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ABSTRACT
Sentiment analysis (SA) systems, though widely applied in many
domains, have been demonstrated to produce biased results. Some
research works have been done in automatically generating test
cases to reveal unfairness in SA systems, but the community still
lacks tools that can monitor and uncover biased predictions at run-
time. This paper fills this gap by proposing BiasRV, the first tool
to raise an alarm when a deployed SA system makes a biased pre-
diction on a given input text. To implement this feature, BiasRV
dynamically extracts a template from an input text and from the
template generates gender-discriminatory mutants (semantically-
equivalent texts that only differ in gender information). Based on
popular metrics used to evaluate the overall fairness of an SA sys-
tem, we define distributional fairness property for an individual
prediction of an SA system. This property specifies a requirement
that for one piece of text, mutants from different gender classes
should be treated similarly as a whole. Verifying the distributional
fairness property causes much overhead to the running system. To
run more efficiently, BiasRV adopts a two-step heuristic: (1) sam-
pling several mutants from each gender and checking if the system
predicts them as of the same sentiment, (2) checking distributional
fairness only when sampled mutants have conflicting results. Exper-
iments show that compared to directly checking the distributional
fairness property for each input text, our two-step heuristic can
decrease overhead used for analyzing mutants by 73.81% while only
resulting in 6.7% of biased predictions being missed. Besides, BiasRV
can be used conveniently without knowing the implementation of
SA systems. Future researchers can easily extend BiasRV to detect
more types of bias, e.g. race and occupation. The demo video for
BiasRV can be viewed at https://youtu.be/WPe4Ml77d3U and the
source code can be found at https://github.com/soarsmu/BiasRV.
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1 INTRODUCTION
Sentiment analysis (SA) systems [9], which aim to predict the sen-
timent of a given text, have been widely applied in many domains,
e.g. predicting politics [16] and healthcare [15]. However, evidence
has shown that SA systems can be unfair and have gender bias.
For example, Ribeiro et al. [11] found that an SA system fine-tuned
on BERT always predicts negative when sensitive contents of a
text template are filled with black, atheist, gay, and lesbian while
predicting positive for Asian, straight, etc. We use an example to
demonstrate such discrimination. The following paragraph is a
positive movie review from IMDb.

"Dee Snider was inspired to do a two part song by a horror
movie. This movie he wrote/directed/produced and starred
in details the subjects from those songs (Horror-terria,from
TwistedSister/ Stay Hungry). ... This movie is perfect if you
want something to give you nightmares and make you cringe
about the possible and probable. IT COULD HAPPEN!!"

An SA model fine-tuned on BERT [6] predicts the sentiment
of this paragraph as positive. However, if we generate a gender-
discriminatory mutant by changing the name ‘Dee Snider’ at the
begining of this paragraph to ‘Lilly’, which is usually used as a
female name, the predicted result by the same model becomes
negative. Such a case is not an exception: we change ‘Dee Snider’
to 30 male names, e.g. Benedetto, and the results are all positive.
We also replace the name with 30 female names, e.g. Julissa, but the
predicted results are all negative. This provides a concrete example
of gender bias, and if such bias happen, we want flag it.

Angell et al. [1] believed that software fairness is part of software
quality. To ensure the quality of SA systems, researchers propose
some testing methods to uncover unfairness in NLP and SA sys-
tems, e.g. CheckList [11], ECC [8], ASTRAEA [12] and BiasFinder
[2]. There is a simple metamorphic relationship behind these tools:
modifying only sensitive contents of a text should not change pre-
dicted sentiment results. For example, in the movie review above,
replacing ‘Dee Snider’ with ‘Julissa’ should make no difference.
These works, except BiasFinder [2], all use pre-defined templates to
generate texts with minor differences (we call them mutants). One
template from CheckList [11] is ‘I am a {PROTECTED} {NOUN}’,
where the ‘{PROTECTED}’ placeholder can be replaced with black,
white, gay, etc. and the ‘NOUN’ placeholder can be replaced with
student, nurse, etc. These generated mutants can be used to test
systems before deployment. The deployed SA systems receive many
queries that normally mismatch pre-defined templates, making it
challenging to detect biased predictions at runtime. Runtime verifi-
cation (RV) is the process of checking whether each run of a system
satisfies a given property [5]. To the best of our knowledge, there
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is no tool that can uncover biased prediction of an SA system at
runtime.

In this paper, we propose BiasRV to fill this gap. BiasRV uti-
lizes a mutation generation engine of BiasFinder [2] that can dy-
namically extract templates from input texts rather than rely on
several pre-defined templates. As a result, BiasRV can generate
gender-discriminatory mutants (i.e., semantically-equivalent pieces
of text that differ only in gender information) for queries received
at runtime.1 In the NLP community, researchers have proposed
an evaluation metric to measure the overall fairness of an SA sys-
tem [7, 8, 11]; the SA system is tested against a fixed and predefined
set of gender-discriminatory mutants, and the distributions of sen-
timents predicted for male and female mutants are compared. How-
ever, this metric cannot be used to detect if an SA is biased towards
a specific input text. We tailor this evaluation metric and propose
the distributional fairness concept specifying the requirement for
a fair prediction that an SA system makes for an input text. For a
piece of input text, distributional fairness requires that two sets of
mutants (of the input text) from different gender classes to receive
similar sentiment predictions. For example, it is acceptable that an
SA system predicts 70% males mutants as positive and 71% female
mutants as positive; while 70% and 50% are not acceptable since
the difference between proportions of positive predictions exceeds
a threshold, e.g. 10%.

Though distributional fairness can appropriately specify a fair
prediction, it takes much time to verify. To reduce overhead, BiasRV
adopts a two-step heuristic: (1) sampling several mutants from each
gender and check if the system predicts them as the same sentiment,
(2) checking distributional fairness only when sampled mutants
have conflicting results. The intuition is that if an SA system is
biased towards an input text, many mutants shall be predicted as
the opposite sentiments. When we sample these mutants, it is very
likely to find conflicts and proceed to step (2) for more accurate but
time-consuming verification. In contrast, if all the sampled mutants
have the same result, there is only little chance that it is a biased
prediction. Our evaluation results show that compared to directly
checking the distributional fairness property for each input text, the
2-step heuristic can reduce overhead by 73.21%, while only causing
6.7% of biased predictions to be missed. Low overhead is important
especially for popular SA systems that are offered as a service (e.g.,
through a web API).

The rest of this paper is organized as follows. Section 2 describes
the basic idea of the mutation generation engine in BiasFinder.
Section 3 discusses the distributional fairness property and how
BiasRV is designed and used. Section 4 shows the evaluation results
of BiasRV on an SA system. In Section 5, we discuss some related
work. Section 6 states some limitations of our tool. Finally, we
conclude the paper and present future work in Section 5.

2 MUTANT GENERATION
Our tool utilizes BiasFinder [2] to generate gender-discriminatory
mutants. In this section, we briefly introduce the basic idea of how
BiasFinder generates mutants.

1We focus on binary gender (male and female) and binary sentiment (positive and
negative) but BiasRV can be extended to non-binary scenarios too.

Text
’Never Been Kissed’ is a real feel good film. Drew Barrymore is
excellent again, she plays her part well. I felt I could relate to this
film because of the school days I had were just as bad.
Generated Template
’Never Been Kissed’ is a real feel good film. ⟨name⟩ is excellent
again, ⟨subjective-pronoun⟩ plays ⟨possesive-pronoun⟩ part
well. I felt I could relate to this film because of the school days I had
were just as bad.
Male Mutant
’Never Been Kissed’ is a real feel good film. James is excellent again,
he plays his part well. I felt I could relate to this film because of the
school days I had were just as bad.
Female Mutant
’Never Been Kissed’ is a real feel good film. Anne is excellent again,
she plays her part well. I felt I could relate to this film because of the
school days I had were just as bad.

Figure 1: An illustrative example of how BiasFinder gener-
ate bias-discriminatory mutants.

Compared to previous works [8, 11, 12] that only generate test
cases from limited numbers of handcrafted templates, BiasFinder
can create templates dynamically from texts. This step is done by
the template generation engine of BiasFinder. Given a piece of text
𝐼 that can be viewed as a sequence of tokens (𝑡1, 𝑡2, · · · , 𝑡𝑛), the
template generation engine employs several NLP techniques, such
as named entity recognition and coreference resolution, to identify
the protected tokens 𝑃 (𝐼 ). Protected tokens are tokens that divide
a population into groups, e.g. gender, race or occupation. In this
paper, we mainly discuss gender bias and limit protected tokens to
names and gender pronouns 2. In Figure 1, ⟨Drew Barrymore, she,
her⟩ are identified protected tokens. Then BiasFinder substitutes
𝑃 (𝐼 ) with placeholders, just like the generated template in Figure 1.

Another engine in BiasFinder is called mutant generation engine
that generates gender-related mutants by replacing placeholders,
i.e. 𝑃 (𝐼 ) with gender-specific tokens. For example, in Figure 1, we
use ⟨James, he, his⟩ to generate a male mutant and use ⟨Anne,
she, her⟩ to generate a female mutant. It should be noted that
all the tokens in 𝑃 (𝐼 ) should be changed correspondingly, which
means ⟨Anne, he, her⟩ is invalid modification because the subjective
personal pronoun ‘he’ conflicts with the objective personal pronoun
‘her’. BiasFinder also filters the names tomake sure that the selected
names are only used for one gender globally. In the default setting,
BiasFinder will generate 30 mutants for each gender if an extracted
𝑃 (𝐼 ) contains protected tokens.

3 BiasRV
BiasRV is a tool that can uncover potentially biased predictions
that an SA system makes at runtime. Like other runtime verifica-
tion tools, in this section, we need to specify the property that an
unbiased prediction should satisfy. Then we discuss how BiasRV
checks the property more efficiently, with a minimal trade off of a

2It is possible that no protected token is extracted. For example, no token in ‘I am
happy’ can reflect gender information.
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small number of biased predictions being missed. It should be noted
that for simplicity and consistency, we mainly use gender bias as
examples in the paper. But BiasRV can be extended to uncover other
types of discrimination, e.g. race bias and occupation bias.

3.1 Distributional Fairness
We define the distributional fairness concept for an SA system. Dis-
tributional fairness is described as the goal that for one piece of text,
mutants from different gender classes should be treated similarly as
a whole. Here ‘similar treatment ’ refers to the expectation that the
distribution of predicted sentiments for the two groups of mutants
should be close. For example, it is acceptable that for a given input
text, an SA system predicts 70% male mutants as positive and 71%
female mutants as positive. However, we think it is unfair if 70%
males mutants are predicted as positive while only 50% female mu-
tants are predicted as positive. The difference between proportions
of positive prediction exceeds a threshold, e.g. 10%.

Previous works in NLP [7, 8, 11] evaluate the overall fairness of
an SA system using a fixed and predefined set of mutants. Specifically,
the distributions of sentiments predicted for the male and female
mutants are compared and a large difference (in the distributions)
corresponds to a biased SA system. This evaluation metric is also
similar to group fairness concept proposed by previous researchers
[3, 4], which is described as the goal that privileged and unpriv-
ileged groups are treated similarly. It can be used to measure an
algorithm’s overall fairness, but cannot decide whether the algo-
rithm makes a biased prediction on a specific input. Distributional
fairness, which is defined on the generated mutants of a specific
input text, can specify the requirement whether a fair prediction is
made for that specific input text at runtime.

We illustrate the distributional fairness concept for SA systems
with the following notations. Assuming we have a group of male
mutants 𝑀 and a group of female mutants 𝐹 generated from an
original input text 𝐼 , we expect that for both genders the proportions
of mutants predicted as positive should be close enough. Formally
speaking, the following property should be satisfied:

|𝑝𝑜𝑠𝐹 − 𝑝𝑜𝑠𝑀 | ≤ 𝛼 (1)
In the above formula, 𝑝𝑜𝑠𝐹 is the proportion of female mutants

predicted as positive (ranging from 0 to 1), and 𝑝𝑜𝑠𝑀 can be sim-
ilarly computed for male mutants. 𝛼 is a threshold representing
our tolerance of difference in SA systems’ predictions on male and
female mutants. Smaller 𝛼 means less tolerance and our expecta-
tions for SA systems having more similar results for mutants of two
genders. By default, we set the value of 𝛼 as 0.10. In practice, the
value of 𝛼 can be set based on the sensitivity of the target system
being monitored.

3.2 Uncover Bias
We introduce how BiasRV uses the distributional fairness tomonitor
SA systems and uncover biased predictions. The overall workflow
of BiasRV is illustrated in Figure 2. Users send text queries to a
deployed SA system and expect the system to return the predicted
sentiment of the query. Like other runtime verification tools, BiasRV
needs to collect some events of the running system. First, it fetches
the text and returns generated mutants to the SA system to predict.

Users

Send texts

textSA 
System Mutation 

engine

mutants

Property 
checker

Prediction 
results Analyze

BiasRV

sentiment / alarms

Figure 2: Monitoring an SA system with BiasRV.

Then BiasRV analyzes whether the distributional fairness property
is satisfied and raises alarms if a biased prediction is uncovered.

We expect a good runtime verification tool to be able to report
violations to the checked property accurately and yet still incur
have low overhead. As mentioned earlier, although we think dis-
tributional fairness can specify unbiased prediction requirement
for an SA system, the major drawback is that it takes much time to
analyze all mutants and compute distributional difference of each
gender. So we propose a two-step heuristic to make BiasRV uncover
biased predictions more efficiently. We describe how the two-step
heuristic works as follows.

In the first step, we randomly select no more than 𝑋 mutants
from each gender and check whether these mutants are all predicted
as of the same sentiment. If all the predicted sentiments are all the
same, it is less likely to be a biased prediction. If at least one of them
has a different predicted sentiment from the others, we proceed to
the second step to check whether distributional fairness is satisfied.
The intuition is that if an SA system makes a potentially biased
prediction on an input text, it shall predict many mutants having
different sentiments. When we have such a case, the likelihood of
a biased prediction is higher. Then we can proceed to step 2 for
more accurate but time-consuming verification. With the two-step
heuristic, we can reduce overhead by filtering the cases that are less
likely to be biased predictions. However, though the possibility is
relatively low, BiasRV might miss reporting biased cases. Users can
make a trade-off between overhead and accuracy by adjusting the
value of𝑋 . Larger𝑋 can lead to more accurate results but introduce
more overhead. By default, we set the value of 𝑋 for BiasRV as 4.

3.3 A Use Example
Users can use a simple command ‘pip install bias_rv’ to install
BiasRV easily. To uncover biased predictions at runtime, we need
to wrap the API for predicting sentiment with the ‘verify()’ func-
tion in bias_rv package. The following code segment illustrates a
simple usage case.

from bias_rv.BiasRV import biasRV

# sa_system.predict () takes a piece of text

# and return its sentiment

rv = biasRV(sa_system.predict ,X=4,alpha =0.10)

result , is_bias = rv.verify(text)
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First, we need to import BiasRV and then instantiate it. To
create a verifier (rv), we need to pass a function as a parame-
ter. This function sa_system.predict() takes a piece of text as
input and returns its predicted sentiment. Besides, we need to
specify parameters discussed in Section 3.2 (i.e. 𝑋 and 𝛼). Then,
we use rv.verify() to wrap the original predict() function.
rv.verify() can return an additional value,is_bias, to indicate
whether a biased prediction happens. Instantiating a verifier re-
quires no implementation details of sa_system.predict(), so Bi-
asRV can be used by both the SA service provider at server end and
users at the client end.

4 EVALUATION
We apply BiasRV to an SA system that is constructed by fine-tuning
a pre-trained BERT model [6]. The SA system can achieve 92.0%
accuracy on 25,000 pieces of IMDB movie reviews unseen during
training. We analyze the performance of BiasRV by investigating
the following research questions:

RQ1. Can BiasRV detect biased predictions at runtime?
To address RQ1, we analyze all the sentiment predictions that

BiasRV labeled as potentially biased. We run an SA system and
use BiasRV to monitor the system. We send 25,000 different texts
as queries to the SA system. The 25,000 queries come from the
IMDB movie review test set that the SA system has not seen during
training. We set the parameters of our 2-step heuristics (𝑋 and
𝛼) as 4 and 0.10 respectively. We find that BiasRV can generate
gender-discriminatory mutants for 3, 042 texts (the remainder of
the 25,000 texts include no protected tokens). BiasRV detects 15
biased predictions out of the 3, 042 texts.

RQ2. Howmuch overhead does BiasRV incur? Can the 2-step heuristic
lead to a lower overhead?

When processing an input text, BiasRV introduces twomain time
overhead: time to generate mutants and time to analyze mutants.
In the 25,000 test queries, BiasFinder needs from 0.009s to 8.01s
to generate mutants. The time required increases linearly with
the length of input texts and is mainly caused by the coreference
resolution step in BiasFinder. Optimizing BiasFinder is not the main
focus of this paper, so we pay more attention to the other overhead.
If we verify distributional fairness specification for all the input
texts, it will introduce 6.838 times overhead compared to analyzing
the original text on average. The two-step heuristic first samples
several mutants to check if the system predicts them as the same
sentiment and verifies distributional fairness using all mutants only
when sampled mutants have conflicting results. We measure the
overhead caused by directly checking the distributional fairness
property, and by employing our two-step heuristic. When we set 𝑋
as 4 and 𝛼 as 0.10, the two-step heuristic can decrease the overhead
by 73.81% while only misses reporting 6.7% of biased predictions.

5 RELATEDWORK
The closest work to ours is BiasFinder [2]. It provides the mutation
generation engine used in this paper. BiasFinder aims at using
metamorphic relationships to find failed test cases revealing that an
SA system has a bias. Section 2 provides more detailed information
about BiasFinder.

We briefly introduce other work proposed to uncover discrim-
ination in AI systems. Themis [1], Aeqitas [14], FairTest [13] and
Fairway [4] aim at uncovering bias in software systems that take
tabular data as input. There are some papers and tools designed to
reveal bias in NLP-related systems. CheckList [11] uses a limited
number of pre-defined templates to generate test cases and show
that an SA system fine-tuned on BERT always predicts negative
when the templates are filled with black, atheist, gay, and lesbian.
Kiritchenko and Mohammad [8] presented Equity Evaluation Cor-
pus (EEC), which consists of 8,640 English sentences generated
from 11 templates. However, EEC is criticised for relying on pre-
defined templates that may be too simplistic [10]. A more recent
tool is ASTRAEA [12], which leverages context-free grammar to
generate discriminatory inputs that reveal fairness violations in
software systems. ASTRAEA can generate more diverse texts, but
essentially it still relies on pre-defined templates that must adhere
to languages defined by the context-free grammar.

To the best of our knowledge, there is no runtime verification
tool that can uncover biased predictions made by an SA systems
after deployment. The testing works mentioned above mainly use
metamorphic relationships to discover biased predictions for known
texts, i.e. texts generated from pre-defined templates. But such
templates are static, and at runtime, SA systems can receive texts
that mismatch these templates, which makes it challenging to build
a runtime verification tool. BiasFinder addresses this limitation and
can dynamically generate templates for any given text. It is the
foundation that BiasRV uses to monitor fairness at runtime.

6 THREATS TO VALIDITY AND LIMITATION
The template generation engine used in BiasRV employs named
entity recognition and coreference resolution to identify protected
tokens, which are still under active research. It may generate invalid
mutants. Replacing names and genders can change semantics.

7 CONCLUSION
In this paper, we present BiasRV, a tool that can uncover potentially
biased predictions made by an SA system at runtime. BiasRV can
extract and replace gender information in a piece of text to generate
gender-discriminatory mutants. Then it queries SA systems with
these mutants to get predicted sentiments. We propose the distribu-
tional fairness property for specifying an unbiased prediction made
by an SA system at runtime. But verifying the distributional fairness
property can cause much overhead to the system. So BiasRV adopts
a two-step heuristic to uncover potentially biased predictions at
a lower time cost and still maintain a low rate of miss reporting.
We apply BiasRV to an SA system. We find that it can find 𝑥𝑥 bi-
ased predictions from 25,000 texts. Also, we find that our two-step
heuristic is effective in reducing overhead by 73.81%, while only
causing 6.7% of biased predictions to be missed. We plan to support
BiasRV with more types of bias (e.g., race, occupation, etc.) and
optimize BiasFinder’s mutation generation engine to achieve an
even lower overhead.
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