
Automatic View Selection in Graph Databases
(Extended Version)

Chao Zhang

University of Helsinki

Renmin University of China

Jiaheng Lu

University of Helsinki

Qingsong Guo

University of Helsinki

Xinyong Zhang

Huawei Technologies Co., Ltd.

Xiaochun Han

Huawei Technologies Co., Ltd.

Minqi Zhou

Huawei Technologies Co., Ltd.

ABSTRACT
Recently, several works have studied the problem of view selection

in graph databases. However, existing methods cannot fully exploit

the graph properties of views, e.g., supergraph views and common

subgraph views, which leads to a low view utility and duplicate

view content. To address the problem, we propose an end-to-end

graph view selection tool, G-View, which can judiciously generate

a view set from a query workload by exploring the graph properties

of candidate views and considering their efficacy. Specifically, given

a graph query set and a space budget, G-View translates each query

to a candidate view pattern and checks the query containment via a

filtering-and-verification framework. G-View then selects the views

using a graph gene algorithm (GGA), which relies on a three-phase

framework that explores graph view transformations to reduce the

view space and optimize the view benefit. Finally, G-View gener-

ates the extended graph views that persist all the edge-induced

subgraphs to answer the subgraph and supergraph queries simulta-

neously. Extensive experiments on real-life and synthetic datasets

demonstrated G-View achieved averagely 21x and 2x query perfor-

mance speedup over two view-based methods while having 2x and

5x smaller space overhead, respectively. Moreover, the proposed

selection algorithm, GGA, outperformed other selection methods

in both effectiveness and efficiency.

1 INTRODUCTION
Graph data is becoming increasingly ubiquitous across many ap-

plication domains [33], such as social networks, real-time road

networks, and on-line recommendations. This trend propelled the

recent proliferation of graph databases, e.g., Neo4j [1] and Janus-

Graph [2]. One of the salient features of graph databases is the

declarative graph query language [17], which enables users to suc-

cinctly query their property graphs with a wealth of distinctive

features such as graph traversal and declarative pattern matching.

Materializing view is a widely used method in DBMS, which

stores and reuses the query results to accelerate the similar incom-

ing queries. When it comes to large-scale graphs, answering graph

queries using materialized views can significantly save the expen-

sive graph computation [16]. Particularly in the relational-based

graph databases where the graph model is implemented upon a

relational store, graph views can be utilized to speed up the queries

in a native graph engine, thereby avoiding the costly relational

joins for performing complex graph queries [37]. View selection is

a well-studied topic in relational [4, 9, 10, 20, 42], XML [22, 29, 35],

and semantic databases [8, 18]. Various methods are proposed to

select the materialized views for different target queries, e.g., SQL

and XQuery [41]. However, they are not suitable for graph view

selection because they do not consider the structural properties of

graph queries, e.g., subgraph patterns. It is also surprising that the

amount of database research literature in graph view selection is so

scarce despite graph databases have become prevalent in graph data

management. Particularly, Kaskade [13] inputs the view templates

and then generates views as Cypher [3] queries. It modeled the

view selection problem as an 0-1 Knapsack problem, and used a

branch-and-bound solver to select the graph views. However, there

are two major limitations to existing methods.

The first limitation is that existing methods only select views

with the subgraph patterns to answer the queries while they do

not consider using a view with a supergraph pattern to answer the

contained queries. This leads to a low utility of the materialized

views. For instance, given two view patterns and three pattern

queries in Figure 1, existing methods can answer the pattern query

𝑄5 by combining the materialized results of 𝑉𝑃 (𝑄1) and 𝑉𝑃 (𝑄2).
However, they fail to answer queries 𝑄3 and 𝑄4 despite 𝑉𝑃 (𝑄2)
being a supergraph pattern of them. To address this limitation,

we propose an extended graph view, which is created via an edge-

induced method, being capable of answering the subgraph and

supergraph queries simultaneously. Recall the example in Figure

1, with the view content 𝑉𝐺 (𝑄1) and 𝑉𝐺 (𝑄2), two extended graph

views 𝑉 (𝑄1) and 𝑉 (𝑄2) can be validated to answer all the three

queries {𝑄3, 𝑄4, 𝑄5}. Such validation is achieved by a filtering-and-

verification framework that checks the query containment by views.

Furthermore, we propose a two-level search algorithm to find a

minimal view set that can answer a pattern query 𝑄𝐺 considering

both subgraph and supergraph views.

The second limitation is that existing methods cannot effectively

explore the possible candidate view combinations to reduce the

view space and improve the view benefit. For instance, Kaskade [13]

can select a single view that rewrites a given query with the highest

benefit, but do not consider selecting a view set V to rewrite a

query. Such a view set V could be reused to answer other con-

tained queries, thereby saving the view space. Unfortunately, gen-

erating an optimal view setV ′ for a query workload 𝑄 is rather

challenging due to the exponential search space. In addition, explor-

ing the graph properties among views, e.g., finding the maximum

common subgraphs [31] to generate a smaller view set, entails an

NP-hard problem of subgraph isomorphism [24]. To mitigate this

problem, we propose a graph gene algorithm (GGA), which relies

on a three-phase framework that heuristically explores graph view

transformations to reduce the view space and optimize the view

benefit. We have shown that GGA has a property of transformation

1

ar
X

iv
:2

10
5.

09
16

0v
1

 [
cs

.D
B

]
 1

9
M

ay
 2

02
1

knows

kn
o
w

s

kno
w

s

workAt

workAt

knows

know
s

kn
ow

s

studyAt
studyAt

stu
dyAt

workAt

workAt

w
or

kA
t

Person

Person

Person

Person

Person

Company

Company

Company

University

University

name:
gender:

"Mia"
"female"

name:
gender:

"Jane",
"female",

name:
gender:

"Mary",
"female"

name:
gender:

"Walt",
"male"

name:
gender:

"Bob",
"male"

name:
country:

"United Airlines",
"United States"

name:
country:

"Air china",
"China"

name:
country:

"Finnair",
"Finland"

name: "University of Helsinki",
country: "Finland"

workFrom: 2020

name: "Renmin University",
country: "China"

person

person Company

person

person University

gender="male"

gender="male"

person

person University

gender="female"

Company

knows

workAt

workAt

knows

studyAt

studyAt

VP(Q1)

VP(Q2)

VG(Q1)

VG(Q2)

knows

workAt

studyAt

workAt

studyAt

(a) Social Network G (b) Views with the view pattern VP and view
content VG for query Q1 and Q2, respectively

(e) Graph Pattern Query Q5

gender="female"

gender="female"

gender="female"

(1) (2)

V(Q1)

V(Q2)

(3)

(1) (2)

(3)

person person

gender="male"

knows

gender="male"

(c) Graph Pattern Query Q3

person

person University

gender="male"

knows studyAt

gender="female"

(d) Graph Pattern Query Q4

Bob

Jane Mary Mia

Finnair United
Airline

Air
china

Bob

Jane Mary Mia

Renmin
Univerisity

University of
Helsinki

Figure 1: Labeled property graph, extended graph views, and graph pattern queries

completeness, which guarantees that the query workload can be

fully covered by any state of the candidate views.

In this paper, we propose an end-to-end graph view selection tool,

G-View, to judiciously generate a view set in graph databases by

exploring the graph properties of candidate views and considering

their efficacy. In a nutshell, given a graph query set and a space

budget, G-View constructs the candidate view patterns and generate

the most beneficial views to accelerate the queries. To summarize,

we have made the following contributions:

(1) We propose an end-to-end graph view selection tool, G-View,

to automatically select graph views for accelerating the graph

query processing in graph databases.

(2) We propose an extended graph view, which is created by an

edge-induced method that translates a graph query to a query

pattern and persists all its edge-induced subgraphs to answer

both subgraph and supergraph queries.

(3) We propose a filtering-and-verification framework that enables

the verification of the query containment by views.

(4) We propose a view selection algorithm, named GGA, to select

the views into the memory under a space budget, which ex-

plores various options of graph view transformations to find

an optimal view set.

(5) We conducted extensive experiments on diverse query work-

loads and datasets. Experimental results showed that G-View

can significantly accelerate the queries and reduce the overhead

for other view-based methods and GGA outperformed other

selection methods.

2 PRELIMINARIES
This section presents the definitions of terminologies and the view

selection problem. Particularly, Section 2.1 defines the property

graph, pattern query, edge-induced subgraph, and extended graph

view; Section 2.2 defines the view overhead and benefit; and Section

2.3 defines the view selection problem.

2.1 Graph, Queries and Views
Labeled property graph. A labeled property graph is a multi-

relational, attributed, digraph 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐿, 𝑃), where (1) 𝑉𝐺 is

a set of vertices; (2) 𝐸𝐺 ⊆ 𝑉𝐺 × 𝑉𝐺 , in which (𝑣, 𝑣 ′) denotes an
edge from vertex 𝑣 to 𝑣 ′; (3) L is a label function such that for each

vertex 𝑣 ∈ 𝑉𝐺 (resp. edge 𝑒 ∈ 𝐸𝐺), L(𝑣) (resp. L(𝑒)) is a label from
an alphabet Σ; (4) P is a function such that for each node 𝑣 ∈ 𝑉𝐺
(resp. edge 𝑒 ∈ 𝐸𝐺), P(𝑣) (resp. P(𝑒)) is a set of key/value pairs called
properties. Intuitively, L indicates the type of a vertex, e.g., person,

organization; P specifies the properties of a vertex, e.g., name, age,

gender, or the properties of an edge, e.g., a timestamp.

Graph pattern query. A graph pattern query is a digraph 𝑄𝐺 =

(𝑉𝑝 , 𝐸𝑝 , 𝐿, 𝑓) over a labeled property graph 𝐺 , where (1) 𝑉𝑝 is a set

of query nodes and 𝐸𝑝 is a set of query edges, respectively; (3) L is

a label function such that for each vertex 𝑣 ∈ 𝑉𝑝 (resp. edge 𝑒 ∈ 𝐸𝑝),
L(𝑣) (resp. L(𝑒)) is a label from an alphabet Σ; (4) f is a function such

that for each vertex 𝑣 ∈ 𝑉𝑝 (resp. edge 𝑒 ∈ 𝐸𝑝), f(𝑣) (resp. f(𝑒)) is

a Boolean predicate. (See Figure 1c for an example of the graph

pattern query, the labels and predicates are marked in blue and

pink color, respectively).

Edge-induced subgraph. An edge-induced subgraph is a graph

𝑆 = (𝑉𝑆 , 𝐸𝑆 , 𝐿, 𝑃) that contains a subset 𝐸𝑆 of the edges of a graph

𝐺 together with any vertices𝑉𝑆 that are their endpoints. Two edge-

induced subgraphs of the social network 𝐺 are depicted in Figure

1b with green color; we use the names to represent the nodes and

omit the edge labels for simplicity.

Extended graph view. An extended graph view is a view 𝑉 =

(𝑉𝑃 ,𝑉𝐺), where (1) 𝑉𝑃 is a view pattern of a graph pattern query

𝑄𝐺 with a traversal order of the edges; (2) 𝑉𝐺 is the view content

that includes all the edge-induced subgraphs 𝑆 in the traversal

order of 𝑉𝑃 . (See Figure 1b for an example of the extended graph

views, the edges are annotated with the traversal orders and edge

labels). Note that the view content is derived from the graph 𝐺

by incrementally adding the matches of the graph patterns. The

2

selected views will be materialized in the format of GraphML [39].

In the following sections, we interchangeably use V or 𝑉 (𝑄𝐺) to
denote an extended graph view.

Example 1. Figure 1a shows a social network 𝐺 from LDBC [14],
which consists of three labels of vertices, i.e., person, university, and
company, and three labels of edges, i.e., knows, studyAt, and workAt.
Each vertex or edge has empty, one, or two properties. Figure 1b illus-
trates two extended graph views {𝑉 (𝑄1), 𝑉 (𝑄2)} with view patterns
and view content. Figure 1c depicts three pattern queries {𝑄3, 𝑄4, 𝑄5}.
It can be seen that (1) 𝑉𝑃 (𝑄2) contains 𝑄3 and 𝑄4, and (2) 𝑄5 is con-
tained by a merged pattern of𝑉𝑃 (𝑄1) ∪𝑉𝑃 (𝑄2), and our verification
method in Algorithm 1 ensures all the three pattern queries can be
answered by 𝑉 (𝑄1) and 𝑉 (𝑄2) without accessing the graph 𝐺 .

2.2 View Overhead and Benefit
Overhead of a materialized view.Materializing views will trade

affordable space and computation overhead for the performance

gains of queries. Hence, the overhead of a materialized view in-

cludes the space overhead 𝑠 (𝑣) and the computation overhead 𝑜 (𝑣)
of generating the view. In particular, we define 𝑠 (𝑣) as the byte size
occupied by a view 𝑣 , and 𝑜 (𝑣) as the CPU time and I/O cost for

constructing a view 𝑣 .

Benefit of a view. Using views to answer a query can significantly

accelerate the expensive queries. This is most notable when the

graphs are stored in the underlying RDBMSs, where graphs are

computed by joining multiple tables. Therefore, views can greatly

benefit such queries. Let V be a candidate view for the given work-

load 𝑄 , we define the view benefit 𝑏 as follow:

Definition 2.1. (Benefit of a view): Given a query workload 𝑄 ,

the benefit b of a view V is defined as the total cost savings by

processing the queries using the view V compared to using the

graph 𝐺 :

𝑏 (𝑉 ,𝑄) =
∑︁
𝑞∈𝑄
(𝑤𝑖 × (𝑐𝑜𝑠𝑡 (𝑞 |𝐺) − 𝑐𝑜𝑠𝑡 (𝑞 |𝑉))) (1)

where𝑤𝑖 is the weight or frequency of query 𝑞𝑖 in Q; cost(𝑞 |𝐺) and
cost(𝑞 |𝑉), denote the cost of query evaluation over the graph𝐺 and

view 𝑉 , respectively. The cost(𝑞 |𝐺) is calculated depending on the

underlying store, e.g., graph store or relational store.

Benefit of multiple views. Using multiple views to answer a

query is also possible when the view set can constitute a supergraph

pattern of the query and the combined view content contains all

the query results. Therefore, we define the benefit of multiple views

as follows:

Definition 2.2. (Benefit of multiple views): Given a query 𝑞,

the benefit b of a multi-view set V = {𝑣1, 𝑣2, . . . , 𝑣𝑚} is defined
as the cost savings by processing the query using the view setV
compared to using the graph 𝐺 :

𝑏 (V, 𝑞) = 𝑐𝑜𝑠𝑡 (𝑞 |𝐺) − (
∑︁
𝑉 ∈V

𝑐𝑜𝑠𝑡 (𝑞 |𝑉) + 𝑐𝑜𝑠𝑡 (𝑉1 ⊲⊳ . . . ⊲⊳ 𝑉𝑛)) (2)

where 𝑐𝑜𝑠𝑡 (𝑞 |𝐺) denotes the query cost over the graph 𝐺 ; cost∑
𝑉 ∈V 𝑐𝑜𝑠𝑡 (𝑞 |𝑉) is the sum of their partial evaluation cost and

𝑐𝑜𝑠𝑡 (𝑉1 ⊲⊳ . . . ⊲⊳ 𝑉𝑛) is the cost of combining the partial results.

Query Rewriter

Graph Queries (e.g., Gremlin)

Extended graph views

Graph Query Engine

View1 ... ViewN

Extended graph views

Graph Query Engine

View1 ... ViewN

Candidate Views

Graph Databases

View selection

(i.e., GGA)

Pattern queries

View Manager

Candidate Queries

Edge-induced

view construction

View maintenance

View evaluation (i.e., filtering-and-verification)

Query evaluation

Figure 2: An overview of G-View’s architecture.

2.3 View Selection Problem
Given a query workload 𝑄 and a space budget 𝑆 , we aim to auto-

matically select an optimal view set V to materialize under the

budget 𝑆 . Therefore, the view selection problem can be modeled

as a Knapsack problem of maximizing the view benefit under the

space budget. We adopted a setting where the materialization cost

is approximated by the view size. Such a setting assumes a cost

model of view materialization that is proportional to the view size.

Definition 2.3. (View selection problem): Given a workload𝑄

and a space budget 𝑆 , the objective is to select a set of viewsV𝑠 de-
rived from a candidate view setV that fully covers the query results

of 𝑄 , with the goal of maximizing the total benefit of 𝑏 (V𝑠 , 𝑄), un-
der the constraint that the total space occupied byV𝑠 is no greater

than 𝑆 .

The view selection problem is NP-hard [11] for a static single-

view case in which V𝑠 is a subset of V , and each view 𝑉 ∈ V𝑠
is independent so that each query 𝑞 ∈ 𝑄 is answered by a single

view 𝑉 ∈ V𝑠 . For such a case, there is a straightforward reduction

from the Knapsack problem: find a set of k items with the space

occupancy 𝑠1, . . . , 𝑠𝑘 and the benefits 𝑏1, . . . , 𝑏𝑘 so as to maximize

the sum of the benefits of the selected items that satisfy the space

budget 𝑆 . Moreover, there could be the dynamic cases in which

the views in V𝑠 can be changed, e.g., by merging, breaking, and

removing views. The problem in such cases becomes harder since

the space of the candidate view set is extremely huge and it is un-

feasible to explore all possible combinations. In addition, for the

dynamic case, views are not independent as a query can be an-

swered by multiple views, resulting in a more complicated problem

than the static case using the single-view evaluation. In this work,

we propose a graph gene algorithm to address the view selection

problem in the dynamic multi-view setting.

3 SYSTEM OVERVIEW
In this section, we introduce the system architecture of G-View and

its key components. We particularly present the implementation de-

tails for Gremlin [32], which is a widely used graph query language.

Figure 2 shows the overall architecture of G-View. The cornerstone

of the system is a view-based middle layer that is built on top of

the graph databases, which accepts a set of Gremlin queries and

constructs one or more extended graph views that can be utilized

to speed up the queries.

3

The core component of G-View is the viewmanager, which has
three main tasks. The first task is to verify the query containment

and evaluate the view benefit for the candidate views. The methods

in detail are presented in Section 4.2. Note that to evaluate the

view benefit, the queries will also be sent to the underlying graph

database for evaluation. If the graph database is implemented by

an RDBMS, the Gremlin queries will eventually be translated to

SQL queries based on the Gremlin2SQL technique [30]. The sec-

ond task is to select the views based on the graph gene algorithm

proposed in Section 5. The third task is to generate the extended

graph views from the underlying graph store via the edge-induced

method introduced in Section 4.2.2.

The query rewriter component translates the Gremlin queries

to pattern queries based on the method in Section 4.2.1. Translating

a simple pattern matching of Gremlin to a pattern query is straight-

forward as shown in Example 2. For future work, we plan to support

other kinds of operations, such as map, filter, side effect, and branch.

Conceptually, the rewriter can map other graph traversals such as

linear, nested, and path traversals to pattern queries as the pattern

matching query is a general traversal for Gremlin [32]. Concerning

more expressive queries such as regular path queries (RPQs), Grem-

lin now supports limited RPQs [5] by the use of repeat step, thus
many simple RPQs could be expressed as bounded pattern queries

[16] for containment checking and query evaluation.

Below the query rewriter is the extended graph view compo-

nent, which generates a set of selected views for answering the

queries in a native graph engine. We adopt the TinkerGraph [38] as

the in-memory graph engine coupled with the TinkerPop3 frame-

work [39]. The view data will be stored in TinkerGraph [38] using

the index-free adjacency structure [27]. By mapping the query and

view to a graph pattern, it leverages a filtering-and-verification

framework (see Section 4.2) to determine whether or not the query

is contained by the views.

Example 2. Consider a query in a social network of LDBC [14],
which finds the male persons’ female friends, and the companies the
friends worked at, as well as the universities the friends studied at.
The corresponding Gremlin query is expressed as follows:

g.V().has(‘gender’,‘male’).as(‘p’).match(
.as(‘p’).out(‘knows’).as(‘f’).has(‘gender’,‘female’),
.as(‘f’).out(‘workAt’).as(‘c’),
.as(‘f’).out(‘studyAt’).as(‘u’))

.select(‘p’, ‘f’,‘c’,‘u’)
where the above query is a pattern query 𝑄𝐺 = (𝑉𝑝 , 𝐸𝑝 , 𝐿, 𝑓) which
defines a set of nodes𝑉𝑝 and edges 𝐸𝑝 in the match step. Particularly,
each as step refers to a query node 𝑣 with a unique alias that has the
mapping label 𝐿(𝑣); each has step defines a Boolean predicate 𝑓 (𝑣)
with a key-value pair; each out step declares an outgoing labeled
edge 𝑒 ; the select step returns all the matched vertices.

4 CANDIDATE VIEW CONSTRUCTION AND
EVALUATION

In this section, we introduce how to construct the candidate view

patterns and how to create the view content, as well as how to

evaluate the view benefit.

gender="male"

Bob

Jane Mary

Step 1: add knows edges

knows

studyAt

workAt

(b) View content VG(QG)(a) View pattern VP(QG)

gender="female"

(1)
(2)

(3)

Mia

Bob

Jane Mary Mia

Finnair United Airline Air china

Step 2: add workAt edges

Bob

Jane Mary Mia

Finnair United Airline Air china

Renmin
University

Step 3: add studyAt edges

University
of Helsinki

c:Company

u:University

p:person

f:person

Figure 3: An example of edge-induced view construction.

4.1 Edge-Induced View Construction
4.1.1 View pattern construction. Given a candidate query set𝑄 , we

translate the queries to a pattern query set, then leverage an edge-

induced method to construct a candidate view for each pattern

query. Particularly, for a pattern query 𝑄𝐺 ∈ 𝑄 , we parse it to

Gremlin traversals and derive the traversal patterns 𝐸𝑝 ; we then

add each query edge 𝑒 ∈ 𝐸𝑝 with the predicates to its view pattern

𝑉𝑃 (𝑄𝐺) in succession. Since the query node 𝑣 and edge 𝑒 are labeled
with a given alias, the procedure will also map the alias label to the

label 𝐿(𝑣) and 𝐿(𝑒) in the schema graph. Consider an example in

Figure 3a, we derive the knows edge as the first traversal and add it to
the view pattern𝑉𝑃 (𝑄𝐺), we then sequentially add the workAt and
studyAt edges. Finally, we will map the aliases { p, f, c, u } to labels

{ person, person, company, university } that are inferred from the

schema graph.We particularly construct the view pattern according

to its optimized traversal order using the CountMatchAlgorithm [7].

4.1.2 View content construction. To construct the view content

𝑉𝐺 (𝑄𝐺), we create an edge-induced graph by the following steps:

(i) we traverse each edge 𝑒 ∈ 𝐸𝑝 in the traversal order as the view

pattern 𝑉𝑃 (𝑄𝐺)’s. (ii) for each visited query edge 𝑒 , we add all the

matched results of edges 𝐸 (𝑒) in the property graph 𝐺 with their

endpoints 𝑉 (𝑒) to the view content 𝑉𝐺 (𝑄𝐺). (iii) the procedure

terminates when all the patterns have been visited. Figure 3b illus-

trates the procedure of constructing the view content. From step 1

to 3, the edge-induced method will append all the matched edges

and vertices to the view content according to the traversal order

of [𝑘𝑛𝑜𝑤𝑠,𝑤𝑜𝑟𝑘𝐴𝑡, 𝑠𝑡𝑢𝑑𝑦𝐴𝑡]. Regarding the detailed implementa-

tion, since the matched results of an edge depend on its previous

traversals, we clone the previous traversals and cache the visited

endpoints as the intermediate results and use them to compute

the matches of the subsequent traversals. In such a way, the con-

struction is much more efficient. To the end, the selected graph

views are materialized in the format of GraphML [39], which is an

XML-based representation of a graph.

PROPERTY 1. The edge-induced view content 𝑉𝐺 (𝑄𝐺) is mono-
tonically increasing as the view pattern 𝑉𝑃 (𝑄𝐺) grows.

Based on Property 1, any graph view 𝑉 is not contained by

another graph view 𝑉 ′ if |𝐸𝑝 | > |𝐸 ′𝑝 |. This is because we only

4

append the edge-induce subgraphs to the view content 𝑉𝐺 (𝑄𝐺)
when traversing the edge set 𝐸𝑝 . The advantages of Property 1 are

twofold: (1) we can decide the single view containment without

matching the view patterns, and (2) it enables a query 𝑄𝐺 can

not only be contained by a set of subgraph views, but also can be

answered by a supergraph view. In the next, we will present how

to examine the query containment in detail.

4.2 A Filtering-and-Verification Framework
The filtering-and-verification framework consists of two stages. The

first stage will check if a pattern query 𝑄𝐺 is contained by a view

pattern𝑉𝑃 (𝑄 ′𝐺). Otherwise, the query will not be evaluated on view
𝑉 . The second stage will further verify if the view content 𝑉𝐺 (𝑄𝐺)
contains all the matched results of the given query. Intuitively,

the first stage checks the containment between a query pattern

and a view pattern, and the second stage verifies the containment

between query results and the view content.

4.2.1 The filtering stage. In this stage, we check if a pattern query

𝑄𝐺 is a subgraph pattern of a view pattern𝑉𝑃 (𝑄 ′𝐺). We first define

the pattern containment as follows:

Definition 4.1. (Pattern containment): We say a pattern query

𝑄𝐺 is contained by a view pattern 𝑉𝑃 (𝑄 ′𝐺), denoted by 𝑄𝐺 ⊂
𝑉𝑃 (𝑄 ′𝐺), if the following conditions hold:

(i) there exists a subgraph isomorphism mapping𝑀 from 𝑄𝐺 to

𝑉𝑃 (𝑄 ′𝐺), such that 𝑄𝐺 is a subgraph pattern of 𝑉𝑃 (𝑄 ′𝐺).
(ii) for each query node 𝑣 ∈ 𝑄𝐺 , the mapped node 𝑣 ′ = 𝑀 (𝑣) has

the same label as that of 𝑣 , and the Boolean predicates should

be contained by the predicates of 𝑣 .

(iii) for each query edge 𝑒 ∈ 𝑄𝐺 , the mapped edge 𝑒 ′ = 𝑀 (𝑒) has
the same label that of 𝑒 , and the Boolean predicates should

be contained by the predicates of 𝑒 .

It is known that finding all the subgraph isomorphism mappings

is NP-hard [24], but there exist several practical algorithms to decide

the answers in polynomial time. In this work, we employ the VF2

algorithm [12] that runs in quadratic time for checking a pattern

containment between two graph patterns. Note that the original VF2

algorithm does not consider the edge labels and predicates in the

graph, thus we will check if the conditions (ii) and (iii) hold after a

subgraph isomorphism𝑀 is returned. Particurlay, the containment

of Boolean predicates in conditions (ii) and (iii) means the scope of a

Boolean predicate is contained by the others. For instance, a Boolean

predicate (gender="male") is contained by an empty predicate on

the gender attribute, and a predicate (age<30) is contained by a

predicate (age<50).

4.2.2 The verification stage. Given 𝑄𝐺 ⊂ 𝑉𝑃 (𝑄 ′𝐺), 𝑄𝐺 can be an-

swered by 𝑉𝐺 (𝑄 ′𝐺) if the following conditions hold:
(i) there exists a mapping 𝑀 from each query edge 𝑒 ∈ 𝐸𝑝 to

query edge 𝑒 ′ ∈ 𝐸 ′𝑝 .
(ii) for the edge 𝑒 ′ ∈ 𝐸 ′𝑝 that has no mapping from 𝑒 ∈ 𝐸𝑝 , if

the vertex 𝑣 ′𝑒 ∈ 𝑒 ′ has the mapping from 𝑣𝑒 ∈ 𝑒 , the node

𝑣 ′𝑒 = 𝑀 (𝑣) must have been visited in the prefix traversal

patterns of 𝐸 ′𝑝 .

Example 3. Consider a graph pattern query𝑄𝐺 and a view pattern
𝑉𝑃 (𝑄 ′𝐺) given in Figure 4. It is clearly visible that 𝑄𝐺 ⊂ 𝑉𝑃 (𝑄 ′𝐺),

A B C D A B C D

E F

e1 e2 e3 e1 e2 e3
e4

e5
e6

Query pattern QG: View pattern Vp(Q'G):

Query edges Ep: Traversal edges Ep1:

A->B
B->C
C->D

Traversal edges Ep2:

(1)	A->B	(2)	B->C
(3)	C->E	(4)	C->D
(5)	E->D	(6)	E->F

(1)	A->B	(2)	B->C
(3)	C->E	(4)	E->D
(5)	C->D	(6)	E->F

Figure 4: Containment between a query pattern and views.

thus the framework returns true in the filtering stage. One can verify
that the 𝐸𝑝 and 𝐸𝑝1 satisfy the verification conditions since all the
mappings of edges and vertices of 𝐸𝑝 have been visited in the prefix
traversal order of 𝐸𝑝1. However, 𝐸𝑝 and 𝐸𝑝2 fail to satisfy condition
(ii) in the second stage because the edge 𝑒5 (𝐸 → 𝐷) is not an edge
mapping from 𝐸𝑝 , and the query node 𝐷 , which is a vertex mapping
𝑀 (𝑣𝑒3), has not been visited in 𝐸𝑝2. Therefore, it cannot guarantee
that all the matched vertices of node 𝐷 are included.

Lemma 1. The filtering-and-verification framework gives a suffi-
cient condition to determine the query containment between the query
𝑄𝐺 and the view V.

Proof 1. (Sketch): (1) We first prove the sufficiency of Lemma
1. Given a pattern query 𝑄𝐺 with the query edges 𝐸𝑝 , and a view
V with a view pattern 𝑉𝑃 (𝑄 ′𝐺) and traversal edges 𝐸

′
𝑝 , the filtering

phase ensures 𝑄𝐺 ⊂ 𝑉𝑃 (𝑄 ′𝐺). In the second phase, if 𝐸 ′𝑝 has a prefix
traversal pattern of 𝐸𝑝 , the query 𝑄𝐺 must be answered by the view
V because 𝑉𝐺 (𝑄 ′𝐺) is an edge-induced graph with all the matched
results of 𝐸 ′𝑝 in the traversal order.

(2) We proof it is not a necessary condition by contradiction. In the
verification phase, if the query nodes 𝑉𝑝 of a view pattern 𝑉𝑃 (𝑄 ′𝐺)
follow the one-to-one relationship, the traversal order does not lead to
the missing of any matched results, hence the view content 𝑉𝐺 (𝑄 ′𝐺)
includes all the query results for 𝑄𝐺 . For instance, consider the tra-
versal edges 𝐸𝑝2 in Figure 4, if both 𝐶 and 𝐷 have the one-to-one
relationship to the node 𝐸, the view 𝑉𝐺 (𝑄 ′𝐺) contains all the results
of 𝑄𝐺 . That concludes the proof.

We design a view-based verification algorithm (VVA) to decide

whether or not a pattern query 𝑄𝐺 can be answered by the view

𝑉 (𝑄 ′
𝐺
). As shown in Algorithm 1, it takes a pattern query 𝑄𝐺 ,

a view 𝑉 (𝑄 ′
𝐺
), and a subgraph isomorphism 𝑀 from the pattern

query 𝑄𝐺 to view pattern 𝑉𝑃 (𝑄 ′𝐺) as input, then it goes with two

steps: (1) verify if condition (i) holds by checking whether or not

the query edge 𝑒 ′ ∈ 𝐸 ′𝑝 has the edge mapping in 𝑀 (𝐸𝑝). If this
is the case, add the vertex 𝑣 ′ ∈ 𝑒 ′ to the dictionary 𝐷𝑣 , and add

the edge 𝑒 ′ to 𝐷𝑒 ; (2) verify if condition (ii) holds by iteratively

identifying the vertex 𝑣 ′ ∈ 𝑀 (𝑉𝑝) but not in the edge mapping

𝑀 (𝐸𝑝), and check if it has been visited. (3) the process terminates

once a Boolean value has been returned. In particular, if dictionary

𝐷𝑣 has included all the vertex mappings and dictionary 𝐷𝑒 has

contained all the edge mappings, then the query 𝑄𝐺 is verified to

be answered by the view content 𝑉𝐺 (𝑄 ′𝐺). Since checking 𝐷𝑣 , 𝐷𝑒 ,

and𝑀 takes 𝑂 (1) time, VVA takes 𝑂 (|𝐸 ′𝑝 |) time to verify a query

containment between a query 𝑄𝐺 and a view 𝑉 where |𝐸 ′𝑝 | is the
size of query edges 𝐸 ′𝑝 of the view pattern.

5

Algorithm 1: View-based verification algorithm(VVA)

Input: A pattern query𝑄𝐺 , a view𝑉 (𝑄′
𝐺
) that has a subgraph

isomorphism mapping𝑀 from𝑄𝐺 .

Output: A Boolean value deciding whether or not query𝑄𝐺 can

be answered by𝑉𝐺 (𝑄′𝐺) .

1 𝐷𝑣 ← ∅, 𝐷𝑒 ← ∅, 𝑙,← 𝐸′𝑝 .𝑙𝑒𝑛𝑔𝑡ℎ ; // Initialization

2 for 𝑖 ← 1 to 𝑙 do
// Termination condition

3 if (𝐷𝑣 = 𝑉𝑝) & (𝐷𝑒 = 𝐸𝑝) then
4 return𝑇𝑟𝑢𝑒

// Verify the condition (i)

5 if 𝐸′𝑝 [𝑖] = (𝑢′𝑖 , 𝑣′𝑖) ∈ 𝑀 (𝐸𝑝) then
6 𝐷𝑣 .𝑝𝑢𝑡 ({𝑢′𝑖 , 𝑣′𝑖 }) , 𝐷𝑒 .𝑝𝑢𝑡 (𝐸′𝑝 [𝑖])

// Verify the condition (ii)

7 else if there is 𝑣′ ∈ 𝑀 (𝑉𝑝) but 𝐸′𝑝 [𝑖] ∉ 𝑀 (𝐸𝑝) then
8 if 𝑣′ ∉ 𝐷𝑣 then
9 return 𝐹𝑎𝑙𝑠𝑒

10 return𝑇𝑟𝑢𝑒

4.2.3 The applicability of extended graph views. Concerning the

applicability of the extend graph view in practice, it supports an-

swering both the subgraph and supergraph queries with many

variants based on the filtering-and-verification framework. On the

one hand, since the query results are independent of the traversal

orders, a query can be answered by a supergraph view only if (1)

the view pattern has all the edge mappings to the query edges, and

(2) the mapping vertices of the non-mapping edges in the view

pattern have been visited in the traversal order (See Figure 4). This

is readily done in the verification phase, which does not require

the target subgraph query has the exact same traversal order as

the view’s. For example, the constructed view in Figure 3 with the

order [(1), (2), (3)] can answer the queries with edge sets of {(1), (2),

(3)}, {(1), (3)}, {(1), (2)} or {(1)} regardless of the traversal orders of the

queries. On the other hand, our approach supports the multi-view

rewriting that combines multiple views to answer a query, which

can further significantly increase the utility of the extended views.

4.2.4 The evaluation of view benefit. Once the framework has veri-

fied the containment of a pattern query 𝑄𝐺 and a view 𝑉 , G-View

then evaluates the benefit 𝑏 (𝑄𝐺 ,𝑉). In our implementation, we use

the PROFILE feature [39] of Gremlin to obtain the cost of query

evaluation. Specifically, the PROFILE step returns various metrics

about the given Gremlin queries including the result size, count of

traversals, and total execution time in each pipeline. We perform

the PROFILE step over the view V and over the 𝐺 , respectively, we

take the total execution time as the cost and compute the benefit

according to Equation 1.

5 GRAPH GENE ALGORITHM
In this section, we propose the graph gene algorithm (GGA) for

view selection. Specifically, Section 5.1 introduces the view trans-

formations. Section 5.2 presents the evaluation method of benefit

of multiple views. Section 5.3 presents the GGA algorithm.

5.1 View Transformations
Since a view may be contained by another view, and views may

have the common parts, the duplication of selected views leads to a

relatively larger space occupancy and a lower coverage of the whole

workload space. Based on this observation, we propose the GGA

algorithm that aims at a higher usage of space and a higher benefit

for the workload as a whole. The GGA algorithm is inspired by the

gene algorithm (GA) [6], it encodes the view patterns as graph genes

and solves the view selection problem as a state search process.

Every state consists of a set of selected views and a total benefit.

The initial state corresponds to the input candidate view setV with

a zero benefit 𝑏 (V0). By merging, breaking, and removing views

from the initial state, we obtain another state from view setV ′ with
a new benefit 𝑏 (V ′). Particularly, GGA has three atomic behaviors

for view pattern transformations, namely, FISSION, FUSION, and

REMOVE. GGA encodes a view pattern, a.k.a., individual, by a set

of sub-view patterns, a.k.a., graph genes. A new generation, a.k.a.,
candidate view set, is generated by a process of probabilistic view

transformations and a solution is produced based on their fitness
value, a.k.a., view benefit. In the following, we introduce the view

transformations in detail.

5.1.1 FISSION transformation. This transformation splits a view

pattern to multiple genes. The main goal of it is to enable the iden-

tification of common parts across views heuristically as finding the

common subgraphs for the graphs is an NP-hard problem. Specif-

ically, we find the articulation points of a view pattern by using

the Tarjan Algorithm [36], then obtain multiple graph genes by

breaking down the view pattern according to its articulation points.

The articulation points are vertices whose removal increases the

number of connected components of the graph, and Tarjan Algo-

rithm [36] is a (Depth-First-Search) DFS-based approach that can

run in O(V+E) time to compute the articulation points in a directed

graph. If the articulation point does not exist, the view pattern

becomes the graph gene itself.

5.1.2 FUSION transformation. FUSION is opposite to FISSION,

namely, this transformation merges or joins a view 𝑉𝑖 ∈ V to

another view 𝑉𝑗≠𝑖 ∈ V . Particularly, FUSION has two variants:

(1) Merge a sub-view 𝑉𝑖 ⊂ 𝑉𝑗 : Fusion merges the view 𝑉𝑖 to

𝑉𝑗≠𝑖 ∈ V if 𝑉𝑖 is contained by 𝑉𝑗≠𝑖 . It requires (1) 𝑉𝑖 is a subgraph

of 𝑉𝑗≠𝑖 ; (2) 𝑉𝑖 has a prefix traversal pattern of 𝑉𝑗≠𝑖 ’s.

(2) Merge-join the genes𝑔𝑖 ⊂ 𝑔 𝑗 : Fusionmerges the genes𝑔𝑖 ∈ 𝑉𝑖
if 𝑔 𝑗 ∈ 𝑉𝑗≠𝑖 contains 𝑔𝑖 ; the remaining genes 𝑔𝑘≠𝑖 ∈ 𝑉𝑖 are joined
to 𝑉𝑗≠𝑖 if they are not contained by other views 𝑉𝑘≠𝑖, 𝑗 .

The first case can be decided via the filtering-and-verification

framework, and contained views can be merged directly. For the

second case, the algorithm enumerates all the genes𝑔𝑖 ∈ 𝑉𝑖 over the
view setV to check the containment on other graph genes𝑔 𝑗 ∈ 𝑉𝑗≠𝑖
via the filtering-and-verification framework, then merges them to

the contained genes if any. The remaining genes 𝑔𝑘≠𝑖 ∈ 𝑉𝑖 are

assembled to the view𝑉𝑗≠𝑖 that has contained genes by connecting

the articulation points.

5.1.3 REMOVE transformation. REMOVE eliminates the empty-

gene candidate views after a sequence of view transformations.

Such candidate views can be removed as they have been contained

by other views.

Example 4. Figure 5 illustrates the view transformations of the
GGA algorithm. Given a view pattern 𝑉𝑃 (𝑄𝐺) and a view setV =

{𝑉1,𝑉2,𝑉3}, GGA applies a set of transformations on the view patterns.
6

A

B C D

e3
e2 e1

e1
View pattern VP(QG): V1

E e4 V2

V3

e5

Gene1：

C e1

Gene3：
A

B
e3

E e4
e5

D

Gene2：

B e2 C

e2 e1

A

B

e3

e4

e5

E

F

e6

1 Fission 2

Fusion

3

Remove

Gene4：

E e7 G

G
e7

C D

B C D

G
e7

Figure 5: An illustration of view transformations.

Algorithm 2: Two-Level Minimal Search Algorithm

Input: A pattern query𝑄𝐺 , a candidate view set V
Output: A view set V′ that minimally contains𝑄𝐺 .

1 V′ ← ∅,𝑈𝐺 ← ∅ 𝑀 ← ∅
2 foreach view𝑉𝑖 ∈ V do
3 if VVA(𝑄𝐺 ,𝑉𝑖) then
4 return𝑉𝑖

5 else
6 foreach gene 𝑔𝑖 𝑗 ∈ 𝑉𝑖 do
7 if VVA(𝑄𝐺 ,𝑈𝐺) then
8 break;

9 if VVA(𝑔𝑄𝐺
,𝑔𝑖 𝑗) then

10 V′ ← V′ ∪ {𝑉𝑖 }
11 𝑈𝐺 ←𝑈𝐺 ∪ {𝑔𝑖 𝑗 }
12 𝑀 ← 𝑀 (𝑔) ∪ {𝑉𝑖 }
13 foreach view𝑉𝑗 ∈ V′ do
14 if there is no 𝑔 ∈ 𝑈𝐺 such that𝑀 (𝑔)\{𝑉𝑗 } = ∅ then
15 V′ ← V′\{𝑉𝑗 }
16 return V′

In the FISSION phase, 𝑉𝑃 (𝑄𝐺) is broken down to four genes based
on the articulation points {𝐵,𝐶, 𝐸}. Then the genes are merged to the
view set in the FUSION phase. Specifically, genes 1,2,3 are merged to
𝑉1,𝑉2,𝑉3, respectively, and the remaining gene 4 is joined to 𝑉3 on
node E. Finally, the 𝑉𝑃 (𝑄𝐺) is removed from the candidate view set
and we have reduced the common parts of three graph genes of it, i.e.,
genes 1, 2, and 3.

5.2 Benefit Evaluation for Multiple Views
In this section, we introduce how to evaluate the benefit of a view

set for a graph pattern query. GGA algorithm involves a case of

multi-view answering, in which the graph genes have been divided

and joined to different graph views (Recall the example in Figure

5). Given a pattern query 𝑄𝐺 and a view setV , we need to (1) find

a subset ofV ′ that contains 𝑄𝐺 , and (2) evaluate the total benefit

𝑏 (V ′, 𝑄𝐺) and assign it to each view 𝑉 ∈ V ′.

5.2.1 Two-level search algorithm. We propose a two-level search

algorithm to find the minimal view set V ′ that can answer 𝑄𝐺 .

Intuitively, the algorithm checks if𝑄𝐺 is contained by the candidate

view 𝑉 ∈ V in the first level, then explores the graph genes that

assemble a supergraph of 𝑄𝐺 in the second level.

Algorithm 2 depicts the two-level minimal search algorithm.

Given a query 𝑄𝐺 and a candidate view setV with graph genes,

it returns a subset V ′ of V that minimally contains 𝑄𝐺 . The al-

gorithm initializes (1) an empty set V ′ for selected views, (2) an

empty set 𝑈𝐺 for merged graph genes ofV ′, and (3) an index 𝑀

that maps each selected graph gene to a set of views (line 1). It first

checks if 𝑄𝐺 can be answered by a single viewV𝑖 via calling the
VVA algorithm described in Algorithm 1 (lines 2-4). It will stop

searching and return the view if the VVA algorithm returns true.

Otherwise, it continues to find if there is any graph gene 𝑔 of query

𝑄𝐺 that can be contained by the genes ofV𝑖 . Once a qualified graph
gene is found, it will add the relevant viewV𝑖 to the setV ′, and
contained gene 𝑔 to the set𝑈𝐺 , respectively. Also, it will add their

mapping relations to the index 𝑀 (lines 5-12). In lines 13-15, the

algorithm removes the redundant views inV ′, such views can be

eliminated as they do not any cause the missing of contained graph

genes. After all the views and genes are checked, the algorithm

returnsV ′ (line 16).
In the worst case that the last view is returned in the second level,

the algorithm runs in O(|V|(|𝐸 ′𝑝 | + |𝐸 ′𝑝 | ∗ |𝑔|2)), where |V| denotes
the number of views in the view setV , |𝐸 ′𝑝 | is the maximum edge

size of the view𝑉𝑖 ∈ V , and |𝑔| denotes the number of genes of the

given query 𝑄𝐺 .

Example 5. Consider the view pattern 𝑉𝑃 (𝑄𝐺) and view set 𝑉 =

{𝑉1,𝑉2,𝑉3} in Figure 5. Let the genes of 𝑉𝑃 (𝑄𝐺) be {𝑔1, 𝑔2, 𝑔3, 𝑔4}.
As none of the views in the set contain 𝑉𝑃 (𝑄𝐺) in the first level,
the algorithm searches for the contained genes of 𝑉 in the second
level, where 𝑀 is computed to be {(𝑔1 : {𝑉1,𝑉2}), (𝑔2 : {𝑉2}), (𝑔3 :

{𝑉3}), (𝑔4 : {𝑉3})}. As the removal of 𝑉1 does not make any 𝑀 (𝑔)
empty, the algorithm returns {𝑉2,𝑉3} as the minimal view set.

5.2.2 Benefit Evaluation. After a view setV ′ that contains a query
𝑄𝐺 is returned, we evaluate the total benefit 𝑏 (V ′, 𝑄𝐺) and assign

the benefit to the view setV ′ as follows: (1) compute the view cost

by summing the total partial evaluation cost

∑
𝑉 ∈V′ 𝑐𝑜𝑠𝑡 (𝑄𝐺 |𝑉)

and the cost 𝑐𝑜𝑠𝑡 (𝑉1 ⊲⊳ . . . ⊲⊳ 𝑉𝑛) for combining the partial results;

(2) calculate the benefit by subtracting the view cost from the query

cost: 𝑐𝑜𝑠𝑡 (𝑄𝐺 |𝐺); (3) finally assign the benefit to each 𝑉 ∈ V ′ in
proportion to its cost: 𝑐𝑜𝑠𝑡 (𝑄𝐺 |𝑉). Note that to evaluate the partial
evaluation cost, we can derive the corresponding gene 𝑔𝑄𝐺

∈ 𝑄𝐺 ,

then evaluate 𝑔𝑄𝐺
over view 𝑉 , then we measure the combining

cost by joining the views on the articulation points.

5.3 Algorithm Description
Integrating the methods of view transformations and benefit evalu-

ation, we devise a view selection algorithm, called the GGA (Graph-

Gene Algorithm), which is shown in Algorithm 3. Given a query

workload 𝑄 and a candidate view setV , it returns a view setV𝑠
that is transformed fromV . In addition, two probabilities 𝑝 𝑓 and

𝑝 𝑓 are provided to perform the random FISSION and FUSION trans-

formations, respectively.

When the termination condition, e.g., a timeout threshold or

an iteration number, is not satisfied, GGA repeatedly applies the

FISSION, FUSION and, REMOVE transformations to derive a new

state of the view selection (lines 1-8). To simplify the description,

we assume the selection procedure is conducted by the helper proce-

dure SearchAndEvaluate (line 9), which calls the methods of benefit

7

Algorithm 3: Graph-Gene Algorithm (GGA)

Input: A query workload𝑄 , a candidate view set V , a space budge

𝑆 , fission probability 𝑝𝑓 , fusion probability 𝑝𝑐

Output: A view set V𝑠 .

1 while !timeout do
2 for 𝑖 ← 1 to V .𝑙𝑒𝑛𝑔𝑡ℎ do
3 if random(0,1) < 𝑝𝑓 then
4 V = V𝑖𝑛𝑑𝑒𝑥≠𝑖 ∪ 𝐹𝐼𝑆𝑆𝐼𝑂𝑁 (V𝑖) // Fission

5 if random(0,1) < 𝑝𝑐 then
6 V = 𝐹𝑈𝑆𝐼𝑂𝑁 (V𝑖𝑛𝑑𝑒𝑥≠𝑖 ,V𝑖) // Fusion

7 if V𝑖 .𝑔𝑒𝑛𝑒𝑠 = 𝑒𝑚𝑝𝑡𝑦 then
8 V = 𝑅𝐸𝑀𝑂𝑉𝐸 (V,V𝑖) // Remove

9 𝐵𝑣 = 𝑆𝑒𝑎𝑟𝑐ℎ𝐴𝑛𝑑𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (V,𝑄) // Evaluation

10 V′ = 𝐷𝑃𝑆 (V, 𝐵𝑣, 𝑆) // View selection

11 if 𝐵′
𝑉

> 𝐵𝑉 then
12 V𝑠 = V′
13 else
14 skip V′
15 return V𝑠

evaluation for multiple views in Section 5.2. We use the cost op-

timizer [38] of Gremlin to evaluate the view benefit and In line 9.

The algorithm calls another helper function DPS to select the views
based on the dynamic programming strategy.

The function of dynamic programming selection (DPS) goes as
follows: (i) initialize a benefit vector 𝐵𝑉 and a size vector 𝑆𝑉 . We

leverage the PROFILE [39] of Gremlin to derive the size vector 𝑆𝑉 ,

one can also plug other size estimators, e.g., [19], to obtain it; (ii) fill

the DP table by considering two cases for every view: (a) the view

is included in the optimal subset, (b) not included in the optimal set.

Therefore, the maximum value that can be obtained according to

the equation: DP[i][j] = max(𝐵𝑉 [i] + DP[i-1][j-𝑆𝑉 [i]],DP[i-1][j]).

(iii) use a bottom-up approach to obtain the optimal selectionV ′.
Note that the algorithm only jumps to a new state with a higher

benefit. Otherwise, it will skip the current state and continue ap-

plying transformations to the views that are from the previously

obtained state to reach a another state (lines 11-14). When the ter-

mination condition is satisfied, the algorithm returns an optimal

view selection under the space budget.

Definition 5.1. (Transformation Completeness): LetV be a

set of candidate views andV𝑖
be the 𝑖-th state of the candidate view

set.V𝑖
is transformation complete iff there exists a set of sequence

transformation T = {𝜏1, 𝜏2, . . . , 𝜏𝑛} such thatV andV𝑖
cover the

same workload 𝑄 .

Lemma 2. Any state of view sets in GGA algorithm is transforma-
tion complete for a candidate view setV .

Proof 2. (Sketch) The transformation set T= {FISSION, FUSION,
REMOVE} is complete for any candidate view setV . Firstly, FISSION
breaks the initial view set V to a fine-grained view set with graph
genes. Thus, the joined view content of these graph genes can cover
the view content of V . Secondly, FUSION merges the view set V ′
with overlap genes. Hence, the union of view content of the remaining
genes still covers the view content ofV . Finally, the empty-gene views
are eliminated by REMOVE but they can be answered by other views.
Therefore, for any state of view set, the original workload 𝑄 can be
covered by a new view setV . That concludes the proof.

Function: Dynamic Programming Selection (DPS)
Input: a candidate view set V with a benefit vector 𝐵𝑉 , and a

space budge 𝑆 .

Output: A subset V′ of V .

1 𝐵𝑉 , 𝑆𝑉 , 𝐷𝑃 [𝐵𝑉] [𝑆𝑉] ← ∅ ; // Initialization

2 foreach 𝑣 ∈ 𝑉 do
3 for 𝑖 ← 1 to 𝐵𝑉 .𝑙𝑒𝑛𝑔𝑡ℎ do
4 for 𝑗 ← 1 to 𝑆 do
5 if 𝑆𝑉 [𝑖] < 𝑗 then
6 𝐷𝑃 [𝑖] [𝑗] =𝑚𝑎𝑥 (𝐵𝑉 [𝑖] +𝐷𝑃 [𝑖 − 1] [𝑗 −

𝑆𝑉 [𝑖]], 𝐷𝑃 [𝑖 − 1] [𝑗])
7 else
8 𝐷𝑃 [𝑖] [𝑗] = 𝐷𝑃 [𝑖 − 1] [𝑗])
9 𝑖 ← 𝐵𝑉 .𝑙𝑒𝑛𝑔𝑡ℎ, 𝑗 ← 𝑆

10 while 𝑗 > 0 and 𝑖 ≠ 0 do
11 if 𝐷𝑃 [𝑖 − 1] [𝑗] ≠ 𝐷𝑃 [𝑖] [𝑗] then
12 V′.𝑎𝑑𝑑 (𝑉 [𝑖])
13 𝑗 = 𝑗 − 𝑆𝑉 [𝑖 − 1]
14 𝑖 = 𝑖 − 1
15 return V′

6 PERFORMANCE EVALUATION
We evaluated ourmethods in two aspects: (1) the query performance

and materialization overhead of extended graph views and (2) the

performance of the view selection algorithm, GGA.

Compared view-based methods. Firstly, we studied the per-

formance using G-View against two other view-based methods.

The goal is to evaluate the view benefit and overhead of the view-

based methods. We constructed a graph view for each query and

compared the following methods:

(1) Subgraph: We utilize the subgraph step [39] of Gremlin to

manually extract the relevant subgraphs for the queries. Although

Gremlin has no explicit support for graph view, these extracted

subgraphs can be treated as a form of graph view. Note that the

notion of view in Subgraph is different from that of G-View as it

cannot answer the queries with subgraph patterns, e.g., a view for

LDBC P2 doesn’t contain a view for LDBC P1 in Subgraph.

(2) Pattern views (P-View): Fan et al. [16] proposed the graph

pattern views via graph simulation [15]. The basic idea is to mate-

rialize the matches for each query edge of the graph pattern, then

join the matches to answer the contained queries. Specifically, we

implement it in two steps: (i) we visit the query patterns in the

same traversal order as G-View’s, then utilize an instance of Linked-
hashmap class in JAVA to store each query’s matches, i.e., keys are

query edges, value contains all the matches where each match is

represented as a map from query variables to match values; (ii) we

join the matches on the common keys and merge the intermediate

results to answer the query at runtime.

(3) G-View: The third method is our method, G-View. We de-

ployed TinkerPop v3.4.4 as the graph computing engine and used

TinkerGraph to store the extended graph views. Regarding the view

overhead, we also compared G-View*, which was space-optimized

for G-View because of the advantage of the extended graph view

supporting subgraph queries. For instance, G-View* automatically

avoid constructing the views for patterns P1, P5, and P10 in the

LDBC workloads (See Figure 7) as they have been contained by

patterns P2, P6, P11, respectively.

8

1 2 3 4 5 6 7 8 9 10 11 12

10
2

10
4

10
6

T
i
m
e
(
m
s
)

1 2 3 4 5 6 7 8 9 10 11 12

10
3

10
4

10
5

P-View Subgraph G-View

1 2 3 4 5 6 7 8 9 10 11 12

10
1

10
2

10
3

(a) LDBC dataset (b) Amazon dataset (c) DBLP dataset

Figure 6: Processing time on a logarithmic scale for queries, x-axis labels are query ids, i.e., Q1 to Q12.

LDBC Amazon DBLP Total

𝑜 (𝑤) 𝑠 (𝑤) 𝑜 (𝑤) 𝑠 (𝑤) 𝑜 (𝑤) 𝑠 (𝑤) 𝑜 (𝑊) 𝑠 (𝑊)
Subgraph 211 230 1354 913 150 128 1715 1271

P-View 190 128 1513 201 713 240 2416 569

G-View 227 120 1450 126 160 14 1837 260

G-View* 150 103 1333 115 142 13 1625 231
Table 1: View overhead: 𝑜 (𝑣) denotes the computation over-
head in seconds; 𝑠 (𝑣) is the space overhead in megabytes.

Compared selection algorithms. Secondly, we measured the

performance of the view selection algorithms. Specifically, all the

algorithms modeled the selection problem as a Knapsack problem

and they aimed at selecting the extended graph views under a

space budget for a given workload. We conducted three sets of

experiments to evaluate (1) the effectiveness of the algorithms in

answering the query, reducing the view size, and optimizing the

view benefit; (2) the efficiency of the selection algorithms; and (3)

the convergence of the GGA algorithm. We compared the following

selection algorithms:

(1) Dynamic Programming Selection (DPS): Our first base-
line method is the selection method based on dynamic program-

ming, which is described as a function in Section 5.3.

(2) Greedy-Based Selection (Greedy): The second algorithm

is a greedy-based algorithm [35]. In particular, this method com-

putes the view benefit in each iteration and remove a view with

the maximum benefit, along with the queries it contained. The

algorithm terminates until all queries are included or the total size

exceeds the size constraint.

(3) Kaskade: The third algorithm is a branch-and-bound solver

used by Kaskade [13]. We implemented it as follows: (i) we input

the view templates with no containment relationship to simulate its

view enumeration; For instance, we have removed the patterns P1,

P5, and P10 for the LDBC workloads; (ii) we enumerate the queries

and evaluate the benefit of a view that contains the current query

to simulate its single-view rewriting; (iii) we leverage the PROFILE

[39] of Gremlin to derive the size vector; and finally (iv) we use a

branch-and-bound solver to select the views.

(4) Graph Gene Algorithm (GGA): The last algorithm is our

view selection method, GGA, with all the details introduced in

Section 5, including the methods of view transformations, multi-

view evaluation, and view selection.

P

P

P1

P

P

P1 P2

P

P

P3

P

P

P3 P4

P

P

P5 P6

P7 P8 P9 P10 P11 P12

G= "female"

(1) K

L

G= "female"

(1) (2)K L

P P

P

P

(1) K (2) K

G= "male"

G= "female" G= "female"

G= "male"

(1) K (2) K

(3)

K

OP

P O

(1) K (2) S

(3)

W

MP

P T
(3)

I

(1)

H
(2) H

MP

P T
(3)

H
(2) H(4) K

I

(1)
PP

L P
(3)

(1)

K
(2) K

OP

P

(1) K (2) S

L
(3)

L

P

L

P

(1) L (2) L

(5)

L

T

O

(6)

H H

(3) (4)

S S

FN="John" FN="John"

LN="Smith"

FN= "David"

G= "female"

FN= "David"

G= "female"

G= "male"

FN="John" C= "philosophy"C= "philosophy"

FN= "David" FN= "David"

P

P

P

P O

G= "female"

(1) (2)K W

P

P O

G= "female"

(1)
(2)K S

G= "male" G= "male"G= "male"

Figure 7: Graph pattern queries for LDBC dataset.

P1P1 P2 P3P3 P4 P5 P6

P7 P8 P9 P10 P11 P12

G= "DVD"

(1)

G= "DVD"

(1) (2) (1) (2)

G= "Video"

G= "Video"

(1) (2)

(3)

(1) (2)

(3)

(2)

(3)

(1)

(2) (1) (2)

(3)

G= "DVD"

(1) (2)

G= "DVD"

(1) (2)

G= "Music" G= "Music"G= "Music"

G= "Music" G= "Music" G= "Video" G= "Music" G= "Book" G= "Music" G= "DVD"

G= "Video" G= "Video" G= "Video"

G= "Video"

G= "DVD"

G= "DVD"G= "Book"

G= "Video" G= "Video"G= "Book" G= "DVD"

G= "Book"

G= "DVD"

(1) (2)

G= "Video"

G= "Video"

G= "Video"

G= "Video"

(2)(1)

(3)

G= "DVD"

G= "DVD" G= "DVD" G= "DVD"

G= "DVD"

G= "DVD"

G= "DVD"

G= "DVD"
(3)

(1) (3)

Figure 8: Graph pattern queries for Amazon dataset.

Datasets andWorkloads.We used both synthetic and real-life

data to compare the performance of our approach with state-of-

the-art methods. We used the data and designed the corresponding

workloads as follows:

(1) Synthetic graphs. We used a synthetic social network dataset

from the LDBC benchmark [14], which includes 11 entities con-

nected by 20 relations. We generated an LDBC graph with the scale

factor SF1, resulting in a graph with roughly 1M vertices and 2M

edges. We designed a workload including 12 pattern queries fol-

lowing [23], which are shown in Figure 7. Nodes are labeled with

P(Person), T(Tag), L(Location), O(Organization), and M(Message).

Edges are labeled with K(Knows), Has (H), LocatedIn (L), Intereste-

dIn (I), StudyAt (S), and WorkAt (W). Boolean predicates include

Gender (G), Category (C), and Names (FN: firstName, LN: lastName).

(2) Real-life graphs. We used two real-life graphs: (a) Amazon

dataset [25], a product co-purchasing network with 542K nodes

and 3.3M edges. Each node has attributes such as title, group and

sales-rank, and an edge models a co-purchase relationship between

product a and b. We designed 12 frequent query patterns following

9

S/6 S/4 S/2

0

2

4

6

8
·104

V
i
e
w
b
e
n
e
fi
t
(
m
s
)

S/6 S/4 S/2

0

0.5

1

1.5
·105

DPS Greedy Kascade GGA

S/6 S/4 S/2

0

0.5

1

1.5

·105

(a) LDBC dataset (b) Amazon dataset (c) DBLP dataset

Figure 9: View benefit for the workloads in three datasets based on views selected by three algorithms.

S/6 S/4 S/2

0

20

40

60

80

100

%
o
f
q
u
e
r
i
e

S/6 S/4 S/2

0

20

40

60

80

100

S/6 S/4 S/2

0

20

40

60

80

100

(a) LDBC dataset (b) Amazon dataset (c) DBLP dataset

Figure 10: Fraction of queries for the workloads in three datasets covered by views selected by three algorithms.

[26], where each of the view content contains 67K nodes and edges

on average. The patterns are shown in Figure 8. (b) DBLP-citation

network [34], a bibliography that provides the publication infor-

mation and co-authorship in the field of computer science. The

dataset has 1M nodes and 2M edges, in which nodes represent pa-

pers with attributes such as title, authors, year and venue, and an

edge indicate a citation from paper x to y. We also identified 12

query patterns (not shown) similar to Amazon patterns.

Experimental Setup. All the experiments were conducted on

a machine with a 2-core i5 CPU (2.9 GHz) and 16GB RAM. We

composed the queries using Gremlin pattern matching. We imple-

mented all the compared methods in JAVA 1.8. We deployed SQLG

v2.0.2 to stored the raw data. We constructed the views from SQLG

and materialized them to GraphML [39] files.

6.1 Evaluation of Performance and Overhead
In this section, we evaluated the performance and overhead of three

view-based methods, namely, Subgraph, P-View, and G-View. As for

the view performance, we measured the running time of each query

over the view in milliseconds, and we reported the running time in

log scale. We ensured the consistent query results. Regarding the

view overhead, we reported their computation and space overhead

with respect to the query workloads.

Figure 6 shows the evaluation results of compared methods,

which clearly indicates that G-View outperformed other view-based

methods in accelerating all queries. Particularly, for the LDBC

dataset, it achieved 12x and 1.2x speedup for P-View and Sub-

graph, respectively. For the Amazon dataset, it was 69x and 2x

faster. For the DBLP dataset, it achieved up to 20x and 4x speedup,

respectively. Surprisingly, G-View was faster than Subgraph that

is a native approach of Gremlin. We found that this was mainly

because Subgraph contained many non-query results after creating

the views, leading to a larger view space than that of G-View. As

a result, it was slower due to a higher graph traversal cost. For

example, to create a view for the Amazon P1, it will add redun-

dant edges when applying both "G=DVD" and "G=Music" to the

co-purchased edge. Instead, G-View can apply the predicates on

both ends of a query edge without such side effect, resulting in a

more fine-grained view. P-View has the highest computation cost

due to its "relational-style" way that joins the matches of connected

query edges at runtime.

Table 1 reports the view overheads including the computation

overhead 𝑜 (𝑣) and space overhead 𝑠 (𝑣). Interestingly, G-View had

a higher computation overhead than Subgraph’s despite its space

overhead was lower. We found the reason is that Subgraph is a

built-in method of Gremlin, thus it can generate the view data in

place without fetching the data from the graph. We believe this

optimization can also be applied to G-View once it is implemented

inside Gremlin. P-View had a higher space overhead than G-View’s

as it stored the matches for each query edge separately. Neverthe-

less, it had a lower space overhead than Subgraph because it can

apply the predicates of a query edge simultaneously. A side obser-

vation is that P-View’s computation cost was highest due to the

additional transformation cost from the traversal results to pattern

matches. G-View and Subgraph had no such cost as they stored the

results as graphs. Last but not least, the space-optimized G-View*

had the lowest computation and space overhead as it has avoided

the unnecessary view construction. Another benefit of G-View is

that the views are automatically generated and natively evaluated

for the queries. In contrast, Subgraph has to manually construct

the views and P-View evaluates the queries in a relational way.

6.2 Effectiveness of Selection Algorithms
We ran four selection algorithms. Namely, DPS, Greedy, Kascade,

and GGA, to evaluate their effectiveness.We ran the GGA algorithm

with only one pass and set both fission and fusion probabilities to

10

LDBC Amazon DBLP

10
1

10
2

10
3

S
i
z
e
(
M
B
)

DPS Greedy Kascade

GGA

(a) Candidate view size

LDBC Amazon DBLP

10
5.5

10
6

T
i
m
e
(
m
s
)

DPS Greedy Kascade

GGA

(b) Running time

1 2 3 4 5 6 7 8 9 10

100

200

V
i
e
w
b
e
n
e
fi
t
(
s
)

LDBC Amazon DBLP

(c) Convergence of GGA

Figure 11: View size, running time and converge of selection algorithms.

one for a complete view set transformation. We tested the algo-

rithms by varying the space budgets with S/6, S/4, and S/2, where

S denotes the total view size

∑
𝑣 𝑠 (𝑣) of G-View in Table 1.

Figure 9 depicts the performance of selection algorithms in op-

timizing the view benefit. Overall, for any workload and space

budget, the GGA algorithm achieved the highest view benefit, thus

can have the largest query processing cost reductions. For the LDBC

dataset with S/2, it improved 36%, 20%, 19% of view benefit over

DPS, Greedy, and Kascade, respectively. For the Amazon dataset

with S/2, it achieved 30%, 20%, 9% of view benefit improvement,

respectively. The view benefit was significantly improved by GGA

algorithm by 70%, 150%, 53% in the DBLP dataset. Kascade had a

higher benefit than DPS and Greedy because (i) it has eliminated the

contained views, thus it selected more useful views than DPS, and

(ii) it used the branch-and-bound strategy to search the solution,

thus can optimize both view benefit and space. Nevertheless, it has

an averagely 27% lower benefit than GGA. This is mainly attrib-

uted to (1) GGA’s fine-grained view transformations that explore

and merge the views with common subgraph parts. (2) its benefit

evaluation strategy that can take multiple view combinations to

optimize the benefit.

Figure 10 illustrates the fraction of queries that can be answered

by the selected views. GGA clearly outperformed others because it

employed supergraph views, merged views, and view combinations,

which result in more contained queries. Particularly, it can fully

cover all the queries when the space budget is increased to S/2. DPS

had the lowest query coverage in the LDBC and Amazon datasets

because it selected the views independently. Greedy had a higher

query coverage than DPS because it removed the contained queries

in each round. However, the query fraction of Greedy was affected

by the low-utility views that have a high benefit and a large size in

the DBLP dataset. Kascade can address this issue with its branch-

and-bound solver, but still, it can not compete with GGA because it

only considers single-view query rewriting.

Figure 11a illustrates the size of candidate views generated by the

selection algorithms. DPS had the largest view size because it had a

candidate view for each query, while Greedy and Kascade had the

same and relatively smaller size because they pruned the contained

views. It is clearly visible that GGA method outperformed others

because of its gene-based view transformation and combination.

Particularly, it reduced the space of the view size by up to 61%, 60%,

58% for LDBC, Amazon, and DBLP, respectively.

6.3 Efficiency of Selection Algorithms
Figure 11b shows the running time of four algorithms in millisec-

onds. In particular, the time consists of the execution time for view

construction, view evaluation, and view selection. The results man-

ifested that GGA outperformed others regarding efficiency. Overall,

it accelerated 36%, 20%, 30% of running time of DPS, Greedy, and

Kascade for the LDBC workloads, respectively. The improvement

was achieved up to 58%, 71%, and 55% for the Amazon workloads,

and 19%, 59% and 16% for the DBLP workloads. Kascade was faster

than DPS because it had a reduced candidate set after the view enu-

meration. Greedy incurred significant overhead because it had to

re-evaluate the view benefit in each round. The primary advantage

of GGA over others is that it has reduced the number and size of

views in the candidate set, thus saved unnecessary computation of

view evaluation. For the view selection phase, GGA was the best

because it had the smallest candidate set to select and generate.

6.4 The Convergence of GGA
In this experiment, we investigated the convergence of GGA.We set

both fission and fusion probabilities to 50% and ran the algorithm

with space budget S/2. The result was shown in Figure 11c, which

confirmed that GGA is effective: the algorithm converges within 10

generations for the workloads in three datasets. Furthermore, the

results indicated that the strategy of state search is effective. When

a state of view selection has a lower benefit than the previous state,

the algorithm can jump to another state with a higher benefit.

7 RELATEDWORK
View selection for relational, XML andRDF data.Materialized

view selection in relational databases has been a well-studied topic

(see [11, 28] for surveys). Particularly, Chaves et al. [9] encoded the

relational views as genes and applied the gene algorithm to the view

selection problem in the setting of distributed databases. Recently,

there emerged work, e.g., [42], that utilized deep reinforcement

learning to guide the view selection. There has been a host of work

on processing XML queries using views [22, 29, 35]. In [35], the au-

thors studied the view selection problem for XPath workloads, they

proposed a greedy-based solution that makes the space/time trade-

off. Katsifodimos et al. [22] studied the view selection for XQuery

workloads. They first developed a greedy-based algorithm for a

Knapsack selection problem, then proposed a heuristic algorithm to

search for an optimal view set based on multi-view rewriting. There

11

has also been work for RDF view selection [8, 18]. Goasdoué et al.

[18] solved the view selection problem as a search process. They

proposed heuristic strategies to search for a set of reformulated

RDF views to minimize the defined cost model. Unfortunately, none

of these works considered the structural properties of graph queries

in view selection, thus they cannot be applied directly to the graph

view selection problem.

View-based approaches in graph databases. With the ad-

vances of graph databases, graph view-based approaches [13, 16,

21, 37] have gained more and more attention. For instance, DB2

graph [37] utilized a graph overlay approach to define a graph view

of the underlying relational data. Fan et al. [16] implemented graph

views for pattern queries based on graph simulation [15]. GRFusion

[21] decomposed the graph topology from the relational tables and

used pointers to connect the graph topology with the relational

attribute data. While the aforementioned methods implemented

the graph view using the relational approaches, G-View proposed

an extended graph view, which not only utilizes a native graph

approach, but also supports the subgraph and supergraph query

answering. Regarding view selection in graph databases, Fan et al.

[16] studied the minimal and minimum containment problems but

they considered the views were pre-computed and static, leading

to duplicate view content. Kascade [13] considered the view selec-

tion problem as an 0-1 Knapsack problem, which generated the

candidates using constraint-based view enumeration, then used a

branch-and-bound solver to select the views. Our work modeled

the selection problem as an 0-1 Knasack problem as well. While

Kascade only supported single-view rewriting, our GGA algorithm

considered the subgraph/supergraph views, view transformations,

and multi-view combinations, yielding a view set with a smaller

view size and a higher view benefit.

8 CONCLUSION
In this work, we proposed an end-to-end tool, G-View, to automate

the process of view selection in the graph databases. We proposed

an extended graph view, which can answer both the subgraph and

supergraph queries. We devised a filtering-and-verification frame-

work to check the query containment by views. We developed a

search-based algorithm, GGA, which explores graph view trans-

formations to reduce the view size and optimize the overall query

performance. The experimental results manifested that G-View was

significantly faster than other view-based methods in accelerating

the queries while incurring smaller view overhead. Moreover, GGA

outperformed other selection methods concerning effectiveness

and efficiency. In the future, we plan to extend our techniques to

other graph query languages such as Cypher [3] and SPARQL [40].

REFERENCES
[1] http://neo4j.com.

[2] https://janusgraph.org/.

[3] Cypher: the Neo4j graph query Language. https://neo4j.com/cypher-graph-

query-language/.

[4] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of material-

ized views and indexes in sql databases. In VLDB, volume 2000, pages 496–505,

2000.

[5] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč. Foundations

of modern query languages for graph databases. ACM Computing Surveys (CSUR),
50(5):1–40, 2017.

[6] D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic algorithms: Part

1, fundamentals. University computing, 15(2):56–69, 1993.
[7] M. Bröcheler, A. Pugliese, and V. S. Subrahmanian. A budget-based algorithm

for efficient subgraph matching on huge networks. In ICDE workshops, pages
94–99. IEEE, 2011.

[8] R. Castillo and U. Leser. Selecting materialized views for rdf data. In International
Conference on Web Engineering, pages 126–137. Springer, 2010.

[9] L. W. F. Chaves, E. Buchmann, F. Hueske, and K. Böhm. Towards materialized

view selection for distributed databases. In EDBT, pages 1088–1099, 2009.
[10] R. Chirkova and C. Li. Materializing views with minimal size to answer queries.

In PODS, pages 38–48. ACM, 2003.

[11] R. Chirkova, J. Yang, et al. Materialized views. Foundations and Trends® in
Databases, 4(4):295–405, 2012.

[12] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism

algorithm for matching large graphs. TPAMI, 26(10):1367–1372, 2004.
[13] J. M. da Trindade, K. Karanasos, C. Curino, S. Madden, and J. Shun. Kaskade:

Graph views for efficient graph analytics. In ICDE, 2020.
[14] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat, M.-D. Pham,

and P. Boncz. The LDBC social network benchmark: Interactive workload. In

SIGMOD, pages 619–630. ACM, 2015.

[15] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching: from

intractable to polynomial time. PVLDB, 3(1-2):264–275, 2010.
[16] W. Fan, X. Wang, and Y. Wu. Answering graph pattern queries using views. In

ICDE, pages 184–195. IEEE, 2014.
[17] G. H. Fletcher, H. Voigt, and N. Yakovets. Declarative graph querying in practice

and theory. In EDBT, pages 598–601, 2017.
[18] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. View selection in semantic

web databases. PVLDB, 5(2):97–108, 2011.
[19] A. Gubichev. Query Processing and Optimization in Graph Databases. PhD thesis,

Technische Universität München, 2015.

[20] H. Gupta and I. S. Mumick. Selection of views to materialize in a data warehouse.

IEEE Transactions on Knowledge and Data Engineering, 17(1):24–43, 2005.
[21] M. S. Hassan, T. Kuznetsova, H. C. Jeong, W. G. Aref, and M. Sadoghi. Extending

in-memory relational database engines with native graph support. In EDBT,
pages 25–36, 2018.

[22] A. Katsifodimos, I. Manolescu, and V. Vassalos. Materialized view selection for

xquery workloads. In SIGMOD, pages 565–576, 2012.
[23] LDBC task force. The LDBC social network benchmark (version 0.3.2). Technical

report, Linked Data Benchmark Council, 2019.

[24] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth comparison of

subgraph isomorphism algorithms in graph databases. Proceedings of the VLDB
Endowment, 6(2):133–144, 2012.

[25] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing.

TWEB, 1(1):5–es, 2007.
[26] J. Leskovec, A. Singh, and J. Kleinberg. Patterns of influence in a recommendation

network. In PAKDD, pages 380–389. Springer, 2006.
[27] M. Lissandrini, M. Brugnara, and Y. Velegrakis. Beyond macrobenchmarks:

microbenchmark-based graph database evaluation. PVLDB, 12(4):390–403, 2018.
[28] I. Mami and Z. Bellahsene. A survey of view selection methods. Acm Sigmod

Record, 41(1):20–29, 2012.
[29] B. Mandhani and D. Suciu. Query caching and view selection for xml databases.

In VLDB, pages 469–480. VLDB Endowment, 2005.

[30] P. Martin. SQLG: an implementation of Apache TinkerPop on a RDBMS.

http://sqlg.org/docs/2.0.0-SNAPSHOT/, 2020.

[31] M. Minot, S. N. Ndiaye, and C. Solnon. A comparison of decomposition methods

for the maximum common subgraph problem. In 2015 IEEE 27th International
Conference on Tools with Artificial Intelligence (ICTAI), pages 461–468. IEEE, 2015.

[32] M. A. Rodriguez. The gremlin graph traversal machine and language (invited

talk). In Proceedings of the 15th Symposium on Database Programming Languages,
pages 1–10, 2015.

[33] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The ubiquity of large

graphs and surprising challenges of graph processing. PVLDB, 11(4):420–431,
2017.

[34] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: extraction and

mining of academic social networks. In SIGKDD, pages 990–998, 2008.
[35] N. Tang, J. X. Yu, H. Tang, M. T. Özsu, and P. Boncz. Materialized view selection

in xml databases. In DASFAA, pages 616–630, 2009.
[36] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on

computing, 1(2):146–160, 1972.
[37] Y. Tian, W. Sun, S. J. Tong, E. L. Xu, M. H. Pirahesh, and W. Zhao. Synergistic

graph and SQL analytics inside IBM Db2. PVLDB, 12(12):1782–1785, 2019.
[38] A. Tinkerpop. https://github.com/tinkerpop/blueprints/wiki/TinkerGraph.

[39] A. Tinkerpop. https://tinkerpop.apache.org/docs/3.4.4/, 2020.

[40] W3C. SPARQL 1.1 Overview, 2013.

[41] W3C. XQuery 1.0: An XML Query Language (Second Edition), 2015.

[42] H. Yuan, G. Li, L. Feng, J. Sun, and Y. Han. Automatic View Generation with

Deep Learning and Reinforcement Learning. ICDE, 2020.

12

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Graph, Queries and Views
	2.2 View Overhead and Benefit
	2.3 View Selection Problem

	3 System Overview
	4 Candidate View Construction and Evaluation
	4.1 Edge-Induced View Construction
	4.2 A Filtering-and-Verification Framework

	5 Graph Gene Algorithm
	5.1 View Transformations
	5.2 Benefit Evaluation for Multiple Views
	5.3 Algorithm Description

	6 Performance Evaluation
	6.1 Evaluation of Performance and Overhead
	6.2 Effectiveness of Selection Algorithms
	6.3 Efficiency of Selection Algorithms
	6.4 The Convergence of GGA

	7 Related work
	8 Conclusion
	References

