arXiv:2107.08145v1 [physics.space-ph] 16 Jul 2021

Refactoring the MPS/University of Chicago Radiative MHD
(MURaM) Model for GPU/CPU Performance Portability Using
OpenACC Directives

Eric Wright
University of Delaware
Newark, Delaware

Damien Przybylski
Max Planck Institute for
Solar System Research

efwright@udel.edu Gottingen, Germany
przybylski@mps.mpg.de
Supreeth Suresh Shiquan Su

National Center of
Atmospheric Research
Boulder, Colorado
shiquan@ucar.edu

National Center of
Atmospheric Research
Boulder, Colorado
ssuresh@ucar.edu

ABSTRACT

The MURaM (Max Planck University of Chicago Radiative MHD)
code is a solar atmosphere radiative MHD model that has been
broadly applied to solar phenomena ranging from quiet to active
sun, including eruptive events such as flares and coronal mass ejec-
tions. The treatment of physics is sufficiently realistic to allow for
the synthesis of emission from visible light to extreme UV and
X-rays, which is critical for a detailed comparison with available
and future multi-wavelength observations. This component relies
critically on the radiation transport solver (RTS) of MURaM; the
most computationally intensive component of the code. The bene-
fits of accelerating RTS are multiple fold: A faster RTS allows for
the regular use of the more expensive multi-band radiation trans-
port needed for comparison with observations, and this will pave
the way for the acceleration of ongoing improvements in RTS that
are critical for simulations of the solar chromosphere. We present
challenges and strategies to accelerate a multi-physics, multi-band
MURaM using a directive-based programming model, OpenACC
in order to maintain a single source code across CPUs and GPUs.
Results for a 288% test problem show that MURaM with the opti-
mized RTS routine achieves 1.73x speedup using a single NVIDIA
V100 GPU over a fully subscribed 40-core Intel Skylake CPU node
and with respect to the number of simulation points (in millions)
per second, a single NVIDIA V100 GPU is equivalent to 69 Skylake
cores. We also measure parallel performance on up to 96 GPUs and
present weak and strong scaling results.

ACM Reference Format:

Eric Wright, Damien Przybylski, Matthias Rempel, Cena Miller, Supreeth
Suresh, Shiquan Su, Richard Loft, and Sunita Chandrasekaran. . Refactor-
ing the MPS/University of Chicago Radiative MHD (MURaM) Model for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© Copyright held by the owner/author(s).

Cena Miller
National Center of
Atmospheric Research
Boulder, Colorado

Matthias Rempel
National Center of
Atmospheric Research
Boulder, Colorado

rempel@ucar.edu cmille73@ucar.edu
Richard Loft Sunita
National Center of Chandrasekaran

Atmospheric Research
Boulder, Colorado
loft@ucar.edu

University of Delaware
Newark, Delaware
schandra@udel.edu

GPU/CPU Performance Portability Using OpenACC Directives. In Proceed-
ings of . ACM, New York, NY, USA, 12 pages.

1 OVERVIEW

The MURaM (Max Planck University of Chicago Radiative MHD)
code [37, 38, 48] is one of the primary solar models used for simu-
lations of the upper convection zone, photosphere (visible surface
of the sun) and corona. MURaM simulations have contributed sub-
stantially to our understanding of solar phenomena ranging from
the origins of quiet sun magnetism, the structure and evolution
of sunspots and active regions, to solar flares and the initiation of
coronal mass ejections. MURaM also plays a key role in interpreting
high resolution solar observations. With the construction of the
Daniel K. Inouye Solar Telescope (DKIST), an NSF investment [33]
exceeding $300 million, resolution of ground based observational
solar physics is poised to take an order of magnitude leap forward.

Radiation transport is a key component in realistic models of the
solar atmosphere. In order to capture the frequency dependence
of opacity in a cost effective way, spectral lines are combined in
bands according to their strength Nordlund [32] (and sometimes
also frequency) and average opacities are computed for each band
(typically 4-12). The radiation transport is then performed for each
band instead of hundred thousands of individual frequency points.
But even with this substantial simplification, radiation transport in
multiple bands can consume more than 90% of the computing time
for photospheric simulations. As a consequence many simulations
have been performed with a single "gray" band, which limits direct
comparability with observations. A speedup of radiation transport
will make multi-band radiation transport possible as the routine op-
tion. However, radiation transport becomes even more challenging
when applied in the chromosphere.

The solar chromosphere, lying between the photosphere and
the transition to the corona, is one of the least understood parts
of the Sun. It is difficult to observe; as it is only visible in the
cores of strong lines where the signal to noise ratio is low and
the magnetic field diagnostics available are relatively poor. High
resolution observations with DKIST will soon allow us to observe
the chromosphere in greater detail than ever before. The theoretical

treatment of the chromosphere is equally challenging, as none
of the usual assumptions can be used. Neither radiation, nor the
ionisation state of atoms can be treated in local thermodynamic
equilibrium (LTE), in which the source function is simply given by
the temperature dependent Planck function and population levels
can be calculated with the Saha-Boltzman equation [4].

The primary requirement to correctly model the structure and
dynamics of the chromosphere is the inclusion of non-equilibrium
atomic populations, primarily hydrogen. Because the timescales
of hydrogen ionisation and recombination in the chromosphere
are of the same order as the dynamical timescales, it is a non-
equilibrium problem. This requires evolving the ionisation state
of the atoms as they are advected by bulk plasma motions, and
then calculation of the excitation and de-excitation by collisional
and radiative processes. A module to track the non-equilibrium
evolution of hydrogen, using a simplified 1D radiation field, is now
available for the MURaM code and increases the computational cost
by about a factor of 5. Extending the module to perform realistic
simulations of the chromosphere will require a thorough treatment
of the radiation field, including multiple wavelengths covering all
the important atomic transitions.

The problem under study, MURaM is capable of simulating the
coupled solar atmosphere from the upper convection zone into the
lower solar corona, covering a density stratification of more than
25 scale heights. This makes MURaM a crucial tool for studying
how magnetic field emerging from the solar interior is energiz-
ing the solar atmosphere and is leading to rapid release of energy
in form of flares and coronal mass ejections. Figure 1 shows an
example of such a simulation from Cheung et al. [13]. Currently
these simulations are "stand-alone" setups that are inspired by solar
events, but do not aim at modeling observed solar events in detail.
Using these simulations in the future as a utility to study the solar
drivers of space weather events will require data ingestion through
boundary driving or full data assimilation and the ability to run
such simulations in real-time.

In summary, future science applications of the MURaM code
will focus on detailed studies of the coupled solar atmosphere as
well as data-driven simulations of solar events. This requires the
combination of (1) higher resolution, (2) more sophisticated physics
in terms of radiation transport and (3) ensemble simulations. The
resulting increased demand in computing speed cannot be achieved
with traditional CPU based systems.

1.1 Motivation

The above scientific advancements can be achieved by a combina-
tion of two classes of simulations: (1) High resolution simulations
in smaller domains with more detailed physics that allow for the
direct comparison with observations that will be available from
DKIST. Here it is specifically critical to speed up radiation trans-
port such that multi-band simulations become the norm and more
detailed physics can be added in the near future. (2) Low resolution
simulations in large domains with the standard physics of MURaM
in order to simulate (and predict) observed solar space weather
events. For these simulations it is critical to reach the real-time
threshold in order to allow for data-assimilative simulations in
the future. Starting from the current CPU baseline of the code, an

increase of computational capabilities by 1-2 orders of magnitude
is needed.

To achieve these ambitious science goals, migration from petas-
cale to exascale computing is clearly required. In the context of the
US Department of Energy (DoE)-led exascale program [19], this
means focusing on Graphics Processing Units (GPUs). There are sev-
eral possible language/compiler pathways to exascale computing
with GPUs: vendor-specific languages like CUDA [34], directive-
based standards such as OpenMP offloading model above [44] and
OpenACC [24]; and domain-specific languages (DSL) such as Stella
and its successor GridTools [22].

The project to refactor MURaM for GPUs had multiple goals. First
and foremost, we sought to improve the throughput of the model, as
measured by site updates per second, or simulated seconds per wall
clock second to the maximum extent possible. The project’s target
throughput speedup was parity between one NVIDIA V100 GPU
and 100 Intel Xeon v4 processor cores [42]. Experience refactoring
similar models suggested that this speed-up was achievable for
well-implemented code with sufficient data parallelism to saturate
the GPUs. Our secondary goal was maintainability, by preserving
portability of the model between CPUs and GPUs to the maximum
extent possible. Finally, we sought, as a tertiary goal, performance-
portability: namely, finding a maintainable implementation that
did not compromise (significantly) model performance on CPUs or
GPUs. At the time this project began in early 2018, the directive-
based parallelization approach appeared to offer the best prospect
of meeting the first two goals, while performance portability was
an open question. Of the directive-based systems, OpenACC [24]
was deemed to be the most production ready in 2018.

Figure 1: Data inspired simulation of a solar eruption. Pre-
sented is a still image from this outreach movie [2] that is
based on Cheung et al. [13].

The directive-based programming model, OpenACC has been
widely used in the past several years to migrate large scale applica-
tions demonstrating maturity and stability with the compiler imple-
mentations of the high level features. Some of the large (including
production) applications that uses OpenACC include MPAS [49],
ANSYS [40], Icosahedral non-hydrostatic (ICON) [41], LOCD Monte
Carlo [7], and VASP [30].

OpenMP [12] also a directive-based programming model was
predominantly targeting shared memory architectures since its
inception in 1999. Since 2013, OpenMP has been supporting ac-
celerators. While some applications such as GenASiS [8], Pseudo-
Spectral Direct Numerical Simulation-Combined Compact Differ-
ence (PSDNS-CCD3D) [14] QMCPack [26], GAMESS [29], and other
mini-application such as minisweep [47], SU3 [16] have been ported
to the OpenMP offloading model, we observed that the compiler

implementations of the offloading features [18] are not yet fully
mature and stable enough to tackle MURaM especially when we
started the code development of MURaM in early 2018. To that end,
MURaM uses OpenACC [11].

1.2 Contributions

o Specific GPU algorithmic enhancements, namely: asynchronous
programming, loop fusion, and array replication, to the method
of discrete ordinates used in MURaM’s radiation transport model.
Radiation transport is the single most expensive part of most
astrophysical codes, so these optimizations are broadly applicable
across astrophysics.

e Acceleration of the radiation transport in MURaM will in turn
make routine use of multi-band radiation transport possible in
solar physics models.

e Multi-band radiation transport will advance understanding of
the solar chromosphere when combined with non-equilibrium
treatment of atomic populations.

e Demonstration of the efficacy of the use of OpenACC directive-
based approach to achieve performance-portability across CPUs
and GPUs in a solar physics model.

2 MURAM ROUTINES

The primary focus of the MURaM code, a solar physics code devel-
oped over the past 2 decades, are the detailed studies of the solar
atmosphere with sufficient realism to allow for forward modeling
of synthetic observables from visible to EUV and X-ray emission for
direct comparison with a wide range of solar observations. To this
end the MURaM code is typically applied to small Cartesian local
regions on the Sun with lateral and vertical simulation domains
ranging from a few 1000 km to more than 100, 000 km, with typical
numerical grid spacings in a range of 2 — 200 km (for comparison,
the solar radius is about 700, 000 km). The code combines a fourth
order conservative MHD scheme with short characteristics radi-
ation transport as described in [?]. The MURaM MHD scheme
uses a cell centered finite difference approach, the V - B =0 con-
straint is enforced through hyperbolic divergence cleaning [17].
The radiation transport resolves the angular dependence of the
radiation field by computing rays in (typically) 24 directions based
on a Carlson quadrature [10]. Radiation transport is an intrinsi-
cally non-local problem, which poses implementation challenges on
distributed memory architectures. The short characteristics solver
of MURaM treats radiation transport locally, by using intensities
from a previous time step (or iteration) as the starting point for the
ray integration on each shared memory block. Achieving global
convergence requires typically 3 to 4 iterations in the radiation
transport solve. The above formulation has been extensively used
to study magneto-convection in the solar photosphere and upper
convection zone. The code has been expanded to also include the
overlying solar corona [39]. These implementations lead to a fully
explicit code that can be parallelized for shared memory systems
through domain decomposition and MPI communication. The ma-
jor computational routines of the MURaM code, there algorithms
and purpose, are summarised below:

e MHDRES - Calculate the right hand side of the MHD equations
in conservative form. Calculate the derivatives of the fluxes using
a fourth order central difference scheme.

o TVDDIFF - Numerical diffusion required to stabilise the solution.
Calculated using a slope limited diffusion scheme.

e EOS - Using the density and energy from the MHD solution
calculate the equation of state variables; temperature, pressure,
electron number, entropy.

e RTS - Calculate the radiation field using the thermodynamic

variables of the current MHD snapshot. A short-characteristics

algorithm is used. Consists of 4 main functions:

— Interpolate - Perform trilinear interpolation of the MHD vari-
ables from the MHD grid to the staggered RTS grid. Calculate
the radiation source function and opacities to be used in the
integration routines.

— Integrate - Integrate along each ray of the quadrature.

— Exchange - Communicate intensity information to downstream
processors in the ray direction.

— Flux - From the specific intensity calculate the average inten-
sity and radiative fluxes.

DIVBCLEAN - Diffuse and disperse numerical V - B errors

through a hyperbolic V-B cleaning approach.

o INTEGRATE - Calculate the updated variables for the next stage

of the Runge Kutta algorithm using the divergence of fluxes from

MHDRES and additional source terms such as gravity radiative

heating/cooling.

DST - Exchange subdomain ghost cells with neighbours.

e SYNC - Determine the maximum time-step and synchronise the

timestep between subdomains.

VLIM - Dynamically adjust the velocity, energy and Alfvén ve-

locity limits to prevent extreme cells causing overly restrictive

timestep constraints.

e BOUNDARY - Implement the vertical boundary conditions; A
stratified open boundary at the bottom with passive field advec-
tion. Upper boundary is open to outflows, the magnetic field is
matched to a potential magnetic field. The latter requires fast
Fourier transforms.

3 PROFILING

Code profiling reveals several metrics that show in-depth infor-
mation about code performance and behaviors. There are various
profiling applications that serve a variety of purposes. We have
used GNU gprof, ARM MAP and NVIDIA nvprof tools during the
entirety of this development process. Since the beginning of this
project nvprof has been deprecated by NVIDIA and replaced with
NVIDIA NSight Compute, which offers many of the same function-
alities. For this paper version since many of our experiments were
conducted before NSight Compute’s release, we discuss our results
with nvprof.

3.1 CPU Profiling

To effectively port and optimize the performance of a code it is
important to gain a high-level view of the code’s performance as-
is to identify areas that are most computationally intensive and
consume the greatest percentage of the total runtime. Additionally,

observing the scalability of the CPU code will give insight into any
overheads caused by MPI communication.

Two key metrics observed during CPU profiling would be the
percentage of time spent in each routine considering a single MPI
rank on a single CPU core and the MPI communication of using
many CPU cores as well as multiple compute nodes. Using ARM
MAP for the single core profile enabled the creation of a graphical
function call graph that showed the flow of code execution as well
as the percentage of runtime taken by each step. Nvprof also allows
for some CPU profiling, however was primarily used to observe
CPU performance side-by-side with GPU performance. ARM MAP
is also used to capture the MPI communication when using multiple
MPI ranks across several CPUs.

The single core profiling results are shown in Figure 2. From
these results, there are three portions of the code that account
for 71% of the total runtime: MHDRES, TVDDIFF and RTS. These
profiling results are for single-band radiation transport. In multi-
band applications RTS could be up to 12 times more expensive. The
importance and functionality of these routines are described in
Section 2. Since this is only showing performance of a single CPU
core it gives insight as to what routines are computationally inten-
sive without concerns of any MPI overhead. With these results we
have a clear starting point of what routines should be immediately
targeted for parallelization.

RTS is significantly more complicated that MHDRES and TVDDIFF
as the radiation portion of the code contains many smaller sub-
routines. The general techniques used to parallelize MHDRES and
TVDDIFF, as well as the majority of the rest of the code, is described
in detail in Section 4. The parallelization of RTS presented many
interesting challenges and was handled very differently than the
rest of the code. The parallelization of RTS is described in Section 5.

The MPI profiling using ARM MAP results are shown in Figure 3.
In contrast to the single core profiling, additional routines like
FFTW and DST affects the total runtime, with FFTW being the MPI
version of the FFTW 3.8 library and DST communicating ghost
cells through MPL RTS also includes a significant amount of MPI
communication. Figure 3 shows that the MPI communication within
RTS alone accounts for 6.2% of the total runtime. Optimizing the MPI
communication is an important task for the performance of both
and CPU and GPU code. The inclusion of GPU-aware MPI for device-
to-device direct MPI data transfers is discussed in Section 4.3 and
some MPI optimizations specific to RTS are discussed in Section 5.3.

3.2 GPU Occupancy

GPU profiling tools can reveal important information about the
achievable performance of a code. One performance metric that
significantly guided our development process was the achieved
and theoretical GPU occupancy. GPU occupancy for NVIDIA GPUs
refers to the percentage of warps active at a given time. Theoretical
GPU occupancy can be determined by examining the GPU register
and shared memory usage when a kernel is compiled. Low theoret-
ical GPU occupancy is generally caused by a kernel needing to use
too many registers or too much shared memory, which results in
the GPU not having enough resources to support using every warp
simultaneously.

ConsToPrim
12.6%

TVDDIFF

MHDRES
25.2%

Figure 2: Single core profiling.

Eos_output

4.8%
MHDRES

ConsToPrim
6.4%

TVDDIFF
7.6%

Figure 3: Multi core profiling.

Achieved GPU occupancy is simply the GPU occupancy that is
observed during kernel execution. It is ideal to have theoretical GPU
occupancy as close to 100% as possible and to have achieved GPU
occupancy as close to the theoretical GPU occupancy as possible.
There are many possible reasons for achieved occupancy to be
lower than theoretical occupancy, some of which was observed in
our work with MURaM. The GPU occupancy of several important
kernels is shown in Figure 4 and using this metric we can identify
two key performance issues within MURaM.

Firstly, many of the kernels are reaching very low theoretical
occupancy, with MHDRES and TVDDIFF reaching 25% and 33%
respectively. For these two kernels, the low theoretical occupancy
is due to an over-allocation of GPU registers per thread. Figure 5
shows the potential theoretical occupancy of the MHDRES kernel
when the registers per thread changes. If any more than 32 registers
are allocated per thread the theoretical occupancy will go below
100%, and since MHDRES is compiled to use 122 registers per thread,
it can only reach 25% theoretical occupancy.

This is an interesting problem in directive-based programming
models, such as OpenACC, because the programmer relies on the
compiler to assign GPU registers when generating the GPU code.
When using a device-specific language, such as CUDA, the program-
mer can fine-tune this register allocation to a higher degree. In the
case of MHDRES the PGI compiler has determined that 122 regis-
ters is the optimal number to achieve the most performance, and

incorporating a hard register limit of 32 registers sees a significant
performance decrease.

Secondly, RTS:integrate shows a different problem where the
theoretical occupancy is very high while the achieved occupancy
is very low. This means that when RTS:integrate is compiled the
number of registers and the amount of shared memory assigned is
such that the GPU could potentially support every warp running
simultaneously. However, in practice only 10% of those warps are
used when executing the kernel. This is due to a lack of parallelism
being exposed in a way that we are only able to parallelize across
two dimensions of our three dimensional domain. Typically, modern
GPUs are expected to perform SIMT parallelism on several millions
of data points, but in this kernel we are only hitting a few ten
thousands, resulting in the 10% GPU occupancy. The reasoning for
this will be thoroughly elaborated on in Section 5.

GPU Occupancy By Kernel

W Achieved Theoretical

100%
80%

60%

40%
- . I
o |

MHDRES TVDDIFF RTS:Integrate RTS:Interpol RTS::Flux

GPU Occupancy %

GPU Kernels

Figure 4: Theoretical and achieved GPU occupancy of vari-
ous GPU kernels within MURaM.

4 DEVELOPING MURAM USING OPENACC

In this section we provide an overview of our development process
with OpenACC.

4.1 Refactoring the MURaM Code

Maintaining correctness during the migration of MURaM’s large
and complex code-base to support GPUs presented a challenge.
To address this key issue, we chose an incremental, test-driven
development approach throughout. This involved three steps: 1)
identifying suitable baseline test cases; 2) creating a correctness
validation build-test system; and 3) incremental migration to GPUs
by applying OpenACC directives and validation of the results. It is
worth noting that steps 1 and 2 required close collaboration with
the solar physicists on our team.

We chose a test case with a grid size of 192x64x64 for our val-
idation suite because it’s small enough to run on a single CPU
core while still capturing the solar atmosphere from the upper con-
vection zone into the lower solar corona and therefore testing all
implemented physics in the code. We used this setup to generate
the CPU reference data required to validate the GPU implementa-
tion against. During the porting and development process, its small
size allowed us to quickly and repeatedly run the model for the 50
time-steps required by the validation suite without exhausting our
limited cluster resources. It’s also large enough to decompose and
test in different x, y, and z core layouts.

Impact of Varying Register Count Per Thread

Multiprocessor Warp Occupancy
(# warps)

Registers Per Thread

Figure 5: Effect of GPU register usage on GPU occupancy in
the MHDRES and TVDDIFF kernels.

To validate correctness, we developed a validation suite which
builds and runs the ported code using different combinations of
processor layouts. At specific timesteps, diagnostic variable data is
output into files. The test diagnostics can be compared to reference
diagnostics generated by the CPU master code using a matching
data set and processor layout. We defined an acceptance tolerance
as the variance observed between MPI CPU runs with varying
decompositions and core layouts, which is a maximum relative
error margin of 1e-05. However, bit errors on the order of le-7 can
cause large relative errors at points where the reference data is
close to zero. To handle this issue, an absolute error between the
diagnostic and reference data is also calculated and accepted when
less than 1e-7. Figures 6 and 7 show some of the graphs generated
by our validation suite. These figures are often very helpful in
debugging problems that occur at predictable areas of the domain,
such as at processor boundaries.

For additional correctness checking we utilized a new feature in
the PGI compiler called PGI Compiler Assisted Software Testing
(PCAST) [3]. This allows direct comparison of data from a reference
run of the code to be compared to a current run. PCAST can be used
in two modes: automatically running the CPU and GPU version of
a kernel then comparing their outputs directly immediately after,
or comparing the output to a previously generated PCAST output
file. PCAST also has the option to generate all of these comparisons
automatically with a compiler flag, however given MURaM’s code
complexities, it was not straightforward to use PCAST. Regardless of
the issues, we were still able to manually apply PCAST throughout
the code.

Q Radiation

Max Error

10 20 30 LY
Iteration

Figure 6: Maximum Relative Error in GPU calculated
Q_Radiation over 50 iterations.

To implement PCAST to the code we created a wrapper macro
that could be ignored based on a toggle in the code compilation,
or if using a non-PGI compiler. This macro was placed before each
kernel and captured the data of all of the significant input variables,
as well as after each kernel and captured all significant output
variables. Then the code was compiled for CPU and ran for only
two timesteps to avoid creating too large of a reference file. Any
future GPU runs could then be build with PCAST and compared
to the CPU reference pointing out any minor discrepancy between
the reference run. Additionally, PCAST includes a feature called
patching that will replace any incorrect values with their reference,
allowing us to see isolated errors and avoid error propagation to
later tests.

In the incremental refactoring process, we initially target a single
loop nest and apply OpenACC directives to have that loop run
on the GPU, without focusing on any sort of optimization. Data
management is also handled as locally as possible with all input
variables copied to the GPU immediately before the loop and all
output variables copied to the host immediately after the loop. This
allows for a single isolated portion of the code to be parallelized
without having any cascading effects on the rest of the code. The
key benefit to this strategy is that we can ensure code correctness
first and foremost before moving on to any optimizations, which
can introduce new problems into the code. Once that portion of the
code has been parallelized, we checked for two things. 1) ensure
that the code still produces correct results, 2) verify with a profiler
that the portion of code is running on the GPU and is behaving as
expected.

Frequent code profiling during development gives a very im-
portant sanity check at every step of the process. It ensures that
the most recent code changes are running properly on the GPU
and contain any expected data movement associated with them.
Some problems that this profiling can identify are kernels running
significantly slower than expected, extra or unexpected data move-
ment and low kernel performance from metrics such as occupancy
or bandwidth-bound kernels. Many of these details become very
important once we move past the initial parallelization and move
on to optimizing the GPU code.

4.2 Optimizing Host-Device Data Movement

After every important loop was running on the GPU we began
the process of eliminating redundant data movement between the
host (CPU) and device (GPU). These copies are expensive, but an
artifact of the careful, incremental nature of our porting strategy.
As with any optimization, removing redundant data copies between
neighboring kernels required re-verifying code correctness with
our validation suite.

We used a GPU profiler, nvprof, to identify the data transfers
occurring between kernels. Even after we had removed all the un-
necessary data transfers from the code we were still observing
many small data transfers happening before kernel launches. With
the help of the profiler we discovered that device memory allocated
with an OpenACC API function works differently than device mem-
ory allocated with an OpenACC directive, and causes there to be a
small amount of data transfer before kernels where this memory is
used. We are not sure exactly what within the PGI compiler causes

this, but we now solely use OpenACC directives to eliminate these
small data transfers.

Every core MURaM routine is ported to the GPU with optimized
data movement. Additionally, many computational kernels have
been further optimized for GPU performance, and finishing opti-
mizations on the remainder of the code is a clear future direction
of the MURaM project.

4.3 Optimizing GPU-aware MPI

For the multi-GPU runs in this project we are using OpenMPI 3.1.4
that provides support for GPU-to-GPU MPI data transfers when
installed on a machine with compatible hardware. To use this fea-
ture a valid GPU address pointer is passed into the MPI function
call. In a language such as CUDA this is very straightfoward, as
the programmer explicitly manages GPU memory allocations. In
OpenACC however the GPU memory allocation is hidden from
the programmer by the OpenACC runtime. To expose the GPU
address pointer OpenACC provides the host_data directive and
use_device clause that allows interoperability with GPU-based
libraries. While using GPU-aware MPI with OpenACC is very sim-
ple, verifying that device-to-device data transfers are working as
expected is a challenge. The only way that we currently know to
verify this functionality is by profiling the MPI GPU application us-
ing nvprof and checking explicitly that device-to-device (or DtoD)
data transfers are occurring. Within our development system there
was a significant amount of trouble getting OpenMPI installed with
proper GPU-aware support, and several iterations of testing were
required to reach the expected hardware performance level.

5 OPTIMIZING RADIATION TRANSPORT

It is well known that computing 3D radiation transport (3D-RT) is
extraordinarily expensive, depending on two angular dimensions
(i.e. the zenith and azimuthal angles) and three spatial dimensions.
RT solvers are typically iterative, further adding to the cost. How-
ever 3D-RT is absolutely essential in many MHD and astrophysical
situations, including solar physics.

In the case of MURaM’s 2883 reference test case with one band,
the radiation transport solver (RTS) is the most expensive part of
the calculation, accounting for nearly half the time on a single, dual-
socket CPU node. More realistic, multi-node 3D radiation transport,
in which the RTS must be called once per frequency band, will drive
the proportion of time spent in RTS even higher.

For this reason RTS has received the most optimization effort
during our GPU port. However, RTS exhibits a wavefront data
dependency pattern in its primary computational kernel as well as
several blocking MPI communications. This section will focus on
optimizing RTS while considering the complexities and limitations
of the solver’s underlying algorithm.

5.1 Summary of the Radiation Transport Solver

The MURaM code uses short characteristics to solve for the ra-
diation field [27]. This method involves integrating the radiation
transfer equation along a ray using values of intensity and opacity
interpolated from the neighbouring grid cells. To calculate the mean
intensity and radiative fluxes at each grid point a set of 3 rays per
octant are used to integrate over the unit sphere. The solver uses

CPU Calculated Q Radiation

GPU Calculated Q Radiation

Percentage Error: Q_Radiation

Figure 7: Percentage Error in GPU calculated Q_Radiation after 50 iterations.

3D domain decomposition and iterates the intensities at the bound-
aries of each sub-domain until the errors are within a prescribed
tolerance. A multi-band opacity scheme is used in order to effi-
ciently include the frequency dependence of the radiation transfer
problem in the solar atmosphere. For feedback into the MHD code
the radiative heating or cooling at each point in space is calculated.
In practice, using 3 rays per octant results in 24 total rays that
are iteratively computed until they converge to an error threshold.
Figure 8 shows the structure of the core computational loop in RTS.
Expanding on the routines described in Section 2, writebuf{) and
readbuf{() pack and unpack a buffer that will be exchanged with
neighbors in the exchange() routine.

for(< x direction >)
for(< y direction >)
for(< z direction >)
for(< angle >) Total 24 rays
{
interpol ();
while (g_maxerr > THRESHOLD)
{
readbuf ();
integrate ();
writebuf ();
exchange ();
double err = error();
MPI_Allreduce(&err , &g_maxerr);

}
readbuf ();
flux ();

Figure 8: Pseudocode of RTS’s core computational loop

The most important routine within RTS is called integrate(),
which is executed 50-100 times per timestep. However, unlike the
other routines, integrate() introduces a wavefront data dependency
pattern that restricts the parallelism attainable within it. This means
that even though we are working with a 3-dimensional domain, we
can only achieve two dimensions of parallelism; one dimension of
our problem will have to remain sequential as displayed in Figure 9.

This data dependency introduces several performance challenges
that must be addressed: 1) GPU kernels with 2-D data parallelism
are very small and under-utilize the compute processors of GPUs, 2)
having one dimension of the domain remain sequential means we
must launch possibly hundreds of small GPU kernels to compute
the entire domain, introducing runtime-dominating kernel launch
overhead, 3) since each ray sweeps in a different direction, some
rays have better memory access striding than others, meaning that
some rays take several times longer to compute than others.

5.2 Reducing Kernel Launch Overhead

Anytime a GPU kernel is launched a certain amount of overhead is
incurred. When this overhead is very small compared to the time

c. | | d.

Figure 9: Representation of the wavefront dependency in
RTS integration. a) shows the preloaded boundary condi-
tions with no computation done. b) shows the first set of grid
points in red to be computed in parallel. c) shows the next
set of grid points to be computed in parallel, each blue grid
point depends on up to four of the red grid points. d) shows
the last grid points to be computed in parallel, each green
grid point depends on up to four of the blue grid points.

spent in the GPUs parallel computation, good performance is still
achieved. However, in edge-cases such as our integrate() routine,
this overhead can become a dominant factor in the overall execution
time. The OpenACC async directive can be used to hide a large
portion of this overhead by queuing many kernels on the GPU
before they are run. While the earlier kernels are being computed,
the later kernels are being pre-loaded which allows overlap between
the execution of the current kernel and the setup of the next one.
However, by closely analyzing the GPU profiler, nvprof, it was clear
that even with this optimization our integrate() routine was still
performing sub-optimally due to kernel launch overhead.

Figure 10a shows the overhead between two launches of the
integrate() kernel. Each of these kernels are only computing two
dimensions of the dataset, and a single call to the integrate() routine
will result in a few hundred of these kernels being launched. In
between the computation of each kernel is 35us where the GPU
processors are idle. The profiler revealed that there is some amount
of data movement happening before and after each kernel, and the
source was a pointer translation. This is likely related to the host
address pointer needing to be translated with the device address
pointer within the OpenACC runtime.

To address this, we changed how the arrays in integrate() were
being allocated; instead of allocating them on the host first then
the device, we allocated them only on the device. The effect of
this is seen in Figure 10b, where the overhead has been reduced
to 26ps between kernels. This is an improvement, but the profiler

still clearly shows that something is still happening between these
kernel launches. We found that this has something to do with how
C++ class members are handled. Since all of the arrays used within
RTS are stored within a class we created a pointer outside of a class
that referenced the needed arrays, and used those new pointers in
integrate(). After this change Figure 10c shows that the overhead
is further reduced to 5us between the kernels. This means that
integrate() is still spending nearly half of its time with idle GPU
processors. In order to address this issue, we would need to refactor
the code as discussed in the next section.

Wi . 1y (T 1
|] | | | | | .
- - -
Lo compute cone Vsce e | scc e oorecorzs L comput Joce o | s oner covsoreccans Jace compe] s cne_ s e |
nn i = 1 i
ey =))
& w - o

[Evs=arier 130 gentoutt}

Figure 10: Nvprof profiler highlights the process of reduc-
ing kernel launch overhead in the RTS integrate() kernel.
(a) Overhead between 2 launches, (b) Reduced overhead be-
tween kernels launches, and (c) Further reduced overhead

5.3 Restructuring of RTS Integration

This section will discuss further RTS code optimizations that require
refactoring the RTS code.

5.3.1 RTS Transpose. Since integrate() has to deal with a data
dependency there are three possible scenarios that we refer to as
an x, y or z dependency. These names depend on which of the three
dimensions must remain sequential, as outlined in Figure 9. An x
or y dependency are parallelized in such a way that the z direction
is handled by the inner most loop, which allows for vectorization
on a perfectly strided array. However, for the z dependency, the
x direction is the inner most loop which results in very bad mem-
ory striding. The z dependency is up to 10x slower than x or vy,
depending slightly on the dataset. The domain decomposition and
dataset dimensions will determine how often the rays exhibit the z
dependency, and in typical runs it happens often.

Our solution to this was to create a second version of all of the ar-
rays used within integrate() to have an alternate transposed version.
This includes the intensity which is calculated within integrate()
and the coefficients which is calculated within interpol(). Interpol()
uses three other arrays to calculate the coefficients, but they are

read-only within interpol(). We transpose the three read-only ar-
rays in interpol() once per timestep before the main computation
happens, then we ensure that the coefficients are written in the
same order that integrate() will read them. Then we transpose the
intensity array back before the flux values are calculated.

This results in the integrate() kernel being able to work in perfect
stride even when encountering a z dependency pattern. The cost
is the few extra transposes that have to be done, but in our test
runs we are still seeing a significant improvement with integrate()
running 5x faster overall, and RTS as a whole running 3x faster.
This is ultimately a performance loss for the CPU, but is easily
manageable using branching compilation with ifdef in C++. This
"data tranposition" version of RTS performed well for the GPU in
every test case we have tried, so the results discussed in Section 6
use these changes.

5.3.2 RTS Integration and Interpolation Merge. One strat-
egy for addressing the 50% idle time of integrate() is to increase the
amount of computations performed in each kernel. The two kernels
that can be most easily merged are interpol() and integrate(). How-
ever, as seen in Figure 8 integrate() is inside of a convergence while
loop and interpol() is outside of it. This is because the coefficients
calculated in interpol() only need to be done once for each ray and
the results are stored within an array to be read from in integrate().
Instead of storing the coefficients into an array we moved their
calculation into the integrate() kernel and used them directly. This
means that any ray that takes more than one iteration to converge
will now have to compute these coefficients more often, but with
the possible benefit that now with more work to do the integrate()
kernel may be more efficient.

The results of this change varied in our test cases. For smaller
datasets, such as 64%, where the GPU occupancy was at its lowest
and the kernel had less work to do, the interpol() and integrate()
merge resulted a speedup of around 30% for RTS overall when com-
pared to a GPU run without this change. This optimization might
be beneficial for future MURaM forecasting scenarios, where high
throughput (capability) would be of paramount importance, requir-
ing strong scaling to smaller per-GPU problem sizes to achieve.
However, problem sizes more representative of the current use of
MURaM simulations showed a significant performance decrease of
up to 50%.

In the chromosphere the radiation field can be strongly scat-
tering, meaning the radiation source function is strongly depen-
dent on the intensity. For strong-scattering problems, the radiation
transfer problem becomes more non-local, increasing iterations
to convergence. In this case it is preferable to use a Gauss-Seidel
convergence scheme [46]. As the intensity is integrated along the
ray, this scheme will require updating the source function for each
point along the ray, and then using the ‘new’ source function to in-
tegrate the intensity at the next point along the ray. This algorithm
requires a combined treatment of interpolation and integration.
This modification will therefore be of interest to apply the GPU
short-characteristics scheme to broader range of stellar problems.
For this reason, this variation of RTS may be an important direction
for future work.

5.3.3 Similar Dependency Overlap. Another challenge that
we addressed was the low GPU occupancy observed in integrate().

One technique tried was to combine the computation of several
rays into a single kernel. Our first approach was to use OpenACC
asynchronous programming to queue the work of all 24 rays simul-
taneously on the GPU. The hope was that the GPU would be able
to overlap the computation of multiple rays since a single ray is
only using about 10% of GPU resources.

In practice, we observed through the GPU profiler, nvprof, that
this method did allow for a little bit of overlap between the com-
putation of multiple rays, but far less than what we would assume
to be theoretically possible. In our experimentation, this method
only improved performance by 5%. Typically when OpenACC asyn-
chronous programming, GPU computation overlaps with either
CPU computation or CPU/GPU data transfers. Additionally, there
is no way to lock specific streaming multiprocessors to specific ker-
nels within OpenACC. If this existed it could possibly be a viable
solution to the problem we are facing.

We have experimented with a few other optimization variations.
First, instead of relying on the OpenACC async clause to overlap
computation, rays that exhibit a similar dependency pattern are
combined with an outer parallelizable loop. We can identify 6 groups
with 4 rays each that will exhibit a similar dependency pattern with
the group. This means that the arrays used within the affected RTS
computation routines must be increased in size by a factor of 4. This
would increase the work done per integrate() kernel by a factor of 4
as well. When only considering the computational benefits of this
change we observed a reasonable performance benefit. And similar
to the methodology in Section 5.3.2 this RTS variation received a
larger performance increase for smaller datasets, likely when the
idle time between kernels and GPU occupancy is at its lowest.

Since many rays would now be overlapped, instead of computed
one-at-a-time, the way to determine convergence is changed to a
global convergence instead of a per-ray convergence. This could
have the added benefit of reducing the total number of iterations
needed overall. Additionally, since 4 rays can be computed simulta-
neously, there will be 4 times fewer exchange() function calls and
a factor of 24 times less error() function calls and associated MPI
all-reduce routine calls which could greatly reduce the MPI com-
munication overhead within RTS. Lastly, since half of the rays are
moving upward and half moving downward it is possible that we
could use 3 groups of 8 rays instead of 6 groups of 4, as rays mov-
ing upward vs. downward could still exhibit the same dependency
pattern.

Implementing and evaluating these optimization ideas fully re-
mains as future work for the project, and are not utilized when
discussing performance results in this paper.

6 RESULTS

In this section, we present the results of running MURaM on multi-
ple CPUs and GPUs while demonstrating parallel efficiency.

6.1 Experimental Setup

The Cobra system consists of 3424 compute nodes, each containing
two Intel Xeon Gold 6148 Skylake (SKL) processors (20 cores at
2.4 GHz) and 100 Gb/s OmniPath interconnect. There are 64 GPU
nodes with 2 NVIDIA Tesla V100-PCIE-32GB per node utilizing
32 GB HBM2 for a total of 7.9 TB HBM2 across all nodes. CPU
runs: Intel 19.1.3, Intel MPI 2019.9, MKL 2020.2, FFTW-MPI 3.3.8.

GPU runs: For the -O0 runs - NVHPC 20.4, CUDA 10.2, OpenMPI
4.0.5 with UCX 1.8.0, FFTW-MPI 3.3.8; For the -O3 runs - NVHPC
20.9, CUDA 11, OpenMPI 4.0.5 with UCX 1.8.0 and FFTW-MPI 3.3.8.
At the time of submission,we were able to collect results for GPU
strong scaling for the 2883 dataset using -03. For the weak scaling,
the runs used -O0 and the -03 runs were finishing up. Preliminary
results showed for the 2883 dataset, with -03, the GPU weak scaling
ran approximately 10% faster. (Note: PGI compilers have been since
October 2020 renamed to NVHPC [35])

6.2 Single GPU Performance

Our initial project focus was optimizing performance on a single
GPU. In practice, the simulations that are run with MURaM will
require multiple GPUs, but using a smaller dataset allows us to
study GPU performance separately from the scalability of the MPI
implementation. Using a single V100 GPU, the average time to
simulate one single-band (or gray scale) timestep with the 2883
dataset is 2.285 seconds. This is a 1.73x speedup over the 3.949
seconds required to run the same simulation on a fully subscribed
40-core Skylake CPU node.

6.3 Strong Scaling

Strong scaling is defined as how the solution time varies with
the number of processors for a fixed total problem size. For our
strong scaling experiment we use a 288> dataset divided across
8 GPUs and 8 fully subcribed CPU Skylake nodes (40-cores per
node). The CPU runs use -O3 and AVX512 flags and the GPU runs
use -O3. We are also comparing the strong scaling performance
of the code with gray band (1 band) and colored band (4 band
and 12 band). The colored band increases the workload in RTS
and is proportional to the scaling of RTS. Figure 11 shows the
strong scaling of MURaM with this configuration. The performance
of the code is measured in millions of sites updates per second
(Msite/s). Cobra contains 2 GPUs per node, so increasing to 4 GPUs
requires inter-node communication. From 1 to 2 GPUs the code
scales very well in both the single and 4-band case, roughly doubling
the throughput. However, moving from 2 to 4 GPUs only increases
throughput by 1.63, which is possibly due to the higher cost of
internode communication. Preliminary results shown for the 8
GPU runs indicate that a more optimal core decomposition for
multi-node scaling may be chosen after further testing.

We also gathered strong scaling results using up to 96 GPUs for
a 288 x 576 * 576 single-band dataset, as shown in Figure 12. These
results show the strong scaling performance of the RTS routine as
compared to the overall simulation: both seem to do reasonably
well. The scaling efficiency of both RTS and the full model begin to
decrease when the dataset is split over more than 32 GPUs, and the
number of points per GPU falls below one million.

6.4 Weak Scaling

Weak scaling is defined as how the solution time varies with the
number of processors for a fixed problem size per processor and
gives a great deal of information about the MPI communication
and overall scalability of the code. Figure 13 shows a breakdown of
the GPU weak scaling with respect to the different routines of the
code. This figure is also measured in terms of seconds per timestep.

Msite updates per second

V100 GPUs or Fully-Subscribed Skylake Nodes
—e—1-Band CPU

- & -4-Band CPU ‘e 12-Band CPU

o 12-Band GPU

CPU-GPU strong scaling of a multi-band 288>

—e—1-Band GPU - -4-Band GPU

Figure 11:
dataset

Msite updates per second

0 10 20 30 40 60 70 80 920 100

50
V100 GPUs

—-Total —-RT

Figure 12: GPU Strong Scaling of a 288x576x576 dataset

We use a 288 dataset per GPU for this experiment. It is clear that
between 1 to 64 GPUs the scalability suffers due to the FFTW library.
Currently, we are using multi-threaded FFTW on the CPU with
results being copied to the GPU after computations. As a future
direction, we plan to explore a GPU-enabled FFT library.

6.5 Results Summary

There is an increased computational cost moving the simulation
from single-band to multi-band, as seen in Figure 11. For N-bands,
the interpolation, integration, and flux calculation routines within
RTS run N times more often. Additionally, there are differences in
the convergence rate of RTS. Single-band RT is more transparent in
the highly structured upper photosphere, resulting in good scaling
in Figure 11. Multi-band RT is more sensitive to those structures
and converges more slowly.

7 RELATED WORK

Accelerating the solar physics simulation models through GPU
devices is a relatively new direction which attracts broad interest
from the scientific community. Related work [9] shows the "Time-
to-solution" performance results of a flux rope eruption simulation

Seconds/timestep

0 10 20 30 40 50 60 70 80 2 100
GPUs

——Total ——RT ——Other -e-RT+Other ——2D FFTBC

Figure 13: GPU weak scaling of a 288 dataset for RTS and
other MURaM routines

with their OpenACC implementation of MAS code. MAS repre-
sents Magnetohydrodynamic Algorithm outside a Sphere(MAS),
an in-production MHD code, which is part of the CORHEL suite
hosted at the Community Coordinated Modeling Center (CCMC).
Note that MHD is also a kernel in MURaM. The same group of
researchers also summarized the implementation of OpenACC into
MAS, including specific code example, strategies and development
tips. Other non-GPU MHD codes include BATS-R-US [36] that
solves 3D MHD equations in finite volume form using numerical
method. The code uses Message Passing Interface (MPI) and the
Fortran90 standard. Similary PLUTO [31], a numerical code for com-
putational astrophysics is a multi-physics, multi-algorithm, high
resolution framework that comprises of MHD, which is one of the
four independent physics modules of PLUTO.

As presented in this manuscript, one of the major kernels of inter-
est to us in MURaM is the radiation transport. Related work include
the recent acceleration of minisweep, a MiniApp of the Denovo [21]
radiation transport application on GPUs [42, 43] using OpenACC.
Results demonstrate that OpenACC running on NVIDIA’s next-
generation Volta GPU boasted an 85.06x speedup over serial code,
which is larger than CUDA’s 83.72x speedup over the same serial
implementation. Other MiniApps demonstrating radiation trans-
port approaches include Kripke [1] that uses RAJA [23] and Test-
SNAP [45] (mimicking communication patterns of PARTISN [5]
transport code) investigating different data layout patterns and
parallelism using Kokkos and OpenMP offload model [20]. Coarray
Fortran-based Sweep3D’s comparable performance to that of the
MPI is discussed in [15]. The work on Ardra [28] discusses porting
discrete ordinate transport code to CUDA while using RAJA model
with CHAI [25] and Umpire [6] to manage multiple memory spaces.

8 CONCLUSION

We have successfully added GPU acceleration to the MURaM code
using OpenACC using a test-driven refactoring methodology. The
refactored code achieves performance-portability between CPU
and GPU, and with one exception (the RTS transposition optimiza-
tion described in Section 5.3.1 above), is implemented as a single
code-base. While our work represents a fully functional port of

MURaM to GPUs, not all of MURaM’s routines have been fully op-
timized. Rather, we have focused here on a series of optimizations
to RTS, the most expensive and therefore most critical routine to
MURaM performance. Results for a 288> test problem show that
MURaM with the optimized RTS routine achieves 1.73x speedup
using a single MVIDIA V100 GPU over a fully subscribed 40-core
Intel Skylake CPU node and with respect to the number of simula-
tion points (in millions) per second, a single NVIDIA V100 GPU is
equivalent to 69 Skylake cores. Multi-GPU weak scaling tests on
Cobra show that all components of MURaM, with the exception of
the 2D FFT call in BND, can be scaled out. This opens the door to
MURaM experiments on large solar domains once a more scalable
2D FFT is identified and incorporated. Strong scaling tests illustrate
the point that GPUs can run RTS with 4 frequency bands as fast or
faster than comparable numbers of CPU nodes can run single band,
enabling routine use of multi-band RTS in solar research. The Ope-
nACC implementation will allow the MURaM code to utilize the
latest state-of-the-art HPC multi-GPU systems deployed at various
leadership-class centers around the world. We fully expect further
improvements to the model’s performance and scalability as our
optimization focus widens to include other routines and as the next
generation of GPUs are deployed.

REFERENCES

[1] 2017. Kripke. (2017). . https://codesign.linl.gov/kripke.php [Online; accessed
15-August-2017].

[2] 2017. Solar Flares: From Emergence to Eruption. https://news.ucar.edu/132648/
emergence-eruption. (2017).

[3] 2020. PCAST — PGI Compiler Assisted Software Testing. https://github.com/
ORNL-CEES/Profugus. (2020).

[4] JA Aguilera and C Aragén. 2007. Multi-element Saha-Boltzmann and Boltzmann
plots in laser-induced plasmas. Spectrochimica Acta Part B: Atomic Spectroscopy
62, 4 (2007), 378-385.

[5] Randal S. Baker. 2014. PARTISN on Advanced/Heterogeneous Processing Sys-
tems. (2014). http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/
LA-UR-13-20948 [Online; accessed 24-June-2014].

] D Beckingsale. 2017. Umpire. https://umpire.readthedocs.io/en/develop/. (2017).
[7] Claudio Bonati, Enrico Calore, Massimo D’Elia, Michele Mesiti, Francesco Ne-
gro, Francesco Sanfilippo, Sebastiano Fabio Schifano, Giorgio Silvi, and Raffaele
Tripiccione. 2018. Portable multi-node LQCD Monte Carlo simulations using
OpenACC. International Journal of Modern Physics C 29, 01 (2018), 1850010.

[8] Reuben D Budiardja and Christian Y Cardall. 2019. Targeting GPUs with OpenMP

directives on Summit: A simple and effective Fortran experience. Parallel Comput.

88 (2019), 102544.

Ronald M Caplan, Jon A Linker, Zoran Miki¢, Cooper Downs, Tibor Térok, and

VS Titov. 2019. GPU Acceleration of an Established Solar MHD Code using

OpenACC. In Journal of Physics: Conference Series, Vol. 1225. IOP Publishing,

012012.

B. G. Carlson. 1963. The numerical theory of neutron transport. In Methods in

Computational Physics, Vol. 1, B. Alder and S. Fernbach (Eds.). 1.

Sunita Chandrasekaran and Guido Juckeland. 2017. OpenACC for Programmers:

Concepts and Strategies. Addison-Wesley Professional.

Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. 2008. Using OpenMP:

portable shared memory parallel programming. Vol. 10. MIT press.

M. C. M. Cheung, M. Rempel, G. Chintzoglou, F. Chen, P. Testa, J. Martinez-Sykora,

A. Sainz Dalda, M. L. DeRosa, A. Malanushenko, V. Hansteen, B. De Pontieu,

M. Carlsson, B. Gudiksen, and S. W. McIntosh. 2019. A comprehensive three-

dimensional radiative magnetohydrodynamic simulation of a solar flare. Nature

Astronomy 3 (Nov. 2019), 160-166. https://doi.org/10.1038/s41550-018-0629-3

M. P. Clay, D. Buaria, and P. K. Yeung. 2017. Improving Scalability and Accelerat-

ing Petascale Turbulence Simulations Using OpenMP. http://openmpcon.org/

conf2017/program/. (2017). To Appear.

Cristian Coarfa, Yuri Dotsenko, and John Mellor-Crummey. 2006. Experiences

with Sweep3D implementations in Co-array Fortran. The Journal of Supercom-

puting 36, 2 (2006), 101-121.

[16] Joshua Hoke Davis, Christopher Daley, Swaroop Pophale, Thomas Huber,
Sunita Chandrasekaran, and Nicholas] Wright. 2020. Performance Assess-
ment of OpenMP Compilers Targeting NVIDIA V100 GPUs. arXiv preprint
arXiv:2010.09454 (2020).

=

[10]

[11

[12]

[13]

[14]

[15]

[17] A. Dedner, F. Kemm, D. Kréner, C.-D. Munz, T. Schnitzer, and M. Wesenberg.
2002. Hyperbolic Divergence Cleaning for the MHD Equations. J. Comput. Phys.
175 (Jan. 2002), 645-673. https://doi.org/10.1006/jcph.2001.6961
[18] Jose Monsalve Diaz, Kyle Friedline, Swaroop Pophale, Oscar Hernandez, David E
Bernholdt, and Sunita Chandrasekaran. 2019. Analysis of OpenMP 4.5 Offloading
in Implementations: Correctness and Overhead. Parallel Comput. 89 (2019),
102546.
DOE. 2020. The Compelling Case for Exascale Computing. https://www.
exascaleproject.org/. (2020).
H Carter Edwards and Christian R Trott. 2013. Kokkos: Enabling performance
portability across manycore architectures. In 2013 Extreme Scaling Workshop (xsw
2013). IEEE, 18-24.
Thomas M Evans, Wayne Joubert, Steven P Hamilton, Seth R Johnson, John A
Turner, Gregory G Davidson, and Tara M Pandya. 2015. Three-dimensional discrete
ordinates reactor assembly calculations on GPUs. Technical Report. Oak Ridge
National Lab.(ORNL), Oak Ridge, TN (United States). Oak Ridge
Tobias Gysi, Carlos Osuna, Oliver Fuhrer, Mauro Bianco, and Thomas C
Schulthess. 2015. STELLA: A domain-specific tool for structured grid meth-
ods in weather and climate models. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1-12.
Richard D Hornung and Jeffrey A Keasler. 2014. The RAJA portability layer:
overview and status. Technical Report. Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States).
The OpenACC Application Programming Interface. 2020. OpenACC
3.1. https://www.openacc.org/sites/default/files/inline-images/Specification/
OpenACC-3.1-final.pdf. (2020).
H Jones, D Poliakkoff, and P Robinson. 2017. CHAL https://github.com/LLNL/
CHAL (2017).
Jeongnim Kim, Andrew D Baczewski, Todd D Beaudet, Anouar Benali, M Chan-
dler Bennett, Mark A Berrill, Nick S Blunt, Edgar Josué Landinez Borda, Michele
Casula, David M Ceperley, et al. 2018. QMCPACK: an open source ab initio
quantum Monte Carlo package for the electronic structure of atoms, molecules
and solids. Journal of Physics: Condensed Matter 30, 19 (2018), 195901.
P. B. Kunasz and L. Auer. 1988. Short characteristic integration of radiative
transfer problems: formal solution in two-dimensional slabs. 7. Quant. Spectrosc.
Radiat. Transfer 39 (1988), 67.
A Kunen,] Loffeld, A Black, R Chen, P Nowak, T Haut, T Bailey, P Brown, S
Rennich, P Maginot, et al. 2019. Porting 3D discrete ordinates sweep algorithm
in ardra to CUDA. Technical Report. Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States).
[29] JaeHyuk Kwack, Colleen Bertoni, Buu Pham, and Jeff Larkin. 2019. Performance
of the RI-MP2 Fortran Kernel of GAMESS on GPUs via Directive-Based Offloading
with Math Libraries. In International Workshop on Accelerator Programming Using
Directives. Springer, 91-113.
Stefan Maintz and Markus Wetzstein. 2018. Strategies to accelerate VASP with
GPUs using open ACC. Proceedings of the Cray User Group (2018).
Andrea Mignone, G Bodo, S Massaglia, Titos Matsakos, O Tesileanu, C Zanni, and
Anthony Ferrari. 2007. PLUTO: a numerical code for computational astrophysics.
The Astrophysical Journal Supplement Series 170, 1 (2007), 228.
A. Nordlund. 1982. Numerical simulations of the solar granulation. I -
Basic equations and methods. Astronomy & Astrophysics 107 (1982), 1-
10. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1982A%26A...
107....1N&db_key=AST
NSF. 2020. The Daniel K. Inouye Solar Telescope (DKIST). http://dkist.nso.edu.
(2020).
NVIDIA. 2017. CUDA. https://developer.nvidia.com/cuda-zone. (2017).
NVIDIA. 2020. NVIDIA HPC SDK. https://www.pgroup.com/index.htm. (2020).
Kenneth G Powell, Philip L Roe, Timur J Linde, Tamas I Gombosi, and Darren L
De Zeeuw. 1999. A solution-adaptive upwind scheme for ideal magnetohydrody-
namics. J. Comput. Phys. 154, 2 (1999), 284-309.
M. Rempel. 2014. Numerical Simulations of Quiet Sun Magnetism: On the Con-
tribution from a Small-scale Dynamo. acm 789, Article 132 (July 2014), 132 pages.
https://doi.org/10.1088/0004-637X/789/2/132 arXiv:astro-ph.SR/1405.6814
M. Rempel. 2017. Extension of the MURaM Radiative MHD Code for Coronal
Simulations. acm 834, Article 10 (Jan. 2017), 10 pages. https://doi.org/10.3847/
1538-4357/834/1/10 arXiv:astro-ph.SR/1609.09818
M Rempel, M Schiissler, and M Knolker. 2009. Radiative magnetohydrodynamic
simulation of sunspot structure. The Astrophysical Journal 691, 1 (2009), 640.
Sunil Sathe. 2016. Accelerating the ANSYS Fluent R18.0 Radiation Solver with
OpenACC. https://tinyurl.com/yacxh5g7. (2016).
Will Sawyer, Guenther Zaengl, and Leonidas Linardakis. 2014. Towards a multi-
node OpenACC Implementation of the ICON Model. In EGU General Assembly
Conference Abstracts, Vol. 16.
Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez.
2018. Abstractions and Directives for Adapting Wavefront Algorithms to Future
Architectures. In Proceedings of the Platform for Advanced Scientific Computing
Conference. ACM, 4.

[19

[20

)
=

[22

[23

[24]

™~
2

[26

[27]

(28]

[30

[31

[32

(38]

[39

[40

N
=

[42

https://codesign.llnl.gov/kripke.php
https://news.ucar.edu/132648/emergence-eruption
https://news.ucar.edu/132648/emergence-eruption
https://github.com/ORNL-CEES/Profugus
https://github.com/ORNL-CEES/Profugus
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-20948
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-20948
 https://umpire.readthedocs.io/en/develop/
https://doi.org/10.1038/s41550-018-0629-3
http://openmpcon.org/conf2017/program/
http://openmpcon.org/conf2017/program/
https://doi.org/10.1006/jcph.2001.6961
https://www.exascaleproject.org/
https://www.exascaleproject.org/
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
 https://github.com/LLNL/CHAI
 https://github.com/LLNL/CHAI
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1982A%26A...107....1N&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1982A%26A...107....1N&db_key=AST
http://dkist.nso.edu
https://developer.nvidia.com/cuda-zone
https://www.pgroup.com/index.htm
https://doi.org/10.1088/0004-637X/789/2/132
http://arxiv.org/abs/astro-ph.SR/1405.6814
https://doi.org/10.3847/1538-4357/834/1/10
https://doi.org/10.3847/1538-4357/834/1/10
http://arxiv.org/abs/astro-ph.SR/1609.09818
https://tinyurl.com/yacxh5g7

Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez.
2019. MPI+ OpenACC: Accelerating radiation transport mini-application, min-
isweep, on heterogeneous systems. Computer Physics Communications 236 (2019),
176-187.

[44] The OpenMP API specification for parallel programming. 2020. OpenMP 5.1.
https://www.openmp.org/wp-content/uploads/OpenMP- API- Specification-5- 1.
pdf/. (2020).

Aidan P Thompson, Laura P Swiler, Christian R Trott, Stephen M Foiles, and
Garritt J Tucker. 2015. Spectral neighbor analysis method for automated gener-
ation of quantum-accurate interatomic potentials. J. Comput. Phys. 285 (2015),
316-330.

[46] J Trujillo Bueno and P Fabiani Bendicho. 1995. A novel iterative scheme for
the very fast and accurate solution of non-LTE radiative transfer problems. The
Astrophysical Journal 455 (1995), 646.

Veroénica G Vergara Larrea, Reuben D Budiardja, Rahulkumar Gayatri, Christo-
pher Daley, Oscar Hernandez, and Wayne Joubert. 2020. Experiences in porting
mini-applications to OpenACC and OpenMP on heterogeneous systems. Concur-
rency and Computation: Practice and Experience (2020), e5780.

[48] A.Vagler, S. Shelyag, M. Schiissler, F. Cattaneo, T. Emonet, and T. Linde. 2005.
Simulations of magneto-convection in the solar photosphere. Equations, methods,
and results of the MURaM code. A&A 429 (Jan. 2005), 335-351. https://doi.org/
10.1051/0004-6361:20041507

Zhifeng Yang, Milton Halem, Richard Loft, and Supreeth Suresh. 2019. Accelerat-
ing MPAS-A model radiation schemes on GPUs using OpenACC. AGUFM 2019
(2019), A11A-06.

[43

[45

[47

[49

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf/
https://doi.org/10.1051/0004-6361:20041507
https://doi.org/10.1051/0004-6361:20041507

	Abstract
	1 Overview
	1.1 Motivation
	1.2 Contributions

	2 MURaM Routines
	3 Profiling
	3.1 CPU Profiling
	3.2 GPU Occupancy

	4 Developing MURaM using OpenACC
	4.1 Refactoring the MURaM Code
	4.2 Optimizing Host-Device Data Movement
	4.3 Optimizing GPU-aware MPI

	5 Optimizing Radiation Transport
	5.1 Summary of the Radiation Transport Solver
	5.2 Reducing Kernel Launch Overhead
	5.3 Restructuring of RTS Integration

	6 Results
	6.1 Experimental Setup
	6.2 Single GPU Performance
	6.3 Strong Scaling
	6.4 Weak Scaling
	6.5 Results Summary

	7 Related Work
	8 Conclusion
	References

