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ABSTRACT
In this paper, a machine learning (ML) approach is proposed to
detect and classify jamming attacks on unmanned aerial vehicles
(UAVs). Four attack types are implemented using software-defined
radio (SDR); namely, barrage, single-tone, successive-pulse, and
protocol-aware jamming. Each type is launched against a drone
that uses orthogonal frequency division multiplexing (OFDM) com-
munication to qualitatively analyze its impacts considering jam-
ming range, complexity, and severity. Then, an SDR is utilized in
proximity to the drone and in systematic testing scenarios to record
the radiometric parameters before and after each attack is launched.
Signal-to-noise ratio (SNR), energy threshold, and several OFDM
parameters are exploited as features and fed to six ML algorithms to
explore and enable autonomous jamming detection/classification.
The algorithms are quantitatively evaluated with metrics including
detection and false alarm rates to evaluate the received signals and
facilitate efficient decision-making for improved reception integrity
and reliability. The resulting ML approach detects and classifies
jamming with an accuracy of 92.2% and a false-alarm rate of 1.35%.

CCS CONCEPTS
• Security and privacy → Denial-of-service attacks; Mobile
and wireless security.
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1 INTRODUCTION
Unmanned aerial vehicles (UAVs) have recently found widespread
use in civil, military, and scientific applications such as search and
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rescue missions, merchandise mailing, wildlife tracking, disaster
management, climate monitoring, and space exploration [1–4]. The
UAV market was estimated at USD 19.3 Billion in 2019 and is pro-
jected to reach USD 45.80 Billion by 2025 [5]. The key factors that
contribute to the growth of this market include the increasing
demand for automation and the rapid advances in enabling tech-
nologies. Over the last decade, efforts have been devoted on UAV
navigation and control for safe operation and integration [6–17].
However, cybersecurity challenges have not received a similar at-
tention although UAVs are prone to cyberattacks (e.g., jamming,
spoofing) that compromise their performance, and in some cases,
lead to catastrophic consequences [18]. Thus, as UAVs utilization
continues this exponential increase, operation integrity becomes
an unavoidable challenge for secure and trustworthy deployments.

Cyberattacks on UAVs are classified into data interception, data
manipulation, and denial of service (i.e., jamming). The latter inter-
rupts the communication between the UAV and the controller by
transmitting an interference signal at the same frequency band to
impose security threats and cease information exchange [19–21].
This interference can be broadcasted wirelessly with the readily
available inexpensive software-defined radio (SDR) hardware to
interfere with an aircraft’s trajectory, potentially resulting in col-
lisions. Hence, affordable jamming detection solutions that also
comply with the operation standards of the existing infrastructure
are of grave importance. These solutions must facilitate high detec-
tion probability and low false alarm and misdetection probabilities.

To prevent cyberattacks on UAVs, secure broadcast authentica-
tion [22–26] and secure location verification [27, 28] methods were
proposed. The former uses cryptographic and non-cryptographic
schemes; whereas the latter attempts to verify the location of UAVs
with distance bounding, Kalman filtering, multilateration, group
verification, and traffic modeling. Although the reported methods
have shown great potential in improving security against jam-
ming attacks, additional hardware and/or software to the existing
protocols and time stamping adjustments were major drawbacks
that setback their ready acceptance in the foreseeable future. Also,
UAVs differ from traditional networks in their increased complexity,
channel disparity, range, power requirements, and data properties.
Thus, UAV-tailored anti-jamming solutions must balance security
improvement, scalability, and compatibility with existing standards.

In this work, the impacts of four jamming types on UAV secu-
rity are analyzed qualitatively and quantitatively. Jamming range,
launch complexity, and severity are evaluated for each type. Then,
effective feature engineering is performed to developmachine learn-
ing (ML) models for autonomous jamming detection and classifi-
cation. It is noteworthy to mention that ML was adopted in UAV
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Figure 1: Testing setup to obtain effective jamming range

applications including object detection, intelligent swarm commu-
nication, trajectory optimization, situational awareness, malicious
attack mitigation (e.g., eavesdropping), and anti-jamming [29–31].

The proposed approach differs from other reported techniques
in the following aspects: 1) In contrast to imposing modifications
on the existing protocols for jamming detection [22–28, 32], the
readily available radiometric features are used herein to train ML
algorithms for detecting the presence and type of jamming. 2) In
comparison to the simulation-based attack scenarios reported in
[33–36], this work exploits SDR for establishing jamming attacks
that facilitate detection/classification with realistic environments
and training datasets. 3) This work entails a comparative analysis of
different traditional ML models. This analysis conveys evaluation
metrics such as detection rate, F-score, and false alarm rate.

The remaining of this paper is organized as follows: Section 2
describes jamming attack types, testing setup, and attack scenarios.
Section 3 entails feature extraction and ML training and modeling.
Conclusions and future work are provided in Section 4.

2 ATTACK TYPES & EXPERIMENTAL SETUP
In this section, the attack scenarios and experimental setup for four
jamming attacks are elaborated. Holy Stone HS720E is used as a test
drone, which has an unobstructed range of 1000 meters, a maximum
transmission power of 16 dBm, and uses IEEE 802.11 orthogonal
frequency division multiplexing (OFDM) at 2.4 GHz [37]. USRP
B210 SDR and GNURadio software are used to launch the attacks
within 40 MHz bandwidth to accommodate all subcarriers.

2.1 Types of Jamming Attacks
1) Barrage Jamming: In this type, a noise from Gaussian distribution
is transmitted across the communication bandwidth to increase the
noise level at the targets’s receiver. Thus, barrage jamming is often
used when the transmission frequency is unknown to the jammer.
Although this type is simple to generate, its jamming efficiency
reduces with the increase in the signal transmission bandwidth.
2) Single-tone Jamming: Here, a high-power interfering signal is
transmitted at the center frequency that the target uses for data ex-
change. This signal is in the form 𝐽 (𝑡) = 𝐴 𝑗𝑐𝑜𝑠 (2𝜋 𝑓0𝑡 + \ 𝑗 ), where
𝐴 𝑗 is the jamming signal amplitude, 𝑓0 is the center frequency, and
\ 𝑗 is a phase shift. Noise mainly interferes with a single frequency.
3) Successive-pulse Jamming: In this type, a pulse-sequence is trans-
mitted to interfere the target’s communication, and is given as:

𝐽 (𝑡) = 𝐴 𝑗

𝑁 𝑗∑
𝑛=1

𝛿 (𝑡 ± 𝑛𝑇 ) (1)

where 𝑁 𝑗 is the number of jamming tones and 𝑇 is the period,
which is set to create a 312.5 KHz frequency spacing between the
generated pulses (i.e., subcarrier spacing in IEEE 802.11 OFDM).
4) Protocol-aware Jamming: This type entails low interference en-
ergy and low detection probability. The jammer is built to simulate
the transmitter of the targeted protocol to corrupt its data without
interfering other standards in the same bandwidth. This is realized
with shot-noise pulses to disrupt the ongoing transmission [38].

2.2 Experimental Setup
Two setups are established to evaluate the qualitative and quanti-
tative impacts of the jamming types. The qualitative evaluation is
concerned with analyzing severity, complexity, and effective jam-
ming range. The quantitative evaluation tackles the extraction of
the radiometric features through exhaustive data collection under
different jamming scenarios. Collected data is used to train, validate,
and test ML algorithms for jamming detection and classification.
1) Qualitative Evaluation: The separation between the jammer (i.e.,
USRP B210 SDR) and the drone is fixed to 0.5 meter. The separation
between the jammer-drone pair and the transmitter is gradually
increased for each jamming type in an unobstructed outdoor setup,
as shown in Figure 1, to obtain the effective jamming range, defined
as complete loss of signal. Table 1 depicts the tested effective range
for the jamming types. Results show that barrage jamming has the
predominant impact due to distributing interference over all OFDM
subcarriers compared to interfering with the center (or selected)
frequencies as in single-tone and successive-pulse jamming or trans-
mitting shot-noise as in protocol-aware jamming. Qualitative find-
ings based on attack complexity and severity are given in Table 2
(scale of 1 through 4, where 4 is the highest score). Barrage jamming
is the least complex to launch as it does not require extensive knowl-
edge about the communication protocol. Nonetheless it results in
the highest severity. Single-tone jamming is relatively simple to
launch. However, this type is inefficient in protocols where multiple
frequencies or subcarriers are used. Successive-pulse with 𝑁 𝑗 = 64
has a moderate launch complexity as interference pulses need care-
ful positioning with respect to the center and subcarrier frequencies.
The output power, 𝑃 𝑗 , of a jamming device is distributed on pulses
such that the interference pulse power is 𝑃 𝑗/𝑁 𝑗 . Hence, successive-
pulse jamming has the lowest severity. Protocol-aware jamming has
the highest launch complexity as it assumes thorough knowledge of
the communication standard. Nevertheless, it has a moderate sever-
ity as it launches limited-power interference at the transmission
bandwidth to maintain low detection probability.
2) Quantitative Evaluation: This evaluation begins with feature ex-
traction for ML training/classification. The goal here is to train a
classifier to not only detect jamming, but also to specify its type.
First, the transmitter-drone separation is set to 350 meters in an un-
obstructed outdoor environment. Then, signal features are extracted
with no-jamming using B210 SDR and modules in GNURadio (de-
tails in Section 3). The same process is repeated in the presence of
each of the four jamming types. To this end, another SDR is used as

Table 1: Effective Jamming Range for each Jamming Type
Type Barrage Single-tone Success.-pulse P-aware

Range (m) 80 145 350 155
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Table 2: A Qualitative Analysis for the Jamming Types

Complexity

Se
ve

ri
ty

1 2 3 4
1 Success.-pulse
2 P-aware
3 Single-tone
4 Barrage

a jammer in eight locations 𝐽𝑖 , 𝑖 = 1, 2, . . . 8, around the drone. Then,
the same signal features are extracted. This process is performed
for four radii 𝑟 = 0.5, 1, 1.5, and 2 meters, as shown in Figure 2.

In this testing setup, 10,071 signal samples are collected under
no jamming; whereas 13,494 samples are obtained under jamming
presence (i.e., 23,565 overall signal samples). Jamming samples are
divided into 3,392, 3,367, 3,378, and 3,357 for barrage, single-tone,
successive-pulse, and protocol-aware, respectively, and are given
in [39]. Figures 3(a) and 3(b) show the GNURadio flow graphs for
launching the jamming attacks and extracting the signal features.

3 FEATURE EXTRACTION & ML MODELING
Nine features are extracted to train the ML algorithms for detect-
ing and classifying the jamming attacks. Four features are OFDM-
specific and include the subcarrier length, cyclic prefix (CP) length,
subcarrier spacing, and symbol time. The subcarrier length is the
number of subcarriers being used, the CP length ensures no symbol
overlapping, the subcarrier spacing is the frequency separation
between the subcarriers, which is the reciprocal of the symbol time
[40]. These features are obtained from the 1○OFDM Estimator block
shown in 3(b) [41]. Two other signal features are extracted using
the 2○ Energy Detector block: average received power and threshold
[41]. The threshold returns a binary 0 when no jamming occurs
and binary 1 once the average received power exceeds a certain
level. Finally, three additional features are extracted from the 3○
SNR Estimator Probe block, which are signal-to-noise ratio (SNR),
average signal power, and average noise power. It is paramount to

Figure 2: The setup for extracting signal features under no-jamming
and jamming scenarios considering different jammer locations

Table 3: List of Selected Features for Cases 1-3
Features

Case OFDM Estimator Energy Detector SNR Probe

1

Subcarrier Spacing
Symbol Time
Subcarrier Length
CP Length

Avg Received Power
Threshold

Avg Signal Power
Avg Noise Power
SNR

2
Subcarrier Spacing
Subcarrier Length
CP Length

Avg Received Power
Threshold

Avg Signal Power
Avg Noise Power
SNR

3
Subcarrier Spacing
Subcarrier Length
CP Length

Avg Received Power
Threshold

Avg Signal Power
SNR

point out here that the average received power in 2○ conveys the
noise energy; whereas the average signal power in 3○ represents
the estimated signal power excluding noise power. The nine ex-
tracted features are used for training and developing ML models
for jamming detection and classification. These features are also
analyzed for dimensionality reduction. It is found that the (symbol
time, subcarrier length) and (threshold, average noise power) feature
pairs are highly correlated. Therefore, the ML models are devel-
oped considering two additional cases where 1) symbol time and
2) symbol time and average noise power are eliminated from the
datasets. Table 3 lists the features for each case.

The ML models are built using Scikit-learn—a Python-based
ML library. Six conventional algorithms are used for developing
the models; specifically, Decision Tree (DT), K-Nearest Neighbors
(KNN), Logistic Regression (LR), Multi-layer Perceptron (MLP),
Naive Bayes (NB), and Random Forest (RF). Classification perfor-
mancemetrics for model evaluation are given in Eqn. (2) and include
detection rate (DR), precision, recall, F-score (FS), and false-alarm
rate (FAR). The DR of a model is the percentage of correctly de-
tected samples over the total samples in the dataset. The precision
is the number of positive samples predicted as positive (i.e. true
positive) divided by the sum of true positive and negative samples
predicted as positive (i.e. false positive). The recall is the number of
true positive samples divided by the sum of true positive and posi-
tive samples predicted as negative (i.e. false negative). The F-score
is computed as a harmonic mean of precision and recall. Finally,
the FAR is the number of false positive samples divided by the sum
of false positive and true negative samples predicted by the model.

𝐷𝑅 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡
(2.𝑎)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
(2.𝑏)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
(2.𝑐)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(2.𝑑)

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
(2.𝑒)

Two- and five-class ML models are developed for the three cases
listed in Table 3. In the two-class model, the algorithm predicts
whether jamming is launched or not; whereas the five-class model
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Figure 3: Abbreviated GNURadio flow graph for (a) launching the jamming attacks and (b) extracting the radiometric features

Table 4: Performance Metrics for Two-class and Five-class Jamming Detection Models
(VA: Validation Accuracy, DR: Detection Rate, FS: F-score)

Performance metrics for five-class models
Case 1: Nine Features Case 2: Eight Features Case 3: Seven Features

ML Classifier VA (in %) DR (in %) FS VA (in %) DR (in %) FS VA (in %) DR (in %) FS
LR 82.45 (± 0.65) 82.90 0.82 82.75 (± 0.67) 82.73 0.82 79.42 (± 0.76) 78.95 0.79
KNN 84.47 (± 0.74) 84.23 0.84 84.87 (± 0.74) 83.50 0.84 83.70 (± 0.72) 83.40 0.83
NB 79.30 (± 0.80) 78.74 0.79 79.40 (± 0.80) 78.33 0.78 77.50 (± 0.79) 77.80 0.77
DT 91.60 (± 0.70) 92.52 0.93 91.90 (± 0.64) 91.75 0.92 84.96 (± 0.75) 84.75 0.85
RF 91.80 (± 0.06) 92.11 0.92 92.20 (± 0.60) 92.20 0.92 86.23 (± 0.79) 85.95 0.86
MLP 78.02 (± 1.70) 79.60 0.79 77.50 (± 2.13) 76.25 0.75 77.46 (± 1.80) 75.60 0.72

Performance metrics for two-class models
LR 100.00 (± 0.00) 100.00 1.00 100.00 (± 0.00) 100.00 1.00 100.00 (± 0.00) 100.00 1.00
KNN 99.92 (± 0.07) 99.89 1.00 99.93 (± 0.06) 99.94 1.00 99.93 (± 0.06) 99.96 1.00
NB 99.80 (± 0.09) 99.79 1.00 99.77 (± 0.12) 99.85 1.00 99.77 (± 0.11) 99.86 1.00
DT 100.00 (± 0.02) 99.98 1.00 100.00 (± 0.02) 99.98 1.00 99.98 (± 0.03) 100.00 1.00
RF 100.00 (± 0.00) 100.00 1.00 100.00 (± 0.00) 100.00 1.00 100.00 (± 0.00) 100.00 1.00
MLP 99.72 (± 0.60) 99.98 1.00 99.23 (± 2.50) 99.98 1.00 99.70 (± 0.50) 99.89 1.00

detects jamming presence and classifies its type (i.e., barrage, single-
tone, successive-pulse, and P-aware). The dataset is split in training
(70%) and testing (30%). 10-fold cross-validation is used during train-
ing and validation stages. Once a model is trained, the evaluation
is performed on the test set; and the DR, F-score, and FAR are com-
puted. It is noteworthy to point out that grid search is used to find
the optimal hyper-parameters for each algorithm. Table 4 depicts
the performance of the developed classifiers for the two- and five-
class models. All classifiers in the two-class models achieved almost

100% validation accuracy (VA) and DR in classifying records into
"no-jamming" or "presence of jamming". In addition, it is found
that seven features are sufficient for developing an efficient and
trustworthy two-class ML model. On the other hand, the five-class
models show that RF has the highest VA of 91.80%, 92.20%, and
86.23% in cases 1, 2, and 3, respectively. Furthermore, the RF model
achieved the highest DR and F-score in almost all cases with a DR
of 92.11%, 92.20%, and 85.95% as well as an F-score of 0.92, 0.92,
and 0.86 for cases 1, 2, and 3, respectively. It is also noted that
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Figure 4: Confusion matrix of the five-class RF model for (a) nine
features, (b) eight features, and (c) seven features

Figure 5: Waterfall images for (a) clear signal, (b) barrage, (c) single-
tone, (d) successive-pulse, and (e) P-aware jamming

eliminating the symbol time from the features set (i.e., case 2) has a
marginal effect in improving classification. However, eliminating
the average noise power (i.e., case 3) has a significant impact on
the overall performance. Figures 4(a)-(c) demonstrate the confusion
matrices of the five-class RF model for each case. It is clearly shown
that none of the clean (i.e., non-jamming) records are mis-classified
as jamming records. Rather, mis-classification occurs among the
jamming types. The weighted FAR values are computed from the
confusion matrices to be 1.35% for case 1, 1.33% for case 2, and
2.38% for case 3. Figure 5 depicts the waterfall plot of a no jamming
scenario together with other plots with jamming presence. These
plots highlight the unique spectral characteristics for each scenario,
with some similarity between barrage and protocol-aware jamming.
The similarity between these two types is thought to be the main
reason for their high mis-classification (i.e., classification confusion)
in comparison to the other types. Finally, it is noteworthy to point
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out that there is no false-alarm in the two-class models regardless
of the number of features used during training and validation.

4 CONCLUSION
In this paper, an ML approach is proposed to detect and classify
four types of jamming attacks on UAVs. Each attack is implemented
using B210 SDR and launched against a drone that uses OFDM
communication to qualitatively analyze its impacts considering
severity, complexity, and jamming range. Then, an SDR is used in
proximity to the drone in systematic testing scenarios to record
signal features including key OFDM parameters, threshold, signal
power, noise power, and SNR. These features are used to train six
algorithms for jamming detection/classification. All algorithms are
validated quantitatively with metrics including detection and false
alarm rates, and showed that jamming is detected and classified
with 92.2% confidence. Future work will entail implementing a
comprehensive complexity analysis for the developed classifiers,
exploring more jamming types (e.g., deceptive, reactive), incorpo-
rating maximum-likelihood-based classification and advanced SNR
probing, extracting features for jamming detection/classification
with various UAV altitudes, and investigating UAV-specific anti-
jamming solutions (e.g., flight scheduling, path optimization).
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