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ABSTRACT
Spectral transforms between physical space and spectral space are
needed for fluid dynamical calculations in the whole sphere, repre-
sentative of a planetary core. In order to construct a representation
that is everywhere smooth, regular and differentiable, special poly-
nomials called Jones-Worland polynomials, based on a type of Jacobi
polynomial, are used for the radial expansion, coupled to spherical
harmonics in angular variables. We present an exact, efficient trans-
form that is partly based on the FFT and which remains accurate
in finite precision. Application is to high-resolution solutions of
the Navier-Stokes equation, possibly coupled to the heat transfer
and induction equations. Expected implementations would be in
simulations with 𝑃3 degrees of freedom, where 𝑃 may be greater
than 103. Memory use remains modest at high spatial resolution,
indeed typically 𝑃 times lower than competing algorithms based
on quadrature.

CCS CONCEPTS
• Applied computing → Earth and atmospheric sciences; •
Mathematics of computing → Mathematical software perfor-
mance; • Computing methodologies → Massively parallel and
high-performance simulations.
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1 INTRODUCTION
A goal of geophysics and planetary science is to understand the evo-
lution and dynamics of planetary cores, in particular its influence
on heat transfer through convection, their response to mechanical
forcing through precession and tides, and their ability to generate
magnetic fields through the dynamo action that can be supported
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by fluid motions therein. The fluid dynamics of planetary interi-
ors takes place in such extreme conditions that the field has been
greatly influenced by numerical computation. A requirement to
be able to reach the regime in which fluid motions are complex in
both space and time is the clever implementation of time-marching
routines together with efficient spatial discretisation of the fluid
domain, with the flexibility to reach a high number of degrees of
freedom (DOF); typical implementations presently use up to𝑂 (108)
DOF, with the prospect of calculations using 𝑂 (1010) DOF on the
near horizon. In the canonical setting of the whole sphere, applica-
ble to many planets and probably 80-90% of Earth history, spectral
methods are unsurpassed in accuracy and efficiency, subject to a
proper implementation. This is the subject of the present paper.

Spectral methods have a long tradition in geophysical applica-
tions. While complex geometries are the domain of local methods
(finite difference/element/volume), the undisputed king of simple
geometries such as spheres, cubes and spherical shells is the fully
spectral method. This is because the high accuracy they provide is
unsurpassed compared to local methods. Even the issue of paral-
lelisation of fully spectral methods has been overcome, such that
their prominence in the field is assured. While most studies are
concerned with spherical shells [3, 5, 20], our focus will entirely
be on the full sphere geometry. This geometry is applicable to gas
giant planets or the Early Earth [21]. It is also an important tool in
the study of the fundamental processes involved in magnetic field
generation [2, 8] as it preserves the general spherical geometry but
removes secondary geometrical effects due to the presence of an
inner core.

Exploiting the smooth and simple geometry, this paper will focus
on methods for the spectral expansion of functions in a spherical
geometry with polar coordinates (𝑟, \, 𝜙), with 0 ≤ 𝑟 ≤ 1. As is well
known, the spherical harmonics 𝑌𝑚

𝑙
(\, 𝜑) are designed to grace-

fully handle behaviour in (\, 𝜑), and the remaining question is the
description of the radial behaviour for 3D fully spectral simulations.
As presented in [12], if the angular components of a scalar are
expanded using spherical harmonics of degree 𝑙 and order𝑚, the
remaining radial part must behave as

𝑓𝑙 (𝑟 ) ∝ 𝑟 𝑙
(
𝑎0 + 𝑎1𝑟

2 + 𝑎2𝑟
4 + · · · + 𝑎𝑛𝑟

2𝑛 + . . .

)
, (1)

where 𝑟 ∈ [0, 1]; the expansion arises from the requirement for
infinite differentiability of the function at all points, including the
origin, which is a singularity of the coordinate system. Of course,
actual computations do not use monomials. Indeed, it is better to
use expansions that exhibit orthogonality under a certain inner-
product, and while several alternatives have been studied [22, 23],
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the Jones-Worland polynomials [11, 24] have been shown to provide
an accurate expansion for functions behaving as (1). The orthogonal-
ity is used constantly in numerical computations to move between
the spectral domain and the physical domain, using grid points
and quadrature rules. Such transforms are critical to the efficient
treatment of non-linear terms which are treated explicitly in the
time-marching of the Navier-Stokes equation. While alternative
expansions are possible, as for example based on a double Fourier
expansion [1] in place of the spherical harmonics or the use of
finite differences in the radial discretization, these approaches pro-
vide computational advantages but cannot satisfy the regularity
condition (1).

In this paper, we present an entirely new algorithm for the Jones-
Worland spectral transform (spectral-physical and vice versa) based
on the Fast Fourier Transform (FFT) that efficiently solves the prob-
lem of transforms. It does not require any explicit evaluation of the
polynomials and is an exact algorithm in infinite precision. Since
the algorithm is understood to have good conditioning, even in
finite precision, the algorithm is accurate to machine precision as
expected, with an operation count and memory footprint that are
very favourable.

The methods lend themselves to future implementation on multi-
core GPU enabled compute nodes, such as the present-day provision
of Piz Daint at the Swiss National Supercomputer Centre. They
provide an advantageous replacement for the quadrature based
transforms, suitable for high resolution 3D simulations in the unit
ball.

1.1 Jones-Worland polynomials and
Gauss-Chebyshev quadrature

The Jones-Worland polynomials have been developed in order to
provide a stable and accurate spectral basis for the behaviour in
Equation (1) [11]. We recall their main features in this section.
Considering a scalar field 𝑓 (𝑟, \, 𝜑) in spherical coordinates, its
expansion in the unit ball on the spherical harmonics can be written

𝑓 (𝑟, \, 𝜑) =
∑
𝑙,𝑚

𝑓𝑚
𝑙

(𝑟 )𝑌𝑚
𝑙
(\, 𝜑), (2)

where 𝑌𝑚
𝑙
(\, 𝜑) are the spherical harmonic of degree 𝑙 and order𝑚.

The radial function 𝑓𝑚
𝑙

has then the behaviour given in Equation
(1). The Jones-Worland polynomials are defined as a product of 𝑟 𝑙

with a Jacobi Polynomial 𝑃 (𝛼,𝛽)
𝑛 (𝑥). The flexibility in the choice of

(𝛼, 𝛽) is guided by a WKBJ analysis [11] that shows that outside
a boundary layer close to 𝑟 = 0, the envelope of oscillations of
the function can be made to be constant when 𝛼 = −1/2 and
𝛽 = 𝑙 − 1/2; the polynomials are then almost equi-ripple, and have
a deep connection to the ordinary Chebyshev polynomials. We
express the Jones-Worland polynomials as follows

𝑊 𝑙
𝑛 (𝑟 ) = 𝑟 𝑙𝑃

(− 1
2 ,𝑙−

1
2 )

𝑛 (2𝑟2 − 1) (3)

While other choices of 𝛼 and 𝛽 have been used successfully (e.g.
[9, 22]), this work focuses on 𝛼 = − 1

2 and 𝛽 = 𝑙 − 1
2 as it will

provide a connection to the Fast Fourier Transform (FFT). Jones-
Worland polynomials with the same 𝑙 are orthogonal with respect
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Figure 1: Jones-Worland polynomials for increasing 𝑛 =

0, 2, 10 for (upper left) 𝑙 = 0, (upper right) 𝑙 = 1, (lower left)
𝑙 = 16 and (lower right) 𝑙 = 32.

to a Chebyshev weight∫ 1

0

1
√
1 − 𝑟2

𝑊 𝑙
𝑖 (𝑟 )𝑊

𝑙
𝑗 (𝑟 )d𝑟 = ℎ𝑖𝛿𝑖 𝑗 (4)

ℎ𝑖 =
1

2(2𝑖 + 𝛼 + 𝛽 + 1)
Γ(𝑖 + 𝛼 + 1)Γ(𝑖 + 𝛽 + 1)
Γ(𝑖 + 𝛼 + 𝛽 + 1)Γ(𝑖 + 1)

The radial behaviour of𝑊 𝑙
𝑛 (𝑟 ) is illustrated on a few examples in

Figure 1. As the harmonic degree 𝑙 increases the range over which
the polynomials are essentially zero extends outwards from the
origin. Higher polynomial order 𝑛 for fixed 𝑙 is then required to
penetrate deeper into the sphere. Finally, the spectral expansion of
the scalar field 𝑓 (𝑟, \, 𝜑) is obtained as

𝑓 (𝑟, \, 𝜑) =
𝑁∑
𝑛=0

𝐿∑
𝑙=0

𝑙∑
𝑚=0

𝑓𝑚
𝑛,𝑙
𝑊 𝑙

𝑛 (𝑟 )𝑌𝑚𝑙 (\, 𝜑) . (5)

with truncation limits 𝑙 = 𝐿 and 𝑛 = 𝑁 .
In order to simplify the notation, the spherical harmonic indices

will be dropped as only the radial behaviour is studied in this paper.
The focus is then on computing for a fixed harmonic degree 𝑙 the
expansion

𝑓𝑚
𝑙

(𝑟 ) ≡ 𝑓 (𝑟 ) =
∑
𝑛

𝑓𝑛𝑊
𝑙
𝑛 (𝑟 ) (6)

If one is interested in quadrature rules with the least number of
quadrature points, the computation of the expansion coefficients 𝑓𝑛
can be performed using the Gauss-Jacobi quadrature rule. But given
the dependence of the polynomials on spherical harmonic degree 𝑙 ,
this requires a different quadrature grid for each harmonic degree
𝑙 [12], and is not amenable to 3D simulations where a single grid
is needed, on which all nonlinear terms are computed in physical
space. In light of (4), a Gauss-Chebyshev quadrature rule (GCQ)
is used instead, requiring a larger number of nodes but which has
simple grid points and weights. This approach has been used suc-
cessfully in several studies including [9, 10, 13]. The GCQ approach
allows to write the projection integral as a sum,

𝑓𝑛 =

∫ 1

0

1
√
1 − 𝑟2

𝑓 (𝑟 )𝑊 𝑙
𝑛 (𝑟 )d𝑟 =

∑
𝑖

𝜔𝑖 𝑓 (𝑟𝑖 )𝑊 𝑙
𝑛 (𝑟𝑖 ), (7)
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where 𝑟𝑖 and 𝜔𝑖 are the Gauss-Chebyshev grid points and weights
respectively. The evaluation of the Jones-Worland polynomials on
the grid is obtained by using the recurrence relation for the Jacobi
polynomials, as shown in Equation (8) but using 𝑟 𝑙 as a starting
value.

𝑎𝑛𝑃
(𝛼,𝛽)
𝑛 (𝑥) = (𝑏𝑛𝑥 + 𝑐𝑛)𝑃 (𝛼,𝛽)

𝑛−1 (𝑥) + 𝑑𝑛𝑃 (𝛼,𝛽)
𝑛−2 (𝑥) (8)

𝑎𝑛 = 2𝑛(𝑛 + 𝛼 + 𝛽) (2𝑛 + 𝛼 + 𝛽 − 2)
𝑏𝑛 = (2𝑛 + 𝛼 + 𝛽 − 1) (2𝑛 + 𝛼 + 𝛽) (2𝑛 + 𝛼 + 𝛽 − 2)
𝑐𝑛 = (2𝑛 + 𝛼 + 𝛽 − 1) (𝛼2 − 𝛽2)
𝑑𝑛 = −2(𝑛 + 𝛼 − 1) (𝑛 + 𝛽 − 1) (2𝑛 + 𝛼 + 𝛽)

For best performance, the values of the𝑊 𝑙
𝑛 (𝑟 ) on the quadra-

ture grid are computed and stored in a matrix W. The spectral
transforms are then computed as a matrix product. The forward
transform is obtained as

®𝑓 (𝑟 ) = W 𝑓 , (9)
and the backward transform as

𝑓 = W
𝑇𝝎 ®𝑓 (𝑟 ), (10)

where ®𝑓 (𝑟 ) are the values of 𝑓 (𝑟 ) on the grid, 𝑓 the vector of spectral
coefficients, 𝝎 a diagonal matrix of the Chebyshev weights and
column 𝑗 of W contains𝑊𝑗 (𝑟𝑖 ). While this is a good approach
at lower resolutions, it does have important shortcomings at high
resolution discussed in the next section.

1.2 Shortcomings of GCQ
It is time to address the elephant in the room: how does one stably
compute polynomials (3) for large 𝑙 , essential for the use of GCQ? It
is precisely the competition of two ingredients that leads to the beau-
tifully behaved product depicted in Figure 1. A WKBJ analysis [11]
shows that the amplitude of the oscillations in 𝑃

(−1/2,𝑙−1/2)
𝑛 (2𝑟2 −

1) → 𝑟−𝑙 while this effect is, of course, offset by the 𝑟 𝑙 behaviour
of the prefactor. At small values of 𝑟 this can lead to underflow in
𝑟 𝑙 and overflow in 𝑃

(−1/2,𝑙−1/2)
𝑛 (2𝑟2 − 1).

As an example, when 𝛼 = −1/2 we use Gauss-Chebyshev quad-
rature to calculate required integrals. The first quadrature point
is cos(𝜋/(4𝑁𝑟 )) for a general radial expansion with 𝑁𝑟 = 3𝑁 /2 +
3𝐿/4 + 1 radial quadrature points. The first point is at ∼ (2𝑁 + 𝐿)−1
and so will be at 𝑟1 ∼ 10−2 if 𝐿 = 50 and 𝑟1 ∼ 10−3 if 𝐿 = 512. In
double precision 𝑟 𝑙 results in an underflow if the value is < 10−300,
which occurs for the latter value which gives 𝑟 𝑙 = O(10−1500), well
below values representable by standard 64 bit floating point val-
ues. One can easily discover the breaking point: it is 𝐿 = 125 for
a quadrature point at 𝑟 = 0.0041. The device of starting the recur-
rence at 𝑟 𝑙 discussed in (8) does nothing to ameliorate the problem.
The situation becomes worse as more complicated operators are
considered which involve derivatives as is generally the case for
full-scale 3D computational fluid dynamics (CFD) simulations.

A second shortcoming is that the storage requirements for the
GCQ transform matricesW becomes problematic at high resolu-
tions. Indeed for a full spectral transform, there are 𝐿 + 1 matrices
with O(𝑁 2) elements. In full-scale 3D CFD simulations, not only
projection operators are required but also derivatives. Ten different
1The use of extended precision, advocated by [7], fails similarly at 𝐿 = 1500

operators are required and need to be stored. For a planetary dy-
namo simulation with 𝑁 = 1000, O(100GB) are required to store
the matrices. While the parallelisation allows us to distribute the
memory across nodes, load balancing considerations [12] still lead
to a large memory footprint for the GCQ method. When the im-
plementation on accelerators (e.g. GPU) is considered, the memory
footprint become even more important as they generally offer less
memory than CPU-based machines.

2 JONES-WORLAND TRANSFORM
ALGORITHM

There has been extensive research on fast transforms for orthogonal
polynomials and specifically Jacobi polynomials (e.g. [6, 16, 17, 19]).
The presence of the regularizing 𝑟 𝑙 factor in the Jones-Worland
polynomial leads to its own challenges and requires a specialized
solution. Furthermore, fast Jacobi transforms relying on asymptotic
expressions like the ones in [19] are not applicable to the large
values of 𝛽 = O(103) which are required here. This transform al-
gorithm is based on the connection relations that exist between
different families of Jacobi polynomials. We will follow a similar
approach to [14, 15, 18] and adapt it to the Jones-Worland polyno-
mials. The algorithm heavily relies on two recurrence relations for
the Jacobi polynomials. The first is

𝑃
(𝛼,𝛽)
𝑛 (𝑥) = 𝛾

(𝛼,𝛽)
𝑛 𝑃

(𝛼,𝛽+1)
𝑛 (𝑥) + Z

(𝛼,𝛽)
𝑛 𝑃

(𝛼,𝛽+1)
𝑛−1 (𝑥), (11)

where 𝑃
(𝛼,𝛽)
𝑛 (𝑥) are the normalized Jacobi polynomials and the

coefficients 𝛾𝑛 and Z𝑛 are given by

𝛾
(𝛼,𝛽)
𝑛 =

√
2 (𝑛 + 𝛽 + 1) (𝑛 + 𝛼 + 𝛽 + 1)

(2𝑛 + 𝛼 + 𝛽 + 1) (2𝑛 + 𝛼 + 𝛽 + 2) (12)

Z
(𝛼,𝛽)
𝑛 =

√
2𝑛 (𝑛 + 𝛼)

(2𝑛 + 𝛼 + 𝛽) (2𝑛 + 𝛼 + 𝛽 + 1) . (13)

This relation allows to promote the 𝛽 parameter to 𝛽+1. The second
relation that is needed is

(1 + 𝑥)𝑃 (𝛼,𝛽)
𝑛 (𝑥) = `

(𝛼,𝛽)
𝑛 𝑃

(𝛼,𝛽−1)
𝑛 (𝑥) + a (𝛼,𝛽)𝑛 𝑃

(𝛼,𝛽−1)
𝑛+1 (𝑥) (14)

where the coefficients `𝑛 and a𝑛 are given by

`
(𝛼,𝛽)
𝑛 =

√
2 (𝑛 + 𝛽) (𝑛 + 𝛼 + 𝛽)

(2𝑛 + 𝛼 + 𝛽) (2𝑛 + 𝛼 + 𝛽 + 1) (15)

a
(𝛼,𝛽)
𝑛 =

√
2 (𝑛 + 1) (𝑛 + 𝛼 + 1)

(2𝑛 + 𝛼 + 𝛽 + 1) (2𝑛 + 𝛼 + 𝛽 + 2) . (16)

While also promoting 𝛽 , the second relation will be used to intro-
duce the 𝑟 𝑙 factor of the Jones-Worland polynomials, since 𝑟 =√
(𝑥 + 1)/2.
In order to simplify the notation, from now on we will assume

𝛼 = −1
2 , (17)

𝛽 = 𝑙 − 1
2 , (18)

which is the relevant (𝛼, 𝛽) pair for the Jones-Worland polynomials
(Eq. (3)). To formulate the algorithm, we cast recurrence relation (11)
as an upper bidiagonal matrix V𝑙 where the diagonal elements are
given by 𝛾 (𝛼,𝛽−1)𝑛 and the superdiagonal elements by Z (𝛼,𝛽−1)

𝑛+1 for
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row 𝑛. Matrix V𝑙 can then be used to move from an expansion of the
form

∑
𝑖=0 𝑐

(𝑙−1)
𝑖

𝑃
(− 1

2 ,𝑙−1−
1
2 )

𝑖
to an expansion

∑
𝑖=0 𝑐

(𝑙)
𝑖

𝑃
(− 1

2 ,𝑙−
1
2 )

𝑖
with ©«

.

.

.

𝑐
(𝑙)
𝑖
.
.
.

ª®®®®¬
= V𝑙

©«
.
.
.

𝑐
(𝑙−1)
𝑖
.
.
.

ª®®®®¬
. (19)

The recurrence relation (14) is written as a lower bidiagonal matrix
M𝑙 such that it allows tomove from an expansion

∑
𝑖=0 𝑐

(𝑙−1)
𝑖

𝑃
(− 1

2 ,𝑙−1−
1
2 )

𝑖

to an expansion
∑
𝑖=0 𝑑

(𝑙)
𝑖

(1 + 𝑥)𝑃 (−
1
2 ,𝑙−

1
2 )

𝑖

©«
.
.
.

𝑑
(𝑙)
𝑖
.
.
.

ª®®®®¬
= M−1

𝑙

©«
.
.
.

𝑐
(𝑙−1)
𝑖
.
.
.

ª®®®®¬
. (20)

In this form and, upon closer inspection of the two recurrence
relations, the two matrices V𝑙 andM𝑙 are related by

M𝑙 = V𝑇
𝑙
. (21)

Consider a smooth function 𝑓𝑙 with the behaviour given in Equa-
tion (1) evaluated on the 𝑁𝑔 Gauss-Chebyshev quadrature nodes

𝑥𝑖 = cos
(
2𝑖 + 1
2𝑁𝑔

𝜋

)
, (22)

𝑟𝑖 =

√
𝑥𝑖 + 1
2 . (23)

Initially, we assume 𝑙 to be an even integer. Odd 𝑙 will be treated
subsequently as it requires a different first stage in the algorithm.
As 𝑙 is even and therefore the function is an even polynomial in 𝑟 ,
when evaluated for 𝑥 ∈ [−1, 1] the function 𝑓𝑙 remains a polynomial
with the order reduced by a factor of 2. The Chebyshev expansion
of 𝑓 can then be computed using the Discrete Cosine Transform
(DCT) type II formally defined as

𝑋𝑘 =

𝑁−1∑
𝑛=0

𝑥𝑛 cos
(
𝜋

𝑁

(
𝑛 + 1

2

)
𝑘

)
, 𝑘 = 0, . . . , 𝑁 − 1. (24)

Up to a normalization, this allows us to compute the expansion of
𝑓𝑙 on 𝑃

(− 1
2 ,−

1
2 )

𝑛 (𝑥). Truncating the series at 𝑁𝑇 gives

𝑓 (𝑥) ≈
𝑁𝑇∑
𝑖=0

𝑐
(0)
𝑖

𝑃
(− 1

2 ,−
1
2 )

𝑛 (𝑥) . (25)

For 𝑙 = 0 this is the only step in the algorithm. The goal is
now to use the recurrence relations from Equations (11) and (14)
to convert the expansion in Equation (25) into the coefficients for
higher harmonic degrees. Repeatedly applying V𝑙 in order to obtain
the expansion for 𝑙/2

©«
.
.
.

𝑐
( 𝑙2 )
𝑖
.
.
.

ª®®®®¬
= V 𝑙

2
· · ·V2V1

©«
.
.
.

𝑐
(0)
𝑖
.
.
.

ª®®®®¬
, (26)
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Figure 2: Absolute error on the spectral coefficients 𝑓𝑖 in
backward-forward transform loop with full unit spectrum
with 𝐿 = 𝑙 = 100 and 𝑁 = 50 by simply applying the recur-
rence relations repeatedly. Computations are performed us-
ing double precision.

followed by repeated backsolving against V𝑇
𝑙

V𝑇𝑙
2+1

· · ·V𝑇
𝑙−1V

𝑇
𝑙

©«
.
.
.

𝑐
(𝑙)
𝑖
.
.
.

ª®®®®¬
=

©«
.
.
.

𝑐
( 𝑙2 )
𝑖
.
.
.

ª®®®®¬
, (27)

produces an unstable algorithm for which accuracy is lost in finite
precision arithmetic even for low resolution. After a backward-
forward transform loop of a full unit spectrum the solution is com-
pletely lost as is shown in Figure 2 for 𝑙 = 100 and 𝑁 = 50. All of our
computations are performed in double precision. V𝑖 is the upper
bidiagonal matrix obtained by truncating the recurrence relation at
𝑁𝑇 . Therefore the last coefficient obtained by the matrix product
with V𝑖 is not exact as the recurrence relation involves the coeffi-
cient 𝑁𝑇 + 1. Through repeated application of V𝑖 and V𝑇𝑗 the whole
spectrum is corrupted. The application of V𝑇

𝑗
does not present any

problems as it is a lower bidiagonal matrix. The final Jones-Worland
expansion is truncated at 𝑁 which implies that at least 𝑁𝑇 = 𝑁 + 𝑙

2
Chebyshev modes are required for an exact transform. In order
to take into account additional normalization that depend on the
implementation of the DCT-II and the choice of normalization for
the Jones-Worland polynomials, a diagonal normalization matrix
D is introduced in the algorithms.

There are no restrictions on the order in which the V𝑖 and M𝑗

matrices should be applied. A well conditioned algorithm is ob-
tained by building pairs of V𝑖 and M−1

𝑖+1 leading to the following
expression

f̂ =
(
M−1

𝑙
V𝑙−1

)
· · ·

(
M−1

4 V3
) (

M−1
2 V1

)
c(0) . (28)

The banded lower/upper bidiagonal matricesM𝑖+1 and V𝑖 have size
(𝑛𝑠 − ⌊𝑖/2⌋) × (𝑛𝑠 − ⌊𝑖/2⌋) .

The pseudocode for the resulting algorithm is then given by Algo-
rithm 1. Intuitively, it is clear that the order (28) provides a better



Accurate and efficient Jones-Worland spectral transforms for planetary applications , ,

algorithm as each pairC𝑖 =

(
𝑀−1
𝑖+1𝑉𝑖

)
(with condition numberO(1))

translates the coefficients between two well behaved expansions
with the same weight function.

Algorithm 1: Forward Jones-Worland transform of func-
tion 𝑓 for even 𝑙
Result: Jones-Worland expansion𝑤
# Compute Jacobi-Chebyshev expansion through DCT-II

𝑡 = DCTII (𝑓 )
𝑁 𝑙

2
= 𝑁 + 𝑙/2

# Extract 𝑁 + 𝑙
2 first Chebyshev modes

𝑝 = 𝑡 [: 𝑁 𝑙
2
]

# Increase 𝛽 in steps of 2

for i in range(1, l, 2) do
𝑣 = V𝑖 ∗ 𝑝
𝑝 = solve(M𝑖+1, 𝑣)
# Drop last mode

𝑝 = 𝑝 [: −1]
end
# Normalize and extract 𝑁 first modes

𝑤 = D−1 ∗ 𝑝 [: 𝑁 ]

The backward transform corresponding to Algorithm 1 is ob-
tained by reversing the operations. Consider the following algo-
rithm with 𝑡 being the Jacobi-Chebyshev expansion with at least
𝑁 𝑙

2
= 𝑁 + 𝑙/2 modes and𝑤 the Jones-Worland expansion of size 𝑁 .

The banded lower bidiagonal matricesM𝑖+1 have size(
𝑁 𝑙

2
− ⌊𝑖/2⌋

)
×
(
𝑁 𝑙

2
− ⌊𝑖/2⌋ − 1

)
and the upper bidiagonal matrices V𝑖 have size(

𝑁 𝑙
2
− ⌊𝑖/2⌋

)
×
(
𝑁 𝑙

2
− ⌊𝑖/2⌋

)
Algorithms 1 and 2 are only applicable to even 𝑙 . A modified

approach is required to handle odd harmonic degree 𝑙 . The problem
arises as the change of variable to 𝑥 ∈ [−1, 1] does not produce a
polynomial in 𝑥 , making it impossible to write an algorithm that is
exact for a polynomial function 𝑓 . Therefore we remain in 𝑟 space
but extend the definition for 𝑟 ∈ [0, 1] to 𝑟 ∈ [−1, 1]. In this way

𝑊 𝑙
𝑛 (𝑟 ) ≡ 𝑟 𝑙𝑃

(−1/2,𝑙−1/2)
𝑛 (2𝑟2 − 1), (29)

is a polynomial for odd 𝑙 on the interval [−1, 1]. Furthermore each
𝑊 𝑙

𝑛 (𝑟 ) has a parity controlled by 𝑙 . The function 𝑓 on 𝑟 ∈ [0, 1] is
extended as function 𝐹 on 𝑟 ∈ [−1, 1] as follows

𝐹 (𝑟 ) ≡


(−1)𝑙 𝑓 ( |𝑟 |) , 𝑟 ∈ [−1, 0)

𝑓 (𝑟 ) , 𝑟 ∈ [0, 1]
, (30)

which has an odd symmetry for odd 𝑙 . The Chebyshev expansion of
𝐹 , obtained through a standard DCT-II, will therefore only contain
odd polynomials thanks to the parity

𝐹 (𝑟 ) =
∑
𝑖=0

𝑐
(0)
2𝑖+1𝑃

(− 1
2 ,−

1
2 )

2𝑖+1 (𝑟 ) . (31)

Algorithm 2: Backward Jones-Worland transform of𝑤 for
even 𝑙
Result: Evaluation of function 𝑓 on Chebyshev grid
# Pad Jones-Worland with zeros and normalize

𝑁 𝑙
2
= 𝑁 + 𝑙/2

𝑝 = 𝑧𝑒𝑟𝑜𝑠 (𝑁 𝑙
2
)

𝑝 [: 𝑁 ] = D ∗𝑤
# Lower 𝛽 in steps of 2

for i in range(l-1, 0, -2) do
𝑁𝑝 = 𝑁 𝑙

2
− 𝑖/2

# Multiplication by M𝑖 adds a mode

𝑣 [: 𝑁𝑝 ] = M𝑖+1 ∗ 𝑝 [: 𝑁𝑝 − 1]
𝑝 [: 𝑁𝑝 ] = solve(V𝑖 , 𝑣 [: 𝑁𝑝 ])

end
# Pad Jacobi-Chebyshev for DCT-II

𝑡 = 𝑧𝑒𝑟𝑜𝑠 (𝑁𝑔)
𝑡 [: 𝑁 𝑙

2
] = 𝑝

# Evaluate Jacobi-Chebyshev expansion on grid

𝑓 = DCTII (𝑡)

While this produces accurate results the grid size needs to be twice
as large as for even 𝑙 . A better approach appears upon closer inspec-
tion of the orthogonality relation for the Jones-Worland polynomial
with 𝑙 = 1 and upon a change in variables back to 𝑥 = 2𝑟2 − 1 to
obtain Equation (32).∫ 1

0

1
√
1 − 𝑟2

𝑊 1
𝑛 (𝑟 )𝑊 2

𝑚 (𝑟 )d𝑟

=
1
4

∫ 1

−1
(1 − 𝑥)−

1
2 (1 + 𝑥)

1
2 𝑃

(− 1
2 ,

1
2 )

𝑛 (𝑥)𝑃 (− 1
2 ,

1
2 )

𝑚 (𝑥)d𝑥 (32)

=
1
4

∫ 1

−1
(1 − 𝑥)

1
2 (1 + 𝑥)−

1
2 𝑃

( 12 ,−
1
2 )

𝑛 (𝑥)𝑃 ( 12 ,−
1
2 )

𝑚 (𝑥)d𝑥 (33)

A further change of variable from 𝑥 = −𝑥 , allows us to exchange the
𝛼 and 𝛽 parameters and leads to Equation (33). Up to a normalization
factor, this last expression is the orthogonality relation for the
Chebyshev polynomial of the fourth kind [4, Table 18.3.1]. The
DCT-IV, formally defined below,

𝑋𝑘 =

𝑁−1∑
𝑛=0

𝑥𝑛 cos
(
𝜋

𝑁

(
𝑛 + 1

2

) (
𝑘 + 1

2

))
, 𝑘 = 0, . . . , 𝑁 − 1, (34)

allows for a fast computation of Equation (33). Therefore replac-
ing the DCT-II with a DCT-IV renders the algorithm for odd 𝑙 as
efficient as the even case. Indeed, applying ⌊ 𝑙2 ⌋ times the promo-
tion operators, produces the required Jones-Worland expansion.
Algorithm 3 shows the full process for odd 𝑙 . The banded bidi-
agonal matrices M𝑖 and V𝑖 require a slightly larger truncation of
𝑁 ⌈ 𝑙2 ⌉

= 𝑁 + ⌈ 𝑙2 ⌉ = 𝑁 + ⌊ 𝑙2+⌋ + 1 and thus have size(
𝑁 ⌈ 𝑙2 ⌉

− ⌊(𝑖 − 1)/2⌋
)
×
(
𝑁 ⌈ 𝑙2 ⌉

− ⌊(𝑖 − 1)/2⌋
)

The backward transform is obtained by reversing the operations.
The banded lower bidiagonalM𝑖+1 have size(

𝑁 ⌈ 𝑙2 ⌉
− ⌊(𝑖 − 1)/2⌋

)
×
(
𝑁 ⌈ 𝑙2 ⌉

− ⌊(𝑖 − 1)/2⌋ − 1
)
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Algorithm 3: Forward Jones-Worland transform of func-
tion 𝑓 for odd 𝑙
Result: Jones-Worland expansion𝑤
# Compute Jacobi-Chebyshev expansion through DCT-IV

𝑡 = DCTIV (𝑓 )
𝑁 ⌈ 𝑙2 ⌉

= 𝑁 + 𝑙/2 + 1
# Extract 𝑟𝑃

(−1/2,1/2)
𝑛 expansion

𝑝 = 𝑡 [: 𝑁 𝑙
2
]

# Increase 𝛽 in steps of 2

for i in range(2, l, 2) do
𝑣 = V𝑖 ∗ 𝑝
𝑝 = solve(M𝑖+1, 𝑣)
# Drop last mode

𝑝 = 𝑝 [: −1]
end
# Normalize and extract 𝑛 first modes

𝑤 = D−1 ∗ 𝑝 [: 𝑁 ]

and the upper bidiagonal V𝑖 have size(
𝑁 ⌈ 𝑙2 ⌉

− ⌊(𝑖 − 1)/2⌋
)
×
(
𝑁 ⌈ 𝑙2 ⌉

− ⌊(𝑖 − 1)/2⌋
)

Algorithm 4: Backward Jones-Worland transform of𝑤 for
odd 𝑙
Result: Evaluation of function 𝑓 on Chebyshev grid
# Pad Jones-Worland with zeros and normalize

𝑁 ⌈ 𝑙2 ⌉
= 𝑛 + 𝑙/2 + 1

𝑝 = 𝑧𝑒𝑟𝑜𝑠 (𝑁 + 𝑙/2)
𝑝 [: 𝑁 ] = D ∗𝑤
# Lower 𝛽 in steps of 2

for i in range(l-1, 1, -2) do
𝑁𝑝 = 𝑁 ⌈ 𝑙2 ⌉

− (𝑖 − 1)/2
# Multiplication by M𝑖 adds a mode

𝑣 [: 𝑁𝑝 ] = M𝑖+1 ∗ 𝑝 [: 𝑁𝑝 − 1]
𝑝 [: 𝑁𝑝 ] = solve(V𝑖 , 𝑣 [: 𝑁𝑝 ]

end
# Pad Jacobi-Chebyshev of fourth kind for DCT-IV

𝑡 = 𝑧𝑒𝑟𝑜𝑠 (𝑁𝑔)
𝑡 [: 𝑁 𝑙

2
] = 𝑝

# Evaluate Jacobi-Chebyshev expansion 𝑓 on grid

𝑓 = DCTIV (𝑡)

3 COMPUTATIONAL COST
In order to assess the performance of the algorithm presented above,
the computational cost is compared to the one from a standard
Gauss-Chebyshev quadrature. We consider a homogeneous radial
truncation of 𝑁 and a maximal harmonic degree of 𝐿. The har-
monic degrees of interest are 0 ≤ 𝑙 ≤ 𝐿. In order to reduce the
parameter space, a standard truncation of 𝑁 = 𝐿

2 will be used. In
order to compute the quadratic nonlinear interactions required in

3D simulations, the radial grid needs to be of size

𝑁𝑟 =
3
2 (𝑁 + 𝐿/2 + 1) = 3

2 (2𝑁 + 1) ≈ 3𝑁 + 2.

Furthermore, the size of the connection matrices V𝑙 andM𝑙 depend
on 𝑙 and the following truncations are introduced

𝑁𝑙 =𝑁 + 𝑙
𝑁𝑙/2 =𝑁 + 𝑙/2.

When GCQ is used, a single matrix product with a matrix of size
𝑁𝑟 × 𝑁 is required and has thus the complexity 𝑞𝑔𝑐𝑞 is

𝑞𝑔𝑐𝑞 = O (𝑁𝑟𝑁 ) = O
(
3𝑁 2

)
(35)

complexity. Forward and backward transforms have the same com-
plexity if the quadrature matrix is computed and stored in an initial-
ization step as the quadrature weights can be included. Note that
𝑞𝑔𝑐𝑞 does not depend on 𝑙 . Our new algorithm will be compared
against this reference implementation.

The new algorithm can be split into two stages:
(1) Chebyshev transform via a Discrete Cosine Transform (DCT-

II or DCT-IV)
(2) Conversion to the Jones-Worland basis by performing pairs

comprised of a bidiagonal matrix vector product and a bidi-
agonal linear solve.

The complexity of the DCT in the first stage is

𝑞𝑑𝑐𝑡 = O(𝑁𝑟 log(𝑁𝑟 )) = O(3𝑁 log(3𝑁 )) (36)

and is independent of 𝑙 . The second stage consists of 𝑙
2 stages of

a bidiagonal matrix-vector product of complexity O(𝑁𝑙/2) and a
bidiagonal linear solve which has the same complexity O(𝑁𝑙/2).
Clearly the current algorithm is not asymptotically faster than GCQ
and remains O(𝑁 2).

In order to obtain a more accurate description, the exact oper-
ation count needs to be considered. The bidiagonal matrix-vector
product and linear solve for a matrix of size 𝑀 × 𝑀 require 3𝑀
floating point operations each. The GCQ matrix-vector product
requires

𝑞𝑔𝑐𝑞 = 2𝑁𝑟𝑁 − 𝑁 = 2𝑁 (3𝑁 + 1) (37)
operations for a forward or backward transform. For a given 𝑙

applying the series of connection matrices V𝑙 andM𝑙 in the second
stage of the algorithm requires

𝑞 𝑗 = 2
𝑙/2∑
𝑖=0

3(𝑁𝑙/2 −
𝑖

2 ) =
3
8 (𝑙 + 2) (8𝑁 + 3𝑙). (38)

The DCT requires

𝑞𝐹𝐹𝑇 = 2𝑁𝑟 log(𝑁𝑟 ) − 𝑁𝑟 + 2. (39)

And combining both stages gives the cost of the full Jones-Worland
transform 𝑞𝑤𝑡 as

𝑞𝑤𝑡 =
3
8 (𝑙 + 2) (8𝑁 + 3𝑙) + 2𝑁𝑟 log(𝑁𝑟 ) − 𝑁𝑟 + 2 (40)

for 0 <= 𝑙 <= 2𝑁 . The worst case is obtained for the highest
harmonic degree 𝑙 = 2𝑁 for which

lim
𝑁→∞

𝑞𝑤𝑡

𝑞𝑔𝑞
=

7
4 . (41)
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Figure 3: Comparison of the operation count 𝑞 for 𝐿 = 1000
for (blue,solid) GCQ algorithm, (orange,dashed) this algo-
rithm and (green,dotdashed) this algorithm with unit diag-
onals. The black vertical lines show when the algorithms
break even as 𝑁 → ∞ at 4

3𝑁 (dashed) and at 1.79𝑁 (dotted).

In the worst case, our FFT based transform requires less than twice
as many operations. The GCQ and this algorithm break even for
𝑙 ≈ 4

3𝑁 . The evolution of the cost is illustrated in Figure 3.
The operation count can be improved by choosing a different

normalization for the matrices V𝑙 and M𝑙 such that they have unit
entries on the diagonals. Indeed, the cost of applying a matrix of size
𝑀 ×𝑀 with unit diagonal is reduced to 2𝑀 operations compared
to the 3𝑀 operations required by a general matrix. The diagonal
normalization required to achieve this can readily be integrated
into theD normalization matrix in our algorithm. The computation
cost is then given by

𝑞𝑤𝑡 =
1
4 (𝑙 + 2) (8𝑁 + 3𝑙) + 2𝑁𝑟 log(𝑁𝑟 ) + 2, (42)

and the worst case becomes

lim
𝑁→∞

𝑞𝑤𝑡

𝑞𝑔𝑞
=

7
6 . (43)

The GCQ and the optimized algorithm break even for 𝑙 ≈ 1.79𝑛
(see Figure 3).

3.1 Full pseudospectral transform
In most applications, the Jones-Worland transform is a part of a 3D
pseudospectral transform and thus not only a single 𝑙 needs to be
transformed but all 0 ≤ 𝑙 ≤ 𝐿. The GCQ approach has a fixed cost
for each transform and is independent of 𝑙 . Thus the total cost for
all 𝑙 is simply given by

𝑄𝑔𝑐𝑞 = (𝐿 + 1)𝑞𝑔𝑐𝑞 = 2𝑁 (2𝑁 + 1) (3𝑁 + 1) = 12𝑁 3 + O(𝑁 2) (44)

The FFT based transform behaves differently as the computa-
tional cost of each transform increases with increasing 𝑙 (see Fig.

3). For the optimized version, we have

𝑄𝑤𝑡 =

𝐿∑
𝑙=0

𝑞𝑤𝑡 =
1
4 (2𝑁 + 1) (12𝑁 2 + 23𝑁 + 8)

+3(2𝑁 + 1)2 log(3𝑁 + 3
2 )

= 6𝑁 3 + O(𝑁 2 log(𝑁 )) . (45)

Therefore for large 𝑁 , the comparison to GCQ quadrature if all 𝑙
are transformed becomes

lim
𝑁−>∞

𝑄𝑤𝑡

𝑄𝑔𝑞
=

1
2 . (46)

3.2 Memory requirements
At high resolution, memory requirements for the transforms be-
come an important aspect. Temporary storage required during the
transform will not be considered here. The GCQ approach is simple
in this respect and requires the 𝑁𝑟 ×𝑁 entries of the quadrature ma-
trix. As they are different for each harmonic degree 𝑙 , the memory
requirements become

𝑆𝑔𝑐𝑞 = (𝐿 + 1)𝑁𝑟𝑁 = 3𝑁 2 (2𝑁 + 1) = O(𝑁 3) (47)

for a full 3D transform. The algorithm presented here requires
the V𝑖 andM𝑖 bidiagonal matrices to be stored. For a given 𝑙 , the
memory footprint is then

𝑆𝑤𝑡 =

𝐿∑
𝑖=2

2
(
𝑁 + 𝐿

2 − 𝑖/2
)
−1 = 1

2 (2𝑁−1) (7𝑁−3) = O(𝑁 2) . (48)

As shown in Equations (47) and (48), the FFT based algorithm leads
to an extensive saving in memory as only O(𝑁 2) elements need to
be stored.

4 ACCURACY AND NUMERICAL TESTS
As discussed in previous sections, our algorithm requires a lower
but comparable operation count as the standard GCQ approach
(see Eq. (46)). The accompanying memory savings also provide a
solution to the memory footprint considerations. It remains to be
demonstrated that the algorithm provides highly accurate solutions.
In this respect, a first observation is that the algorithm described
above does not require the explicit evaluation of the Jones-Worland
polynomials on the physical grid. The conversions are done in spec-
tral space and final evaluation on the grid is obtained through the
FFT. Therefore the underflow issues present for the GCQ approach
do not appear.

As a first test for the accuracy of the transform, we consider the
test functions

𝑓𝑙 = 𝑟 𝑙
(
1.0 + 𝑟2 + 𝑟4 + 𝑟8

)
(49)

evaluated for various 𝑙 . The function is evaluated on the grid and the
corresponding Jones-Worland coefficients are computed using the
new algorithm. Reference values are obtained using Mathematica
to 16 digits of precision. Figure 4 shows the absolute error incurred
after a single forward transform for 𝑙 = 100 and 𝑙 = 101 in order to
test both the even and odd cases.

In order to test both forward and backward transforms for even
and odd 𝑙 , thus testing all of algorithms 1-4, we show in Figures 5
and 6 the round trip errors in spectral-physical space transforms
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Figure 4: Absolute error observed on the spectral coefficients
𝑓𝑖 for the forward transform with 𝑁 = 50 when (blue,cross)
𝑙 = 100 and (orange,circle) 𝑙 = 101, using the test function of
equation (49).

and back. In Figure 5 we consider a transform where the input is a
single mode with the highest 𝑁 , whereas 6 considers a transform
where the input is a broadband signal with unit power for all modes.
One can see that the error incurred is tiny, remaining at less than
10−14 even when 𝐿 is as large as 2001. The scaling of the error
with increasing harmonic degree 𝑙 is shown in Figure 7. The errors
for a spectrum mimicking a well converged expansion, with 𝑓𝑖 =

𝑈 (−1, 1)/𝑛2 where 𝑈 (−1, 1) is a uniform distribution, are shown
to scale approximatively with O(

√
𝑁 ).

5 PERSPECTIVES
The algorithm presented here applies to the forward and back-
ward transform of Jones-Worland expansion. For a 3D simulation
where, for example, fluid flow u is based on a Toroidal/Poloidal
decomposition

u = ∇ × (T r) + ∇ × ∇ × (Pr), (50)
in addition to requiring scalar fields, additional operators need to
be computed in spectral space and on the grid . Frequently needed
spectral expansions are 𝑟 𝑓 , 1𝑟 𝑓 , or

1
𝑟

𝜕
𝜕𝑟
𝑓 , while on the grid evalu-

ations include 1
𝑟 𝑓 ,

𝜕
𝜕𝑟 𝑓 ,

1
𝑟

𝜕
𝜕𝑟 (𝑟 𝑓 ) and ∇2 𝑓 . Providing a complete

description on how those operators are implemented is outside the
scope of this study. Nevertheless, we note that differentiation of a
Jacobi polynomial can be expressed as a combination of Jacobi poly-
nomials with promoted 𝛼 and 𝛽 parameters while factors of 𝑟 affect
the 𝑟 𝑙 prefactor. The recurrence relations (11) and (14) together
with the complementary relations for promoting the 𝛼 parameter
allow adaptation of our algorithms to obtain the required operators.
In doing so, spectral differentiation can also be computed without
the need to explicitly evaluate the polynomials on the grid.

Vasil et al. [22] advocate the choice (𝛼, 𝛽) = (0, 𝑙 + 1/2), this
can be accomplished using the present algorithms by first perform-
ing a fast Jacobi transform (e.g. [19]) and by using one additional
multiplication by 𝑉𝑙+1.
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Figure 5: Absolute error on the spectral coefficients 𝑓𝑖 in
backward-forward transform loop with only highest mode
set to 1 for (top) 𝐿 = 101, 𝑁 = 50 and (bottom) 𝐿 = 2001 and
𝑁 = 1000, as a function of 𝑖.

The formulation we have presented provides a low-memory im-
plementation of the Jones-Worland transform with a favourable
operation count compared to the quadrature based approach. With
its lower memory footprint it presents a suitable alternative for
an implementation on modern-day GPU-equipped computers. A
proof-of-concept implementation for GPU has not revealed any fun-
damental issues. While only an optimized implementation will give
a definite answer on its computational performance, alternatives as
the presented algorithm are required as the quadrature approach is
not viable anymore for high resolution with 𝑁 = O(103).

We have not described the advantageous features that arise in
time-stepping application of this formulation to the Navier-Stokes
equation [12]. The graceful retreat of the first zero of the Jones-
Worland polynomials from the origin with increasing 𝑙 is a criti-
cal aspect of this methodology that leads to innocuous time step
constraints based on the CFL condition that would otherwise be
onerous when other types of polynomial are used. The challenges
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backward-forward transform loop with full unit spectrum
for (top) 𝐿 = 101, 𝑁 = 50 and (bottom) 𝐿 = 2001 and 𝑁 = 1000,
as a function of 𝑖.

that lie ahead are to consider implementations that might lead to
even more advantageous operation count whilst retaining accuracy.
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