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ABSTRACT

Increasingly, software is making autonomous decisions in case
of criminal sentencing, approving credit cards, hiring employees,
and so on. Some of these decisions show bias and adversely affect
certain social groups (e.g. those defined by sex, race, age, marital
status). Many prior works on bias mitigation take the following
form: change the data or learners in multiple ways, then see if any
of that improves fairness. Perhaps a better approach is to postulate
root causes of bias and then applying some resolution strategy.

This paper checks if the root causes of bias are the prior decisions
about (a) what data was selected and (b) the labels assigned to
those examples. Our Fair-SMOTE algorithm removes biased labels;
and rebalances internal distributions so that, based on sensitive
attribute, examples are equal in positive and negative classes. On
testing, this method was just as effective at reducing bias as prior
approaches. Further, models generated via Fair-SMOTE achieve
higher performance (measured in terms of recall and F1) than other
state-of-the-art fairness improvement algorithms.

To the best of our knowledge, measured in terms of number
of analyzed learners and datasets, this study is one of the largest
studies on bias mitigation yet presented in the literature.
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« Software and its engineering — Software creation and man-
agement; - Computing methodologies — Machine learning.
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1 INTRODUCTION

It is the ethical duty of software researchers and engineers to pro-
duce quality software that makes fair decisions, especially for high-
stake software that makes important decisions about human lives.
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Sadly, there are too many examples of machine learning software ex-
hibiting unfair/biased behavior based on some protected attributes
like sex, race, age, marital status. For example:

e Amazon had to scrap an automated recruiting tool as it was
found to be biased against women [1].

o A widely used face recognition software was found to be biased
against dark-skinned women [2].

o Google Translate, the most popular translation engine in the
world, shows gender bias. “She is an engineer, He is a nurse” is
translated into Turkish and then again into English becomes
“He is an engineer, She is a nurse” [3].

Prior works on managing fairness in machine learning software
have tried mitigating bias by exploring a very wide space of control
parameters for machine learners. For example, Johnson et al. [4]
executed some (very long) grid search that looped over the set
of control parameters of a learner to find settings that reduced
bias. Another approach, published in FSE’20 by Chakraborty et
al. [5] used stochastic sampling to explore the space of control
options (using some incremental feedback operator to adjust where
to search next). While these approaches were certainly useful in the
domains tested by Johnson and Chakraborty et al., these methods
are “dumb” in a way because they do not take advantage of domain
knowledge. This is a problem since, as shown by this paper, such
domain knowledge can lead to a more direct (and faster and more
effective) bias mitigation strategy.

The insight we offer here is that the root causes of bias might
be the prior decisions that generated the training data. Those prior
decisions affect (a) what data was collected and (b) the labels as-
signed to those examples. Hence, to fix bias, it might suffice to apply
mutators to the training data in order to

(A) remove biased labels; and (B) rebalance internal
distributions such that they are equal based on class
and sensitive attributes.

This “Fair-SMOTE” tactic uses situation testing [6, 7] to find biased
labels. Also, it balances frequencies of sensitive attributes and class
labels (whereas the older SMOTE algorithm [8] just balances the
class labels). We recommend Fair-SMOTE since:

e Fair-SMOTE is faster (220%) than prior methods such as
Chakraborty et al’s [5] method.

e Models generated via Fair-SMOTE are more effective (measured
in terms of recall and F1) than Chakraborty et al. [5] and another
state-of-the-art bias mitigation algorithm [9].

Overall, this paper makes the following contributions:
e We demonstrate two main reasons for the training data being
biased - a) data imbalance, b) improper data label.
e We combine finding bias, explaining bias, and removing bias.
e We show that traditional class balancing techniques damage
the fairness of the model.
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Figure 1: Many tools try to find or explain or mitigate bias. Fair-SMOTE addresses all three problems, at the same time.

o Prior works compromised performance while achieving fair-
ness. We achieve fairness with better recall and F1 score.

o To the best of our knowledge, this study explores more learn-
ers and datasets than prior works that were based on just a
handful of datasets and/or learners (e.g. [9-11]).

Before beginning, we digress to clarify two points. Firstly, in this
paper, training data is mutated by Fair-SMOTE but the test data
remains in its original form.

Secondly, one danger with mutating data is that important asso-
ciations between variables can be lost. Hence, in this work, we take
care to mutate by extrapolating between the values seen in two
neighboring examples. In that mutation process, Fair-SMOTE ex-
trapolates all the variables by the same amount. That is, if there exists
some average case association between the pre-mutated examples,
then that association is preserved in the mutant. To facilitate open
science, the source code and datasets used in this study are all
available online!.

2 RELATED WORK

Fairness in ML model is a well-explored research topic in the ML
Community. Recently, the software engineering community has
also become interested in the problem of fairness. Software re-
searchers from UMass Amherst have developed a python toolkit
called Fairkit to evaluate ML models based on various fairness met-
rics [4]. ICSE 2018 and ASE 2019 conducted separate workshops
for software fairness [12, 13]. Big software industries have started
taking this fairness problem seriously as well. IBM has created a
public GitHub repository Al Fairness 360 [14] where most popular
fairness metrics, and mitigation algorithms can be found. Microsoft
has created a dedicated research group for fairness, accountability,
transparency, and ethics in AI [15]. Facebook has developed a tool
to detect bias in their internal software [16].
This section reviews the fairness literature in order to find two
baseline systems (which we will use to evaluate Fair-SMOTE).
Our first baseline is Chakraborty et al. [5] from FSE’20 that
viewed bias mitigation as a multiple-goal hyperparameter opti-
mization problem. Their stochastic search found learner control
parameters that reduced prediction bias. We prefer Chakraborty
et al’s method over the grid search of Johnson et al. [4] since grid
search (a) can be very slow and (b) it is strongly deprecated in the
machine learning literature [17]. That said, one drawback with the

Uhttps://github.com/joymallyac/Fair-SMOTE

method of Chakraborty et al. is that it did not guide its search via
domain knowledge (such as those listed in the introduction).

For a second baseline system, we reviewed popular bias mitiga-
tion works including Reweighing [30], Prejudice Remover Regular-
izer [31], Adversarial debiasing [10], Equality of Opportunity [32],
and Reject option classification [11]. While all these tools are useful
for mitigating bias, as a side effect of improving fairness these meth-
ods also degrade learner performance (as measured by accuracy &
F1 [9-11, 30-32]). Hence, a truism in the research community is
that, as said by Berk et al. [33]:

It is impossible to achieve fairness and high performance
simultaneously (except in trivial cases).

In 2020, Maity et al. tried to reverse the Berk et al. conclusion.
To do so they had to make the unlikely assumption that the test
data was unbiased [34]. Our experience is that this assumption is
difficult to achieve. Also, based on our experience with Fair-SMOTE
(described below), we argue that this assumption may not even be
necessary. We show below that it is possible to mitigate bias while
maintaining/improving performance at the same time. The trick is
how the data is mutated. Fair-SMOTE extrapolates all the variables
by the same amount. In this way, associations between variables (in
the pre-mutated examples), can be preserved in the mutant.

As to other work, a recent paper from Google [35] talked about
data labels being biased. This motivated us to look into data labels.
Yan et al. commented that under representation of any sensitive
group in the training data may give too little information to the
classifier resulting bias [36]. This work inspired us to look into data
distribution and class distribution to find root causes for bias.

From the remaining literature, we would characterize much of
it as looking vertically down a few columns of data (while in our
approach, our mutators work horizontally across rows of data). Fur-
ther, much prior works only test for bias (whereas in our approach,
we propose how to fix that bias).

There are many examples of “vertical” studies that just test for
bias. Zhang et al. [37] built a directed acyclic graph (DAG) con-
taining cause-effect relations of all the attributes to see which fea-
tures directly or indirectly affect the outcome of the model. Loftus
et al. [38] show methods to detect if sensitive attributes such as
race, gender are implicated in model outcome. THEMIS [39] ran-
domly perturbs each attribute to see whether model discriminates
amongst individuals. AEQUITAS [40], uses random, semi-directed,
and fully-directed generation techniques that make it more efficient
than THEMIS. Recently, IBM researchers have developed a new
testing technique by combining LIME (Local Interpretable Model
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Table 1: Description of the datasets used in the experiment.

Dataset #Rows | #Features Prot?cted Description
Attribute
Adult Census Income [18] | 48,842 14 Sex, Race | Individual information from 1994 U.S. census. Goal is predicting income >$50,000.
Compas [19] 7,214 28 Sex,Race | Contains criminal history of defendants. Goal predicting re-offending in future
German Credit [20] 1,000 20 Sex Personal information about individuals & predicts good or bad credit.
Default Credit [21] 30,000 23 Sex Customer information for people from Taiwan. Goal is predicting default payment.
Heart Health [22] 297 14 Age Patient information from Cleveland DB. Goal is predicting heart disease.
Bank Marketing [23] 45,211 16 Age Contains marketing data of a Portuguese bank. Goal predicting term deposit.
Home Credit [24] 37,511 240 Sex Loan applications for individuals. Goal is predicting application accept/reject.
Student Performance [25] | 1,044 33 Sex Student achievement of two Portuguese schools. Target is final year grade.
MEPS-15,16 [26] 35,428 1,831 Race Surveys of families, individuals, medical providers, employers. Target is “Utilization”.

Table 2: Definition of the performance and fairness metrics used in this study.

Performance Metric Ideal Fairness Metric Ideal
Value Value
Average Odds Difference (AOD): Average of difference in False Positive Rates(FPR) and
Recall = TP/P = TP/(TP+FN) 1 True Positive Rates(TPR) for unprivileged and privileged groups [27]. 0

TPR = TP/(TP + FN), FPR = FP/(FP + TN), AOD = [(FPRy — FPRp) + (TPRy — TPRp)] % 0.5

Equal Opportunity Difference (EOD): Difference of True Positive Rates(TPR) for

(Precision + Recall)

False alarm = FP/N = FP/(FP+TN) 0 unprivileged and privileged groups [27]. EOD = TPRy; — TPRp 0
Statistical Parity Difference (SPD): Difference between probability of unprivileged

Accuracy — (TP+TN) 1 group (protected attribute PA = 0) gets favorable prediction (¥ = 1) & probability 0

Y= (TP+FP+TN+FN) of privileged group (protected attribute PA = 1) gets favorable prediction (Y = 1) [28].
SPD=P[Y =1|PA=0] - P[Y =1|PA=1]
L Disparate Impact (DI): Similar to SPD but instead of the difference of probabilities,
Precision = TP/(TP+FP) 1| the ratio is measured [29]. DI = P[Y = 1|PA = 0]/P[¥ = 1|PA = 1] !
2+ (Precision * Recall)
F1 Score = —5——————r— 1

Explanation) and symbolic execution [41]. Zhang et al. developed
a fairness testing method that is applicable for DNN models [42]
(they combined gradient computation and clustering techniques).

Finally, we can find one paper that seems like a competitive
technology to the methods of this paper. Optimized Pre-processing
(OP) by Calmon et al. [9] tries to find, then fix, bias. OP is a data-
driven optimization framework for probabilistically transforming
data in order to reduce algorithmic discrimination. OP treats bias
mitigation as a convex optimization problem with goals to preserve
performance and achieve fairness. We chose this work as a baseline
because, like Fair-SMOTE, it is also a pre-processing strategy.

In summary, prior work suffered from

e Some methods only find bias, without trying to fix it.
e Some methods for fixing bias have an undesired side effect:
leaner performance was degraded.

For the rest of this paper, we explore a solution that finds root
causes of bias, and directly implement mitigation of those causes
(resulting in less bias and better performance than seen in prior
work).

3 WHAT ARE THE ROOT CAUSES OF BIAS?

To understand what might cause bias, at first, we need some termi-
nology. Table 1 contains 10 datasets used in this study. All of them
are binary classification problems where the target class has only
two values.

o A classlabel is called a favorable label if it gives an advantage
to the receiver such as receiving a loan, being hired for a job.

o A protected attribute is an attribute that divides the whole
population into two groups (privileged & unprivileged) that
have differences in terms of receiving benefits.

Every dataset in Table 1 has one or two such attributes. For exam-
ple, in case of credit card application datasets, based on protected
attribute “sex”, “male” is privileged and “female” is unprivileged; in
case of health datasets, based on protected attribute “age”, “young”

is privileged and “old” is unprivileged.

o Group fairness is the goal that based on the protected attribute,
privileged and unprivileged groups will be treated similarly.

o Individual fairness means similar outcomes go to similar indi-
viduals.

Table 2 contains five performance metrics and four fairness met-
rics we used. These metrics are selected since they were widely
used in the literature [5, 32, 43-45]. Prediction performance is mea-
sured in terms of recall, false alarm, accuracy, precision, F1; fairness
is measured using AOD, EOD, SPD, DI. All of these can be calculated
from the confusion matrix of binary classification containing four
cells - true positives (TP), false positives (FP), true negatives (TN)
and false negatives (FN).

e For recall, accuracy, precision, F1 larger values are better;
e For false alarm, AOD, EOD, SPD smaller values are better.
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Figure 2: Most of the datasets showing not only class imbalance but also imbalance based on the protected attribute.
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Figure 3: Effects of SMOTE class balancing technique on
Adult dataset for two protected attributes “sex” and “race”.

e DI is a ratio and there is no bias when value of DI is 1.
For comprehensibility, while showing results we compute
abs(1 - DI) so that all four fairness metrics are lower the
better (0 means no bias).

Prior research [11, 30, 31, 46] has shown that classification models
built from the datasets of Table 1 show bias. Why? What are the
natures of these datasets that result in bias?

In this paper, we postulate that data has a history and that history
introduces bias. For example, consider a team of humans labeling
data as “risky loan applicant” or otherwise. If that team has any
biases (conscious or otherwise) against certain social groups, then
the bias of those humans introduces improper/unfair data labels.

Another way history can affect the data is selection bias. Sup-
pose we are collecting package data relating to the kinds of items
shipped via Amazon to a particular suburb. Suppose there is some
institutional bias that tends to results in low annual incomes for
persons in certain suburbs?. The delivery data collected from those
suburbs would contain all the political and economic biases that
tend to perpetuate lower socio-economic neighborhoods.

The next two sections explore the intuitions of the last two para-
graphs in more detail. Specifically, we will look into data imbalance

2E.g. If politicians spend less money on schools in a poorer district; then that district
has (a) fewer exceptional schools; (b) fewer graduates with job skills in for high-paying
jobs in high demand; (c) consistently lower incomes from generation to generation.

and improper data labeling. This in turn will lead to the Fair-SMOTE
algorithm that deletes biased labels and balances all distributions
between positive and negative examples.

3.1 Data Imbalance

When a classification model is trained on imbalanced data, the
trained model shows bias against a certain group of people. We
mention that such imbalances are quite common. Figure 2 displays
distributions within our datasets. Note that, in most cases, we see
a class imbalance; i.e the number of observations per class is not
equally distributed. Further, we see that the imbalance is not just
based on class, but also on protected attribute.

For example, consider the Adult dataset. Here we are predicting
the annual income of a person. There are two classes. “High income”
(= $50,000) which is favorable label and “low income” (< $50,000)
which is unfavorable label. The first grouped bar in Figure 2 has
two bars grouped together. The first bar is for “high income” class
(24%) and the second bar is for “low income” (76%) class. It is clear
that the number of instances for “low income” is more than three
times of instances for “high income”. This is an example of class
imbalance. Now, both the bars are subdivided based on protected
attribute “sex” (“male” and “female”). For “high income” or favorable
label, 86% instances are “male” and only 14% are female. For “low
income” or unfavorable label, 60% instances are “male” and 40%
are female. Overall, this dataset contains more examples of “male”
(privileged) getting favorable label and female (unprivileged) getting
unfavorable label.

Class imbalance is a widely studied topic in ML domain. There
are mainly two ways of balancing imbalanced classes:

e Oversample the minority class;
e or undersample the majority class.

We want to see how various class balancing techniques affect fair-
ness. In Table 3 we are showing the results for five most commonly
used class balancing techniques on Adult dataset. One of them is
undersampling (RUS- Random Under Sampling), other three (ROS-
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Table 3: Effects of various class balancing techniques on Adult dataset (note: for the metrics with ‘+’ more is better and for the
metrics with ‘-’ less is better). For each metric, cell with best score is highlighted.

Recall(+) | False alarm(-) | Precision(+) | Accuracy(+) | F1 Score(+) | AOD(-) | EOD(-) | SPD(-) | DI(-)

Default 0.42 0.07 0.69 0.83 0.54 0.12 0.24 0.21 0.56
RUS 0.74 0.23 0.48 0.76 0.59 0.09 0.36 0.37 0.61

ROS 0.74 0.24 0.47 0.75 0.59 0.08 0.34 0.35 0.64
SMOTE 0.70 0.25 0.49 0.70 0.64 0.17 0.37 0.33 0.58
KMeans-SMOTE 0.73 0.24 0.48 0.74 0.58 0.08 0.35 0.36 0.62

Table 4: Percentage of data points failing situation testing for 10 datasets.

Default
Credit
(Sex)

Heart- Bank Home
Health | Marketing | Credit
(Age) (Age) (Sex)

Student | MEPS-15 | MEPS-16
(Sex) (Race) (Race)

Adult | Adult | Compas | Compas | German
(Sex) | (Race) (Sex) (Race) (Sex)
% of Rows
failed 11% 3% 18% 8% 6%

8% 19% 17% 4% 4% 4%

Random Over Sampling, SMOTE- Synthetic Minority Over Sam-
pling Technique [8] and KMeans-SMOTE [47]) are oversampling
techniques. Table 3 shows values of nine metrics - first five of them
are performance metrics and last four of them are fairness metrics.
We used logistic regression model here.

The important observation here is all four of the class balanc-
ing techniques are increasing bias scores mean damaging fairness
(lower is better here). To better understand this, see Figure 3. It gives
a visualization of using SMOTE [8] on Adult dataset. SMOTE gen-
erates synthetic samples for minority class data points to equalize
two classes. Suppose a data point from minority class is denoted as
X where x1, x2, .., x,, are the attributes and its nearest neighbor is X ’
(x/1 x;x;) According to SMOTE, a new data point Y (y1, Y2, ... Yn)
is generated by the following formula:

Y =X +rand(0,1) * (X —X')

SMOTE definitely balances the majority class and minority class
but it damages the protected attribute balance even more. Thus
Figure 3 explains the results of Table 3.

For space reasons, we have shown this with one dataset and
one technique (SMOTE) but in other datasets also, we got similar
pattern. That said, traditional class balancing methods improve
performance of the model but damage fairness (usually). The reason
is these techniques randomly generate/discard samples just to equalize
two classes and completely ignore the attributes and hence damage
the protected attribute balance even more.

To fix this, we propose Fair-SMOTE. Like SMOTE, Fair-SMOTE
will generate synthetic examples. But Fair-SMOTE takes much
more care than SMOTE for exactly how it produces new examples.
Specifically, it balances data based on class and sensitive attributes
such that privileged and unprivileged groups have an equal amount
of positive and negative examples in the training data (for more
details, see §4).

3.2 Improper Data Labeling

Some prior works [35, 48, 49] argue that improper labeling could
be a reason behind bias. We used the concept of situation testing to

validate how labeling can affect fairness of the model. Situation test-
ing is a research technique used in the legal field [6] where decision
makers’ candid responses to applicant’s personal characteristics
are captured and analyzed. For example:

o A pair of research assistants (a male and a female with almost
equivalent qualities) undergo the same procedure, such as ap-
plying for a job.

o Now the treatments they get from the decision-maker are ana-
lyzed to find discrimination.

Situation testing as a legal tactic has been widely used both in the
United States [6] and the European Union [7]. Luong et al. [50]
first used the concept of situation testing in classification problems.
They used K-NN approach to find out similar individuals getting
different outcomes to find discrimination. Later, Zhang et al. [51]
used causal bayesian networks to do the same. The core idea of our
situation testing is much simpler:

o Flip the value of protected attribute for every data point.
o See whether prediction given by the model changes or not.

In our implementation, a logistic regression model is trained first
and then all the data points are predicted. After that, the protected
attribute value for every data point is flipped (e.g. male to female,
white to non-white) and tested again to validate whether model
prediction changes or not. If the result changes, that particular data
point fails the situation testing.

Table 4 shows the median of ten runs for all the datasets. We
see all the datasets more or less contain these kinds of biased data
points. That means we have found biased labels. Note that, we
use logistic regression model for situation testing but any other
supervised model can be chosen. We picked logistic regression
because it is a simple model and can be trained with a very low
amount of data (compared to DL models) [52]. Choosing a different
model may change the outcome a bit. We will explore that in future.

4 METHODOLOGY

Summarizing the above, we postulate that data imbalance and im-
proper labeling are the two main reasons for model bias. Further, we
assert that if we can solve these two problems then final outcome
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will be a fairer model generating fairer prediction. This section
describes experiments to test that idea.

4.1 Fair-SMOTE

Fair-SMOTE algorithm solves data imbalance. At first, the training
data is divided into subgroups based on class and protected attribute.
If class and protected attribute both are binary, then there will be 2*2
= 4 subgroups (Favorable & Privileged, Favorable & Unprivileged,
Unfavorable & Privileged, Unfavorable & Unprivileged). Initially,
these subgroups are of unequal sizes.

Fair-SMOTE synthetically generates new data points for all the
subgroups except the subgroup having the maximum number of
data points. As a result, all subgroups become of equal size (same
with the maximum one).

As stated in the introduction, one danger with mutating data is
that important associations between variables can be lost. Hence,
in this work, we take care to mutate by extrapolating between the
values seen in two neighboring examples. In that mutation process,
Fair-SMOTE extrapolates all the variables by the same amount. That
is, if there exists some average case association between the pre-
mutated examples, then that association is preserved in the mutant.

For data generation, we use two hyperparameters “mutation
amount” (f) and “crossover frequency” (cr) like Differential Evolution
[53]. They both lie in the range [0, 1]. The first one denotes at which
probability the new data point will be different from the parent
point (0.8 means 80% of the times) and the latter one denotes how
much different the new data point will be. We have tried with 0.2
(< 50% probability), 0.5 (= 50%), & 0.8 (> 50%) and got best results
with 0.8.

Algorithm 1 describes the pseudocode of Fair-SMOTE. It starts
with randomly selecting a data point (parent point p) from a sub-
group. Then using K-nearest neighbor, two data points (c1, c2) are
selected which are closest to p. Next, according to the algorithm
described, a new data point is created. Separate logic is used for
boolean, symbolic, and numeric columns.

Fair-SMOTE does not randomly create a new data point. Rather
it creates a data point that is very close to the parent point. Thus
the generated data points belong to the same data distribution. This
process is repeated until all the subgroups become of similar size.

After applying Fair-SMOTE, the training data contains equal
proportion of both classes and the protected attribute.

4.2 Fair Situation Testing

At first, we use Fair-SMOTE to balance the training data. Fair-
SMOTE is an oversampling technique and thus increases the size of
train set. We then use situation testing as mentioned in §3.2 to find
out biased data points in the training data. We call this situation
testing as fair situation testing because this is making the training
data fairer. After finding biased data points, we remove them from
training data. As Table 4 shows small percentage numbers, we do
not lose much of the training data. We will show in the ‘Results’
section that this does not affect performance of the model much.
After removal of biased data points, we train the model on the
remaining training set and finally make the prediction on test data.

Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies

Algorithm 1: Pseudocode of Fair-SMOTE

Input: Dataset, Protected Attribute(p_attrs), Class Label(cl)
Output: Balanced Dataset
Def get_ngbr(Dataset, knn):

rand_sample_id = random(0, len(Dataset))

parent = Dataset[rand_sample_id]

ngbr = knn.kneighbors(parent,2)

cl, c2 = Dataset[ngbr[0]], Dataset[ngbr[1]]

return parent, cl, c2

L R

count_groups = get_count(Dataset, p_attrs, cl)
max_size = max(count_groups)

9 cr,f=0.8,0.8 (user can pick any value in [0,1])
10 for cincl do

® =

1 for attr in p_attrs do

12 sub_data = Dataset(cl=c & p_attrs=attr)

13 sub_group_size = count_groups|c][attr]

14 to_generate = max_size - sub_group_size

15 knn = NearestNeighbors(sub_data)

16 for i in range(to_generate) do

17 p.cl,c2 = get_ngbr(sub_data, knn)

18 new_candidate = []

19 for col in parent_candidate.columns do

20 if col is boolean then

21 if cr > random(0,1) then

22 L new_val = random(p[col],c1[col],c2[col])
23 else

24 | new_val = p[col]

25 new_candidate.add(new_val)

26 else if col is String then

27 new_val = random(p[col],c1[col],c2[col])
28 new_candidate.add(new_val)

29 else if col is Numeric then

30 if cr > random(0,1) then

31 L new_val = p[col] + f*(c1[col]-c2[col])
32 else

33 L new_val = p[col]

34 new_candidate.add(new_val)

35 | Dataset.add(new_candidate)

4.3 Experimental Design

Here we describe how we prepared the data for experiments to
answer the research questions in §5. Our study used 10 datasets
(Table 1) and 3 classification models - logistic regression (LSR),
random forest (RF), and support vector machine (SVM). In fairness
domain, datasets are not very large in size and also have small
dimensions. That is why we see most of the prior works [5, 9, 31, 43]
choose simple models like us instead of deep learning models. For
every experiment, we split the datasets using 5 fold cross-validation
(train - 80%, test - 20%) and repeat 10 times with random seeds and
finally report the median. The rows containing missing values
are ignored, continuous features are converted to categorical (e.g.,
age<25: young, age>=25: old), non-numerical features are converted
to numerical (e.g., male: 1, female: 0), finally, all the feature values
are normalized (converted between 0 to 1). These basic conversions
are done for all the experiments. Classification model is first trained
on training data and then tested on test data; we report the median
of ten runs.

Figure 4 shows the block-diagram of one repeat of our framework.
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Figure 4: Block diagram of Fair-SMOTE

4.4 Statistical Tests

While comparing Fair-SMOTE with other techniques, we use Scott-
Knott test [54, 55] to compare two distributions. Scott-Knott is a
recursive bi-clustering algorithm that terminates when the differ-
ence between the two split groups is not significant. Scott-Knott
searches for split points that maximize the expected value of the
difference between the means of the two resulting groups. If a group
lis split into two groups m and n, Scott-Knott searches for the split
point that maximizes

E[A] = |ml/|l|(E[m] = E[ID? + |nl/II(E[n] - E[1])°

where |m]| is the size of group m. The result of the Scott-Knott test is
ranks assigned to each result set; higher the rank, better the result.
Scott-Knott ranks two results the same if the difference between
the distributions is not significant.

5 RESULTS

The results are structured around five research questions.

RQ1. Can we find bias by just looking at the training data?

In §3 we said a machine learning model acquires bias from train-
ing data. RQ1 asks for the signals we must see to identify whether
training data has bias or not. That is an important question to ask
because if that is doable and that bias can be removed before model
training, then the chances of bias affecting the final decision reduce
significantly. Table 5 shows results for three different models (lo-
gistic regression (LSR), random forest (RF), support vector machine
(SVM)), and Table 6 shows results for one model (LSR) only. The
row “Default” is when we train the model on raw data. Results
show that “Default” row has significantly high bias scores for all
the datasets that means trained model is showing discrimination.
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Previously we have dived deep into these datasets to find reasons
for bias. Here we are summarizing the sanity checks every dataset
should go through before model training to avoid discrimination.

e Data distribution - The training data should be almost bal-
anced based on class and protected attribute.

e Datalabel - Every data point should go through situation testing
to see whether label has bias or not.

If we find bias in the training data, we should apply Fair-SMOTE
to remove that and get fair outcomes. Thus, the answer for RQ1 is
“Yes, we can find bias by just looking at the training data”

RQ2. Are standard class balancing techniques helpful to reduce
bias?

For answering RQ2, we chose the most used class balancing
technique, which is SMOTE [8]. Table 5 contains results for three
datasets and three different learners (LSR, RF, SVM). In that table,
for a particular dataset and for a particular performance metric:

o Cells with | darker backgrounds denote treatments that are per-
forming better than anything else.

e Conversely, cells with a white background denote treatments
that are performing worse than anything else;.

SMOTE consistently increases bias scores (AOD, EOD, SPD, DI)
mean damaging fairness but performs similar/better than “De-
fault” in case of performance metrics (as measured by recall, false
alarm, precision, accuracy & F1). Thus, the answer for RQ2 is “No,
standard class balancing techniques are not helpful since, in
their enthusiasm to optimize model performance, they seem
to also amplify model bias.”

‘ RQ3. Can Fair-SMOTE reduce bias? ‘

Table 5 answers this question. Looking at the bias metrics (AOD,
EOD, SPD, DI), Fair-SMOTE significantly reduces all the bias scores
mean increasing fairness (see the | darker colored cells ).

As to the performance measures (recall, false alarm, precision,
accuracy, and F1) it is hard to get a visual summary of the results
just by looking at Table 5. For that purpose, we turn to rows 1,2,3,4
of Table 7. Based on Scott-Knott tests of §4.4, these rows count
the number of times Fair-SMOTE wins, losses or ties compared
to SMOTE (here, “tie” means “is assigned the same rank by Scott-
Knott”). Those counts, in rows 1,2,3,4 confirm the visual patterns
of Table 5:

e As to the performance measures (recall, false alarm, precision,
accuracy, and F1), these methods often tie.

o But looking at the highlighted bias metrics results for AOD,
EOD, SPD, & DI, Fair-SMOTE is clearly performing better than
SMOTE.

Thus, the answer for RQ3 is “Yes, Fair-SMOTE reduces bias sig-
nificantly and performs much better than SMOTE.”

RQ4. How well does Fair-SMOTE perform compared to the state
of the art bias mitigation algorithms?

Table 7 compares Fair-SMOTE against other tools that try to find
and fix bias. “Default” shows the off-the-shelf learners; “Fairway”
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Table 5: Results for RQ1, RQ2 & RQ3. In this table “Default” means off-the-shelf learner; SMOTE is an algorithm by Chawla
et al. [8] from 2002; and Fair-SMOTE is the algorithm introduced by this paper. Cells show medians for 10 runs. Here, the

- cells show top rank (note: for the metrics with ‘+’ more is better and for the metrics with ‘-’ less is better). The

lighter and lightest cells show rank two and rank three respectively; the white cells show the worst rank. Rankings were

calculated via Scott-Knott test (§4.4).

Dataset Protected Algorithms Recall :i:l:; Precision | Accuracy | F1 Score | AOD | EOD | SPD | DI
Attribute ) 2 *) *) ) O 66|06
Default - LSR 0.42 0.54 0.12 | 0.24 | 0.21 | 0.56
Default - RF 0.51 0.59 0.09 | 0.17 | 0.17 | 0.33
Default - SVM 0.35 0.49 0.1 0.24 | 0.14 | 0.43
Adult Census SMOTE - LSR 0.25 0.49 0.70 0.17 0.37 | 0.33 | 0.58
Income Sex SMOTE - RF 0.61 0.08 | 0.16 | 0.16 | 0.32
SMOTE - SVM 0.19 0.55 0.78 0.11 | 0.52 | 0.42 | 0.46
Fair-SMOTE - LSR 0.25 0.51 0.73
Fair-SMOTE - RF 0.2 0.53 0.78
Fair-SMOTE - SVM 0.23 0.51 0.76
Default - LSR 0.42 0.52 0.06 | 0.15 | 0.16 | 0.52
Default - RF 0.53 0.12 0.16 | 0.12 | 0.57
Default - SVM 0.35 0.49 0.08 | 0.11 | 0.10 | 0.35
Adult Census SMOTE - LSR 0.23 0.49 0.72 0.16 | 0.19 | 0.23 | 0.56
Income Race SMOTE - RF 0.66 0.08 0.67 0.09 | 0.12 | 0.12 | 0.52
SMOTE - SVM 0.58 0.11 0.62 0.09 | 0.12 | 0.17 | 0.32
Fair-SMOTE - LSR 0.22 0.51 0.72
Fair-SMOTE - RF 0.2 0.52
Fair-SMOTE - SVM 0.26 0.5
Default - LSR 0.61 0.05 | 0.14 | 0.18 | 0.24
Default - RF 0.45 0.11 | 0.18 | 0.2 | 0.34
Default - SVM 0.45 0.1 0.15 | 0.22 | 0.28
SMOTE - LSR 0.65 0.62 0.6 0.65 0.08 0.19 | 0.22 | 0.31
Compas Sex SMOTE - RF 0.72 0.42 0.7 0.11 | 0.22 | 0.26 | 0.3
SMOTE - SVM 0.7 0.1 0.21 | 0.31 | 0.38
Fair-SMOTE - LSR 0.62 0.56 0.55 0.65
Fair-SMOTE - RF 0.71 0.44
Fair-SMOTE - SVM 0.5
Default - LSR 0.39 0.68 0.05 | 0.11 | 0.12 | 0.21
Default - RF 0.44 0.07 0.17 | 0.21 | 0.24
Default - SVM 0.45 0.07 0.14 | 0.18 | 0.24
SMOTE - LSR 0.61 0.61 0.6 0.63 0.06 | 0.16 | 0.14 | 0.27
Compas Race SMOTE - RF 0.42 0.07 | 0.13 | 0.19 | 0.31
SMOTE - SVM 0.39 0.09 | 0.12 | 0.16 | 0.24
Fair-SMOTE - LSR = 0.62 0.56
| Fair-SMOTE-RF | 0.66 | 0.39
Fair-SMOTE - SVM 0.41
Default - LSR 0.35 0.44 0.04 0.1 0.07 | 0.43
Default - RF 0.38 0.11 0.62 0.81 0.41 0.08 | 0.12 | 0.08 | 0.36
Default - SVM 0.31 0.79 0.4 0.09 0.1 0.09 | 0.32
SMOTE - LSR 0.22 0.58 0.78 0.17 0.11 | 0.11 | 0.49
MEPS - 16 Race SMOTE - RF 0.18 0.56 0.78 0.12 | 0.19 | 0.13 | 0.31
SMOTE - SVM 0.23 0.49 0.79 0.13 | 0.18 | 0.15 | 0.47
Fair-SMOTE - LSR 0.2 0.41 0.77
Fair-SMOTE - RF 0.21 0.38 0.77
Fair-SMOTE - SVM 0.18 0.39 0.76

is the Chakraborty et al. [5] system from FSE’20; and OP is the Op-
timized Pre-processing method from NIPS’17 [9]. Here, the learner
is logistic regression since, for performance measures, LSR has best
results in the Fair-SMOTE results of Table 5.

Rows 5,6,7,8,9,10,11,12 of Table 7 summarize these results. Mea-
sured in terms of bias reduction, all the methods often tie. But
observing the 'highlighted cells in that table, we see that the Fair-
SMOTE performs much better (in terms of recall and F1) than
anything else.

Thus, the answer for RQ4 is “Fair-SMOTE performs similar
or better than two state of the art bias mitigation algorithms
in case of fairness and consistently gives higher recall and
F1 score.” That means we do not have to compromise performance

anymore to achieve fairness. Fair-SMOTE is able to provide both -
better fairness and performance. This is the biggest achievement of
this work.

RQ5. Can Fair-SMOTE reduce bias for more than one protected
attribute?

In the literature, we are unaware of any work trying to reduce
bias for more than one protected attribute at a time. Typically what
researchers do is try to eliminate bias based on one protected at-
tribute, one at a time. We experimented on Adult dataset having two
protected attributes (sex, race). The idea is to balance the training
data with respect to class and two protected attributes. That means
we need to find out among the eight (23) possible subgroups which



Bias in Machine Learning Software: Why? How? What to Do?

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 6: Results for RQ3, RQ4 (learner= Logistic Regression). In this table. “Default” denotes off-the-shelf logistic regression;
OP is Calmon et al’s system from NIPS’17 [9]; Fairway is Chakraborty et al’s system from FSE’20 [5]; and Fair-SMOTE is the

algorithm introduced by this paper. Cells show medians for 10 runs. Here, the - cells show top rank (note: for the

metrics with ‘+’ more is better and for the metrics with ‘-’ less is better). The lighter cells show rank two; white shows lowest

rank (worst performance). Rankings were calculated via the Scott-Knott test (§4.4)

Dataset Protected Al Recall | False alarm | Precision Accuracy | F1Score | AOD | EOD | SPD | DI
Attribute ™) 0 ) ®) ®) 0106016010
Default 0.42 0.07 0.54 0.12 | 0.24 | 0.21 | 0.56
Adult Census Sex OP 0.41 0.09 0.61 0.76 0.51
Income Fairway 0.25 0.72 0.42
Fair SMOTE 0.25 0.51 0.73
Default 0.42 0.52 0.06 | 0.15 | 0.16 | 0.52
Adult Census Race op 0.38 0.48
Income Fairway 0.36 0.73 0.44 0.32
Fair SMOTE 0.22 0.51 0.72
Default 0.38 0.61 0.14 | 0.18 | 0.28
Compas Sex O P 036 0.60
Fairway 0.56 0.57 0.58 0.58
Fair SMOTE 0.62 0.32 0.56 0.55
Default 0.39 0.11 | 0.12 | 0.21
Compas Race O P 0.33 0.12
Fairway 0.55 0.58 0.58 0.56
Fair SMOTE | 0.62 0.30 0.56 0.55 0.11
Default 0.81 0.11 0.08 | 0.14 | 0.15
. OopP 0.75 0.73 0.71
German Credit Sex Fairway | 078 0.76 0.65 0.73
Fair SMOTE | 0.62 0.64 0.71
Default 0.25 0.34 0.05 | 0.08 | 0.06 | 0.45
. OP 0.28 0.70 0.32 0.09
Default Credit Sex Fairway | 0.21 0.67 0.33 0.12
Fair SMOTE 0.26 0.39 0.68
Default 0.11 0.13 | 0.32 | 0.44
op 0.69 0.69 0.69
Heart Health Age Fairway | 0.65 0.69 0.67 0.68
Fair SMOTE 0.66 0.69 0.68 0.66
Default 0.73 0.21 0.14 | 0.22 | 0.24 | 0.21
. (03 0.72 0.20 0.74 0.75
Bank Marketing | Age Fairway | 0.71 073 0.71 0.73
Fair SMOTE 0.72 0.72 0.74
Default 0.07 | 0.06 | 0.08 | 0.59
Home Credit Sex op
Fairway 0.28 0.12 0.25 0.65 0.26
Fair SMOTE 0.75
Default 0.81 0.06 | 0.05 | 0.06 | 0.12
Student Sex OP 0.79
Performance Fairway 0.76
Fair SMOTE 0.10
Default 0.36 0.45 0.05 | 0.08 | 0.36
OP 0.35 0.44
MEPS - 15 Race Fairway | 035 0.42 0.77 0.41
Fair SMOTE 0.22 0.41 0.77
Default 0.35 0.44 0.1 0.07 | 0.43
op 0.34 0.44
MEPS - 16 Sex Fairway | 0.32 055 0.76 0.42
Fair SMOTE 0.2 0.41 0.77

one has the most number of data points. Then we need to make
other subgroups of the same size with the one having most number
of data points. That is done by generating new data points using
Fair-SMOTE. Table 8 shows results that bias is reduced for both the
attributes along with higher recall and F1 score. Hence, the answer
of RQ5 is “Yes, Fair-SMOTE can simultaneously reduce bias
for more than one protected attribute.”

6 DISCUSSION: WHY FAIR-SMOTE?

Here we discuss what makes Fair-SMOTE unique and more useful
than prior works in the fairness domain.

Combination: This is only the second SE work (after Fairway
[5]) in fairness domain where primary focus is bias mitigation.
There are a lot of papers in ML domain where various techniques
are provided to remove bias from model behavior. Still, when it
comes to applicability, we see software practitioners find ML fair-
ness as a complicated topic. Because finding bias, explaining bias,
and removing bias have been treated as separate problems and thus
created more confusion. That’s where this work makes a signifi-
cant contribution by combining all of them together. We first find
data imbalance and improperly labeled data points (by situation
testing) and then use oversampling to balance the data and remove
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Table 7: RQ3, RQ4 results. Summarized information of comparing Fair-SMOTE with SMOTE[8], Fairway[5] & Optimized Pre-
processing[9] based on results of 10 datasets and 3 learners (LSR, RF, SVM). Number of wins, ties, and losses are calculated
based on Scott-Knott ranks for each metric. Highlighted cells show Fair-SMOTE significantly outperforming others.

Recall False alarm Precision Accuracy F1Score AOD EOD SPD DI Total

SMOTE vs Fair-SMOTE

1 Win 4 4 1 6 3 33 33 34 32 150

2 Tie 25 27 29 28 30 2 3 2 2 148

3 Loss 7 5 6 2 3 1 0 0 2 26

4  Win + Tie 29 31 30 34 33 35 36 36 34 | 298/324
Fairway vs Fair-SMOTE

5 Win 14 4 6 5 20 3 2 3 4 61

6 Tie 20 20 27 28 14 30 31 32 31 233

7 Loss 2 12 3 3 2 3 3 1 1 28

8  Win + Tie 34 24 33 33 34 33 33 35 35 | 294/324

Optimized Pre-processing vs Fair-SMOTE

9 Win 10 7 4 3 12 1 2 2 3 44

10 Tie 21 22 26 30 20 34 33 32 31 249

11 Loss 5 7 6 3 4 1 1 2 2 31

12 Win + Tie 31 29 30 33 32 35 35 34 34 | 293/324

Table 8: RQ5 results. Fair-SMOTE reducing bias for ‘sex’ and ‘race’ simultaneously (Adult dataset). Best cells are highlighted.

Protected
ai(t)riebcu:e Recall(+) | False alarm(-) | Precision(+) | Accuracy(+) | F1 Score(+) | AOD(-) | EOD(-) | SPD(-) | DI(-)
Sex 0.12 0.24 0.21 0.56
Defaul 0.42 d ! y 0.52
etauit Race 0.07 069 083 0.06 015 | 016 | 052
. Sex 0.02 0.05 0.09 0.27
Fair-SMOTE Race 0.71 0.24 0.49 0.75 0.59 0.01 0.03 0.08 0.22

improperly labeled data points. As an outcome, we generate fair
results.

Uncompromising: Our framework improves fairness scores
along with F1 score and recall. It does not damage accuracy and
precision much also. That said, unlike much prior work [9-11, 30-
32], we can do bias mitigation without compromising predictive
performance. We attribute our success in this regard to our sampling
policy. None of our mutators damage the associations between
attributes. Rather, we just carefully resample the data to avoid
certain hard cases (where the training data can only see a few
examples of each kind of row).

Group & Individual: Our data balancing approach takes care
of group fairness where goal is based on the protected attribute,
privileged and unprivileged groups will be treated similarly. Our
situation testing method takes care of individual fairness where
goal is to provide similar outcomes to similar individuals.

Generality: We entirely focused on data to find and remove bias.
There are works where optimization tricks have been used while
model training to remove bias [10, 31]. These works are model
specific and most of the time combine with internal model logic.
However, Fair-SMOTE does not require access to inside model logic.
Thus it is much more general as it can be used for any kind of model.
In this work, we used three simple models and got promising results.
In future, we will explore deep learning models.

Versatility: We used Fair-SMOTE for only classification datasets
here. However, the core idea of Fair-SMOTE is keeping equal pro-
portion of all the protected groups in the training data. We believe
the same approach can be applied to regression problems. In future

we would like to explore that. Besides, the same approach can be
applied for image data (face recognition) to train model with equal
proportion of white and black faces so that model does not show
racial bias. That means Fair-SMOTE can be easily adopted by other
domains to solve bias issues caused by data imbalance.

7 THREATS TO VALIDITY

Sampling Bias - As per our knowledge, this is the most extensive
fairness study using 10 real-world datasets and 3 classification mod-
els. Still, conclusions may change a bit if other datasets and models
are used.

Evaluation Bias - We used the four most popular fairness metrics
in this study. Prior works [5, 31, 32] only used two or three metrics
although IBM AIF360 contains more than 50 metrics. In future, we
will explore more evaluation criteria.

Internal Validity - Where prior researchers [37, 38] focused on
attributes to find causes of bias, we concentrated on data distri-
bution and labels. However, there could be some other reasons. A
recent Amazon paper comments on some other reasons such as
objective function bias, homogenization bias [48]. We could not
validate these biases in our datasets as it was out of scope. In future,
we would like to explore those reasons if industry datasets become
available.

External Validity - This work is based on binary classification
and tabular data which are very common in Al software. We are
currently working on extending it to regression models. In future
work, we would extend this work to other domains such as text
mining and image processing.
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8 CONCLUSION

This paper has tested the Fair-SMOTE tactic for mitigating bias in
ML software. Fair-SMOTE assumes the root causes of bias are the
prior decisions that control (a) what data was collected and (b) the
labels assigned to the data. Fair-SMOTE:

(A) Removes biased labels; and (B) rebalances internal
distributions such that they are equal based on class
and sensitive attributes.

As seen above, Fair-SMOTE was just as effective at bias mitigation
as two other state-of-the-art algorithms [5, 9] and more effective
in terms of achieving higher performance (measured in terms of
recall and F1). Also, Fair-SMOTE runs 220% faster (median value
across ten data sets) than Chakraborty et.al [5].
Based on the above, we offer three conclusions:

(1) We can recommend Fair-SMOTE for bias mitigation.

(2) We can reject the pessimism of Berk et al. [33] who, previously,
had been worried that the cost of fairness was a reduction in
learner performance.

(3) More generally, rather than blindly applying some optimization
methods it can be better to:

e Reflect on the domain;
e Use insights from that reflection to guide improvements in
that domain.
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