but leaves loop control and I/O communication to the host CPU, making accelera-

tion less autonomous and thus potentially less useful. The generation of corresponding parallelized loop control and

I/O code is usually not addressed in the respective papers. By contrast, we offer a comprehensive approach to loop

acceleration.

Finally, systolic neural network accelerators have very special-purpose compilation flows, starting from a neural

network description, not a loop program. They hence have a narrower scope than the compilation flow proposed in

this article. (Note that our compilation flow does support neural networks if formulated as a loop program.)

2.2 Other symbolic loop compilation approaches

Several works investigate the generation of loop code for a number of processors unknown at compile time. Dyn-

Tile [10] and D-Tiling [12] target general-purpose multi-cores; Kong et al. [14] generate vectorized code for cores

supporting SIMD processing; Konstantinidis et al. [15] generate parallelized code for GPUs. However, none of these

approaches apply to TCPAs because the target architectures do neither rely on cycle-accurate synchronization of com-

ponents nor require PE-specific compact programs (see Section 6.1) to save space and keep instruction memories small.

These approaches also have in common that they finish code generation at compile time. In contrast, the speculative

loop optimizer Appollo offers two approaches for runtime code generation: code skeletons [11] and, more recently,

code bones [4]. While these get assembled at runtime, similar to the instantiation phase described in this article, they

lack the capability to represent instructions parameterized in the current iteration, which is necessary for generating

modulo-scheduled programs in the compact manner required by TCPAs (see Section 5.5).
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Finally, while a symbolic configuration sounds similar to a template (static content mixed with placeholders that

are replaced later), a symbolic configuration represents differently structured configurations. Next, before describing

our hybrid compilation flow in detail, we discuss the fundamentals of TCPAs and how we model loops using reduced

dependence graphs.

3 TIGHTLY COUPLED PROCESSOR ARRAYS

TCPAs are massively parallel loop accelerators highly configurable at synthesis time, featuring a grid of simple pro-

grammable processing elements (PEs) [9, 13] interconnected by a circuit-switched network. As illustrated in Figure 2,

the processor array is surrounded by I/O buffers on all four borders, responsible for decoupling data streaming from

the rest of the system. Finally, in each of the corners, there is a so-called global controller, responsible for synchronizing

the parallel execution of a loop nest on a rectangular region of PEs.

3.1 Interconnect network

Instead of accessing shared memory, loop-carried dependences are communicated locally between processors to save

energy. Each PE is embedded into a so-called interconnect wrapper that acts as a switch between its four neighbors

and the PE. For that, each wrapper provides two independent layers, data and control, each with an individually

configurable number of both input and output ports in the four cardinal directions, called wrapper ports, while the

contained PE provides input and output ports called PE ports. A port is a triple (location, orientation, 8) where 8 ∈ N0 is

an index, location is one of north, east , south, west , or pe, and orientation specifies whether it is a sink (wrapper output

and PE input ports) or a source (wrapper input and PE output ports). As a shorthand notation, we use location⊲8 for

source ports and location⊳8 for sink ports.

Ports of opposing orientation may be connected. Between wrappers, each wrapper port is connected to its sibling,

which is the port of both opposing cardinal direction and opposing orientation; for example south⊳0 of a wrapper is

connected to north⊲0 of the wrapper to its south. At the borders of the TCPA, the wrapper ports facing the border are

connected to corresponding input and output ports of the I/O buffer. Within a wrapper, two ports can be connected at

runtime if they are made adjacent at synthesis time; two ports may be adjacent if they are of opposing orientation.

3.2 Processing elements

Each PE houses two types of registers: data and control. In this paper, we focus on the data registers, which have been

specially designed to exploit the regularity of loops based on the insight that each PE processes a neighborhood of

loop iterations locally:

• General-purpose registers 'rd = {rd0, rd1, . . .} are conventional registers and used for storing intermediate

values during a single loop iteration.

• Feedback registers 'fd = {fd0, fd1, . . .} are rotating shift registers with reconfigurable depth used for storing

intermediate values across multiple loop iterations (loop-carried dependences). Each feedback register manages

separate read and write pointers that advance (and potentially wrap around) after each read or write indepen-

dently.

• Input registers 'id = {id0, id1, . . .} each allow read access to a FIFO connected to the corresponding PE input

port: id0 to pe⊳0 , id1 to pe⊳1 , and so on.

Manuscript submitted to ACM
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Fig. 2. A Tightly Coupled Processor Array contains a grid of processing elements (PEs) interconnected using a circuit-switched

network with two independent layers, data (solid lines) and control (do�ed lines). Each PE is surrounded by an interconnect wrapper,

whose internal architecture is shown on the right side for the data layer. Additionally, there are two kinds of peripheral components:

I/O buffers, each providing one border with individual memory banks, and global controllers, one per corner, each orchestrating the

parallel execution of one loop program. The figure shows two simultaneously running loop programs, indicated by the two colors.

• Output registers 'od = {od0, od1, . . .} each allow write access to the corresponding PE output port: od0 to pe⊲0 ,

od1 to pe⊲1 , and so on.

The registers are connected to a set of functional units (FUs) {fu1, fu2, . . .} composed at synthesis time from a variety

of types such as integer and floating-point ALUs, MAC units, and so on. Each type offers its own instruction set, but

most follow the three-register format; for example, add rd0 fd3 id1 means rd0 ← fd3 + id1. For convenience, each

functional unit is assigned a unique identifier such as alu0 or mac1.

To enable instruction-level parallelism, each FU executes an individual program, an architecture known as orthog-

onal instruction processing (OIP) that aims to reduce the overall program size compared to VLIW architectures [3].

In OIP, each FU contains an individual branch unit, which computes the program counter of the next instruction.

Conditional branches may depend on flags, which are shared between FUs, and on control registers, allowing the syn-

chronization of programs across FUs. The number of targets per conditional branch can be chosen at synthesis time,

but is usually two. Section 6.3 introduces branch instructions in more detail.

3.3 Periphery

There are two types of supporting components: four I/O buffers, one on each border, and up to four global controllers,

one in each corner. Each I/O buffer is flexibly connected to the respective border PEs, but the details irrelevant for this

article, so we assume each border PE is connected to an individual set of memory banks via its wrapper ports (com-

pare Figure 2). Each memory bank contains a reconfigurable address generator for providing affine address sequences,

unburdening the connected PE. Each global controller orchestrates a single running loop application by generating

control signals according to its iteration space and control flow, which are then propagated from PE to PE using the

control layer of the interconnect network.
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6 Michael Witterauf, Dominik Walter, Frank Hannig, and Jürgen Teich

4 LOOPS, THE POLYHEDRAL MODEL, AND REDUCED DEPENDENCE GRAPHS

As shown in Figure 1, we assume that compilation for a TCPA starts from a loopprogram given as a reduced dependence

graph (RDG). For transforming other loop representations, in particular sequential loops, into RDGs, we refer to the

literature [7].

Reduced dependence graphs are closely tied to the polyhedralmodel,where the iteration space I of an=-dimensional

loop nest is represented as a subset I of Z= , and each iteration is identified by a vector O ∈ I. In particular, our loop

model is based on piecewise linear dependence algorithms (PLAs) [21]. A PLA is a set of equations (8 quantified over I

that interrelate the instances of a set - of affinely indexed variables, where the instance of G ∈ - at index O is denoted

G [O ]. In this article, we assume the form

(8 : G8 [&8 O − d8] = op8 (G8,1[&8,1O − d8,1], G8,2 [&8,2O − d8,2], . . .) if O ∈ I8 , (1)

where G8 ∈ - is the variable with instances defined by (8 as the result of operation op8 and G8, 9 ∈ - are the variables

with instances used by the definition. Each variable is <8-dimensionally indexed using an affine transform given by

a matrix & ∈ Z<8×= and a vector d ∈ Z<8 . Which instances of G8 are defined by an equation (8 is restricted by its

condition space I8 ⊂ Z
= . Note that no instance of a variable G ∈ - may be defined more than once by a PLA1. We

assume the iteration space I of a PLA to be the union of its condition spaces.

Without loss of generality, we use a restricted form of Equation (1) that describes uniform dependence algorithms

with affinely indexed I/O variables. Here, each variable G ∈ - satisfies exactly one of the following conditions: (1) if

instances of G are only used, but none are defined (intuitively: G only appears on the right-hand side), G is an input

variable; (2) if instances of G are only defined, but none are used (intuitively: G only appears on the left-hand side), G is

an output variable; and (3) if all used instances of G are defined, G is an internal variable. These conditions partition -

into the set of input variables -in, the set of output variables -out , and the set of internal variables -var .
2 Furthermore,

internal variables may only be indexed uniformly3: When defining an internal variable G8 ∈ -var , the matrix &8 must

be the identity matrix and the vector d8 must be 0; when using an internal variable G8, 9 ∈ -var , then &8, 9 must be the

identity matrix. In the latter case, we call d8, 9 the dependence vector of the uniform dependence between G8, 9 and G8 .

Note that input and output scalars are modeled as zero-dimensionally indexed input and output variables. If the

value 2 of an input scalar G ∈ -in is known a priori, we call it a constant and refer to it by 2 , that is G ≔ 2 .

Running example. Throughout this article, we use the following artificial, yet illustrative example that writes the first

# bits of an integer scalar in into an array bits:

for 0 ≤ 8 < # do ⊲ iteration space is union of all condition spaces

(1 : G [8] = in[] if 8 = 0 ⊲ read scalar input in in first iteration

(2 : G [8] = ~ [8 − 1] if 8 ≥ 1 ⊲ otherwise, use value shifted 8 times

(3 : ~ [8] = G [8] shr 1 ⊲ shift right by constant 1 for next iteration

(4 : bits[8] = G [8] and 1 ⊲ extract bit and output into bits

Note that 1 ∈ -in is a constant used in both (3 and (4. △

PLAs prescribe neither place nor time of execution; feasible execution orders are only implied by the dependences

between equations. A reduced dependence graph (RDG) is a directed graph (+ , �) that makes these explicit. In the

1This corresponds to the array single-assignment property.
2Any PLA may be transformed to allow for such a partitioning.
3PLAs may be systematically transformed into this form by localization and embedding [19, 20].
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following, we rely on node annotations and edge annotations to structure all relevant information. An annotation is

a function 5 that maps either a node E ∈ + or an edge 4 ∈ � to a value I of arbitrary type. To disambiguate function

application from annotations, we write I = 5 [E] to access an annotated value and 5 [E] ← I to annotate a value.

Given a uniform dependence algorithm with affinely indexed I/O variables, the corresponding RDG is a directed

multigraph (+ , �) with the following nodes:

• An operation node E for each equation (8 , annotated with the operation op[E] ← op8 and condition space

I[E] ← I8 .

• An input node E for each Gin ∈ -in that is not a constant, annotated with the variable G [E] ← Gin, and an output

node for each Gout ∈ -out , annotated with the variable G [E] ← Gout .

• A constant node E for each constant 2 ∈ -in, annotated with its value 2 [E] ← 2 .

The set of edges � contains the following edges:

• IfF is an operation node representing equation (8 and E is an operation node representing (: , a dependence edge

4 = (E,F) from E to F is inserted for each 9 where G: = G8, 9 (that is, for each use of G: in (8 ), annotated with

dependence vector d [4] ← d8, 9 and operand index pos[4] ← 9 .

• IfF is an operation node representing equation (8 and E is the input node representing Gin ∈ -in, an input edge

4 = (E,F) is inserted for each 9 where Gin = G8, 9 (that is, for each use of Gin in (8 ), annotated with the indexing

function & [4] ← &8, 9 and d [4] ← d8, 9 , as well as the input variable G [4] ← Gin and operand index pos[4] ← 9 .

• IfF is an operation node representing equation (8 and E is a constant node representing value 2 , a constant edge

4 = (E,F) is inserted for each 9 where 2 = G8, 9 (that, is for each use of 2 in (8 ), annotated with the operand index

pos[4] ← 9 .

• If E is an operation node representing (8 and F is the output node representing G8 ∈ -out , an output edge is

inserted, annotated with the indexing function & [4] ← &8 and d [4] ← d8 , as well as the output variable

G [4] ← G8 .

Figure 3 shows the RDG of the running example, which we use as the basis in the next section to explain how to

compile a loop program given as an RDG into a symbolic configuration.

5 SYMBOLIC MAPPING

Because the loop bounds and number of PEs are assumed to become known only at run time, mapping an RDG onto

a TCPA is split into two phases (see Figure 1): Symbolic mapping, which front-loads as many steps as possible to

be performed at compile time and produces a symbolic configuration, and instantiation, which generates a concrete

configuration from it. In this section, we discuss the former, consisting of the following steps:

(1) Processor allocation by tiling and symbolic modulo scheduling define a space-time mapping of the RDG,

assigning each operation node a time, a PE, as well as a functional unit and corresponding instruction. Both

tiling and modulo scheduling are well known, but we review them in Sections 5.1 and 5.2.

(2) Register allocation (Section 5.3) assigns registers to edges in the RDG that store and communicate both inter-

mediate results and I/O data.

(3) Routing of propagation channels (Section 5.4) allocates routes on the interconnect network for propagating

intermediate values according to the data dependences.

(4) Generation of a polyhedral syntax tree. This data structure is a compact representation of all programs that

adhere to a given space-time mapping, register allocation, and channel routing. It is independent of runtime
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8 Michael Witterauf, Dominik Walter, Frank Hannig, and Jürgen Teich

E1 : in [input]
8 = 0

E2 : (1 [=]
8 = 0

alu0: [0] move

E4 : (3 [shr]
0 ≤ 8 < #

alu1: [1] shri

E3 : (2 [=]
1 ≤ 8 < #

alu0: [0] move

E5 : (4 [and]
0 ≤ 8 < #

alu1: [2] andi

1

E6 : bits [output]
0 ≤ 8 < #

�

�

41 :
id0

& = ()
3 = () rd0

�

rd0

�

44 : d = (1)

rd0

�

rd0

�

47 : od1

& = (1)
3 = (0)

414 : % = (0) fd0

424 : % = (1) id0, od0

Fig. 3. Reduced dependence graph for the running example (bit extraction). Each rectangle is an operation node that represents an

equation (8 and is annotated with its sink variable G8 , its operation op8 (in brackets) and its iteration-dependent condition space I8
(second line). Each rounded rectangle is an input or output node, and each circle is a constant node. Additionally, each operation

node is annotated with the result of scheduling (Section 5.2) in the form fu: [g] mnemo. Each edge represents a dependence and is

annotated with the corresponding indexing function (here only shown for input and output edges and if d ≠ 0) and the its operand

index (here either� ≔ 1 or � ≔ 2). The two dashed edges 414 and 4
2
4 are the result of spli�ing edge 44 according to its dependence’s

processor displacements (Section 5.1). Finally, each edge is annotated with its allocated register(s) (Section 5.3).

parameters such as loop bounds and number of available PEs in the sense that given any valid values of these

parameters, the corresponding program can be generated from it. While polyhedral syntax trees were first

introduced in [24], we review them in Section 5.5.

These steps are performed at compile time because they contain NP-complete problems but heavily influence the qual-

ity (code size, number of registers, and so on) of the generated configuration and therefore benefit from not being

time-constrained. The final output of the symbolic mapping phase is a symbolic configuration, which retains parame-

ters as symbols, but fromwhich concrete configurations can be instantiated once the parameter values become known.

5.1 Allocation of processing elements by tiling

To distribute the loop iterations across PEs for execution, our compilation starts with orthogonal tiling: partitioning a

loop’s iteration space into C1 × C2 × . . . C= rectangular tiles, each of size ?1 × ?2 × . . . ?= . Assuming that at most two tile

counts CA and C2 are not 1, the tiles are mapped one-to-one to a rectangular region CA × C2 of PEs on the TCPA, with

each PE being assigned the execution of the iterations within one tile.

Mathematically, tiling decomposes an iteration space I into an intra-tile iteration space J and inter-tile iteration

space K [18]:

I ⊆ J ⊕ K =

{
(P ,Q)T | P ∈ J ,Q ∈ K

}
,

where we call I∗ = J ⊕ K ∈ Z2= the tiled iteration space. We assume a rectangular inter-tile iteration space, which

describes the set of tiles:

K =

{
Q = (:1, :2, . . . , :=)

T | 0 ≤ :8 < C8

}

Likewise, the intra-tile iteration space describes the set of iterations within every tile:

J =

{
P = ( 91, 92, . . . , 9=)

T | 0 ≤ 98 < ?8

}
.
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Symbolic Loop Compilation for TCPAs 9

Explained informally, tiling transforms an =-dimensional loop into a 2=-dimensional loop where = dimensions iterate

over the tiles and = dimensions iterate over the iterations within a tile. Since tiling doubles the dimension of a given

loop nest, condition spaces I[E] are embedded accordingly:

I∗[E] ←
{
(P ,Q)T | %Q + P ∈ I[E]

}
, where % = diag(?1, . . . , ?=).

Running example. Tiling I = {0 ≤ 8 < # } into C tiles, each of width ? , yields

I∗ =
{
O ∗ = ( 9, :)T | 0 ≤ 9 < ?, 0 ≤ : < C = ⌈# /?⌉

}
.

Embedding, for example, I[E4] = {8 < # } into I∗ yields I∗[E4] ← {( 9, :)
T | ?: + 9 < # }. △

After tiling, each tile Q ∈ K is assigned to a PE of the TCPA by the space mapping4:

pe(Q) : K ↦→ N2 := Φ · Q, Φ ∈ Z2×=,

where Φ is the allocation matrix, which is chosen such that pe(Q) = (:A , :2 )
T, 1 ≤ A, 2 ≤ = with A ≠ 2 . In the sequel,

we use Q and pe(Q) interchangeably because in Q all elements other than :A and :2 are 0 by allowing only tile counts

CA and C2 to differ from 1.5

The distribution of iterations across multiple PEs may entail inter-processor communication for loop-carried de-

pendences (d ≠ 0, for example G [8] = ~ [8 − 1]). Here, we assume that communication always takes place between

neighboring PEs (including the diagonal neighbors), that is dependence vectors never “skip” a tile; in other words, we

assume ?8 ≥ 38∀1 ≤ 8 ≤ =. Which PEs do communicate for such a dependence d ≠ 0? Suppose tiling maps an iteration

O to tile Q . Then the source iteration O − d is on tiles {Q − ) } where ) is from the set of tile displacements

Θ(d) :=
{
) = (\1, \2, . . . , \=)

T | \8 ∈ {0, sign(38)}
}
.

The set of processor displacements—which processors {ΦQ − %} needs to communicate the result—is

Δ(d) := {% | % = Φ) : ∀) ∈ Θ(d)} .

Running example. Only d [44] = (1) is loop-carried (corresponding to equation G [8] = ~ [8 − 1]), resulting in the set of

tile and processor displacements

Θ(d [44]) = {(0), (1)} =⇒ Δ(d [44]) := {%1 = (0), %2 = (1)} .

Consequently, the dependence results in communication from processor : − 1 to processor : . △

5.2 Scheduling of operations

Next,modulo scheduling [17], a software pipelining technique, is performed to obtain a schedule that specifies a) when

to start each PE, b) when to start each iteration, c) when to start each operation within an iteration. We assume that

tiles are executed in parallel (since each is assigned to a different PE) in a wavefront-like fashion (to not violate data

dependences), but iterations within a tile are executed sequentially (since PEs execute sequential programs).

Modulo scheduling constructs a cyclic schedule with period c , called the initiation interval, consisting of a linear

part ,∗ = (, � ,, ) and a start offset g [E] for each operation node E . Given an iteration O ∗ , the start time of E then is

CE (O
∗) = ,∗ · O ∗ + g [E],

4This tiling and PE assignment is also known as locally sequential, globally parallel (LSGP) in the literature [16].
5For a one-dimensional mapping, either :A or :2 is also 0.
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that is, , determines the start times of the mapped PEs, , � determines the start times of the iterations assigned to

a PE, and g [E] determines the relative start time of the operation. Modulo scheduling also allocates a functional unit

fu[E] to execute operation >? [E] and selects the corresponding instructionmnemo[E], including its latency ; [E]. Note

that because we do not know the number and size of tiles in advance, we use symbolic modulo scheduling as introduced

in [25].

Running example. For the sake of illustration, we assume each PE has only two functional units alu0 and alu1, both

generic ALUs. Because there are three different operations, we have to settle for an initiation interval c = 2. A linear

schedule not violating the loop-carried dependence d [44] is ,
∗
= (c, c · ?). For each operation node, the start offset g ,

allocated functional unit fu, and selected instructionmnemo are shown in Figure 3. We assume latency ; [E] = 1 ∀E . △

5.3 Register allocation

Each edge in an RDG represents a dependence between two nodes: the sink node consumes the value produced by

the source node. On TCPAs, these intermediate values are stored and communicated using different types of regis-

ters allocated per edge. For convenience, in the following we simply write “value of edge 4” instead of “value pro-

duced/consumed via 4” or similar. Two aspects determine the type of register that is allocated for an edge: how long

a value is alive, and whether it requires communication. Inter-processor communication is required if an annotated

dependence vector d [4] results in at least one processor displacement % ≠ 0. To make this more explicit in the RDG,

we split each edge 4 with d [4] ≠ 0 into |Δ(d [4]) | new edges 48 , all with the same annotations as 4 , but each additionally

annotated with one of the processor displacements % [48 ] ← %8 ∈ Δ(d [4]). The original edge 4 is removed.

Running example. Edge 44 corresponds to |Δ(d [44]) | = 2 processor displacements %1 = (0) and %2 = (1). Therefore, it

is split into two new edges: 414 with % [414] ← (0) and 4
2
4 with % [424] ← (1) as illustrated in Figure 3. △

After splitting, for each edge 4 = (E,F) ∈ �, one or more registers are allocated according to the following classifi-

cation. If 4 is a dependence edge, that is if both E andF are operation nodes [8]:

• If d [4] = 0, the edge value is alive for ; ′ = g [F] − g [E] − ; [E] time steps within a single iteration and a :-tuple

of general-purpose registers regs[4] ← (A1, A2, . . . , A: ) with A8 ∈ 'rd is allocated, where : = ⌈; ′/c⌉. Multiple

registers are necessary if the edge value is still alive when the next value is produced, that is if ; ′ > c .

• If d [4] ≠ 0 and % [4] = 0, the edge value is alive for , � d iterations, but only within the current PE. A feedback

register reg[4] ← A ∈ 'fd with depth , � d is allocated.

• If d [4] ≠ 0 and % [4] ≠ 0, the edge value is alive across PEs and requires communication. Two registers are

allocated: an input register regread [4] ← A ∈ 'id for reading on PE ΦQ and an output register regwrite [4] ← A ∈

'od for writing on the PE ΦQ − % [4]. Additionally, a route from ΦQ − % [4] to ΦQ on the interconnect network

is allocated (see Section 5.4).

Otherwise, if 4 is an input edge, an input register reg[4] ← A ∈ 'id is allocated, and if 4 is an output edge, an output

register reg[4] ← A ∈ 'od is allocated; in both cases, additionally an I/O access mapping is generated (Section 5.7). For

constant edges, no register is allocated (constants are immediate operands and do not require registers).

The conventional approach to register allocation—vertex coloring of an interference graph [5]—applies here, for

which several optimal and heuristic solving methods exist.
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5.4 Routing of propagation channels

The communication induced by each edge 4 with a processor displacement % [4] ≠ 0 requires an interconnect route

from an output port of PE ΦQ to an input port of PEΦQ +% [4] for each PE Q that produces at least one value of 4 . How-

ever, because the tiling is performed symbolically, we do not know which PEs will be involved; we therefore assume

that the interconnect network is homogeneous—all interconnect wrappers have the same ports and adjacencies—, and

utilizing this homogeneity, for each affected edge only one template route is allocated to be replicated across all PEs

pairs during instantiation (see Section 6). Since this route forms a dedicated communication channel between equidis-

tant pairs of PEs in order to propagate data across the TCPA, we call it a propagation channel. The set ' of propagation

channels is found using a reduced topology graph.

Definition 1. A reduced topology graph ) is a directed graph that represents the topology of a homogeneous inter-

connect network. The graph contains a node E for each port in the interconnect wrapper and an edge for each possible

connection between two ports weighted with their inter-processor distance. In particular, there is an edge weighted

(0 0)T from each source port to each of its adjacent sink ports, as well as an edge from each wrapper sink port location⊳8
to its sibling port weighted by location: (1 0)T for east , (0 1)T for south, (−1 0)T for west , and (0 − 1)T for north.

For convenience, assume) has two polar nodes: Source, connected to all PE output port nodes, and Sink, connected

to all PE input port nodes. A propagation channel d for an RDG edge 4 is a path (E1, E2, . . . , E |d |) on ) from Source to

Sinkwhere the sum of weights equals % [4]. Routing : = |{4 ∈ � : % [4] ≠ 0}| propagation channels is thus equivalent to

solving the : node-disjoint exact-length paths problem, with the relaxation that the paths of two propagation channels

d1 and d2 may share the first 1 ≤ A ≤ min( |d1 |, |d2 |) nodes if the two corresponding RDG edges never have values

alive simultaneously. Then, the shared nodes (ports) of the reduced topology graph are never occupied at the same

time. However, sharing any node (port) but not its predecessors would imply that the port has two connected sources,

which is not allowed.

The resulting routes and registers—the first node in each d corresponds to a PE output register, the last node to a

PE input register—are annotated to the corresponding edges in the RDG.

Running example. Only edge 424 has % [424] ≠ 0 and is therefore the only edge requiring a propagation channel; for

example, d [424 ] ← (pe
⊲

0 , east
⊳

0 ,west
⊲

0 , pe
⊳

0 ). Consequently, the edge gets assigned registers regwrite [424 ] ← od0 (from

pe⊲0 ) and regread [424 ] ← id0 (from pe⊳0 ). For a more complex example, refer to Figure 4. △

After tiling, scheduling, register allocation, and propagation channel routing, all necessary information is annotated

to the RDG to generate a polyhedral syntax tree, a symbolic representation of the set of programs that can be generated

from the RDG for any valid values of the parameters.

5.5 Generation of a polyhedral syntax tree

As motivated in the introduction, the generation of concrete PE programs depends both on the loop bounds and the

number of allocated PEs. However, from the annotated RDG, all instructions, their condition spaces, functional unit,

and time offset have meanwhile be determined at compile time; only their composition depends on the still unknown

parameter values. A polyhedral syntax tree [24] represents this information hierarchically such that it is equivalent to

the forest of PE program syntax trees over all parameter values. Its building blocks are so-called fragments.

Definition 2 ([24]). A fragment � is any syntactic constituent of a program.
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Source

south⊳0 north⊲0

pe⊳0

pe⊳1

Sinkpe⊲0

east⊳0 west⊲0
(0, 1)T

(1, 0)T

Fig. 4. An example reduced topology graph, where each node represents an interconnect wrapper port, and each edge represents a

possible connection (weights only shown if not 0). Visualized is a solution to routing two propagation channels, one for processor

displacement % = (0 1)T, depicted in blue, and one for processor displacement % = (1 1)T, depicted in red. Assuming the correspond-

ing RDG edges never have values alive simultaneously, the first three nodes pe⊲0 , east
⊳

0 , and west⊲0 can be shared. Node pe⊳1 cannot

be shared because then the port would have two different input connections.

For example, the assembly instruction addi rd0 rd1 10 can be structured into five fragments: the mnemonic addi,

the registers rd0 and rd1, the literal 10, and finally the entire instruction itself. Whether an operation is executed

within an iteration O ∗, for example, depends on its condition space. Fragments may thus be iteration-dependent.

Definition 3 ([24]). A polyhedral fragment 5 (O ) maps an iteration O ∈ I to a fragment � .

We denote specific polyhedral fragments by polyhedral 〈fragment name〉, for example polyhedral register or poly-

hedral instruction. Since fragments are syntactic, representation as a tree is natural.

Definition 4 (Adapted from [24]). A polyhedral syntax tree (PST) is a triple 5 = (I, 0,�) of a condition space I, a tuple

0 of attributes, and a set of children � , each of which is again a polyhedral syntax tree. To avoid ambiguity, we write

domain( 5 ) for I, a�r( 5 ) for 0, and children( 5 ) for� of 5 , but we use the term node for both a polyhedral syntax tree

itself and its children. Each node is of one of two types: If a�r( 5 ) = (� ), that is if the tuple only contains a fragment � ,

then 5 is a fragment node. Otherwise, 5 is ameta node that stores implementation-specific syntactic meta-information.

A node of a polyhedral syntax tree satisfies the following properties regarding its immediate children: All children

are of the same type; if the children are fragment nodes, their condition spaces must be disjoint; if it has children, its

condition space is the union of its children’s condition spaces; no two children may have the same attribute values.

The evaluation 5 (O ) of a polyhedral syntax tree is the sub-tree where all nodes 6 with O ∉ domain(6) are removed.

The evaluation of a PST at a concrete iteration O results in a syntax tree that represents the sequence of instructions

issued in that iteration. Thus, concatenating the instruction sequences in execution order for all O in the iteration space

I yields an unrolled assembly program for the entire loop. This observation serves as the basis for an efficient program

generation algorithm in Section 6.1.

Running example. The PST generated from the RDG of the running example is shown below, showing the condition

spaces (in brackets) after tiling only for the leaf nodes (since all other condition spaces are unions of these). Fragment

nodes are set in typewriter, meta nodes in 〈italic〉. For TCPAs, a PST has the following semantics: The second level

represents the functional unit program fu, the third the time offset g , the fourth the instruction mnemo, and the last

two the instruction’s operands.

Manuscript submitted to ACM



Symbolic Loop Compilation for TCPAs 13

5 ≔ 〈root〉

alu0 〈g : 0〉 move

〈dest〉 61 ≔ rd0 [ {?: + 9 < # }]

〈src〉
62 ≔ id0 [ { 9 = 0}]

63 ≔ rd1 [ { 9 > 0 ∧ ?: + 9 < # }]

alu1

〈g : 1〉 shri

〈dest〉
64 ≔ od0 [ { 9 = ? − 1 ∧ : < C − 1}]

65 ≔ rd1 [ { 9 < ? − 1 ∧ ?: + 9 < # }]

〈srcA〉 66 ≔ rd0 [ {?: + 9 < # }]

〈srcB〉 67 ≔ 1 [ {?: + 9 < # }]

〈g : 2〉 andi

〈dest〉 68 ≔ od1 [ {?: + 9 < # }]

〈srcA〉 69 ≔ rd0 [ {?: + 9 < # }]

〈srcB〉 610 ≔ 1 [ {?: + 9 < # }]

In the following, we refer to elements of a�r( 5 ) using annotation syntax, for example � [61] = rd0. The generation of

a PST from an RDG is described in detail in previous work [24]. △

5.6 Compilation of access mappings

Still missing is information about accesses to external data, that is, to the input and output variables. To represent this

information, for each input and output edge, an access mapping 0 is compiled from the edge’s annotations.

Definition 5. An access mapping is a four-tuple 0 = (reg, G, U,A) that maps all accesses to register reg in iterations

O ∈ A to variable element G [U (O )].

Given an input or output edge 4 , the indexing function is U = (& [4], d [4]), its access spaceA = I[E] (input access)

or A = I[F] (output access), the register reg = regread [4] (input access) or reg = regwrite [4] (output access), and the

associated input variable G = G [E] or output variable G = G [F]. We denote the set of all access mappings in a symbolic

configuration �.

Running example. The access mappings � = {0in, 0bits} are as follows:

• 0in: Edge 41 represents accesses to the input scalar in. We model scalars as zero-dimensional variables, that

means, the indexing function is U = (& [41] = () ∈ Z
0×=, d [4] = () ∈ Z0). (For these empty matrices, we assume

that Z0×= · Z= ∈ Z0.) Its access domain is A = I[E1] = {8 = 0}, the allocated input register reg = id0.

• 0bits: Edge 47 represents accesses to the one-dimensional output variable bits. The indexing function is U =

(& [47] = (1), d [47] = (0)). It is written to in each iteration, meaning A = I[E7] = {8 < # }. The allocated

output register is reg = od0. △

5.7 Summary: symbolic compilation

After these steps, a symbolic configuration consisting of the following parts is obtained: A polyhedral syntax tree 5

to generate PE programs from, a symbolic schedule ,∗ that schedules tiles (PEs) in parallel, iterations within a tile

sequentially, a set ' of propagation routes that will be replicated across the allocated TCPA region, and a set � of

access mappings from which the I/O buffer and address generator configurations will be generated.

6 INSTANTIATION

Instantiation is the generation of a concrete configuration from a given symbolic configuration and an assignment of

values to the parameters—the concrete loop bounds, the number of allocated processing elements, and the memory

layouts of input and output arrays. It comprises these steps:
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(1) Concretization substitutes all occurrences of parameters in the symbolic configuration, for example in the

iteration space I∗, with their assigned values. Using the concretized schedule, the feedback register depths

(, � d/c ) are computed.

(2) Program instantiation is the most complex step and further divided into three sub-steps:

(a) Control flow analysis (Section 6.1) first determines a set of processor classes, that is, a partitioning of

K into subsets Ppc of PEs that will execute the same PE program. For each processor class Ppc and each

functional unit fu, a control flow graph CFGpc,fu is generated from the specialized polyhedral syntax tree 5pc =

5 (Ppc ⊕ J) and intra-tile schedule , � . Each node in CFGpc,fu represents an atomic sequence of instructions

and each edge represents a branch annotated with its transition space T (the iterations in which the branch

is taken).

(b) Control signal allocation (Section 6.2) allocates a set of binary control signals that, for each iteration P ∈ J ,

encode for all transition spaces across all processor classes and control flow graphs whether P ∈ T . The

corresponding control signal values are annotated back to the control flow graph edges and used later for

generating branch conditions.

(c) Program generation (Section 6.3) generates a PE program for each processor class Ppc that contains a func-

tional unit program for each CFGpc,fu : The instruction sequences represented by the nodes are concatenated

and branch instructions generated according to the control signal values annotated to the edges.

(3) Periphery instantiation generates a concrete configuration for the global controller from the allocated set

of control signals (therefore also described in Section 6.2). Furthermore, for each access mapping 0 ∈ �, each

involved PE is connected to a memory bank, whose address generator configuration is generated according to

the indexing function U (Section 6.4).

(4) Interconnect instantiation replicates the propagation channels for all allocated interconnect wrappers and

incorporates any additional routes from the I/O routing, resulting in the concrete interconnect configuration

(see Figure 8 for the running example).

Instantiation is, in general, performed at runtime. Making runtime instantiation viable requires the above steps to be

efficient—that is, to have low-degree polynomial time and space complexity—and scale well with an increasing number

of PEs. The latter especially matters for the most complex part of instantiation: program instantiation.

Running example. Suppose we choose as loop bound # = 16 (extracting the first 16 bits from in) and allocate C = 3

PEs, resulting in a minial tile size ? = ⌈# /C⌉ = 6, which is an imperfect tiling (tile : = 2 is not full since 3 · 6 = 18 > # ).

Concretization yields the schedule , = (12, 2). The allocated feedback register fd0 has a depth of , � d [404]/2 = 1. △

6.1 Control flow analysis

Generating a program for each PE separately does not scale to arbitrary TCPA sizes; however, due to the regularity

of loops, large subsets of PEs execute the same program. Thus, by generating each distinct PE program only once,

program instantiation scales well because the number of distinct programs across PEs is bounded even if the number

of PEs keeps increasing. But is it possible to determine whether multiple PEs will be configured with the same program

without actually generating their programs? Yes, by using the information in the polyhedral syntax tree (PST): We

consider the programs of two PEs Q1 and Q2 equal if specialization yields the same PST for both.
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Definition 6. Given a condition space after tiling I∗ ⊆ J ⊕ K, the function

split : Q,I∗ ↦→ Ĵ = {P ∈ J | (P ,Q)) ∈ I∗}

maps a tile Q ∈ K to its intra-tile domain Ĵ within I∗, that is the set of iterations P within tile Q that lie in I∗.

Definition 7. Given a polyhedral syntax tree 5 with condition space after tiling I∗ = domain( 5 ) ⊆ J ⊕ K, special-

ization for a tile Q ∈ K, denoted 5 ⊲ Q , recursively maps I∗ to the intra-tile domain of Q within I∗:

5 ⊲ Q ≔ (split(Q, domain( 5 )), a�r( 5 ), {6 ⊲ Q | 6 ∈ children( 5 )})

Running example. Using ? = 6, C = 3 and # = 16, the condition space domain(61) = {?: + 9 < # } concretizes to

{6: + 9 < 16}. For tile : = 2, the corresponding intra-tile domain (iterations 9 that satisfy 6 · 2 + 9 < 16) is {0 ≤ 9 ≤ 3}.

Consequently, the specialization 61 ⊲ (2) yields 61 ≔ rd0 [{0 ≤ 9 ≤ 3}]. △

We use Definition 7 to partition the inter-tile space K into processor classes Ppc , each of which is a set of PEs that

result in the same specialized PST and thus program. But when is 5 ⊲Q1 = 5 ⊲Q2 for two distinct PEs Q1 and Q2? Since

specialization only transforms condition spaces and all condition spaces in a PST are unions of its children’s condition

spaces, the two specializations are equal if domain(6 ⊲ Q1) = domain(6 ⊲ Q2) for all leaves 6 of 5 . Hence, we must

investigate when Q1 and Q2 result in the same intra-tile domain within a condition space I∗.

Definition 8. Given a condition space after tiling I∗ ⊆ K ⊕ J , the set of tiles with the same intra-tile domain Ĵ ,

called its inter-tile domain K̂ , is given by the function

tiles : Ĵ ,I∗ ↦→ K̂ = {Q |Q ∈ K ∧ split(Q,I∗) = Ĵ }.

We call Î = (Ĵ , K̂) the intra-tile pattern of K̂ within I∗. We denote the set of all intra-tile patterns of I∗ as II∗ , which

always corresponds to a partitioning ofK.

Running example. For I∗ = domain(61), there are |II∗ | = 2 intra-tile patterns: Î1 = ({0 ≤ 9 ≤ 5}, {: < 2}) (full tiles)

and Î2 = ({0 ≤ 9 ≤ 3}, {: = 2}) (partial tile). △

Definition 8 implies that if Q1 and Q2 are part of the same intra-tile pattern Î = (Ĵ , K̂) of a leaf 6’s condition space,

that is if both Q1 ∈ K̂ and Q2 ∈ K̂ , specializationmaps them to the same intra-tile pattern Ĵ , making domain(6⊲Q1) =

domain(6⊲Q2). Consequently, the determination of processor classes depends only on the inter-tile domains: If Q1 and

Q2 are in the same inter-tile domain for each leaf node of 5 , they result in the same specialized PST. Figure 5 illustrates

this relation between processor classes and intra-tile patterns, as well as why two PEs share the same program if the

specialized PSTs are equal. To formalize this visual intuition, let K ≔ {K̂1, K̂2, . . .} be the set of all inter-tile domains

annotated to the leaves of 5 :

K =

{
K̂ | ∃6 ∈ leaves( 5 ) : ∃(Ĵ , K̂ ′) ∈ Idomain(6) : K̂ = K̂ ′

}
.

For each PE Q ∈ K, there is a partitioning of K into two subsets: K+
Q
, containing all K̂8 such that Q ∈ K̂8 , and K

−
Q
,

containing all K̂8 such that Q ∉ K̂8 . As per the reasoning above, if the partitioning is equal for two PEs Q1 and Q2 , they

are part of the same inter-tile domain for each leaf node of 5 , meaning the specialized PSTs are equal as well. Given

Q , the set PQ of PEs with the same partitioning is

PQ =

⋂

K̂ ∈K+
Q

K̂ ∩
⋂

K̂ ∈K−
Q

K̂, (2)
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Î1 = ( { 9 < 6}, {: < 2})

Î2 = ( { 9 < 4}, {: = 2})

62 : Î3 = ( { 9 = 0}, {: ≤ 2})

64 : Î4 = ( { 9 = 5}, {: < 2})

61 :

P1 P1 P2

Fig. 5. Illustration of the relation between intra-tile pa�erns and processor classes. The top shows the iteration space I∗ of the

running example a�er tiling with loop bounds # = 16, tile size ? = 6, and tile count C = 3. Each color represents a distinct sequence

of instructions issued in that iteration O
∗
= ( 9, :)T . Below, the intra-tile pa�erns of the condition spaces of the leaves 61, 62, and 64

of the PST 5 are visualized (omi�ing the others for brevity since they do not result in distinct intra-tile pa�erns). Each row visualizes

one intra-tile pa�ern Î8 = ( Ĵ8 , K̂8 ) : There is a 1 if ( 9 ) ∈ Ĵ8 ∧ (:) ∈ K̂8 , a 0 otherwise, and a gray box in the background if (:) ∈ K̂8 .

Reading the column of an iteration O
∗ as a binary number yields an encoding for the evaluation 5 (O ∗) ; for example, for the le�-most

iteration, the encoding is 1010, meaning that 61 and 62 remain a�er evaluation, but 64 is removed. Therefore, two iterations O ∗1 and

O
∗
2 with the same encoding—visualized by color in the figure—issue the same combination of instructions because 5 (O ∗1 ) = 5 (O

∗
2 ) . If

two PEs have the same coloring for all iterations within its assigned tile, they thus have the same program and belong to the same

processor class. Having the same coloring is equivalent to being in the same set of inter-tile domains, that is, having the same pa�ern

of gray boxes in the figure. Hence, the examples results in two processor classes P1 and P2.

making the set of processor classes PC = {PQ | Q ∈ K}. By rearranging Equation (2) as in Algorithm 1, we can avoid

a time complexity proportional to the number of PEs |K| to obtain PC = {P1, . . .} as output � using D = K as initial

partitioning and � = K as set of conditions.

Algorithm 1 Partition D into subsets � = {D1, . . .} according to conditions � = {C1, . . .}

� ← {D} ⊲ start with full space D as “partitioning”

for C ∈ � do ⊲ for each condition, partition current set of subsets

D′ ← ∅

for D′ ∈ D do ⊲ partition each subset according to condition into up to two subsets

if D′ ∩ C ≠ ∅ then � ′ ← � ′ ∪ {D′ ∩ C}

if D′ ∩ C ≠ ∅ then � ′ ← � ′ ∪ {D′ ∩ C}

D← � ′

Running example. Assuming the same tiling parameters as before, there are three distinct inter-tile domains: K̂1 =

{: < 2}, K̂2 = {: ≤ 2}, and K̂3 = {: = 2}. Consider PE : = 0: K+
 

= {K̂1, K̂2} and K
−
 

= {K̂3}. According to

Equation (2), all PEs in the same processor class are then

K̂1 ∩ K̂2 ∩ K̂3 = {: < 2} ∩ {: ≤ 2} ∩ {: ≠ 2} ≡ {: < 2}.

Overall, there are two processor classes: PC = {P1 = {: < 2},P2 = {: = 2}}. △

Next, for each processor class Ppc , a control flow graph for each functional unit in the specialized PST 5pc = 5 ⊲ Q ,

Q ∈ Ppc is constructed. However, generating compact programs necessitates exploiting repetition, but successive

iterations may overlap in time due to software pipelining.
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Running example. Suppose we fully unroll the functional unit program described by alu1 of 51 = 5 ⊲ (0) into pseudo-

assembly (time offset g in brackets):

[0] nop // j = 0 starts (prolog)

[1] shri fd0 rd0 1

[2] [0] andi od1 rd0 1 // j = 1 starts --\

[1] shri fd0 rd0 1 |

// ... |-- repetition

[2] [0] andi od1 rd0 1 // j = 4 starts |

[1] shri fd0 rd0 1 --/

[2] [0] andi od1 rd0 1 // j = 5 starts

[1] shri od0 rd0 1

[2] andi od1 rd0 1 // epilog starts

Observe that iterations overlap and that between 1 ≤ 9 ≤ 4, the same two instructions repeat. A timing-equivalent

compact program is the following, arranged by iteration:

nop ; shri fd0 rd0 1 // j = 0

L1: andi od1 rd0 1 ; shri fd0 rd0 1 ; goto L1 if j <= 4 // 1 <= j <= 4

andi od1 rd0 1 ; shri od0 rd0 1 // j = 5

andi od1 rd0 1 // epilog

The c = 2 instructions that repeat originate from different evaluations of 51 (( 9))—andi from iterations 0 ≤ 9 ≤ 3

and shri from iterations 1 ≤ 9 ≤ 4. How can we find such a compact program without unrolling the program? △

In a modulo-scheduled functional unit program, the next iteration is issued every c time steps, making the execution

of the program a sequence of assembly kernels of length c slots each and each slot housing one instruction. (In the

compact program example above, each line is a kernel.) Control flow therefore only changes each c time steps—each

kernel is executed atomically—, an observation we use to reformulate the problem: How do we determine all kernels

necessary for program instantiation and build a corresponding control flow graph?

To answer this, we first look at the formation of kernels in a functional unit program, visualized in Figure 6. Let

5pc,fu be the child of 5pc describing the functional unit program of fu. Then, at the start C (P ) of each iteration P , the

sequence of instructions described by the evaluation 5pc,fu (P ) is issued. Each child 6 of 5pc,fu represents a temporal

offset g [6] relative to C (P ), from which we compute into which future iterations it overlaps: Because after c timesteps,

the next iteration starts, any instruction at offset g is executed within slot (g mod c) of the kernel issued in iteration

succ(P , ⌊g/c⌋). Here, succ(P , =) is the =-th successor of P according to the intra-tile schedule , � . Since 6 is issued

whenever P is in 6’s condition space J6 = domain(6), the instruction at g [6] therefore occupies the slot of the kernel

issued in all iterations that are the ⌊g [6]/c⌋-th successor of an iteration inJ6 (compare the red instructions in Figure 6),

given by

succ
(
J6, =

)
≔ {P = succ(P ′, =) | ∀P ′ ∈ J6}, = = ⌊g [6]/c⌋ .

Using this knowledge, we fold all children of 5pc,fu into c slots to obtain a tranformed polyhedral syntax tree 5 ′
pc,fu

that

does not describe the sequence of assembly instructions issued at the start of iteration P , but that instead describes the

c slots of the kernel issued at the start of iteration P . The folding operation is elaborated in Algorithm 2 and visualized

in Figure 6.
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Algorithm 2 Given c , fold PST 5fu representing a functional unit program into 5 ′
fu

� ← ∅

for 6 ∈ children( 5fu) do ⊲ 6 represents a time offset g [6]

� ′ ← children(offset(6, ⌊g [6]/c⌋))

6′ ←
(⋃

6′′∈�′ domain(6′′), (g [6] mod c), � ′
)

⊲ new node with slot index as attribute

� ← � ∪ {6′}

5 ′
fu
← (

⋃
6∈� domain(6), a�r( 5 ),�) ⊲ condition space of a parent node is union of children’s

function offset(5 , =) ⊲ recursively offset condition spaces in 5 by = iterations

if children( 5 ) = ∅ then ⊲ if 5 is a leaf

return (succ(domain( 5 ), =), a�r( 5 ), ∅) ⊲ copy 5 , but with offset condition space

else

� ← ∅

for 6 ∈ children( 5 ) do ⊲ offset children condition spaces recursively

� ← � ∪ {offset(6,=)}

return (
⋃
6∈� domain(6), a�r( 5 ),�) ⊲ copy 5 , but with offset children

⌊g/c ⌋

shri fd0 rd0 1 shri fd0 rd0 1 shri fd0 rd0 1 shri fd0 rd0 1 shri fd0 rd0 1 shri od1 rd0 1

andi od0 rd0 1 andi od0 rd0 1 andi od0 rd0 1 andi od0 rd0 1 andi od0 rd0 1 andi od0 rd0 1

9 = 0 9 = 1 9 = 2 9 = 3 9 = 4 9 = 5 9 = 6

51,alu1 ( (0)) 51,alu1 ( (1)) 51,alu1 ( (2)) 51,alu1 ( (3)) 51,alu1 ( (4)) 51,alu1 ( (5))

nop andi od0 rd0 1 andi od0 rd0 1 andi od0 rd0 1 andi od0 rd0 1 andi od0 rd0 1 andi od0 rd0 1

shri fd0 rd0 1 shri fd0 rd0 1 shri fd0 rd0 1 shri fd0 rd0 1 shri fd0 rd0 1 shri od1 rd0 1 nop

5 ′1,alu1 ( (0)) 5 ′1,alu1 ( (1)) 5 ′1,alu1 ( (2)) 5 ′1,alu1 ( (3)) 5 ′1,alu1 ( (4)) 5 ′1,alu1 ( (5)) 5 ′1,alu1 ( (6))

Q2Q1 Q3 Q4

EJ

g = 0

g = 1

g = 2

slot 0

slot 1

g mod c

Fig. 6. Formation of kernels in 51,alu1 with c = 2. Each column represents an iteration 0 ≤ 9 ≤ 6 (9 = 6 being a “pseudo-iteration”

corresponding to the epilog) and the boxes within a column the instructions executed in the c = 2 time steps until the next iteration

starts. Above, the instructions are arranged according to the evaluation 51,alu1 ( ( 9 )) . In particular, the instruction with time offset

g = 2 overlaps with iteration 9 + 1, having its condition space shi�ed from {0 ≤ 9 ≤ 5} to {1 ≤ 9 ≤ 6} and giving rise to the epilog

space E = { 9 = 6}. Below, the instructions are arranged into kernels corresponding to the evaluation 5 ′1,alu1 ( ( 9 )) of the folded PST

(see main text). A kernel class &8 is a set of instructions issuing the same kernel.

Folding introduces “iterations” P where P ∉ J , pseudo-iterations that contain the epilog of the pipelined functional

unit program; we therefore call E6 = J6 \J the epilog space of6. In the following, Jpc,fu = J ∪E5 ′
pc,fu

denotes intra-tile

iteration space including the epilog space and E the union of all individual epilog spaces.

Running example. After folding 51,alu1 , we obtain a transformed tree where the second level represents the slot index

instead of the time offset g :

Manuscript submitted to ACM



Symbolic Loop Compilation for TCPAs 19

5 ′1,alu1 := alu1

〈slot 0〉 andi

〈dest〉 od1 [ {1 ≤ 9 < ? + 1}]

〈srcA〉 rd0 [ {1 ≤ 9 < ? + 1}]

〈srcB〉 1 [ {1 ≤ 9 < ? + 1}]

〈slot 1〉 shri

〈dest〉
od0 [ { 9 = ? − 1}]

rd1 [ {0 ≤ 9 < ? − 1}]

〈srcA〉 rd0 [ {0 ≤ 9 < ? }]

〈srcB〉 1 [ {0 ≤ 9 < ? }]

For example, the andi instruction, which was originally at offset g = 2, now resides at slot 0, but with an offset condition

space that reflects the overlapping into the next iteration (compare Figure 6). Thismakes the pipelined program’s epilog

space E1,alu1 = { 9 = ?}. △

The folded polyhedral syntax tree 5 ′
pc,fu

of a functional unit gives rise to a set QCpc,fu of kernel classes, that is

a partition of J ∪ E5 ′
pc,fu

into subsets Qqc of iterations in which the same kernel is issued. These are determined

analogously to processor classes using Algorithm 1.

Running example. For 5 ′1,alu1 , we obtain 4 kernel classes:

QC1,alu1 = {Q1 = { 9 = 0},Q2 = {1 ≤ 9 < 4},Q3 = { 9 = 4},Q4 = { 9 = 5}}

The kernel @1 of Q1, for example, is obtained by evaluating 5 ′
1,alu1

at any P ∈ Q1, that is, removing all nodes 6 where

P is not in condition space domain(6):

5 ′1,alu1 ( (0)) ≔ shift 〈slot 1〉 shri

〈dest〉 rd1

〈srcA〉 rd0

〈srcB〉 1

Converted into an instruction sequence, this evaluation yields (slot index in brackets)

[0] nop

[1] shri rd1 rd0 1

(Note that slot 0 has no associated node in 5 ′1,alu1—we assume an implied nop in such cases.) △

Finally, for each processor class and functional unit, the control flow graph CFGpc,fu is constructed from the set of

kernel classes QCpc,fu using Algorithm 3. The algorithm inserts a node for each kernel class and an edge 4 between

each pair of kernel classes Q8 and Q 9 where control flow passes from Q8 to Q 9 . The edge 4 is annotated with the

transition space T , that is, the set of iterations P where control flow passes from Q8 to Q 9 . Figure 7 shows the CFG for

processor class P1 and functional unit alu1 of the running example.

Algorithm 3 Generate control flow graph CFG from kernel classes QC and PST 5 ′

+ ← {E1, E2, . . . , E |QC |}, � ← ∅ ⊲ one node for each kernel class

for Q8 ∈ QC do

@[E8 ] ← 5 ′(Q8), Q[E8 ] ← Q8 ⊲ annotate kernel and kernel class to node

for Q 9 ∈ QC do ⊲ (note: self edges represent repetition)

T ← Q 9 ∩ succ(Q8 , 1) ⊲ all iterations in Q8 that have a successor in Q 9
if T ≠ ∅ then ⊲ if control flow passes from Q8 to Q 9 in any iteration

� ← � ∪ {4 = (E8 , E 9 )}, T [4] ← T ⊲ insert edge and annotate transition space

CFG ← (+ , �)
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@1
@2

CS = {cs1 }
@3 @4

9 = 0

1 ≤ 9 ≤ 3
c = (0)

9 = 4

c = (1)

9 = 5

nop

shri fd0 rd0 1
andi od1 rd0 1

shri fd0 rd0 1

andi od1 rd0 1

shri od0 rd0 1

andi od1 rd0 1

nop

Fig. 7. Control flow graph for processor class P1 = {: < 2} and functional unit alu1 in the running example. Each node represents a

kernel, and each edge is annotatedwith its transition space T , that is, in which iterations the branch represented by the edge is taken.

For kernels with more than one outgoing edge, the global control signals CS and assignments c are also annotated (Section 6.2).

The constructed control flow graph represents the functional unit program to be generated: In any iteration P ∈

Jpc,fu , there is exactly one node E where P ∈ Q[E], representing the kernel @[E] to be issued. Among its outgoing

edges, there is exactly one edge 4 = (E,F) where P ∈ T [4], otherwise it is the last node. NodeF represents the kernel

@[F] issued in the next iteration. Hence, the outgoing edges of E represent the set of branch targets and the transition

spaces the branch conditions.6 The next step is to encode these branch conditions with a set of control signals.

6.2 Control signal allocation

As stated above, given a CFGpc,fu = (+ , �), for each iteration P ∈ Jpc,fu, there is exactly one node E ∈ + where P ∈ Q[E]

with deg+ (E) branch targets. Only one targetF will be branched to: the one where P ∈ T [(E,F)]. Consequently, some

entity—in case of a TCPA the global controller—must track the current iteration and signal to the PEs for which edges

P is in T in order to select to which target to branch. For that, the global controller generates (binary) control signals.

Definition 9. A control signal is a function

cs(P ) : J ∪ E ↦→ {0, 1,−}

that maps an intra-tile iteration P to 0, 1, or don’t-care (represented by −). We call a control signal partial if it maps at

least one P to −.

For each node E ∈ + , there are #E = ⌈log2 deg
+ (E)⌉ control signals required to encode the deg+ (E) outgoing edges

of E , each of which is given an assignment c [4] ← (21, . . . , 2#E
) with 28 ∈ {0, 1,−} such that these assignments do

not overlap for any two outgoing edges. These assignments can, for example, be determined using binary decision

diagrams [2]. From these assignments, for each node E , we build #E partial control signals:

∀E ∈ + , 1 ≤ 8 ≤ #E : csE,8 (P ) :=




1 ∃4 = (E,F) ∈ � : 28 [4] = 1 ∧ P ∈ T [4]

0 ∃4 = (E,F) ∈ � : 28 [4] = 0 ∧ P ∈ T [4]

− else

.

Running example. Only node @2 in Figure 7 requires a control signal because it is the only node with more than one

outgoing edge. We give its two outgoing edges the assignments c [(@2, @2)] ← (0) and c [(@2, @3)] ← (1). △

Across all control flow graphs CFGpc,fu , there is now a large set of partial control signals cspc,fu,E,8 local to the cor-

responding node. Their number usually exceeds the maximum number � of control signals supported by the global

6Algorithm 3 generates CFGs with arbitrary outdegree, that is, an arbitrary number of branch targets. While TCPAs support a configurable number of
simultaneous branch targets, it is usually set to 2 or other low numbers. Therefore, the outdegree of the control flow graph must be reduced accordingly.
For lack of space, we refer to [2].
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controller, which we call global control signals. We therefore combine the local, partial control signals using an inter-

ference graph where each control signal cspc,fu,E,8 is a node and two control signals cs1 and cs2 interfere if

∃P ∈ J ∪ E : cs1 (P ) ≠ cs2 (P ) ∧ cs1 (P ) ≠ − ∧ cs2 (P ) ≠ −.

A �-coloring of the vertices then corresponds to the allocation of � global control signals cs8 . For each cs8 , the global

controller is configured with its one domain, that is, the subset of Jpc,fu where cs8 (P ) = 1 (for all other iterations 0 is

output). Additionally, each node E in each control flow graph is annotated with the #E-tuple CS[E] of global control

signals that were allocated for the node’s local control signals; this information is necessary for program generation.

Running example. For node @2 in Figure 7, a global control signal cs1 is allocated and configured:

cs1 (P = ( 9)) :=




1 if 9 = 4

0 else
.

That means that if cs1 (P ) is 0, the next kernel is again @2, if it is 1, which is only in iteration 9 = 4, the next kernel is

@3. △

Note that for instantiation at runtime, fast heuristics such as greedy graph coloring are sensible because graph color-

ing is NP-complete. The generated control flow graphs now contain all information necessary for program generation.

6.3 Program generation

Each processor class Ppc requires the generation of one PE program, which is simply a container for the functional

unit programs in that processor class. Generating a PE program therefore requires generating the program for each

functional unit from its control flow graph CFGpc,fu .

In orthogonal instruction processing (see Section 3.2), each instruction in a functional unit program is a pair of

a functional instruction, specifying the operation, and a branch instruction, specifying the next instruction. While

the functional instructions are explicit in the kernels @[E] annotated to the nodes in CFGpc,fu , corresponding branch

instructions remain to be generated. The instructions in slots 0 . . . c −2 of a kernel @[E] are each combined with a next

branch instruction because each kernel is executed atomically and in order. However, for the last instruction, the one

in slot c − 1, a conditional multi-target branch instruction must be generated that selects the target according to the

allocated global control signals CS[E] = {cs1, . . . , cs#E
} and the assigned values c [4] for all outgoing edges 4 ∈ �+ (E).

The subsequent concatenation of all kernels (starting with @[E] where E is the start node, that is, has no incoming

edges) yields the functional unit program. Algorithm 4 summarizes these two steps.

Running example. We obtain the following functional unit program for functional unit alu1 in processor class P1 (the

comments show some applicable optional simplifications):

q1: nop / next

shri rd1 rd0 1 / goto q2 // can be simplified to 'next'

q2: andi od0 rd1 1 / next

shri rd1 rd0 1 / if ic0 jmp q3, q2

q3: andi od0 rd1 1 / next

shri od1 rd0 1 / goto q4 // can be simplified to 'next'

q4: andi od0 rd1 1 / next

nop / halt // can be merged into previous instruction

Manuscript submitted to ACM



22 Michael Witterauf, Dominik Walter, Frank Hannig, and Jürgen Teich

Algorithm 4 Generate functional unit program from annotated CFG = (+ , �)

program← []

for E ∈ topological_sort(+ ) do ⊲ begin with start node

targets← {F | (E,F) ∈ �}

for slot ≔ 0 to c − 1 do

if slot = c − 1 then ⊲ if it is the last instruction in the kernel

branch← make_branch(E, targets) ⊲ make an explicit branch to the next kernels

else

branch← next ⊲ otherwise, go unconditionally to the next instruction

append(program, (@[E] .instruction[slot], branch))

function make_branch(E, targets)

if |targets | = 0 then

return halt ⊲ last node→ halt execution

else if |targets | = 1 then

return goto target ⊲ target is the single element of targets

else if |targets | > 1 then

return if 2B1 [E], . . . , 2B#E
[E] jmp target(targets, 2#E − 1), . . . , target(targets, 0)

⊲ target(targets, 8) givesF such that control signal assignment of edge (E,F) matches 8

The programs for alu0 (not shown) and alu1 together form the PE program for P1. △

6.4 I/O access instantiation

The last step is the instantiation of configuration data for the I/O buffers from the access mappings. Recall that an

access mapping 0 = (reg, G, U,A) maps accesses to reg within iterations O ∈ A to G [U (O )]. We call a particular access

in an iteration O an access instance 0[O ].

Running example. The access mapping 0bits maps all write accesses to od0 with 8 < # to bits[&bitsO + dbits], that

is, bits[8]. These write accesses correspond to instruction andi od0 rd0 1 in the previous example: each time od0 is

written, the value is stored in bits[8]. △

Now, tiling distributes access instances 0[(P ,Q)) ] inA∗ ⊆ K0 ⊕ J across multiple PEs K0 , possibly making them

concurrent since the PEs run in parallel. Consequently, for each Q ∈ K0 of each access mapping 0 ∈ �, two parts must

be instantiated:

(1) A connection between a memory bank and the port corresponding to reg of PE Q , which entails finding a free

bank and a route between the bank and the PE on the interconnect.

(2) The configuration of the allocated memory bank’s address generator, consisting of the coefficients of an affine

address function derived from U and the memory layout of G that maps the intra-tile iteration P to an address,

and the intra-tile domain Ĵ = split(Q,A∗) in the access space, required to generate an enable signal.

This clearly makes the time complexity of this step linear in the number of involved PEs |K0 | in the general case.

However, if I/O variables are only accessed at the borders, routing becomes unnecessary—the border PEs have a direct

connection to the I/O banks. This allows the compiler to generate the above two parts already at compile time. Figure 8

shows the interconnect and I/O buffers parts of the instantiated configuration for the running example.

Manuscript submitted to ACM



Symbolic Loop Compilation for TCPAs 23

propagation channel

I/O connection

P1 P1 P2
9 = 0
in

0 ≤ 9 < 6
bits[ 9 ]

0 ≤ 9 < 6
bits[6 + 9 ]

0 ≤ 9 < 4
bits[12 + 9 ]banks

Fig. 8. Concrete interconnect wrapper and memory bank configuration for the running example. The propagation channels are

replicated across the C = 3 PEs and each is connected to memory banks according to the access mappings 0in (west bank) and 0bits
(north banks). Each bank is annotated with the iterations when the enable signal is 1 (first line) and which element of the associated

array is accessed (second line).

7 EXPERIMENTS AND DISCUSSION

In the following, we experimentally show the validity of the two claims given in the beginning: that time complexity

of program instantiation does not directly depend on the number of PEs and that a symbolic configuration is a space-

efficient representation.

In particular, including the running example (bit extraction), we compiled a symbolic configuration according to

Section 5 for each of the following real-world loopprograms: a pipelined implementation of an FIR filter (2-dimensional

loop), matrix-matrixmultiplication (3-dimensional loop), and a convolutional layer within a CNN (6-dimensional loop).

The choice is based on the intention to cover a variety of both application domains and dimensionality. For each

symbolic configuration, we instantiated, as described in Section 6, six concrete configurations corresponding to six

tilings: three resulting in a 1-dimensional region of PEs (1, 16, and 32 PEs), and three resulting in a 2-dimensional

region (4× 4, 8× 8, and 32× 32)7. For each instantiation run, we measured the execution time of program instantiation

and the size of the concrete configuration.

Since we want to show time complexity, we are interested in normalized execution times, summarized in Table 1.

Each row represents one of the examples and contains, for each of the six tilings, the execution time of program

instantiation normalized to the runtime of program instantiation in the case of a single tile (1 PE). The number of

resulting processor classes is given in parentheses. Clearly, the execution time of program instantiation is roughly

linear in the number of processor classes and not in the number of PEs, as is, for example, evident for the matrix

multiplication example: Program instantiation for both 4 × 4 = 16 and 32 × 32 = 1024 PEs takes about equally as

long because both have two processor classes, meaning two programs need to be instantiated. The instantiation phase

therefore effortlessly scales to the ever-increasing number of PEs. (Note that some tilings may result in more complex

control flow analysis, as is for example seen in the convolution example, where instantiation for 4 × 4 PEs takes

about four times as long as for 1 × 16 PEs, despite having only double as many processor classes. However, it is still

independent of the number of PEs.)

Table 2 shows the size of each concrete configuration normalized to the size of the symbolic configuration it was

instantiated from. Excluding the bit extraction example, all concrete configurations by themselves were already larger

than the symbolic configuration. Consequently, runtime instantiation significantly saves memory even if only a small

number of concrete configurations were necessary at runtime. For example, storing the symbolic configuration for the

CNN example saves about 95 % space compared to storing both concrete configurations for 4 × 4 and 8 × 8 PEs.

7Both loop bounds and tile sizes were chosen appropriately to result in these PE regions.
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1D (# PEs) 2D (' ×�)

Algorithm c 1 16 32 4 × 4 8 × 8 32 × 32

Bit extract (1D) 2 1.00 (1) 0.94 (1) 1.04 (1) – – –

FIR filter (2D) 2 1.00 (1) 2.64 (3) 2.72 (3) 9.06 (9) 8.98 (9) 8.23 (9)

Matrix multiplication (3D) 2 1.00 (1) 0.94 (1) 0.99 (1) 1.86 (2) 1.74 (2) 1.78 (2)

CNN Convolution (6D) 1 1.00 (1) 1.77 (2) 1.78 (2) 9.22 (4) 9.33 (4) 9.06 (4)

Table 1. Relative runtimes of program instantiation for a set of mappings of various loop programs. Each row represents a symbolic

configuration of the listed algorithm and each column the instantiation for one of six tilings, three resulting in a one-dimensional

and three in a two-dimensional PE allocation. For each instantiation, the runtime relative to the runtime of the first column is listed;

the number of processor classes is listed in parentheses. The table clearly shows that the time complexity of instantiation is roughly

proportional to the number of processor classes and not to the number of processing elements.

1D (# PEs) 2D (' ×�)

Algorithm c 1 16 32 4 × 4 8 × 8 32 × 32

Bit extract (1D) 2 0.77 4.46 8.20 – – –

FIR filter (2D) 2 1.17 3.86 5.85 5.14 7.18 21.36

Matrix multiplication (3D) 2 1.00 3.65 6.48 4.88 15.12 193.73

CNN Convolution (6D) 1 1.05 3.73 6.53 5.83 16.25 299.41

Table 2. The size of each generated concrete configuration normalized to the size of the symbolic configuration it was instantiated

from.

7.1 Practical insights

As proof of concept, we implemented the instantiation phase as described in Section 6 using isl, the integer set

library [22], to represent parametric iteration and condition spaces. This implementation—which was also used for the

experiments in the previous section—, is functionally complete, but was not implemented with optimizing performance

in mind. Instead, it uses a high level of abstraction (which includes isl) to aid in verifying correctness of the approach

and in analyzing intermediate artifacts. For employment in an embedded system for instantiation at runtime, a more

optimized implementation is desirable; in particular, profiling showed that a significant part of the execution time was

spent during isl calls. A dedicated, simplified, non-parametric representation of iteration and condition spaces may

thus lead to a considerate speed-up. Furthermore, if the host platform supports multi-threading, the execution time of

program instantiation can be significantly improved by instantiating each processor class in parallel.

On a related note, we noticed that control flow graph generation is often the most computationally expensive part

of program instantiation, caused by its quadratic time complexity in the number of program blocks. In a more practical

implementation, this complexity should be improved by decreasing the number of successor candidates considered for

each program block. This might be achieved by bringing the program blocks in a clever order according to the loop

schedule.

8 CONCLUSION

In this article, we presented symbolic loop compilation, a two-phase approach that decouples the solving of the NP-

completemapping problem from the actual generation of configuration data, which depends onparameters only known
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at runtime (the loop bounds and number of available PEs). The first phase, symbolic mapping, generates a symbolic

configuration that represents the set of concrete configurations over all combinations of loop bounds and numbers PEs.

The second phase, instantiation, generates a concrete configuration from the symbolic configuration according to the

concrete values of the parameters once they become known.

We show that this is a viable approach for dynamically generating configurations because not only does instantiation

run in polynomial time, but a symbolic configuration is a very space-efficient representation. In particular, program

instantiation, the most complex part of the instantiation phase, does not directly depend on the number of PEs, thus

scaling to arbitrary sizes of TCPAs.
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