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ABSTRACT

This paper presents IBATCH, a middleware system running on top

of an operational Ethereum network to enable secure batching of

smart-contract invocations against an untrusted relay server off-

chain. IBATCH does so at a low overhead by validating the server’s

batched invocations in smart contracts without additional states.

The IBATCH mechanism supports a variety of policies, ranging

from conservative to aggressive batching, and can be configured

adaptively to the current workloads. IBATCH automatically rewrites

smart contracts to integrate with legacy applications and support

large-scale deployment.

We built an evaluation platform for fast and cost-accurate transac-

tion replaying and constructed real transaction benchmarks on pop-

ular Ethereum applications. With a functional prototype of IBATCH,

we conduct extensive cost evaluations, which shows IBATCH saves

14.6% ∼ 59.1% Gas cost per invocation with a moderate 2-minute

delay and 19.06% ∼ 31.52% Ether cost per invocation with a delay

of 0.26 ∼ 1.66 blocks.

KEYWORDS

Blockchains, smart contracts, DeFi, cost effectiveness, replay at-

tacks

1 INTRODUCTION

The recent paradigm shift to building decentralized applications

(DApps) on blockchains has nurtured a number of fast-growing

domains, such as decentralized finance (DeFi), decentralized on-

line gaming, et al. that have the potential of disrupting conven-

tional business in finance, gaming, et al. The core value brought

� Yuzhe Tang is the corresponding author.

by DApps is their decentralized system architecture that is amend-

able to tackle the mistrust crisis in many security-oriented busi-

nesses (e.g., “trusted” authorities are constantly caught misbehav-

ing). However, despite the attractive trustless architecture and mod-

erate popularity in practice, an impediment to DApps’ broader adop-

tion is their intensive use of underlying blockchain and the associ-

ated high costs. Ethereum [20], the second largest blockchain after

Bitcoin and the most popular DApp platform, charges a high unit

cost for data movement (via transactions) and for data processing

(via smart-contract execution). For instance, sending one-megabyte

application data to Ethereum costs 17.5 Ether or more than 25, 000

USD (at the exchange rate as of Jan. 2021), which is much more ex-

pensive than alternative centralized solutions (e.g., cloud services)

and has scared away customers (e.g., Binance [28]).

Towards cost-effective use of blockchains, existing research

mainly tackles the problem from the angle of designing new pro-

tocols at blockchain layer one (i.e., redesigning the consensus pro-

tocol and building a new blockchain system [37, 40]) and at layer

two (i.e., by offloading the workload from the blockchain to off-

chain clients, such as in payment channel networks [26, 34, 36, 46]).

However, these new protocols are designed without the legacy plat-

form of an operational blockchain and deployed DApps in mind and

result in unsatisfactory deployability: For instance, existing proto-

cols either require bootstrapping a brand new blockchain network

(as in the layer-one approach) or develop from scratch the on-chain

and off-chain components of a DApp (i.e., to support payment net-

works). As a result, there is a lack of adoption of these protocols

among legacy DApps at scale.

This work aims at optimizing blockchain costs among legacy

DApps on Ethereum. Towards the goal, we focus on designing a

middleware system running on top of unmodified Ethereum plat-

form and DApp clients. We also develop software tools to facilitate

integrating the middleware with legacy DApp clients and smart con-

tracts.

To motivate our approach, consider a typical DApp architecture

where a DApp client holding an Ethereum account sends a transac-

tion on the Ethereum blockchain to invoke a smart-contract function

there. A typical DApp’s smart contract runs event-driven logic, and

http://arxiv.org/abs/2106.08554v2
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a popular DApp would receive a “large” number of “small” invoca-

tions: 1) An individual invocation is often with a small amount of

data and triggers few lines of smart-contract code; think as an exam-

ple the transfer() function in an ERC20 token smart contract.

2) A popular DApp features an intensive stream of invocations that

arrive at a high rate. This workload characteristic holds over time,

as we verified on various Ethereum traces (see the IDEX trace in

§ 2.1 and Chainlink/BNB/Tether traces in § 6), and it is also cor-

roborated by external Ethereum exploration services [19, 22]. The

workload with a high rate of small invocations renders the transac-

tion fee a significant cost component that alone is worth optimiza-

tion. To optimize the transaction fee, a natural idea is to batch multi-

ple smart-contract invocations in a single transaction so that the fee

can be amortized [9, 38]. For instance, under Ethereum’s current

block limit, one can theoretically batch up to 20 normal invocations

in a transaction, leading to a potential fee reduction by 1

20
×. By

this promise, invocation batching has long been craved for among

Ethereum developers, evidenced by a number of Ethereum Improve-

ment Proposals (EIPs) [13, 14, 27]. Despite the strong interest, it

still lacks real-world support of invocation batching in Ethereum,

as these EIPs are not made into production after years of discussion.

We believe this unsatisfactory status is due to the design challenges

raised by the tradeoff among batching’s security, cost-effectiveness

and timeliness (short delay), as presented next.

Batcher 

service

Dispatcher

Requests

Batch 

transaction

Caller accounts

Callee smart 

contracts

Internal calls*

On the blockchainOff the blockchain

Call validator

Access control

Figure 1: Batching smart-contract invocations in Ethereum:

Note that the Dispatcher can be a standalone smart contract or

be a function inlining the callee function; in the latter case, the “in-

ternal call∗” is straight-line code execution.

Challenges: First, Ethereum does not have native support of batch-

ing in the sense that an Ethereum transaction transfers Ether from

one account to another account. This is different from Bitcoin and

other blockchains whose transaction can encode multiple coin trans-

fers. This difference renders the existing architectures to batch trans-

fers in non-Ethereum blockchains [9, 32, 39, 45, 47] inapplicable

to batch invocations on Ethereum. To address the challenge, we in-

troduce two intermediaries between a caller account and a callee

smart contract. As depicted in Figure 1, they are a relay service

off-chain, called Batcher, and an on-chain component, called

Dispatcher. The Batcher’s job is to batch multiple invoca-

tion requests sent from the caller accounts and send them in a sin-

gle transaction to the Dispatcher, which further unmarshalls

the original invocations and relays them individual to the intended

callee smart contracts.

Second, the off-chain Batcher service need not be trusted by

the callers (who, in a decentralized world, are reluctant to trust

any third-parties beyond the blockchain). Defending against the un-

trusted Batcher incurs overhead that may offset the cost saving

from batching and instead result in net cost increases. Specifically,

in our threat model, the adversarial Batcher is financially incen-

tivized to mount attacks and to modify, forge, replay or omit the

invocation requests in the batch transaction; for instance, replaying

a transfer() of an ERC20 token can benefit the receiver of the

transfer. To defend against the threat, a baseline design is to run

the entire transaction validation logic in the trusted Dispatcher

smart contract on-chain, which bloats the contract program and

incurs overhead (e.g., to maintain additional program states). Our

evaluation study (in Figure 10a in § 6.3 shows this baseline denoted

by B2 increases the net cost per invocation rather than decreasing it.

For secure and cost-effective batching, we propose a security proto-

col that allows off-chain DApp callers in the same batch to jointly

sign the batch transaction so that the additional program states (e.g.,

the per-account nonces as a defense to replaying attacks) can be of-

floaded offline and the Dispatcher smart contract can be state-

less, rendering overhead low and leading to positive net cost sav-

ings.

Third, batching requires to wait for enough invocations and can

introduce delay to when the batched invocations are included in

the blockchain. For the many DApps sensitive to invocation tim-

ing (e.g., real-time trading, auctions and other DeFi applications),

such delay is undesirable. To attain delay-free batching, we pro-

pose to use the transaction price to the rescue. Briefly, Ethereum

blockchain admits a limited number of transaction per block and

prioritizes the processing of incoming transactions with a higher

“price” (i.e., the so-call Gas price which is the amount of Ether per

each computation unit paid to miners). Thus, our idea is to generate

a batch transaction with a higher price so that it can be included

in the blockchain more quickly, and this saved time can offset the

waiting time caused by batching, resulting in an overall zero delay

in blockchain inclusion. We propose an online mechanism to con-

servatively batch invocations originally in one block and carefully

set Gas price of batch transactions with several heuristics to counter

the limited knowledge in online batching.

Systems solutions: Overall, this work systematically addresses the

challenges above and presents a comprehensive framework, named

IBATCH, that incorporates the proposed techniques under one roof.

IBATCH includes the middleware system of Dispatcher and

Batcher and a series of policies that configure the system to

adapt the batching to specific DApps’ workloads. Concretely, the

middleware system exposes knobs to tune the batching in timing

(how long to wait for invocations to be batched), target invocations

(what invocations to batch) and other conditions. Through this, poli-

cies that range from conservative to aggressive batching are pro-

posed, so that the system can be tailored to the different needs of

DApps. For instance, the DApps sensitive to invocation timing can

be best supported by the conservative batching policy with minimal

delay. Other DApps more tolerable with delays can be supported

by more aggressive batching policies which result in higher degree

of cost saving. We demonstrate the feasibility of IBATCH’s mid-

dleware design by building a functional prototype with Ethereum’s

Geth client [23]. Particularly, we statically instrument Geth to hook

the Batcher’s code.

We further address the integration of IBATCH with legacy DApps

and the operational Ethereum network by automatically rewrit-

ing their smart contracts. Briefly, with batching, the internal calls
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are sent from Dispatcher (instead of the original caller ac-

count), which makes them unauthorized access to the original

callee, leading to failed invocations. In IBATCH, we propose tech-

niques to rewrite callee smart contracts, particularly their access-

control structure to white-list Dispatcher. The proposed byte-

code rewriter will be essential to support the majority of legacy

smart contracts deployed on Ethereum mainnet without Solidity

source code. We acknowledge the recent Ethereum development

EIP-3074 [15], which, if made into an operational Ethereum net-

work, will facilitate IBATCH’s integration without rewriting smart

contracts (details in § 5.3).

Systematic evaluation: We systematically evaluate the invocation

cost and delay in IBATCH, under both real and synthetic workloads.

First, we build a fast transaction-replay engine that executes transac-

tions at a much higher speed than the transactions are originally in-

cluded in the blockchain. This allows us to conduct large-scale mea-

surements, say replaying a trace of transactions that last for months

in real life within hours in the experiments. Second, we collect the

trace of transactions/calls under four representative DApps, that is,

IDEX [41] representing decentralized exchanges (DEX), BNB [11]

and Tether [29] for tokens, and Chainlink [10] for data feeding.

From there, we build a benchmark of traces that can be replayed in

our platform. Third, we conduct extensive evaluations based on the

developed platform (i.e., replay engine, benchmarks and prototype

we built). The target performance metrics are the system’s costs (in

terms of Ether and Gas) and delays between invocation submission

time and block inclusion time.

The result under the BNB-token/IDEX/Chainlink trace shows

that IBATCH configured with a time window of 120 seconds to batch

all invocations can save around 50%/24%/17.6% of the Gas per in-

vocation of the unbatched baseline. For delay-sensitive DApps, as

we evaluate under the workloads of Tether tokens, IBATCH can save

19.06% (31.52%) cost at the expense of causing a delay of 0.26 (1.66)

blocks.

Contributions: This work makes the following contributions:

• Security protocol: We design a lightweight security protocol for

batching of smart contract invocations in Ethereum without trust-

ing third-party servers (i.e., the Batcher). The security protocol

defends against a variety of invocation manipulations. New tech-

niques are proposed to jointly sign invocations off-chain and vali-

date invocations on-chain without states against replay attacks.

• Cost-effective systems: We design a middleware system imple-

menting the above protocol and propose batching policies from con-

servative to aggressive batching. Particularly, we propose an online

mechanism to optimize the cost without delaying invocation execu-

tion. We further address the integration with the current Ethereum

client by automatically rewrite smart contracts.

• Systematic evaluation: We built an evaluation platform for fast

and cost-accurate transaction replaying and constructed transaction

benchmarks on popular Ethereum applications. With a functional

prototype of IBATCH, we conduct extensive cost evaluations, which

shows IBATCH saves 14.6% ∼ 59.1% Gas cost per invocation with

a moderate 2-minute delay and 19.06% ∼ 31.52% Ether cost per

invocation with a delay of 0.26 ∼ 1.66 blocks.

Overall, this work tackles the design tradeoff among security,

cost and delays by batching invocations. While implementation and

evaluation are on Ethereum, we believe the design tradeoffs and

choices in this work are generically applicable to smart-contract

platforms beyond Ethereum.

Roadmap: Section § 2 formulates the research. § 3 presents the

IBATCH’s security protocol. IBATCH’s batching policies are de-

scribed in § 4. § 5 presents the smart-contract rewriters to facilitate

IBATCH’s integration with legacy smart contracts. § 6 shows the

evaluation results in cost and invocation delay. Related works are

described in § 10 and conclusion in § 11.

2 RESEARCH FORMULATION

2.1 Motivating Example

We use a real-world scenario, namely IDEX [12, 41], to motivate

our work. IDEX is a decentralized exchange protocol that allows

owners of different ERC20 tokens to exchange their tokens at the

preferred price/volume. Consider that account Alice sells her tokens

mToken to another account Bob in return of his tokens tToken.

To do so, Alice makes an order to be taken by Bob, and Alice

(Bob) is called a maker (a taker). The IDEX protocol is ex-

ecuted among six Ethereum accounts include a maker account,

a taker account, maker’s token contract mToken, taker’s token

contract tToken, the core IDEX smart contract IDEX1 [25], and

IDEX1’s off-chain owner IDEX2 [16]. The protocol execution is

depicted and described in Figure 2a.

In particular, there are four types of transactions in IDEX that

invoke smart contracts, that is, maker’s (taker’s) call to approve

her (his) token contract (i.e., 1 and 1’ ), maker’s (taker’s) call to

deposit to IDEX1 (i.e., 2 and 2’ ), IDEX2’s call to trade

on IDEX1 (i.e., 4 ), and maker’s (taker’s) call to withdraw

(i.e., 5 ). Among the transaction-triggered external calls, trade is

most intensively invoked. As we examine the Ethereum history via

Ethereum-ETL service on Google BigQuery [18], 61.59% of the in-

vocations received by the IDEX1 contract from its launch on Sep.

27, 2017 to Feb. 23, 2019 are on trade().1 More importantly,

the trade invocations are so intensively issued that many of them

wind up in the same Ethereum block. We measured the number of

trade calls in the same Ethereum block, on the call trace above.

Figure 2b plots the cumulative distribution of Ethereum blocks by

the per-block call number. For instance, about 30% of Ethereum

blocks have more than one trade calls in them, 5% of blocks have

more than four trade calls, and 0.36% blocks have 20 trade calls.

If one batches the 20 trade invocations of these Ethereum blocks

into a single transaction, the transaction fee can be reduced to 1

20
,

although it may incur additional costs for smart-contract execution.

In general, for blocks with - trade calls, one can batch the calls

into one transaction, leading to a - -fold fee reduction. By plugging

into- the measurement results in Figure 2b, we can expect the over-

all fee-saving in the case IDEX to be 10.7%. This is the saving from

1We did not take the IDEX transactions after Feb. 2019 when IDEX’s traffic started

to decline and was then shadowed by other more popular DEX, such as Uniswap [31].

Here, we stress that although our IDEX’s trace ends in Feb. 2019 (as of this writing in

May 2021), Ethereum’s transaction rate steadily increases over time. Particularly, re-

cent years see drastic rate growth as Ether price soars since early 2020. This is verified

by the more recent traces we collected in 2020, such as Chainlink and Tether tokens,

as in the cost evaluation in § 6, and also corroborates external Ethereum exploration

websites [19, 22].
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(a) The IDEX system model and protocol: The example scenario shows

running IDEX among six Ethereum accounts: Three user accounts

(maker, taker and IDEX2) and three contracts (mToken, tToken and

IDEX1).
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(b) Distribution of trade calls over Ethereum blocks; in this figure,

- = 5, . = 11.4 means in 11.4% of Ethereum blocks, the number of

trade calls per block is between 2 and 5.

Figure 2: IDEX protocol and call distribution: The protocol execution in Figure 2a involves five steps: 1) The maker

deposits her tokens to IDEX1, which invokes three functions: 1 maker.approve(), 2 maker.deposit() and 2a

IDEX1.transferFrom(maker,DEX1). 2) The taker similarly deposits his tokens by issuing 1’ taker.approve(), 2’

taker.deposit() and IDEX1.transferFrom(taker,DEX1) (not shown in the figure). 3) The maker and taker sends their

respective selling and buying orders ( 3 and 3’ ) to the off-chain IDEX2, who match-make orders in an order-book. 4) The owner

IDEX2 calls contract IDEX1’s function trade(taker,maker) ( 4 ) to execute the trade on-chain. 5) The maker issues withdraw

( 5 ) which further sends transfer() calls ( 5a ) to tToken contract. Similarly, the taker can submit calls to withdraw her tokens

( 5’ ).

trade calls only. Note that because the original trade calls are

in the same block, batching them in a single transaction does not

introduce additional delay/inconsistency.

Generally, there are four types of batching strategies: Type S1)

Batch invocations of the same caller and same callee, such as all

trade calls from the same caller (IDEX2) and sent to the same

callee smart contract (IDEX1), S2) batch invocations of different

callers and the same callee, such as all the deposit calls, S3)

batch invocations of the same caller and different callees, and S4)

batch invocations of different callers and different callees, such as

the approve calls in the case of IDEX. We mainly consider the

general case of S4 in the paper and will tailor the system to different

invocation types in § 4.

2.2 Threat Model

Recall the system model in Figure 1 that introduces the Batcher

and Dispatcher, as two intermediaries between caller accounts

and callee smart contracts. For generalizability, our threat model

considers an untrusted third-party Batcher. For instance, in the

case of IDEX, the Batcher can batch approve, deposit and

trade, and does not require the trust from their callers. The third-

party Batcher can mount attacks to forge, replay, modify and

even omit the invocations from the callers. Our model assumes un-

modified the trust relationship among callers; for instance, if there

is a counterparty risk between a maker account and taker account

in the vanilla IDEX, the same trust remains in IBATCH.

The smart contracts, including both Dispatcher and appli-

cation contracts, are trusted in terms of program security (no ex-

ploitable security bugs), execution unstoppability, etc. We also

make a standard assumption on blockchain security that the

blockchain is immutable, fork-consistent, and Sybil-secure. The

underlying security assumption is that a deployed blockchain sys-

tem runs among a large number of peers with an honest majority,

and compromising the majority of peers is hard. This work is built

on Ethereum’s smart-contracts, cost model, and transaction model.

It treats Ethereum’s consensus and underlying P2P networks as a

blackbox.

2.3 Design Goals & Baselines

The design goal of IBATCH is this: Through batching invocations,

there should be a significant portion of the transaction cost saved

(1. cost saving) for calling generic smart contracts (2. generalizabil-

ity), while staying secure against the newly introduced adversary of

off-chain Batcher (3. security). Specifically, the cost-saving goal

is to reduce a significant portion of the Gas cost per invocation, via

batching calls under the constraint of maximal transaction size. The

generalizability goal is that the system should work with the general

case of Batch Type S4. The security goal is to detect and prevent at-

tacks mounted by the untrusted Batcher and protect the integrity

of invocation information.

There is limited research on batching smart-contract invocations.

In Table 1, we compare IBATCH’s research goal with other research

work (i.e., Airdrop batching [38]) and two baseline designs, which

we will describe next. Here, “no rewrite” means no need to modify
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the smart contracts deployed for a DApp, for the ease of deploy-

ment.
Table 1: IBATCH’s design choices and related works

Generalizable Cost Saving

Baseline B1 ✗ ✗

Baseline B2 ✓ ✗

IBATCH ✓ ✓

Baseline B1: This baseline design of batching considers a spe-

cial case. Suppose account � is about to transfer tokens to # other

accounts �1, �2, . . . , �# . Instead of sending # transactions, account

� can set up a smart contract � and send one transaction to � that

sends the# transfers (e.g., by calling solidity’s transfer() func-

tion # times) in one shot. This is essentially the batching scheme

used in existing works [38] for airdropping tokens (a common prac-

tice to give away free tokens [24]). While this scheme handle the

case of a single sender �, it can be naturally extended to sup-

port multiple senders �1, �2 . . . . In this case, multiple senders calls

approve to delegate their account balance to a smart contract �

before � can batch-transfer tokens to multiple receivers.

Overall, this batching scheme is limited as it depends on ERC20

functions (approve/transfer). Also it does not necessarily

lead to cost saving, as each transfer still incurs at least one trans-

action (i.e., approve).

3 THE IBATCH SECURITY PROTOCOL

This section presents the design rational, protocol description, its

security analysis, and the resultant system design. The full protocol

analysis is described in § 3.3.

3.1 Design Space: Security-Cost Tradeoff

Batching framework: We start by describing the design framework

to support batching of invocations to generic smart contracts. In

this framework, the Batcher batches a number of invocation re-

quests and sends them in a batch translation to the Dispatcher

smart contract. The Dispatcher extracts the invocations and re-

lay them to the callee smart contracts.

In our threat model, the Batcher mount invocation-

manipulation attacks. To prevent a forged invocation, the

Dispatcher verifies the signatures of the original callers.

Baseline B2: To prevent replaying an invocation, a baseline de-

sign (B2) is to elevate a blockchain’s native replay protection into

the smart-contract level. Specifically, existing blockchain systems

defend against transaction replaying attacks by maintaining certain

states on blockchain and check any incoming transaction against

such states to detect replay. For instance, Ethereum maintains a

monotonic counter per account, called nonce, and checks if the

nonce in any incoming transaction increments the nonce state on-

chain; a false condition implies replayed transaction. Bitcoin main-

tain the states of UTXO to detect replayed transactions.

In B2, we implement per-account nonces in the Dispatcher

smart contract and use them to check against incoming invocations,

in order to detect replayed invocations.

A cost observation: In our preliminary cost evaluation on

Ethereum, we found a sweet spot that the batching framework with-

out replay protection can lead to positive cost saving, while adding

the baseline design (B2) of replay protection end up with a negative

cost saving. That is, the overhead of maintaining nonces in smart

contracts in B2 offsets the cost saving by batching invocations.

Thus, in IBATCH, we avoid placing nonces in Dispatcher and

focus on an off-chain defense against invocation replaying. With an

untrusted Batcher, we assume every caller is online for an ex-

tended period that covers the batch time window its invocation is

submitted. We propose an off-chain protocol in which callers inter-

actively sign a batch transaction. Note that there is an alternative

design that callers audit batch transactions after they are acknowl-

edged from the blockchain; however, the audit scheme does not pre-

vent (only detects) a replayed invocation.

3.2 Protocol Description

The protocol supports the general-case batching, that is, batching

Type S4 invocations. Suppose in a batch time window, there are #

invocations submitted from different callers. The IBATCH protocol

follows the batching framework described above and it works in the

following four steps:

1) In the batch time window, a caller submits the 8-th invocation

request, denoted by call8 , to the Batcher service. As in Equa-

tion 1, the request call8 contains the caller’s address/public key

account8 , callee smart contract address cntr8 , function name

func8 , and argument list args8 . With 8 ∈ [1, # ], there are # such

invocations in the time window.

2) By the end of the batch time window, the Batcher prepares

a batch message bmsg and sends to the callers for validation and

signing. As shown in Equation 2, message bmsg is a concatena-

tion of the # requests, call8 ’s, their caller nonces nonce8’s, and

Batcher account’s nonce, nonceB. Then, the Batcher broad-

casts the batch message bmsg in parallel to all # callers of this

batch. Each of the callers checks if there is one and only one copy

of its invocation call1 in the batch message; specifically, this is

done by checking equality between nonce1 in the batch message

and the nonce maintained locally by the caller. After a successful

check of equality, the caller signs the message bmsg_sign, that

is, bmsg without callers’ nonces as shown in Equation 3. The caller

signs bmsg_sign using the private key in her Ethereum account.

She then send her signature to the Batcher. This step finishes un-

til all # callers have signed the message and return their signatures

to the Batcher.

3) Batcher includes the signed batch message in a transac-

tion’s data field and sends the transaction, called batch transac-

tion, to be received by the Dispatcher smart contract.This is

presented in Equation 4 where CA is the address of smart contract

Dispatcher.

∀8,call8 = 〈account8 , cntr8 ,func8 ,args8 〉 (1)

bmsg = call1 ‖nonce1 ‖call2 ‖nonce2 ‖ . . .

‖call# ‖nonce# ‖nonceB (2)

bmsg_sign = call1 ‖call2 ‖ . . . ‖call# ‖nonceB (3)

∀8,sig8 = B86=account8 (bmsg_sign)

bsig = sig1 ‖sig2 ‖ . . . ‖sig#

data = 〈dispatch_func, bmsg_sign‖bsig〉

tx = 〈accountB, nonceB, CAD,

sigB, value,data〉 (4)
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Caller 2Caller 1 Batcher

Dispatcher

call1,nonce1

call2,nonce2

bmsg

sig1
Tx(bmsg_sign+
sig1+sig2)

sig2

Figure 3: Generation of batch transaction off-chain among

Batcher and two caller accounts

On the blockchain, 4) in function dispatch_func, smart con-

tract Dispatcher parses the transaction and extract the origi-

nal invocations call8 before forwarding them to callees, namely

cntr8 and func8 . Particularly, smart contract Dispatcher in-

ternally verifies the signature of each extracted invocation against

its caller’s public key; this can be done by using Solidity func-

tion ecrecover(call8 ,sig8 , account8 ). If successful, the

Dispatcher then internal-calls the callee smart contract. At last,

the callee function executes the body of the function under the

given arguments args8 . The pseudo-code of the smart contract

Dispatcher is shown in Listing 1

An example: We use an example to illustrate the interactive sign-

ing process. In the example, there are # = 2 callers respectively

sending two invocations. The process causes five messages among

the two callers and the Batcher off-chain and is illustrated in Fig-

ure 3.

1 contract Dispatcher {

2 function dispatch(uint256[] contractAddrs,uint256[] funcHashs,

uint256[][] args,bytes[] sigs){

3 for(int i=0; i<contractAddrs.length; i++){

4 if(args[i].length==1){

5 byte32 msgHash=keccak256(abi.encodePacked(contractAddrs[i],

funcHashs[i],args [ i ] [ 0 ] ));

6 require(sigs[i].length=65);

7 r=mload(add(sigs[i],32));

8 s=mload(add(sigs[i],64));

9 v=byte(0,mload(add(sigs[i],96)));

10 uint256 origSender=ecrecover(msgHash,r,s,v);

11 if(!origSender) continue;

12 contractAddrs[i].call(funcHashs[i],origSender,args [ i ] [ 0 ]);}

13 if(args[i].length==2){

14 byte32 msgHash=keccak256(abi.encodePacked(contractAddrs[i],

funcHashs[i],args [ i ] [ 0 ] , args [ i ] [ 1 ] )); //differ from Line 5 in

one more argument

15 ...//repeat the code from Line 6-11

16 contractAddrs[i].call(funcHashs[i],origSender,args [ i ] [ 0 ] ,

args [ i ] [ 1 ]);} //differ from Line 12 in one more argument

17 //Other cases with longer argument lists (args[i].length>=3)

can be similarly supported.

Listing 1: Implement Dispatcher in smart contract

3.3 Security Protocol Analysis

Security against invocation-forging Batcher: Invocation forg-

ing refers to that given a caller � who did not send an invocation

- , the Batcher forges the invocation - and falsely claims it is

sent by caller �. In IBATCH, the hardness of Batcher making

Dispatcher accept a forged invocation can be reduced to the

hardness of forging a digital signature (as in Protocol Step 3) in

§ 3.2), which is known to be with negligible probability.

Security against invocation-omitting Batcher: Invocation

omission refers to that the Batcher omits an invocation in a batch

while falsely acknowledging the victim client the inclusion of her

invocation. In IBATCH, an omitted invocation in a batch transac-

tion included in the blockchain cannot be concealed from the victim

client. To prove it, omitting an invocation and concealing it from the

client requires producing a sufficient number of fake blocks (e.g., 6

blocks in Bitcoin) where one of the blocks includes a fake transac-

tion that includes the omitted invocation. Thus, this is equivalent

to mounting a successful double-spending attack on the underlying

blockchain, which is assumed to be hard.

In addition to detectability, IBATCH can be extended with an ex-

ternal incentive scheme (similar to IKP [44]) to punish a misbehav-

ing Batcher and prevent her future omission of invocations.

Security against invocation-replaying Batcher: Invocation

replaying refers to that the Batcher replays an invocation in a

successful batch transaction without informing the victim client.

There are different forms of replaying attacks, including R1) the

Batcher replaying invocations twice (or multiple times) in the

same batch transaction, R2) the Batcher replaying a batch trans-

action with the same nonce nonceB, R3) the Batcher replaying

a batch transaction’s data twice with two different nonceB, and

R4) the Batcher intentionally generating smaller batches. Here,

we don’t consider the case of the Batcher replaying an invoca-

tion in two different batch transactions, in which one replayed copy

must be an forged invocation to the caller and which can thus be

prevented.

Overall, IBATCH prevents invocation replaying in forms of R1,

R2, R3 and R4. The following is the security analysis.

Consider R1 that a replayed invocation cannot appear in the first

round message (bmsg), as the victim client can easily detect it and

refuse to sign the joint message in the second round. If an invocation

is replayed in the batch transaction, the Batcher has to modify

the jointly signed message (bmsg_sign) and forge all the second-

round signatures, known to be hard.

Consider Case R2 that the Batcher replays an entire batch

transaction, that is, sending the batch transaction with the same

nonce twice. Such a transaction-level replay will be prevented by

Ethereum’s native replay protection based on nonceB.

Consider Case R3 that the Batcher replays a batch transac-

tion with different nonceB. The Dispatcher’s verification will

fail because the original nonceB is signed by callers (recall Equa-

tion 3).

Consider Case R4 that the Batcher may intentionally generate

small batches; for instance, instead of one batch of 10 invocations,

it generates two smaller batches, each 5 invocations. This is not

necessarily an attack as the batch transaction size is bounded by

Ethereum’s native block Gas limit. But it could be a protocol de-

viation and can be detected: It will result in two batch transactions

included in Ethereum at similar time (w.r.t., the batch time window).

An auditing caller can detect the anomaly by inspecting the public

Ethereum transaction and open disputes for further resolution.

Security against denial-of-service callers: IBATCH can be ex-

tended to guarantee that a denial-of-service caller cannot delay

the overall processing of a batch. In the extension, the Batcher
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enforces a timeout on waiting for callers’ batch signatures. Af-

ter the timeout, the Batcher generates the batch transactions,

and Dispatcher does not forward to the callee smart contract

an invocation whose batch signature is missing. With this exten-

sion, a denial-of-service caller who delays her batch signature after

the timeout will be ignored and does not invoke the callee smart-

contract function, while other invocations are not affected. The DoS

caller can only cause the fee of batch transaction to increase, which

can be further detected and blacklisted by the Batcher.

This work does assume that the Batcher is always available.

In practice, we consider this is a reasonable assumption as such

a service can be run on highly-available cloud platforms, and real-

world transaction relay services such as infura.io that require clients

to trust its availability are already operational and widely adopted.

The Batcher service has incentives to protect its business and

defend against external denial-of-service attacks.

Security against caller impersonator in collusion w.

Batcher: Recall Figure 3 that normally, the Batcher sends to

Caller 2 the batch message bmsg that includes Caller 1’s public

key % 1 and her invocation call1. Caller 2 simply verifies call1
against the provided % 1 and, if it passes, signs bmsg before

returning it to Batcher. The malicious Batcher may include

in bmsg’ an impersonator’s invocation, that is, call′
1

and her

public key % ′
1
. In this case, Caller 2 still verifies call′

1
in the

bmsg against % ′
1
, which passes and leads to Call 2’s signature on

bmsg’. Message bmsg’ is returned to and signed by Batcher,

is further verified successfully by Dispatcher, and gets call′
1

forwarded to the callee smart contract. The callee will handle the

internal call sent from % ′
1

and leave the actual sender (i.e., % 1)

unharmed.

3.4 System Overview

Ethereum network

Full node  

DApp JS
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Geth node
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Figure 4: Retrofitting IBATCH to Ethereum-based DApps: The

right-hand side of this figure illustrates the general mechanism

where the two dark shades are the core system components

of IBATCH, and the light shade is a statically instrumented

Ethereum full node (running Geth).
To materialize the protocol, we design a middleware system atop

the underlying Ethereum-DApp ecosystem. Specifically, the sys-

tem runs the Batcher middleware on an Ethereum node (e.g., a

Geth client) that is synchronized with an Ethereum network. The

Dispatcher smart contract runs on the Ethereum network and

forwards invocations to the callee smart contracts.

The off-chain Batcher is a middleware running on an untrusted

third-party host. In general, the Batcher buffers incoming invo-

cations submitted by callers and under certain conditions (as de-

scribed below) triggers the batching of invocations. Once a batch of

invocations is determined, the Batcher jointly works with orig-

inal callers to generate the batch transaction (as described by the

joint-signing process in § 3.2).

Implementation: To transparently support unmodified DApp

clients, we statically instrument Geth’s handling of raw transac-

tions and expose hooks to call back the Batcher’s code that

make decisions on batching, as will be described next. Specifi-

cally, the instrumented Geth node unmarshalls a raw transaction

received, extracts its arguments, places it in Batcher’ internal

buffer (e.g., bpool as will be described) and makes essential de-

cisions regarding which invocations to be included in the next

batch transaction before actually generating and sending it (as de-

scribed above). The statically instrumented Geth node retains the

same sendRawTransaction()/sendTransaction() API

and thus supports unmodified DApp clients. The pseudo-code

showing how to hook IBATCH into Geth is described in Listing 2

Next in § 4, we propose policies for Batcher’s decision-

making that strikes balance between costs and delay. To integrate

IBATCH with legacy smart-contracts, we propose schemes to auto-

matically rewrite smart contracts at scale, which is described in § 5.

1 //sendTx is the instrumented RPC

2 //_sendTx is the original RPC

3 bool sendTransction(from,to,value,data){

4 signedTx = sign(from,to,value,data);

5 return sendRawTransction(signedTx);}

6 bool sendRawTranaction(signedTx){

7 from , to , value , s ig , data = unmarshal l ( signedTx ) ;

8 Batcher . b u f f e r ( from , to , value , s ig , data ) ;

9 i f ( Batcher . i s F u l l ( ) ) {

10 b a t c h t x s = Batcher . c l e a r A l l A n d S e r i a l i z e ( ) ;

11 _data = marsh a l l ( b a t c h t x s ) ;

12 _from = D i s p a t c h e r _ c o n t r ac t . owner ;

13 _t o = D i s p a t c h e r _ c o n t r ac t . ad d ress ;

14 _va lu e = ca lVa lu e ( b a t c h t x s ) ;

15 return _sendTransction(_from,_to,_value,_data);}

16 return true;}

Listing 2: Hook IBATCH to Geth

4 BATCHER’S POLICIES

In this section, we propose mechanisms and policies for the

Batcher to properly batch invocations for design goals in cost and

delay. We first formulate the design goal of optimizing Gas cost per

invocation in the presence of the workload. We then formulate the

design goal of reducing Ether cost per invocation without causing

delay to when the invocation is executed on Ethereum.

4.1 Optimizing Gas Cost

The degree of amortizing the cost by IBATCH is dependent on the

number and type of invocations put in a batch. In this subsection,

we propose a series of policies that the Batcher can use in prac-

tice. The motivating observation is that there is no single policy

that fits all (workloads), and under different workloads, the most

cost-effective policy may differ.

Note that the cost unit we consider here is Gas per invocation

(which measures the amount of computational load an Ethereum

node needs to carry out to serve an invocation). The proposed poli-

cies may cause invocation delay, and the policies are suitable for

DApps that are insensitive to such delay.

• , sec: Batching all invocations that arrive in a time window,

say, seconds. In practice, the larger, it is, the more invo-

cations will end up in a batch and hence the lower Gas each
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invocation is amortized. However, a larger , value means

the Batcher needs to wait longer, potentially causing in-

consistency and delay of invocation execution. We will sys-

tematically study the cost-delay tradeoff when taking into

account the factor of Gas price in § 4.2.

• Top1: Batching only the invocations that are sent from one

account, such as the most intensive sender. The motivation

of doing this is that if all invocations needed batching are

from one sender account, the batch transaction (of multiple

invocations) only needs to be verified for once, thus eliminat-

ing the needs of verifying signatures in smart contracts and

lowering the overhead.

In practice, Top1 can be toggled on top of a , sec policy.

For instance, - second-Top1 means batching only the invo-

cations that arrive in a, -second window and are from the

most intensive sender in that window.

Whether the presence of Top1 batching policy can actually

lead to positive Gas saving is dependent on workloads. If

there is an institutional account sending invocations much

more intensive than others, applying Top1 can lead to suffi-

cient invocations in a batch and positive Gas saving. Other-

wise, if the workload does not contain enough such invoca-

tions, the batch may be smaller than the one without Top1,

which limits the degree of cost amortization.

• Min- : Only batch when there are more than - candidate in-

vocations in a batch time window. The intuition here is that if

there are too few invocations, the degree of cost amortization

may be too low and can be offset by the batching overhead to

result in negative cost saving. In § 7, we conduct cost analy-

sis based on Ethereum’s Gas cost profile on different transac-

tion operations and derive the minimal value of - should be

5. That is, it is only beneficial to generate a batch of at least

5 invocations in a batch.

4.2 Optimizing Ether Cost with Minimal Delay

In this subsection, we consider a class of DApps, notably DeFi ap-

plications, that are sensitive to invocation timing. In these DApps,

manipulating invocation timing or introducing invocation delay

may cause consequences ranging from DApp service unresponsive-

ness to security damage (e.g., under the frontrunning attacks). Thus,

we formulate the design goal to be optimizing Ether cost per invo-

cation without introducing any invocation delay. We call the no-

delay policy described in this subsection by 1block. Note that in

Ethereum, the Ether cost of a transaction is the product of the trans-

action’s Gas and its Gas price.

Assume an oracle who can predict what invocations are included

in a block (without batching) at the time when the invocations are

submitted. An ideal, optimal offline algorithm is to batch the invo-

cations in a future block and generate a batch transaction. If the

Gas price of the batch transaction is set to be higher than at least

one transaction in that future block, it is bound the batch transac-

tion can be included in the same block with the unbatched case. In

other words, no block delay is introduced. We call this approach by

offline optimal batching as an ideal scheme.

In practice, the Batcher at the invocation submission time may

not accurately predict when a block will be found and which block

will include the invocation. We propose a realistic, online batching

mechanism to reduce or eliminate the block delay.

Online batching w. minimal delay (1block): We propose a

system design of Batcher atop an Ethereum client extending

its memory pool (or txpool) functionality. We call this design

by 1block. We first describe the proposed system design and then

decision-making heuristics. In a vanilla Ethereum client, a transac-

tion is first buffered in memory (in a data structure called txpool),

is then selected (by comparing its Gas price against other transac-

tions in the txpool) by miners, and is included in the next block.

In IBATCH, the Ethereum client running on Batcher is ex-

tended with an additional memory buffer that we call bpool and

that stores submitted invocations prior to the batch transaction.

The Batcher service continuously receives the submitted invo-

cations of registered DApps and buffer them into the bpool. To

manage and evict invocations, the service periodically runs the fol-

lowing process: Every time it receives a block, the service waits for

3 seconds and then executes Procedure bpoolEvict which pro-

duces a batch transaction to send to the Ethereum network. More

specifically, the bpoolEvict procedure reads as input the trans-

actions residing in the txpool and the invocations residing in the

bpool. The procedure produces a batch transaction encoding se-

lected invocations to be sent to the Ethereum network. There are

two essential decisions to make by Procedure bpoolEvict: C1)

What invocations to be evicted from bpool and to be put in the

batch transaction. It also needs to decide C2) What Gas-price value

should be set on the batch transaction.

In addition to C1 and C2, the batching mechanism can be con-

figured by 3 , that is, how long it waits after a received block to run

Procedure bpoolEvict. In the following, we describe a series of

policies to configure C1), C2) and 3 of the Batcher.

Example: We show an example process illustrated in Figure 5: It

shows the timeline in which bpool on the Batcher operates and

interacts with the remote Ethereum network. In the beginning (0-th

second), the Batcher receives a block �0 of 2 transactions, which

evicts the 2 transactions from txpool and leaves it of 10 transac-

tions. Also assume there are 10 invocations in the bpool in the be-

ginning. On the 3 = 10-th seconds, the service runs bpoolEvict

which results in a batch transaction of 3 invocations. It sends the

batch transaction to the Ethereum network. As the Gas price of the

batch transaction is high, it will be selected by the miners in the re-

mote Ethereum network upon the next block �1 being propagated,

say on the 13-th second. If the next-next block �2 is found on the

20-th second, the batch transaction will be included in �2.

Heuristics: For C1), we propose to select the invocations in the

bpool that have higher Gas price than ℎ such that the total Gas

of transactions and invocations whose prices are higher than ℎ is

under the block limit. Moreover, the total Gas of transactions and

invocations whose prices are higher than ℎ − 1 is above the block

limit.

For C2), a baseline is to set a fixed Gas price for every batch

transaction, which does not reflect the price distribution in the cur-

rent batch/block and can lead to excessive cost. We propose “dy-

namic” Gas pricing policies where the price of a batch transaction

is dynamically set to ensure low Ether cost yet without delaying the

block it will be included. We propose two policies:
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Figure 5: An example process of runningbpool and its eviction

on Batcher.

• Batch--%: The Gas price of a batch transaction is set to be

above -% of the invocations in the batch.

• Block--%: The Gas price of a batch transaction is set to be

above -% of the transactions in the block (also including the

invocations in the batch).

For instance, suppose there are 7 regular transactions included

in a block and a batch transaction which consists of 3 invocations.

The three invocations are associated with prices 8, 9 and 10, and the

7 regular transactions’ Gas prices are 1, 2 . . . 7. With policy batch-

50%, the batch transaction’s price is 9. With policy block-10%, the

batch transaction’s price is 1.

5 INTEGRATING LEGACY SMART

CONTRACTS VIA REWRITING

When running legacy smart contracts on IBATCH, the smart con-

tracts need to be rewritten to authenticate the internal calls from

Dispatcher smart contract. In this section, we first describe two

smart contracts rewriters that can automatically transform legacy

smart contracts for supporting IBATCH at scale. At the end, we talk

about the integration of IBATCH in future EVM probably without

smart contracts rewriting.

5.1 Source Code Rewriter

The goal of our contract rewriting is to make an application smart

contract accept the internal call by the Dispatcher contract.

To do so, we design the following contract-rewriting procedure:

Given an application smart contract bar, we create a new con-

tract say barByD to inherent contract bar. We rewrite each func-

tion that contains references to msg.sender: Given such a func-

tion foo(type original_args) in contract bar, we add

in contract barByD a new function fooByD(address from,

type original_args). 1) In this new function, a new argu-

ment from is added in function fooByD. The function body in

fooByD() is the same with foo(), except for three modifica-

tions: 2) References msg.sender in foo() are replaced by ar-

gument from in fooByD(). 3) The first code line in fooByD()

asserts if the function caller is Dispatcher. 4) For any functions

of bar that are called inside foo, the function invocation is rewrit-

ten to add a new argument from. In particular, this includes the

case of modifier functions in solidity. Figure 3 illustrates the exam-

ple of rewriting transfer() in an ERC20 token contract.

1 //original functions

2 contract TokenOrig {

3 ...

4 modifier noBlacklisted {

5 assert(!isBlackListed[msg.sender]);_;}

6 function transfer(address to, unit256 value) noBlacklisted {

7 super.transfer(to,value);

8 balances[msg.sender] = SafeMath.safeSub(balances[msg.sender],

value);

9 balances[to] = SafeMath.safeAdd(balances[_to], value);}

10 //new functions added by iBatch

11 contract TokenByD is TokenOrig{

12 ...

13 modifier noBlacklistedByD(address from) {

14 assert(!isBlackListed[from]);}

15 function transferByD(ad d ress from ,address to,unit256 value)

16 n oBlack l i s t ed ByD( from ){

17 a s s e r t ( msg . sender != d i s p a t c h e r ) ;

18 super.transferByD(from,to,value);

19 balances[from]=SafeMath.safeSub(balances[from],value);

20 balances[to]=SafeMath.safeAdd(balances[to],value);

21 }

Listing 3: Rewriting application contract. This figure uses the

example of ERC20 token.

5.2 Bytecode Rewriter

Because the majority of smart contracts deployed on Ethereum are

without source code, we propose bytecode rewriting techniques.

The goal is to facilitate the deployment of IBATCH for these opaque

smart contracts. Specifically, the bytecode rewriter will allow us to

evaluate the Gas of IBATCH on real opaque smart contracts, in a

way to show the cost-effectiveness of IBATCH to the owner of the

contract for adoption. Before we present our bytecode rewriter, we

describe the preliminary of EVM bytecode layout.

Preliminary: EVM bytecode: This work focuses on the repre-

sentation of disassembled bytecode from remix [5].

A smart contract is compiled into the bytecode format before

being deployed into Ethereum via a transaction. In this contract-

deploying transaction, the bytecode is layered out into creation code

and runtime code. The transaction also includes the calldata storing

arguments to invoke the contract constructor. The job of creation

bytecode is to deploy runtime bytecode at an EVM address to be

returned. To do so, the creation code accesses the constructor argu-

ments to invoke the constructor. It also copies the runtime bytecode

into EVM.

The data layout of an EVM smart contract includes a stack where

data is directly accessed for instruction execution, a random-access

memory, persistent storage as a key-value store, and invocation ar-

guments (in calldata).

The runtime bytecode handles incoming function calls (from

transactions or other smart contracts) with a unified entry point at In-

struction 0. Given function arguments in an invocation (or calldata),

the call handling path 0) updates a pointer to freed memory space,

checks the arguments, 1) runs function selector that maps hashed

function signatures to the location storing the function wrapper, 2)

executes the function wrapper which copies the function arguments

from calldata into the stack, before 3) executing the function body.
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Bytecode rewriting: The goal is to implement IBATCH’s rewrit-

ing rules at the bytecode level. To do so, we systematically instru-

ment both the runtime and creation bytecode.

Rewriting runtime bytecode: In the runtime bytecode, we mod-

ify the function-call handling path: 1) In the selector, we add a new

conditional clause to forward the call on transferByD to its new

wrapper. 2) In the function wrapper, we add the code to push the

new argument from in calldata to the top of the stack. 3) In the

function body, because of the additional argument from, we mod-

ify the epilogue to destroy the arguments in the stack before re-

turning properly. We replace msg.sender (or CALLER instruction)

with the from argument from the stack. Normally, from can be

referenced by the top of the stack. Some cases need special han-

dling. For instance, when the msg.sender is used in the context of

a function call, from may not be on the stack top. In this case, our

instrumentation code locates the code block where msg.sender re-

sides (recall that code block is a straight-line code that begins with

JUMPDEST and ends with an instruction that changes the control

flow). In the first line after JUMPDEST, it stores a copy of the cur-

rent stack top, which is from, in the memory by leveraging the

free memory pointer. Then, the msg.sender is replaced by from’s

memory copy (instead of the stack copy).

If the function body calls into another function, say foo(), which

references msg.sender, the function A may need to be instru-

mented. An example is that transfer() in an inherited con-

tract calls its parent contract’s transfer(). The parent contract’s

transfer() needs to be instrumented as well. For another exam-

ple, transfer() may call transferFrom() in its body and

in this case, there is no need to instrument transferFrom()

which already contains argument from. To distinguish the two

cases, a function that does not need rewriting would be the one

that does not access msg.sender. Otherwise, we always add an ar-

gument from and use it to replace the occurrence of msg.sender.

One exception is the case of transferFrom(); since we seman-

tically know from the ERC20 standard that the first argument in

transferFrom is from that can be reused to replace msg.sender

in transferFrom, if any.

Rewriting creation bytecode: In addition to runtime bytecode,

we rewrite the creation bytecode. Recall that the creation bytecode

needs to copy the runtime code from the transaction to EVM and

copy the function arguments from the transaction to the stack. Be-

cause the rewritten runtime code has changed in length, the two

copy functions need instrumentation, and the source location of the

copy needs to be adjusted.

This work rewrites only the directly called functions by

Dispatcher (call depth 1) and the delegatecall’ed func-

tions at call depth larger than 1. There is no need to rewrite

the functions at a call depth larger than 1 and that are not

delegatecall’ed.

5.3 Possible Integration to Future EVM

We note that a recent Ethereum Improvement Proposal (i.e., EIP-

3074 [15]) may facilitate the integration of IBATCH with legacy

smart contracts. EIP-3074 adds new EVM instructions (AUTH and

AUTHCALL) that allow a smart contract to send invocations on

behalf of EOA accounts: If a so-called invoker smart contract

AUTHCALLs a callee smart contract with a signature from an EOA

- , the callee smart contract would treat the invocation as if its mes-

sage sender is directly from - (instead of the invoker smart con-

tract). This EIP is currently in review.

In the future, if EIP-3074 is adopted by the Ethereum protocol, it

would allow integrating IBATCH with legacy smart contracts with-

out rewriting. That is, the Dispatcher smart contract can sim-

ply issue an AUTHCALL to the callee smart contract with the orig-

inal caller’s signature. An EVM with EIP-3074 would allows un-

modified callee smart contracts to accept such AUTHCALL from

Dispatcher. It can greatly facilitate IBATCH’s adoption and in-

tegration with the large number of legacy smart contracts on the

Ethereum mainnet.

6 EVALUATION

This section presents the evaluation of IBATCH. We report

IBATCH’s performance (cost and delay) in comparison with the un-

batched baseline under real workloads. We formulate two research

questions (RQ1 and RQ2) that are respectively answered by our ex-

periments in § 6.1 and § 6.2. We present other experiments that an-

swer research questions comparing IBATCH with batched baselines

in § 6.3.

6.1 Evaluating Gas Cost

RQ1: How much Gas per invocation does IBATCH result in, under

different policies and in comparison with the unbatched baseline

(B0), under real workloads?

Motivation: Gas per invocation is the metric directly affected

by IBATCH. This metric shows certain aspects of IBATCH’s cost-

effectiveness. IBATCH’s Gas per invocation is sensitive to different

policies (described in § 4). It is also dependent on the actual work-

load (e.g., how frequent invocations are sent in a fixed period). We

set up this RQ to explore the sensitivity to policies and real work-

loads.

Experiment methodology: First, we choose three representative

and popular DApps, that is, IDEX (representing decentralized ex-

change), BNB token (representing ERC20 tokens), and Chainlink

(representing data feeds). We collect the DApps’ invocations by run-

ning an instrumented Geth node to join the Ethereum mainnet. Dur-

ing the (basic) node synchronization, the node is instrumented to

intercept all the transactions (i.e., external calls) and internal calls

and dump them onto a local log file.

Then, we prepare the collected trace to be replayable with accu-

rate Gas cost. To do so, we replace the Ethereum addresses (i.e.,

public keys of account holders) by new public keys that we gener-

ated. This allows us to know the secret keys of the addresses used

in the trace and use them to unlock the accounts (and sign trans-

actions) during the replay. In addition, for cost-accurate replaying,

we collect the pre- and post-states of relevant smart contracts of the

DApps (e.g., BNB token balances) on Ethereum by crawling the

website https://oko.palkeo.com.

In the experiments, we first unlock all senders’ accounts, then re-

play the invocations with mining turned off, and at last turn on the

miner to obtain the transaction receipt and Gas cost. This procedure

does not require us to wait for transaction receipts, individually, and

https://oko.palkeo.com
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Figure 6: IDEX trace (5 months): 3 functions batch result

Traces Policies Gas per call (10k)

IDEX

IBATCH-120sec-min5 7.78 (−23.68%)

IBATCH-120sec-top1 8.71 (−14.59%)

Unbatched BL (B0) 10.20

BNB

IBATCH-120sec-min5 2.14 (−59.13%)

IBATCH-120sec-top1 3.79 (−27.77%)

Unbatched BL (B0) 5.25

Chainlink
IBATCH-120sec-min5 9.53 (−17.62%)

Unbatched BL (B0) 11.57

Figure 7: Average Gas cost per invocation

can greatly speed up the whole transaction-replaying process, espe-

cially in large-scale experiments. In this experiment, transactions/in-

vocations in the original trace are replayed based on the block time,

namely the block in which the transactions are originally included

in real life. In the trace, only external calls are replayed and internal

calls are used to cross-check the correctness of the replaying.

Experiment settings: We choose an IDEX trace that contains

664, 863 transactions calling three IDEX’s functions: deposit,

trade and withdraw. The trace represents Ethereum transac-

tions submitted from Sep. 2017 to Feb. 2018 (5-month long). In the

experiment, we replay the trace on our experiment platform, with

and without IBATCH. When running IBATCH, we adopt two batch-

ing policies: 1) Batch all invocations in each 120-second window

if there are more than =<8= = 5 invocations in that window. The

policy is denoted by 120sec-min5. 2) Batch all trade invocations

in each 120-second window. The policy is denoted by 120sec-top1.

Recall that given a time window, the top1 policy means batching

only the invocations from the most popular caller in that window,

which in this case is the IDEX2 or the caller of trade. Addition-

ally, we set a maximal batch size to be 60 invocations, so that the

Gas of batched transaction does not exceed the block Gas limit. In

each experiment, we collect the resultant batch sizes and Gas cost

of batched and unbatched transactions, from which we further cal-

culate the Gas cost per call.

Results: Figure 6a shows the batch-size distribution over time.

Each tick on the X axis is a time period of 200 windows (i.e.,

200 · 120 seconds=400 minutes), and the Y value is the average

size of the batches generated during that 200-window period. In

the beginning, the generated batches are small, largely due to the

fact that the distribution of calls are sparse. After the X index grows

over 90, calls are more densely distributed and it generates larger

batches. Comparing the two batching policies, the min5 policy gen-

erates batches that are 125% larger than those generated by the top1

policy. This can be explained by that min5 policy considers all three

functions in a batch and top1 considers only trade function, thus

the former generates larger batches.

Figure 6b illustrates the average Gas per call over time. In the

beginning, the two IBATCH and the unbatched baseline B0 result in

similar per-call costs, because of sparse call distribution over time

and no chance of generating batches. After the X index grows over

90, it becomes clear that the IBATCH under min5 results in the low-

est Gas per call, which is 23.68% smaller than that of unbatched

baseline (B0). The IBATCH under top1 results in a Gas per call that

is 14.59% lower than that of B0.

From these two figures, we summarize the average Gas per call

in the first three rows of the table in Figure 7. We conducted similar

experiments under the other DApps’ trace and show the IBATCH’s

performance in the rest of the table. Specifically, the BNB trace

is from July 7, 2017 for 8 months, and the Chainlink trace is from

Oct. 1, 2020 to Dec. 27, 2020. It can be seen that at the batch time

window of 120 seconds, IBATCH can generally save 14.59 ∼ 59.13%

Gas cost per call compared with the unbatched baseline (B0).

6.2 Evaluating Ether Cost & Delay
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Figure 9: Tradeoff between Ether cost and block delay under

varying Gas price and batch window

RQ2: How to characterize the Ether-delay tradeoff attained by

different batching policies? And how much Ether cost per invoca-

tion can IBATCH save while with minimal block delay (compared

with unbatched baseline B0)?
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Motivation: On Ethereum, the cost metric that an end user (Ether

owner) cares the most is the amount of Ether she needs to pay out of

pocket for invocations. The Ether cost per invocation is the product

of the Gas of an invocation and the Gas price of the (batch) transac-

tion. RQ2 focuses on measuring the Ether cost per invocation.

Many DeFi applications are very sensitive to the timing of invo-

cations, that is, when an invocation is included in the blockchain.

Additional delay to the invocation may invite loss of financial op-

portunity (e.g., in an auction), increase exploitability under fron-

trunning attacks, et al. We mainly use the 1block online mechanism

(in § 4.2) that causes minimal block delay to batched invocations.

Experiment methodology: We follow the same transaction-

replaying method described before, with the only exception: To

measure delays under 1block, we have to know each transaction’s

submission time. This is obtained by crawling the transaction’s

“pending” time from website etherscan.io (an example link is [21]).

Then, a transaction’s submission time is its block time minus the

pending time.

Experiment settings: We collect a trace of 100, 000 Ethereum

transactions, each invoking Tether’s transfer() function [29].

In real life, these transactions were submitted in one day on Oct.

4, 2020. We did not collect more transactions as replaying 100, 000

transactions takes around 570 minutes, which is long enough for

conducting our experiments.

We replay the transaction trace in the following manner: We ap-

ply a pre-configured batching policy to generate a batch transaction,

say at time C . How a block is produced and which transactions will

be included in a block are simulated in the following manner (an ap-

proach also used in [48]): Given a specified Gas price ?, the batch

transaction submitted at time C will be included in the first block

produced after C which includes at least one transaction with Gas

price lower than ?.

Following the above method, we replay the trace with IBATCH

with 1block mechanism and under different batching policies.

Results: When replaying the trace, we use three pricing policies,

namely batch-50%, block-30% and block-10%, as described in § 4.2.

We measure each transaction’s Gas and multiply it with its Gas price

to obtain the transaction’s Ether cost. By summing the Ether costs of

the transactions in a unit time period and dividing it with the number

of calls, we report the average Ether cost per call in Figure 8a where

the unit period is 5 windows (or 5 × 15 = 75 seconds). The results

shows that IBATCH of policy block-10% achieves the lowest Ether

cost, which is 31.52% lower than that of the unbatched baseline

(B0). By comparison, IBATCH under the batch-50% policy saves

19.06% Ether per invocation than the baseline B0.

We also plot the block delays of IBATCH under these three con-

figurations in Figure 8b. The figure shows the distribution of batch

transactions in their block delays. As can be seen, under the batch-

50% policy, majority of the batch transactions have a minimal delay

under three blocks. In average, the delay of IBATCH under the pric-

ing of 10C2ℎ − 50% is 0.26 blocks, the delay under the price of 30

Gwei per Gas is 1.18 blocks, and the delay under the price of 10

Gwei per Gas is 1.66 blocks.

We then report the tradeoff between block delay and Ether cost

per call under varying Gas prices of batch transaction and batch

windows. The result is in Figure 9. It can be seen with the batch

transaction of the same Gas price (i.e., block-30% in the figure), the
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Figure 10: Gas cost with varying batch sizes (BL refers to base-

lines)

block delay increases and Ether per call decreases as the batch win-

dow grows from 15 seconds through 240 seconds. The unbatched

baseline B0 incurs 0 block delay and 2.5×106 Gwei per call. In com-

parison to the baseline, with the batch-50% policy and 15-second

batch window, IBATCH saves 19.06% cost at the expense of delay-

ing invocations by 0.26 blocks. With the policy of block-10% and

15-second batch window, IBATCH saves 31.52% cost at an average

1.66 block delay.

6.3 Gas Evaluation under Synthetic Workloads

RQ3: How much Gas per invocation does IBATCH cause in com-

parison with all baselines including unbatched (B0) and batched

baselines (B1 and B2), under synthetic workloads?

This experiment aims to evaluate IBATCH’s cost in comparison

with various baselines. We use a synthetic trace, that is, given -

batch size, we drive - requests into target system (IBATCH and

other baselines) and measure their total Gas costs from the receipts

of batch transactions. In the experiment, the target system is config-

ured with BNB token contract [11]. In particular, we initialize the

token balance of EOAs involved in the transfer() invocations,

such that each transfer() invocation updates, instead of insert-

ing, entries in the token balances. By this means, the Gas spent on

executing transfer() is a constant. During the experiment, we

vary the batch size - . In addition to IBATCH and its inline variant,

we measure the costs of various baselines, including the unbatched

B0, batching transfer by approve of Dispatcher (B1), batch-

ing with on-chain nonces (B2), and a cost-ideal approach of batch-

ing without defense against replay attacks (Ideal). Particularly, in

the last approach, the Dispatcher does not maintain any nonce

and verifies the callers’ signatures, each of her own invocation.

The results are reported in Figure 10a. It can be seen that base-

lines B1 and B2 have similar Gas cost, because on both cases the

dispatcher contract need to maintain/update one word per invoca-

tion (i.e., allowance for B1 and on-chain nonce for B2). IBATCH has

similar costs with the batching ideal approach (without protection

against replaying attacks), because both approaches do not maintain

any states in smart contracts. With a sufficiently large batch (e.g., a

batch of 100 invocations), IBATCH saves Gas by 14% when com-

pared with B1/B2, and by 17% when compared with B0. When the

batch size is smaller than 4, IBATCH can cause higher Gas than the

baselines. Thus it only makes sense to have a batch containing more

than 4 invocations. This result is consistent with our cost analysis

etherscan.io
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in § 7. Besides, since the unbatched baseline (B0) is not batched, its

cost is constant and irrelevant to the batch size.

Figure 10b presents the cost of IBATCH and its inline variant with

varying batch sizes. The inlined variant of IBATCH saves 6.5% Gas

on top of IBATCH, despite the batch size.

7 COST ANALYSIS & DERIVING #<8=

In this section, we conduct cost analysis of IBATCH in comparison

with the two baselines (B0 and B1). We use Ethereum’s Gas-based

cost model [49] where selected operations and their costs are in

Table 2. One of the purposes is to derive a proper value of #<8=,

the minimal threshold of invocations in a batch.

Table 2: Ethereum’s Gas cost model

Operation Gas cost (- 32-byte words)

Transaction �CG (- ) = 21000 + 2176- (- < 1000)

Internal call �20;; (- ) = 700 + 2176- (- < 1000)

Storage write (insert) �BB4C (- ) = 20000-

Storage write (update) �A4B4C (- ) = 5000-

Storage read �B;>03 (- ) = 200-

Hash computation �Bℎ03 (- ) = 30 + 6-

• B0: In the unbatched baseline (B0), the # requests will be

sent in # different transactions, resulting in the cost below.

Here, - is the request size (as stored in the data field of an

Ethereum transaction) and . is the average contract cost per

request.
��0 = (�CG +�4G42_0?? )# (5)

= (21000 + 2176- )# + .#

= 21000 ∗ # + 2176 ∗- ∗ # + . ∗ #

• B1: The cost of the batching baseline (B1) is below, given

that the # requests are sent in one transaction. Note that 2176

is the per-word cost of an internal call, 5000 is the cost of

verifying a 65-byte signature, and the other 5000 is the cost

of writing a word on storage. - + 2 is due to that both the

account and signature are included in the transaction.
��1 = �CG (# ) + (�4G42_dispatch +�20;; +�4G42_0?? )# (6)

= (21000 + 2176(- + 2)# ) + (5000 + 5000)#

+(700 + 2176- )# +.#

= 21000 + 12877# + 4352-# + .#

• IBATCH: The cost of IBATCH is below, given that the # re-

quests are sent in one transaction.
��1 = �CG (# ) + (�4G42_dispatch +�20;; +�4G42_0?? )# (7)

= (21000 + 2176(- + 2)# ) + (5000)#

+(700 + 2176(- + 1))# +. ′#

≈ 21000 + 10053# + 4352-# + . ′#

In the last step, we assume the rewritten contract has a simi-

lar Gas cost with the original contract (i.e., . ′ ≈ . ).

Comparing Equation 5 and Equation 6 (i.e., the costs between

B0 and B1), we have:
��0

��1
− 1 =

21000# + 2176#- +.#

21000 + 12877# + 4352-# +.#
− 1 (8)

=

8123 − 2176- − 21000/#

21000/# + 12877 + 4352- +.

With a common setting - = 3, this leaves the saving by batching

B1 quite trivial. As will be seen in real experiments, B1 actually

increases the Gas instead of saving (§ 6.3).

Comparing Equation 5 and Equation 7 (i.e., the costs between

B0 and IBATCH), we have:
��0

�IBATCH

− 1 =

21000# + 2176#- + .#

21000 + 10053# + 4352-# + .#
− 1 (9)

=

10947 − 2176- − 21000/#

21000/# + 10053 + 4352- +.

With - = 3, if IBATCH has a lower Gas cost than non-batching

baseline B0, it requires:
10947 − 2176 ∗ 3 − 21000/# > 0 (10)

⇒ # > 21000/4419 = 4.75
def
= #<8=

In our experiment, we set #<8= to be 5, that is, only when a time

interval containing more than 5 calls will lead to a batched transac-

tion.

Comparing Equation 6 and Equation 7, it is clear that the IBATCH

can save more Gas than the batching baseline (without modifying

contracts). This is because in the baseline, the Dispatcher con-

tract needs to write a storage state upon each internal call (e.g.,

allowance when using the approve/transferFrom()

workflow).

8 DISCUSSION

8.1 Batching Ether Transfers

The idea of batching can not only be applied to smart contract in-

vocations but also Ether payments. Without batching, each Ether

payment costs the fee of one transaction, that is,�CG = 21000 Gas.

Batching Ether payments in one transaction works in a simi-

lar way with IBATCH: The PaymentDispatcher contract ini-

tially receives Ether deposits from an owner and then, upon

the owner’s request, transfers the Ether on behalf of her. In

each request, the parameters of the Ether payment are embed-

ded in the function arguments of a PaymentDispatcher con-

tract. The PaymentDispatcher contract verifies the parameters

against the owner’s public key (blockchain address). This is sim-

ilar to IBATCH’s Dispatcher contract with one difference: In-

stead of issuing an internal call, PaymentDispatcher issues a

transfer() call [3].

The cost of the batching Ether payment scheme above is the

following: Given # payments batched in one transaction, the per-

payment Gas is as following. Here, the signature is of 65 bytes.

Both addresses (from and to) are of 20 bytes. Gas 5000 is for

verifying the signature and 7800 is the cost of an internal call to

transfer().

21000

#
+ 2176 ∗ (65/32 + 20/32 + 20/32 + 1)

+5000 + 7800

= 21000
1

#
+ 22116 > 21000

8.2 IBATCH Beyond Ethereum

We first conduct a generic analysis to derive a necessary condition

to make IBATCH profitable, and then examine this conduction for

real-world blockchain platforms.
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IBATCH’s profitable condition: A generic transaction consists

of two parts: 1) A minimal transaction of 3 words to transfer coins

(3 words for sender address, receiver address and the amount of

“coins” transferred) and2) the data field of # words necessary for

triggering smart contract execution. Thus, a transaction is of 3 + #

words. We here consider a linear cost model where a transaction’s

fee is modeled as - + # ∗ . where - denotes the cost of a transfer-

only transaction (3-word long), and . is the unit cost per word in

the data field.

Consider two invocations, each of " arguments. We represent

each invocation by a 4+"-word triplet (recall Equation 1). Placing

two invocations in one transaction would lead to transaction fee

being - + 2 ∗ (4 +") ∗ . . Placing two invocations in two separate

transaction has a fee of 2[- + (2+"). ] (because the caller address

and callee contract address can be encoded by the native sender and

receiver of the transfer-only part of the transaction, leaving the data

field of the transaction to be 4+M-2=2+M words).

Thus, the net saving of transaction fee by IBATCH is 2[- + (2 +

"). ] − [- +2(4+"). ] = - −4. . In other words, to make IBATCH

result in positive net fee saving, it entails to check the following

inequality:

- − 4.
?

> 0 (11)

Case studies: In Ethereum, - = 21000 and . = 2176 (recall

Table 2). Thus, it holds - − 4. = 21000 − 4 ∗ 2176 > 0.

The case of TRON: The tron blockchain [7] is similar to

Ethereum in that it supports smart contracts written in Turing com-

plete languages and charges smart contract execution by Gas like

cost.

The TRON blockchain has two cost metrics, “Bandwidth” and

“Energy”. The Energy cost applies only to smart-contact execution,

thus for transaction fee saving, we consider only TRON’s Band-

width cost. By accessing TRON’s shasta testnet [30], we derive

TRON’s cost model that - = 267 and . = 47. Thus, - − 4. =

267 − 4 ∗ 47 = 79 > 0, which implies the applicability/profitability

of IBATCH approach to the TRON blockchain.

Table 3: Cost before/after Batching in EOS

“Bandwidth”

per call

“CPU”

per call

Two calls in two transactions 104 228

Two calls in two actions in one transac-

tion

72 153

Two calls batched in one action 57 156

The case of EOS: EOS [17] is a popular blockchain supporting

expressive smart contracts. It charges transaction fee and contract

execution in three metrics, “CPU”, “Bandwidth”, and “RAM” stor-

age. Sending transactions without causing smart contract execution

does not cost RAM. Also, in EOS, the CPU cost of a transaction

is not linear w.r.t. the transaction length (i.e., it does not match our

cost model here), and we leave it to our empirical study. So here, we

only consider Bandwidth. For EOS bandwidth, - = 128 and . = 8.

Thus, - − 4. = 96 > 0.

We also run an EOS.IO node locally [1] and conducted mea-

surement study on EOS’s CPU and Bandwidth. In this study, we

consider two invocations to a simple helloworld smart contract [2].

When putting them into two separate transactions, the CPU cost per

call is on average 228 “usec” (Note that the CPU cost is dependent

on runtime/hardware and is non-deterministic). The Bandwidth cost

per call is 104 bytes. When putting the two calls in two actions

of one transaction, the Bandwidth cost per call is 144/2=72 bytes

and CPU is about 305/2=153 usec. When putting the two calls in

one action, the CPU cost is 311/2=156 usec and Bandwidth cost is

114/2=57 bytes.

Note that EOS adopts a “Receiver Pay” model (that is, contract

execution cost is charged to contract creator’s account, not trans-

action sender’s account), and the saving by IBATCH applies to the

contract creator as well.

9 BACKWARD COMPATIBILITY

For backward-compatibility, the rewritten function should preserve

the “functionality” of the original function and have the same ef-

fects on the blockchain state. Intuitively, an owner > invoking the

original function foo is equivalent with the Dispatcher con-

tract invoking the rewritten function fooByD on behalf of owner

>. Formally, we consider a stateful-computation model for contract

execution and describe the backward-compatibility below:

Definition 9.1 (Backward-compatibility). Suppose owner > in-

vokes a smart-contract function foowith arguments 0A6B . The func-

tion invocation returns >DC?DC . The invocation also transitions the

contract state from initial state BC to end state BC ′. We denote the

contract invocation by (BC ′, >DC?DC) = >.foo(BC, 0A6B).

Rewritten function fooByD(from, 0A6B) is backward-

compatible or functional-equivalent with original func-

tion foo(0A6B), if and only if for any invocation

(BC ′, >DC?DC) = >.foo(BC, 0A6B), we have (BC ′, >DC?DC) =

Dispatcher.fooByD(BC, >, 0A6B).

Backward-compatibility implies that one can freely replace any

contract function with its counterpart in any context, that is, with-

out affecting other function execution (i.e., replacing foo with

fooByD or replacing fooByD with foo). For instance, an HTLC

created by newContractByD can be withdrawn by the origi-

nal receiver calling withdraw(). Likewise, an HTLC created by

newContract can be refunded by the Dispatcher invoking

refundByD() on behalf of the original sender.

Evaluation: We verify that the IBATCH design is functional by

writing a series of test programs. Each test program issues a se-

quence of function calls to a specific application contract. For the

ERC20 token, the test program issues transfer calls. For the

IDEX, the test program issues deposit and trade calls. For the

HTLC, the test program covers two cases: 1) newContract and

withdraw and 2) newContract and refund.

We verify that the IBATCH design is functional by writing a se-

ries of test programs. Each test program issues a sequence of func-

tion calls to a specific application contract. For the ERC20 token,

the test program issues transfer calls. For the IDEX, the test

program issues deposit and trade calls. For the HTLC, the test

program covers two cases: 1) newContract and withdraw and

2) newContract and refund.

We then “fuzz” the smart-contract invocations in each of these

test programs. That is, each invocation can be carried out by a dedi-

cated transaction (as an external call) or by a batched transaction (in

IBATCH). Since each test program contains less than # = 4 function
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calls, there are at most 2# = 16 possible call combinations after the

“fuzzing”. The results verify the "backward compatibility" of the

rewritten contracts. That is, serving the IBATCH’s internal call to

the rewritten contract has the same on-chain effects as serving the

external call to the original application contract.

10 RELATED WORKS

Public blockchains are known to cause high costs and to have lim-

ited transaction throughput [35]. Reducing the cost of blockchain

applications is crucial for real-world adoption and has been studied

in the existing literature. Layer-one protocols: Newer blockchains

or so-called layer-one protocols are proposed such as sharding and

other designs [40, 43]. Deploying these mechanism requires launch-

ing a new blockchain network from scratch, and it is known to be

difficult to bootstrap a large-scale blockchain. Layer-two proto-

cols: Another approach, dubbed layer-two designs [26, 34, 36, 46],

focuses on designing add-on to a deployed blockchain system by de-

signing extensions including smart-contracts on-chain and services

off-chain. The notable example is payment networks [26, 34, 46]

that place most application logic of making a series of micro-

payments off the blockchain while resorting to blockchain for con-

trol operations (e.g., opening and closing a channel) and error

handling. In a sense, a payment channel “batches” multiple re-

peated micro-payments into minimally two transactions. State chan-

nels [36] generalize the idea to support the game-based execution

of smart contracts. The batching in this line of work is orthogo-

nal to that in IBATCH: 1) IBATCH is generally applicable to any

smart contracts, while payment channel/network is specific to re-

peated micro-payments between a fixed pair of buyer and seller. 2)

IBATCH can further reduce the Gas of a payment channel. Specif-

ically, the invocations to the smart contracts in a payment chan-

nel (namely HTLC) can be batched to amortize the transaction fee

over multiple operations to open/close a channel [26]. Ethereum

Gas optimization: GRuB [42] supports gas-efficient data feeds

onto blockchains, for decentralized financial applications (DeFi).

For Gas efficiency, it employs a novel technique that replicates

data feeds adaptively to the workload. IBATCH can complement

GRuB’s adaptive data-feed to achieve higher level of Gas efficiency.

Gasper [33] detects and fixes the “anti-patterns” in smart contracts

that excessively cost Gas. While Gasper aims at reducing the on-

chain computation in smart contracts, IBATCH reduces the transac-

tion fee in smart-contract invocations. Transaction mixing: The

purpose of mixing [32, 39, 45, 47] is to hide the linkage between

transaction senders and receivers. In Bitcoin where a transaction

natively supports multiple coin transfers, mixing can be enabled

by coordinating multiple senders to jointly generate a multi-input

transaction with the input-output mapping shuffled (such transac-

tion is called CoinJoin transaction); generating a CoinJoin transac-

tion can be done without a trusted third-party [32, 39, 45]. Mixing

in Ethereum [4, 47] works by having multiple senders send their

coins to a mixer account who then sends the coins to original re-

ceivers. The process results in transactions twice the number of

senders and does not lead to saving of transaction fee as IBATCH

does. In addition, note that mixing needs to break the linkage be-

tween senders and receivers, while batching needs to preserve such

caller-callee linkage so that the callee smart contract can recognize

and admit the caller. Batching Ethereum transactions: A recent

work batches ERC20 token invocations in the application of token

airdropping [38]. While the work solves a special case of batching

(of a single callee function, i.e., transfer), IBATCH is a more

comprehensive and systematic work in the sense that it covers the

general case of batching with multiple callers/callees and addresses

the practical integration of batching with a deployed Ethereum

platform. OpenZeppelin’s gas station network [6, 8] supports in-

vocations from users without Ether wallets by similarly extending

Ethereum with on-chain/off-chain components, but does not partic-

ularly address batching.

11 CONCLUSION

This paper presents IBATCH, a security protocol and middleware

system to batch smart-contract invocations over Ethereum. The de-

sign of IBATCH addresses the tradeoff between security, cost effec-

tiveness and delay. The result shows that compared with the base-

line without batching, IBATCH effectively saves cost per invocation

with small block delay.
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