
OwlEyes-Online: A Fully Automated Platform for Detecting and
Localizing UI Display Issues

Yuhui Su∗†
Institute of Software Chinese

Academy of Sciences, University of
Chinese Academy of Sciences

Beijing, China

Zhe Liu∗†
Institute of Software Chinese

Academy of Sciences, University of
Chinese Academy of Sciences

Beijing, China

Chunyang Chen
Monash University
Melbourne, Australia

Junjie Wang†‡§
Institute of Software Chinese

Academy of Sciences, University of
Chinese Academy of Sciences

Beijing, China

Qing Wang†‡§
Institute of Software Chinese

Academy of Sciences, University of
Chinese Academy of Sciences

Beijing, China

ABSTRACT
GUI provides visual bridges between software apps and end users.
However, due to the compatibility of software or hardware, UI
display issues such as text overlap, blurred screen, image miss-
ing always occur during GUI rendering on different devices. Be-
cause these UI display issues can be found directly by human eyes,
in this paper, we implement an online UI display issue detection
tool OwlEyes-Online, which provides a simple and easy-to-use
platform for users to realize the automatic detection and localiza-
tion of UI display issues. The OwlEyes-Online can automatically
run the app and get its screenshots and XML files, and then de-
tect the existence of issues by analyzing the screenshots. In ad-
dition, OwlEyes-Online can also find the detailed area of the is-
sue in the given screenshots to further remind developers. Finally,
OwlEyes-Online will automatically generate test reports with UI
display issues detected in app screenshots and send them to users.
It was evaluated and proved to be able to accurately detect UI
display issues. Tool Link: http://www.owleyes.online:7476. Github
Link: https://github.com/franklinbill/owleyes. Demo Video Link:
https://youtu.be/002nHZBxtCY.

CCS CONCEPTS
• Software and its engineering;

KEYWORDS
UI display, Mobile app, UI testing, Deep learning, Issue detection
∗Both authors contributed equally to this research.
†Also With Laboratory for Internet Software Technologies, Beijing, China
‡Corresponding author
§Also With State Key Laboratory of Computer Sciences, Beijing, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3473109

ACM Reference Format:
Yuhui Su, Zhe Liu, Chunyang Chen, Junjie Wang, and Qing Wang. 2021.
OwlEyes-Online: A Fully Automated Platform for Detecting and Localizing
UI Display Issues. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3468264.3473109

1 INTRODUCTION
GUI is widely used among modern mobile apps, making it practical
and easy to use. However, with the development of visual effects
of GUI, five categories of UI display issues [40] such as component
occlusion, text overlap, missing image, null value and blurred screen
always occur during the UI display process, especially on different
mobile devices. Detecting those issues is a hard problem because
most of those UI display issues are caused by many factors, espe-
cially for Android, such as different Android OS versions, device
models, and screen resolutions [34]. Nowadays, some practical au-
tomated testing tools like Monkey [16, 35], Dynodroid [24] are also
widely used in industry. However, these automated tools can only
spot critical crash bugs, rather than UI display issues that cannot be
captured by common tools. Inspired by the fact that display bugs
can be easily spotted by human eyes, we develop an automated
online tool OwlEyes-Online1, which provides quick detection and
localization of UI display issues from apps or GUI screenshots.

The OwlEyes-Online is a user-friendly web app. Developers can
upload GUI screenshots or apps and receive accurate UI display
issue detection results. When a developer uploads an APK, it will
automatically run the app and get its screenshots, and then we
use computer vision technologies to detect the UI display issues.
OwlEyes-Online builds on the CNN to identify the screenshots
with issues and Grad CAM to localize the regions with UI display
issues in the screenshots for further reminding developers. Finally,
it summarizes the detection and localization results, automatically
generates the test report and sends it to users. Considering that
the CNN needs lots of training data, we adopt a heuristic data
generation method to generate the training data.
1OwlEyes-Online is named as our approach is like the owl’s eyes to effectively spot
UI display issues. And our model (nocturnal like an owl) can complement conventional
automated GUI testing (diurnal like an eagle) for ensuring the robustness of the UI.

1500

http://www.owleyes.online:7476
https://github.com/franklinbill/owleyes
https://youtu.be/002nHZBxtCY
https://doi.org/10.1145/3468264.3473109
https://doi.org/10.1145/3468264.3473109
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3468264.3473109&domain=pdf&date_stamp=2021-08-18

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yuhui Su, Zhe Liu, Chunyang Chen, Junjie Wang, and Qing Wang

Figure 1: Overview of OwlEyes-Online

OwlEyes-Online provides a dashboard for users to upload the
screenshots or apps. After analyzing an uploaded screenshot, it
displays detection results in real-time. As for an app, it automatically
generates a test report (issue screenshots, localization, etc.) and
sends the report to the user in an email.

This paper makes the following contributions:

• We implement a CNN based issue detection method and
a Grad CAM based issue localization method to detect UI
display issues from GUI screenshots.

• We develop a fully automated web app. Users only need to
upload an APK file, and OwlEyes-Online will automatically
generate test reports and send them to users. We release the
implementation of OwlEyes-Online on Github [4].

• An empirical study among professionals proves the value of
our UI display issue detection method and OwlEyes-Online.

2 OUR FULLY AUTOMATED APPROACH
According to the features of UI display issues, we propose a fully
automated UI display issue detection and localization approach. It
mainly includes four parts, which are heuristic based data genera-
tion, CNN based issues detection, Grad CAM based issues localiza-
tion, and online inference of GUI issues. As shown in Figure 1, to
improve the accuracy of our model, we use the heuristic based data
generation method to generate a number of training data. Given an
APK, OwlEyes-Online automatically runs it and collects screen-
shots. Then the CNN based model classifies if they relate to any
issues via the visual understanding. Once an issue is confirmed,
our model can further localize its specific issue position on the UI
screenshot by Grad CAM based model to remind the developers.

2.1 Heuristic Based Data Generation
Training our proposed CNN for issues detection requires an abun-
dance of screenshots [17] with UI display issues. However, there is
so far no such type of open dataset, and collecting the related buggy
screenshots is time- and effort-consuming. Therefore, we develop a
heuristic based data generation method for generating UI screen-
shots with display issues from bug-free UI images in Figure 1(a). The
data generation is based on the Rico [15] dataset, which contains
more than 66K unique screenshots and their JSON files (i.e., detailed
run-time view hierarchy of the screenshot). With the input screen-
shot and its associated JSON file, we first localize all the TextView
and ImageView, then randomly chooses a TextView/ImageView

depending on the augmented category. Based on the coordinates
and size of the TextView/ImageView, the algorithm then makes its
copy and adjusts its location or size according to specific rules to
generate the screenshots with corresponding UI display issues.

2.2 CNN Based Issues Detection
As the UI display issues can only be spotted via the visual in-
formation [14, 39], we adopt the convolutional neural network
(CNN) [20, 21], which has proven to be effective in image classifi-
cation and recognition in computer vision [17, 29, 31]. Figure 1(b)
shows the structure of our model, which links the convolutional lay-
ers, batch normalization layers, pooling layers, and fully connected
layers. Given the input screenshot, we convert it into a certain
image size with fixed width and height as the convolutional layer’s
parameters consist of a set of learnable filters. After the convolu-
tional layers, the screenshots will be abstracted as a feature graph.
In order to improve the performance and stability of CNN, we add
Batch Normalization (BN) [19] layers after the convolutional layer
and standardize the input layer by adjusting and scaling activation.
After the BN layer, we add the Rectified Linear Unit (ReLU) as the
activation function of the network. The last several layers are fully
connected neural networks (FC) which compile the data extracted
by previous layers to form the final output. Finally, we obtain the
detection results through softmax [6].

2.3 Grad CAM Based Issues Localization
As shown in Figure 1(c), we adopt the feature visualization method
to localize the detailed position of the issues to remind the develop-
ers. We apply the Grad CAMmodel for the localization of UI display
issues. Gradient weighted Class Activation Mapping (Grad CAM) is
a technique for visualizing the regions of input that are “important”
for predictions on CNN based models [26] . First, a screenshot with
the UI display issue is input into the trained CNN model, and the
category supervisor to which the image belongs is set to 1, while
the rest is 0. Then the information is propagated back to the convo-
lutional feature map of interest to obtain the Grad CAM positioning.
Through the feedback of global average pooling of the gradient, the
weight 𝛼𝑏

𝑘
of the importance of neurons is obtained. This weight

captures the importance of the feature map 𝐾 of the target category
𝑏 (Bug). By performing the weighted combination of the forward
activation graph, we can obtain the class-discriminative localization
map. Finally, the point multiplication with the backpropagation can
obtain the Grad CAM as the result of issue localization.

1501

OwlEyes-Online: A Fully Automated Platform for Detecting and Localizing UI Display Issues ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Figure 2: Illustration of our OwlEyes-Online web application.

2.4 Online Inference of GUI Issues
We use 20,000 screenshots generated in section 2.1 to train our issue
detection and localization model. Before the issue detection, we
need to preprocess the APK submitted by the user online. As shown
in Figure 1(d), the user provides an Android APK, and we use the
dynamic analysis method to run the app automatically to obtain the
screenshots. In detail, by leveraging the idea of dynamic app GUI
testing [8, 16, 22, 30], we adopt an app explorer [22] to automatically
explore the pages within an application through interacting with
apps using random actions, e.g., clicking, scrolling, and filling in
text. We also provide three testing strategies for users to choose
from: Depth-First-Search (DFS) [27], Breadth-First-Search (BFS) [5],
and random exploration [16].

3 TOOL IMPLEMENTATION AND USAGE
OwlEyes-Online is a web app, which provides a convenient tool
for users to detect and localize the UI display issues in the GUI
screenshots.

3.1 Web Implementation
OwlEyes-Online can automatically run applications and generate
test reports for users. We customized the deep learning model in
PyTorch. The OwlEyes-Online consists of two parts: running the
application automatically, feeding back the test results in real-time.

Running the app automatically: Figure 2(a) shows an exam-
ple of our running the app automatically page. Users can upload
the APK or its download link. In addition, we allow users to cus-
tomize the exploration strategy, select the appropriate device, and
some personalization settings to provide a more friendly interactive
experience.

The Real-time feedback issue detection results: This page
in Figure 2(b) will give real-time feedback test results while run-
ning the application automatically. On this page, we implement
some functions to provide a more friendly interactive experience,
including:

Click to view the localization details: In Figure 2(c), click the
screenshot of the UI display issue to view the localization of it in
the screenshot (in the form of a thermal graph).

Export test report: In Figure 2(d), users fill in e-mail informa-
tion, and we will automatically generate test reports and send them
to users. The test report includes the number of issues of the appli-
cation and the screenshots of the issue and the XML corresponding
to the screenshots.

3.2 Model Implementation
Our CNN model is composed of 12 convolutional layers with batch
normalization, 6 pooling layers, and 4 full connection layers for
classifying UI screenshot with display issues. The size of a con-
volutional kernel in the convolutional layer is 3 × 3. We set up
the number of convolutional kernels as 16 for convolutional layer
1-4, 32 for convolutional layer 5-6, 64 for convolutional layer 7-8,
and 128 for convolutional layer 9-12. For the pooling layers, we
use the most common-used max-pooling settings [28], i.e., pooling
units of size 2 × 2 applied with a stride [29]. We set the number
of neurons in each of the fully connected layers as 4096, 1024, 128,
and 2 respectively. For data preprocessing, we rotate some UI of
the horizontal screens to vertical, and resize the screens to 768 ×
448. We implement our model based on the PyTorch [1] framework.
The model is trained in an NVIDIA GeForce RTX 2060 GPU (16G
memory) with 100 epochs for about 8 hours.

3.3 Usage Scenarios
We present several examples to illustrate how developers would
interact with OwlEyes-Online. In some cases, developers collect a
large number of screenshots of applications (such as crowdtesting
platform, automatic testing). However, these automated tools can
only spot critical crash bugs, rather than UI display issues that can-
not be captured by common tools. Developers can upload applica-
tion screenshots to our OwlEyes-Online directly. OwlEyes-Online
will analyze the screenshots and detect the UI display issue in the
screenshots.

For testing whether UI display issues exist in the application,
developers can directly upload an APK to our OwlEyes-Online ,
which will automatically explore the application and detect UI dis-
play issues. Developers can also customize the exploration method
and duration and submit the e-mail information. After the issue
detection, OwlEyes-Online will automatically generate the issue
report and send it to the developer’s e-mail. Considering the net-
work delay, developers can also upload an application’s download
link, and OwlEyes-Online will automatically download the APK
in the background for testing.

4 EVALUATION
The goal of our study is to evaluate the usefulness of our plat-
form OwlEyes-Online in terms of (i) its effectiveness in detect-
ing and localizing UI display issues, and (ii) the usability of our
OwlEyes-Online.

1502

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yuhui Su, Zhe Liu, Chunyang Chen, Junjie Wang, and Qing Wang

4.1 Effectiveness Measurement
Given the effectiveness of our OwlEyes-Online for UI display issue
detection, we conduct experiments on 8K Android mobile GUI
collected by one of the largest crowd-testing platforms [?]. This
part is also published in our previous work [40] and and we mainly
use evaluation metrics of precision and recall.

Table 1 shows the performance comparison with the baselines.
With OwlEyes-Online, the precision is 0.85 and the recall is 0.84.
We can see that our proposed OwlEyes-Online is much better than
the baselines, i.e., 58% higher in precision and 17% higher in recall
compared with the best baseline, Multilayer Perceptron (MLP). This
further indicates the effectiveness of OwlEyes-Online. Besides, it
also implies that OwlEyes-Online is especially good at hunting
for the buggy screenshots from candidate ones, i.e., significant
improvement in recall.

Table 1: Performance comparison with baselines
Method Precision Recall F1-score
RF-SIFT 0.458 0.458 0.432
RF-SURF 0.513 0.524 0.519
RF-ORB 0.520 0.528 0.524
MLP 0.537 0.727 0.618

OwlEyes-Online 0.850 0.848 0.849

4.2 Usefulness Measurement
To further assess the usefulness of our approach, we randomly
sample 2,000 Android applications from F-Droid [2] and 1,000 ap-
plications from Google Play [3]. Note that none of these apps ap-
pears in our training dataset. Among the 3,000 collected applica-
tions, 59% (1756/3000) applications can be successfully run with
OwlEyes-Online. For the remaining 1,756 applications, an average
of 8 screenshots is obtained for each application. We then feed
those screenshots to our OwlEyes-Online and detect if there are
any display issues. Once a display issue is spotted, we create a bug
report by describing the issue attached with a buggy UI screenshot.
Finally, we report them to the app development team through issue
reports or emails. Our OwlEyes-Online has detected 113 UI display
issues, among which 35 have been confirmed and 29 have been
fixed. These fixed or confirmed bug reports further demonstrate the
effectiveness and usefulness of our proposed approach in detecting
UI display issues.

Regarding the user experience of our OwlEyes-Online, we cre-
ate an online survey on 20 professional developers, testers, and
researchers, all of whom major in computer science with more than
3 years of app testing or developing experience. 10 of them are
from the industry with practical working experience2. We ask them
to use our OwlEyes-Online and ask them about the usefulness of
the OwlEyes-Online for their work, as well as its potential and
scalability in the future. In the end, participants fill in the System
Usability Scale (SUS) questionnaire [7] (5-point Likert scale [25]
from 1 (strongly disagree) to 5 (strongly agree)). The questionnaire
also asks participants to select the TechLand system features that
they deem most useful or least useful for the tasks.

Figure 3 summarizes the participants’ ratings of the 10 system
design and usability questions in the System Usability Scale ques-
tionnaire. The upper half of figure 3 shows that participants agree
2Some testers are from NVIDIA, Citibank, Sony, Baidu, Alibaba, Three Fast Online,
and ByteDance.

Figure 3: Average score of SUS results

or strongly agree that our system is easy to use and the features
of the OwlEyes-Online system are well-devised. The lower half
of figure 3 further confirms the simplicity and consistency of our
OwlEyes-Online system. Furthermore, the average helpfulness of
the OwlEyes-Online system for the tasks is 4.42, which indicates
that participants appreciate the help of the OwlEyes-Online system
in the tasks. All participants indicated that OwlEyes-Online has a
good UI display issue detection effect. Among these professionals,
10 of them are working on app testing. They think OwlEyes-Online
can help them localize the UI display issues more quickly. 7 Android
developers said that our issue localization model helps them better
localize the issue on the UI interface so that they can better repair
the issue later. Among them, 4 developers hope we can further give
the possible repair methods and causes of these issues. The other 3
participants who are studying GUI testing also indicated that they
hope we can analyze the cause of issue in the next stage. They think
that using the visual information of application screenshots is a
very helpful and engaging work.

5 CONCLUSION
Improving the quality of mobile applications, especially in a proac-
tive way, is of great value and always encouraged. In this demo, we
show OwlEyes-Online, a fully automated UI display issue detec-
tion and localization tool. We use dynamic analysis to explore the
application automatically and get its screenshots. And users can cus-
tomize the exploration time, exploration strategy and so on. Then
we can complete the detection and localization of UI display issues
based on CNN and Grad CAM. Finally, we automatically generate
test reports and send them to users. We evaluate it from two aspects
of detection accuracy and tool practicability. The OwlEyes-Online
is proven to be effective in real-world practice, i.e., 64 confirmed or
fixed previously undetected UI display issues from popular Android
apps. It also achieves boosts of more than 17% and 23% in recall and
precision compared with the best baseline. The evaluation shows
that OwlEyes-Online is a good starting point for UI display issue
detection.

In the future, we will further study the root cause of UI display
issue. Finally, according to the issue category, we will devise a set of
tools for recommending patches to developers to fix the UI display
issues.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-
ment Program of China under grant No.2018YFB1403400, National
Natural Science Foundation of China under Grant No. 62072442,
No. 62002348.

1503

OwlEyes-Online: A Fully Automated Platform for Detecting and Localizing UI Display Issues ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES
[1] 2021. https://pytorch.org/.
[2] 2021. http://f-droid.org/.
[3] 2021. http://play.google.com/store/apps/.
[4] 2021. Github Link. https://github.com/franklinbill/owleyes/.
[5] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing

breadth-first search. In SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–10. https:
//doi.org/10.1109/SC.2012.50

[6] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[7] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation

in industry 189, 194 (1996), 4–7. https://doi.org/10.1201/9781498710411-35
[8] Tianqin Cai, Zhao Zhang, and Ping Yang. 2020. Fastbot: A Multi-Agent Model-

Based Test Generation System Beijing Bytedance Network Technology Co., Ltd..
In Proceedings of the IEEE/ACM 1st International Conference on Automation of
Software Test. 93–96. https://doi.org/10.1145/3387903.3389308

[9] Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude, and Xiang
Chen. 2021. Automated Query Reformulation for Efficient Search based on
Query Logs From Stack Overflow. In 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 1273–1285.
https://doi.org/10.1109/ICSE43902.2021.00116

[10] Chunyang Chen, Sidong Feng, Zhengyang Liu, Zhenchang Xing, and Shengdong
Zhao. 2020. From Lost to Found: Discover Missing UI Design Semantics through
Recovering Missing Tags. Proc. ACM Hum. Comput. Interact. 4, CSCW2 (2020),
123:1–123:22. https://doi.org/10.1145/3415194

[11] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Ong Long Xiong. 2021.
Mining Likely Analogical APIs Across Third-Party Libraries via Large-Scale
Unsupervised API Semantics Embedding. IEEE Trans. Software Eng. 47, 3 (2021),
432–447. https://doi.org/10.1109/TSE.2019.2896123

[12] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xin Xia, Liming Zhu, John C.
Grundy, and Jinshui Wang. 2020. Wireframe-based UI Design Search through
Image Autoencoder. ACM Trans. Softw. Eng. Methodol. 29, 3 (2020), 19:1–19:31.
https://doi.org/10.1145/3391613

[13] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind your apps: predicting natural-
language labels for mobile GUI components by deep learning. In ICSE ’20: 42nd
International Conference on Software Engineering, Seoul, South Korea, 27 June
- 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 322–334.
https://doi.org/10.1145/3377811.3380327

[14] Qiuyuan Chen, Chunyang Chen, Safwat Hassan, Zhengchang Xing, Xin Xia, and
Ahmed E. Hassan. 2021. How Should I Improve the UI of My App?: A Study
of User Reviews of Popular Apps in the Google Play. ACM Trans. Softw. Eng.
Methodol. 30, 3 (2021), 37:1–37:38. https://doi.org/10.1145/3447808

[15] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
Symposium on User Interface Software and Technology (UIST ’17). https://doi.org/
10.1145/3126594.3126651

[16] Android Developers. 2012. Ui/application exerciser monkey.
[17] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image

Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 770–778. https://doi.
org/10.1109/CVPR.2016.90

[18] Yujin Huang, Han Hu, and Chunyang Chen. 2021. Robustness of on-Device
Models: Adversarial Attack to Deep Learning Models on Android Apps. In 43rd
IEEE/ACM International Conference on Software Engineering: Software Engineering
in Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021. IEEE, 101–110.
https://doi.org/10.1109/ICSE-SEIP52600.2021.00019

[19] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015 (JMLR Workshop and Conference Proceedings, Vol. 37). 448–456.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105. https://doi.org/10.1145/3065386

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324. https://doi.org/10.1109/5.726791

[22] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE, 23–
26. https://doi.org/10.1109/ICSE-C.2017.8

[23] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: A
Lightweight UI-Guided Test Input Generator for Android. In Proceedings of the
39th International Conference on Software Engineering Companion (Buenos Aires,
Argentina) (ICSE-C ’17). IEEE Press, 23–26. https://doi.org/10.1109/ICSE-C.2017.8

[24] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input
Generation System for Android Apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE
2013). Association for Computing Machinery, New York, NY, USA, 224–234.
https://doi.org/10.1145/2491411.2491450

[25] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate pseudo-code
from source code using statistical machine translation (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 574–584.
https://doi.org/10.1109/ASE.2015.36

[26] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations From
Deep Networks via Gradient-Based Localization. In The IEEE International Con-
ference on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2017.74

[27] Safaa H Shwail, Alia Karim, and Scott Turner. 2013. Probabilistic multi robot
path planning in dynamic environments: A comparison between A* and DFS.
International Journal of Computer Applications 975 (2013), 8887.

[28] Patrice Y. Simard, Dave Steinkraus, and John C. Platt. 2003. Best Practices
for Convolutional Neural Networks Applied to Visual Document Analysis. In
Proceedings of the Seventh International Conference on Document Analysis and
Recognition - Volume 2 (ICDAR ’03). IEEE Computer Society, USA, 958. https:
//doi.org/10.1109/ICDAR.2003.1227801

[29] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[30] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM, 245–256. https://doi.org/10.1145/3106237.3106298

[31] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2818–2826. https://doi.org/10.1109/CVPR.2016.308

[32] Junjie Wang, Song Wang, Jianfeng Chen, Tim Menzies, Qiang Cui, Miao Xie,
and Qing Wang. 2021. Characterizing Crowds to Better Optimize Worker Rec-
ommendation in Crowdsourced Testing. IEEE Trans. Software Eng. 47, 6 (2021),
1259–1276. https://doi.org/10.1109/TSE.2019.2918520

[33] JunjieWang, Ye Yang, Rahul Krishna, TimMenzies, and QingWang. 2019. iSENSE:
Completion-Aware Crowdtesting Management. In ICSE’2019. 932–943. https:
//doi.org/10.1109/ICSE.2019.00097

[34] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmen-
tation: Characterizing and detecting compatibility issues for Android apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. 226–237. https://doi.org/10.1145/2970276.2970312

[35] ThomasWetzlmaier and Rudolf Ramler. 2017. HybridMonkey Testing: Enhancing
Automated GUI Tests with Random Test Generation. In Proceedings of the 8th
ACM SIGSOFT International Workshop on Automated Software Testing (Paderborn,
Germany) (A-TEST 2017). Association for Computing Machinery, New York, NY,
USA, 5–10. https://doi.org/10.1145/3121245.3121247

[36] Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang Chen.
2020. UIED: a hybrid tool for GUI element detection. In ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020,
Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 1655–
1659. https://doi.org/10.1145/3368089.3417940

[37] Bo Yang, Zhenchang Xing, Xin Xia, Chunyang Chen, Deheng Ye, and Shanping
Li. 2021. Don’t Do That! Hunting Down Visual Design Smells in Complex
UIs against Design Guidelines. In 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 761–772.
https://doi.org/10.1109/ICSE43902.2021.00075

[38] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and Jinshui Wang. 2020. Seenomaly: vision-based linting of GUI
animation effects against design-don’t guidelines. In ICSE ’20: 42nd Interna-
tional Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July,
2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1286–1297. https:
//doi.org/10.1145/3377811.3380411

[39] Tianming Zhao, Chunyang Chen, Yuanning Liu, and Xiaodong Zhu. 2021.
GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Net-
works. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021. IEEE, 748–760. https://doi.org/10.1109/
ICSE43902.2021.00074

[40] Liu Zhe, Chen Chunyang, Wang Junjie, Huang Yuekai, Hu Jun, and Wang Qing.
2020. Owl Eyes: Spotting UI Display Issues via Visual Understanding. In 2020 35rd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE. https://doi.org/10.1145/3324884.3416547

1504

https://pytorch.org/
http://f-droid.org/
http://play.google.com/store/apps/
https://github.com/franklinbill/owleyes/
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1145/3387903.3389308
https://doi.org/10.1109/ICSE43902.2021.00116
https://doi.org/10.1145/3415194
https://doi.org/10.1109/TSE.2019.2896123
https://doi.org/10.1145/3391613
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3447808
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICSE-SEIP52600.2021.00019
https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/TSE.2019.2918520
https://doi.org/10.1109/ICSE.2019.00097
https://doi.org/10.1109/ICSE.2019.00097
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1145/3121245.3121247
https://doi.org/10.1145/3368089.3417940
https://doi.org/10.1109/ICSE43902.2021.00075
https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1109/ICSE43902.2021.00074
https://doi.org/10.1109/ICSE43902.2021.00074
https://doi.org/10.1145/3324884.3416547

	Abstract
	1 Introduction
	2 Our Fully Automated Approach
	2.1 Heuristic Based Data Generation
	2.2 CNN Based Issues Detection
	2.3 Grad CAM Based Issues Localization
	2.4 Online Inference of GUI Issues

	3 Tool Implementation And Usage
	3.1 Web Implementation
	3.2 Model Implementation
	3.3 Usage Scenarios

	4 Evaluation
	4.1 Effectiveness Measurement
	4.2 Usefulness Measurement

	5 Conclusion
	References

