
Bio-SODA: Enabling Natural LanguageQuestion Answering
over Knowledge Graphs without Training Data

Ana Claudia Sima
SIB Swiss Institute of Bioinformatics

Lausanne, Switzerland
Ana-Claudia.Sima@sib.swiss

Tarcisio Mendes de Farias
SIB Swiss Institute of Bioinformatics

Lausanne, Switzerland
University of Lausanne
Lausanne, Switzerland

Tarcisio.Mendes@sib.swiss

Maria Anisimova
Zurich University of Applied Sciences

Wädenswil, Switzerland
SIB Swiss Institute of Bioinformatics

Lausanne, Switzerland
Maria.Anisimova@zhaw.ch

Christophe Dessimoz
University of Lausanne
Lausanne, Switzerland

University College London
London, UK

SIB Swiss Institute of Bioinformatics
Lausanne, Switzerland

Christophe.Dessimoz@unil.ch

Marc Robinson-Rechavi
University of Lausanne
Lausanne, Switzerland

SIB Swiss Institute of Bioinformatics
Lausanne, Switzerland

Marc.Robinson-Rechavi@unil.ch

Erich Zbinden
Zurich University of Applied Sciences

Wädenswil, Switzerland
Erich.Zbinden@zhaw.ch

Kurt Stockinger
Zurich University of Applied Sciences

Winterthur, Switzerland
Kurt.Stockinger@zhaw.ch

ABSTRACT
The problem of natural language processing over structured data
has become a growing research field, both within the relational
database and the Semantic Web community, with significant efforts
involved in question answering over knowledge graphs (KGQA).
However, many of these approaches are either specifically targeted
at open-domain question answering using DBpedia, or require large
training datasets to translate a natural language question to SPARQL
in order to query the knowledge graph. Hence, these approaches
often cannot be applied directly to complex scientific datasetswhere
no prior training data is available.

In this paper, we focus on the challenges of natural language
processing over knowledge graphs of scientific datasets. In particu-
lar, we introduce Bio-SODA, a natural language processing engine
that does not require training data in the form of question-answer
pairs for generating SPARQL queries. Bio-SODA uses a generic
graph-based approach for translating user questions to a ranked
list of SPARQL candidate queries. Furthermore, Bio-SODA uses a
novel ranking algorithm that includes node centrality as a measure
of relevance for selecting the best SPARQL candidate query. Our
experiments with real-world datasets across several scientific do-
mains, including the official bioinformatics Question Answering
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSDBM ’21, July 06-07, 2021,
© 2021 Association for Computing Machinery.

over Linked Data (QALD) challenge, as well as the CORDIS dataset
of European projects, show that Bio-SODA outperforms publicly
available KGQA systems by an F1-score of least 20% and by an even
higher factor on more complex bioinformatics datasets.

CCS CONCEPTS
• Information systems→ Graph-based database models; Re-
trieval models and ranking.

KEYWORDS
Question Answering, Knowledge Graphs, Ranking

ACM Reference Format:
Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe
Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, and Kurt Stockinger.
2021. Bio-SODA: Enabling Natural Language Question Answering over
Knowledge Graphs without Training Data. In . ACM, New York, NY, USA,
12 pages.

1 INTRODUCTION
The problem of natural language processing over structured data
has gained significant traction, both in the Semantic Web com-
munity – with a focus on answering natural language questions
over RDF graph databases [10, 42, 45] – and in the relational data-
base community, where the goal is to answer questions by finding
their semantically equivalent translations to SQL [7, 22, 23, 35].
Significant research efforts have been invested in particular in open-
domain question answering over knowledge graphs. These efforts
often use the DBpedia and/or Wikidata knowledge bases, that are
composed of structured content from various Wikimedia projects

ar
X

iv
:2

10
4.

13
74

4v
4

 [
cs

.D
B

]
 1

4
Ju

n
20

21

SSDBM ’21, July 06-07, 2021,Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, and Kurt Stockinger

such as Wikipedia. A growing ecosystem of tools is therefore be-
coming available for solving subtasks of the KGQA problem, such
as entity linking [14, 27, 31, 36] or query generation [44]. However,
most of these tools are specifically targeted at question answering
over DBpedia [38], which casts doubts on their applicability to
other contexts, such as for scientific datasets.

On the one hand, encouraged by the recent success of machine
learning methods, several new benchmarks for training and eval-
uating KGQA systems have been published [13, 40]. On the other
hand, most of the existing datasets are synthetic (i.e., not based
on real query logs) and generally limited to DBpedia or Wikidata,
which may not be representative of knowledge graphs for scientific
datasets.

For example, one of the major question answering datasets over
DBpedia, LC-Quad [40], as well as its updated version, LC-Quad
2.0 [13], include only simple multi-fact questions that connect at
most two facts. In other words, these queries cover at most two
or three triple patterns, with a query graph spanning a maximum
of two hops, whereas real-world questions tend to be much more
complex. In particular, a study of SPARQL query logs [6] across
multiple knowledge graphs, including DBpedia, has shown that a
significant fraction of real-world queries have 10 triple patterns
or more. It therefore remains unclear whether existing training
sets can serve as representative for real-world natural language
processing engines over knowledge graphs in general.

All in all, an important unknown still remains as to how many
of the lessons learned in question answering over DBPedia can be
easily applied to querying scientific datasets. In these domains, an
equivalent ecosystem of tools is not readily available. As a conse-
quence, data access and retrieval remain challenging for domain
experts who are not familiar with structured query languages, nor
with the data models of each scientific dataset that they use.

To illustrate the general problem of natural language processing
over knowledge graphs, consider the simple data model in Fig-
ure 1. Here we see that a drug could be a possible disease target
for asthma (left branch), as well as potentially having side effects
such as triggering asthma symptoms (right branch). Now consider
the following natural language question: "Which drugs are used
for asthma?". Note that our knowledge graph has no concept or
property called used for. Hence, this question cannot be easily trans-
lated without relying on external knowledge (e.g. training data),
given that used for cannot be directly mapped to either of the two
properties (possibleDiseaseTarget or sideEffect) shown in the figure.
However, node centrality metrics, such as the PageRank score of
nodes in the knowledge graph, can help capture "common sense"
knowledge, e.g., that asthma is more commonly a Disease, rather
than a Side Effect.

As a step towards bridging the current gap in natural language
processing for knowledge graphs of scientific datasets, we introduce
Bio-SODA, a system designed to answer natural language questions
across knowledge graphs where no prior training data is available.
Bio-SODA relies on a generic graph-based approach in order to
translate natural language questions into SPARQL queries. Further-
more, Bio-SODA is designed to compensate for incompleteness in
the data—either due to missing schema information or, to some
extent, due to missing labels. Although these situations should not

possibleDiseaseTarget

Drug

label

Disease

sideEffect

Side Effects

"asthma"

sideEffectName

"asthma"

Figure 1: Illustrative datamodel, simplified from the QALD4
benchmark datasets [41]. Consider the following question:
“Which drugs are used for asthma?". In the QALD4 dataset,
"asthma" appears as both a disease instance (shown in
green), as well as a side effect (shown in red). The second in-
terpretation describes drugs that can trigger asthma symp-
toms. Therefore, it is the opposite of the user’s intended
question. However, the predicate used for in the question
cannot be easily linked to either of the properties indicated
through arrows in the image. Due to ambiguity, the question
is difficult to translate correctly in the absence of external
knowledge, without relying on training data (inferring that
used for implies drug targeting disease).

occur when following ontology engineering best practices for rep-
resenting data in RDF, our experience in working with real-world
datasets shows that these problems are frequent in practice.

We make our prototype implementation available open-source1.
We also make available a live demo of Bio-SODA online2, where
each of the datasets considered in this paper can be queried. The
prototype enables both keyword search, as well as full question
answering in English. We chose bioinformatics as our primary
target domain, motivated by the rapid growth of publicly available
RDF data in this scientific domain. Specifically, around 8% of the
Linked Open Data Cloud originates from the Life Sciences [19]. For
the purpose of evaluating our system, we use several real-world
datasets stemming from different domains. For example, we use
the last bioinformatics question answering challenge released as
part of the official Question Answering on Large Databases (QALD)
series, namely the QALD4 biomedical task [41]. Importantly, to-
date there is no sufficiently large training dataset of questions
and corresponding SPARQL queries to enable the use of machine
learning approaches for end-to-end Question Answering in the
biomedical field. Finally, to demonstrate the generalizability of Bio-
SODA to other domains, we also apply our system to an entirely
different context, outside bioinformatics, namely on the CORDIS
dataset describing European Union (EU) funded research projects3.
This dataset is also used in the EU-project INODE (Intelligent Open
Data Exploration) [3].

This paper makes the following contributions:
1Code at https://github.com/anazhaw/Bio-SODA
2See demo at http://biosoda.expasy.ch/welcome/
3https://cordis.europa.eu/projects

https://github.com/anazhaw/Bio-SODA
http://biosoda.expasy.ch/welcome/

Bio-SODA: Enabling Natural LanguageQuestion Answering over Knowledge Graphs without Training Data SSDBM ’21, July 06-07, 2021,

• We introduce Bio-SODA—a novel natural language process-
ing engine over knowledge graphs that does not require prior
training data (question-answer pairs) for translating natural
language questions into SPARQL.

• We define a novel ranking algorithm for selecting the best
automatically generated SPARQL statements in response to
a given natural language question. The ranking algorithm
combines syntactic and semantic similarity, as well as node
centrality in the knowledge graph. Many existing question
answering systems either rely on simple metrics for ranking,
such as the length of the answer query graph [35], or require
extensive training data in order to learn a ranking function
[25]. To the best of our knowledge, our approach is the first
to take into account all three factors (syntactic and semantic
similarity, as well as node centrality) for ranking queries.

• Our experiments on various real-world datasets show that
Bio-SODA outperforms state-of-the-art KGQA systems by
20% on the F1-score using the official QALD4 biomedical
benchmark and by an even higher factor on the more com-
plex bioinformatics dataset.

The paper is structured as follows: Section 2 places our contribu-
tion in the context of the related work. In Section 3 we introduce
some of the challenges of natural language processing over RDF-
based knowledge graphs. In Section 4 we explain the high level
architecture of Bio-SODA through a concrete example from the
biomedical domain. We present the detailed system architecture
of Bio-SODA in Section 5. Next, we describe the datasets used for
evaluation, their specific challenges and the results obtained, in
Section 6. In Section 7 we discuss lessons learned from building a
natural language processing system for real-world domain datasets.
We outline directions for future work in Section 8.

2 RELATEDWORK
The problem of natural language processing and question answer-
ing over structured data has been well-studied in recent years,
with a growing number of published systems, particularly in open-
domain question answering. Recent surveys on natural language
interfaces to databases include [1, 8]. However, in this paper we
focus on natural language interfaces to RDF graph databases or RDF-
based knowledge graphs. Natural language interfaces to relational
databases are outside the scope of this paper.

In parallel, the biomedical field has seen a growth of dedicated
systems for question answering. Examples include GFMed [26]
and Pomelo [18] – the two highest ranked systems in the QALD4
biomedical challenge – as well as more recent systems [17]. How-
ever, these are generally considered expert systems, with lower
generalizability to other domains, given that they extensively rely
on manually handcrafted rules and domain expertise.

Our work aims to bridge the gap between the two parallel efforts
by solving the common case in a domain-independent manner. For
this, Bio-SODA relies on a generic graph-based approach in order
to generate a ranked list of candidate SPARQL queries from a given
question. We enable the addition of custom rules only for special
cases when needed.

Many recent KGQA systems [10, 42] have been evaluated using
the LC-Quad benchmark of 5000 questions over DBpedia [40]. Al-
though this benchmark is an important step forward, particularly
for enabling machine learning approaches, it does not include com-
plex multi-hop questions, which makes it unclear how the results
would generalize to this case. For example, at the time of writing,
the current publicly available implementation of the SPARQL query
generation system SQG [44], would not work for complex question
answering on a new knowledge graph without significant changes
to the code base, as it targets question answering over DBpedia and
more specifically in the format required by the LC-Quad bench-
mark.

More recent KGQA systems, such as [11, 42], support multiple
knowledge graphs, but are limited to queries with a complexity
of at most three triple patterns. Similarly, existing end-to-end QA
systems, based on machine learning approaches, such as [24], can
only handle simple questions. These approaches have the added
drawback that they only generate a single answer, as opposed to
multiple candidates. Furthermore, end-to-end approaches suffer
from the lack of explainability, which makes it challenging for
users to validate the correctness of the result. Explainability in
this context has therefore become an active area of research, with
solutions proposed including translating back structured queries
into natural language sentences [9, 21, 30] or summarizing the
entities in the results [12].

Disambiguation is one of the major tasks of question answering
systems. One possible solution for this is to limit the interface to a
controlled natural language and involve the user in constructing
questions from the available building blocks. Sparklis [15] is a query
building system that enables answering controlled natural language
questions over knowledge graphs out-of-the-box. However, this
process is manual and therefore time-consuming, which makes it
less convenient than a true natural language interface.

One of the systems closest to ours is the KG-agnostic WDAqua-
core1 [10]. The system supportsmultiple knowledge bases in several
languages. However, the system is only available as a demo. Al-
though the authors mention that node relevance can in principle be
taken into account for ranking, it is not clear whether the approach
was used in the evaluation or whether the ranking function was
learned based on training data.

3 CHALLENGES OF NATURAL LANGUAGE
PROCESSING OVER KNOWLEDGE GRAPHS

In this section we summarise some of the challenges of natural
language processing over knowledge graphs, focusing on scientific
knowledge graphs, which shape the architecture of the Bio-SODA
system (described in Sections 4 and 5).

• Lack of training data.
For many scientific knowledge graphs there is no sufficiently
long and diverse log of queries in order to derive a represen-
tative training set for a machine learning-based solution. So
far, existing training corpora have proven costly to construct
[40], with the added drawback that any semi-automatically
generated dataset risks compiling a set of question-answer
pairs that are non-representative for the information needs
of real users of the KGQA system, e.g. domain experts.

SSDBM ’21, July 06-07, 2021,Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, and Kurt Stockinger

• Rule-based approaches performwell, but are costly to
build and maintain.
So far, state-of-the-art solutions for question answering over
generic RDF-based knowledge graphs have been mostly rule-
based systems, relying on manually handcrafted rules. For
example, GFMed [26] and Pomelo [18], the top 2 ranked
systems in the QALD4 biomedical challenge, have achieved
very good results in the challenge, but at the cost of very little
generality. In essence, these systems suffer from significant
overfitting: to be applicable to a new domain, their rule sets
would need extensive or even complete rewriting. Moreover,
even for a new dataset within the same domain, for which
the schema differs, new rules need to be added in order to
accommodate the differences.
In some cases it is beneficial to incorporate a minimal set of
rules in KGQA systems, particularly for deriving complex
concepts. However, this should be a last resort and not the
main translation mechanism, given that a large rule set is
hard to maintain and scale.

• Schema-less, incomplete data.
One of the strengths of relational databases is to have a
database schema which enables strict data modelling and
guarantees certain data integrity and data quality aspects.
However, since RDF does not strictly enforce a (database)
schema, real-world datasets using RDF knowledge graphs
often exhibit poor structure [20, 33]. Typical examples are
properties with missing or generic domains and ranges. In
other words, a question answering system over RDF knowl-
edge graphs typically does not have complete schema infor-
mation. Hence, an important step when working with such
incomplete knowledge graphs is to enrich the existing (in-
complete) schema, for example, by inferring property ranges
and domains based on instance-level data.

4 BIO-SODA: A HIGH-LEVEL PERSPECTIVE
In this section we use a motivating example to illustrate the natural
language processing pipeline of Bio-SODA.

Consider the data model illustrated in Figure 2, which combines
four different scientific databases. The database Bgee on the left
contains information about genes and in which parts of the body
(anatomical entity) a gene is expressed or absent. The database
Diseasome in themiddle contains information about diseases, aswell
as drugs targeting each disease. In addition, the drugs are part of
the pharmaceutical database DrugBank (not explicitly shown in the
figure). Finally, the database Sider contains information about drugs
and their side effects. Correspondences between equivalent drugs
in Sider and DrugBank are made through the sameAs property.

Further assume that a domain expert is interested in answering
the question: “What are the drugs for diseases associated with the
BRCA4 genes?".

The natural language processing pipeline of Bio-SODA for an-
swering this question is illustrated in Figure 3. In particular, the
main steps involved in translating the natural language question to

4Note that, based on the biomedical literature, mutations in the two BRCA genes,
BRCA1 and BRCA2 (stemming from BReast CAncer) are known to be associated with
multiple types of cancer.

isAbsentIn

Gene

sameAs

possibleDiseaseTarget

Drug

sameAs

associatedGene

possibleDrug

Disease

sideEffect

Drug

Side Effects

Sider

Anatomical Entity

isExpressedIn

DiseasomeBgee

Figure 2: Simplified data model based on the Bgee database
and QALD4 [41] datasets. The data model is a multigraph,
including disjoint properties – such as isAbsentIn and isEx-
pressedIn, as well as inverse properties, such as possibleDis-
easeTarget and possibleDrug. To make matters more compli-
cated, a Side Effect and aDisease can be described by the same
terms, with instances of the two classes being related via the
sameAs property. As a result, even simple questions such as
“which drugs might lead to strokes?" are hard to automati-
cally translate correctly in the absence of external knowl-
edge (i.e. “lead to" = “side effect").

SPARQL are as follows: first, Bio-SODA matches question tokens,
such as "drugs" and "diseases", against the data stored in the data-
base, using an inverted index. This step is called Lookup Candidate
Match. In this example, all tokens are of length one, i.e. composed
of a single word. The inverted index enables retrieving not only
the URI of each matching candidate, but also its PageRank score.
An example is shown in parentheses for the first two tokens in
the Figure. In addition, the inverted index retrieves the class and
property names of the match (omitted in the figure for simplicity).
For example, the lookup for “BRCA" retrieves instances of the class
Diseasome:Genes, where the rdfs:label property matches the user
token (“BRCA1", “BRCA2"). A few simplified Inverted Index entries
are provided in Table 1.

In the Ranking step, candidates are grouped together according
to class/property5 and ranked according to string similarity and
PageRank score.

In the Query Graph Construction step, all the ranked candidates
are used to construct a query graph which represents one possible
answer or interpretation of the natural language question. For sim-
plicity, Figure 3 only shows the query graph obtained for the top
ranked candidate matches. However, Bio-SODA generates multiple
alternative interpretations, for example, also including the interpre-
tation considering Sider:Drugs instead of the DrugBank:Drugs. This
can be tested in the demo page of Bio-SODA for QALD4.

Next, Bio-SODA generates the corresponding SPARQL query for
each query graph. Finally, the results are returned by executing the
query on the target knowledge graph (see bottom of Figure 3).

5 BIO-SODA: SYSTEM ARCHITECTURE
The main building blocks of the Bio-SODA system architecture,
shown in Figure 4, are the following:

5a FILTER for the token BRCA is created on the Diseasome:Genes class

Bio-SODA: Enabling Natural LanguageQuestion Answering over Knowledge Graphs without Training Data SSDBM ’21, July 06-07, 2021,

Rank Query Graphs and Compute
SPARQL query

Diseasome:Genes

What are the drugs for diseases associated with the BRCA genes?

 Sider:Drugs (2.35)
DrugBank:Drugs (91.45)

Diseasome:Disease (78.28)
"Dent Disease" (0.17)

Diseasome:
associatedGene

"BRCA1"
"BRCA2"

DrugBank:Drugs (91.45)
Sider:Drugs (2.35)

Diseasome:Genes
FILTER "BRCA"

Ranking

isAbsentIn

Diseasome:Genes

possibleDiseaseTarget

Drugbank:Drugs

associatedGene

possibleDrug

Diseasome:Disease

sideEffect

Sider:Drugs

Side Effects

Sider

Anatomical Entity

isExpressedIn

DiseasomeBgee

Query
Graph

Construction

domain = Genes
range = DiseaseFILTER "BRCA"

Diseasome:
associatedGene
domain = Genes
 range = Disease

Compute shortest paths

?disease ?disease_label ?drugs

Diseasome:886 Ovarian cancer DB00072

Diseasome:893 Prostate cancer DB00171

Diseasome:173 Breast cancer DB00499

Diseasome:173 Breast cancer DB00499

?drugs_label ?genes ?genes_label

Trastuzumab Genes:BRCA1 BRCA1

Adenosine	triphosphate Genes:BRCA2 BRCA2

Flutamide Genes:BRCA2 BRCA2

Flutamide Genes:BRCA1 BRCA1Query
Executor

Compute results

SELECT DISTINCT ?diseases ?diseases_label ?drugs ?drugs_label ?genes ?genes_label WHERE { [...]
?diseases a <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/diseases>.

?drugs a <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/drugs>.
?drugs <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/possibleDiseaseTarget> ?diseases.

?diseases <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/associatedGene> ?genes.
?genes a <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/genes>.

?genes <http://www.w3.org/2000/01/rdf-schema#label> ?genes_label.
FILTER (contains(lcase(str(?genes_label)), "brca"))}

Rank Candidate Matches

Lookup Candidate Match (with Page Rank)

Diseasome:Disease (78.28)
"Dent Disease" (0.17) Diseasome:Genes

Top SPARQL
query

Figure 3: Simplified answer pipeline for the query “What are
the drugs for diseases associated with the BRCA genes?". For
the sake of simplicity, PageRank scores are solely displayed
when more than one match is found.

• Preprocessing Phase: This phase includes building indexes for
efficient lookup as well as automatically generating a schema
graph, which will serve as the basis for constructing can-
didate SPARQL queries in response to user questions. This
phase is only executed once, when initialising the system.

• SPARQL Query Generation Phase: This phase represents the
natural language query translation process and includes (1)
looking up query tokens in the database, (2) ranking the can-
didate tokens, (3) constructing the candidate query graphs,
(4) ranking the query graphs in order of relevance to the user
question; and finally (5) constructing a valid SPARQL query
and presenting the results.

We will now discuss these phases in more detail.

5.1 Preprocessing Phase
The core component of this phase is the Indexing Module, which
extracts the Inverted Index as well as the Schema Graph of the RDF
data sources:

Schema Graph

R
D

F

st
or

e

Inverted
Index

Indexing
Module

Lookup
Module

Candidate
Ranking
Module

Query Graph
Construction

Module

Query Graph
Ranking
Module

Preprocess
<NGram, URI, Class,
Property, PageRank>

User query
Config.
 File

WordVectors

Semantic Similarity

Query Execution

Schema Graph Extraction

1

2

3

5

4

Semantic Similarity Rewrite

Custom
Rules

SPARQL
query

candidates

Preprocessing phase SPARQL query generation phase

Figure 4: Bio-SODA System Architecture

• Inverted Index: This index stores the vocabulary of the system.
More precisely, all the properties that should be searchable
from the RDF data store are indexed, according to a config-
uration file that specifies the list of properties of interest
(by default, all string literals will be indexed). A further con-
figuration option is whether URI fragments should also be
parsed and indexed. In this case, these fragments are split
by a predefined punctuation list, and through a camel case
regex (e.g., “possibleDiseaseTarget" will be indexed as the
corresponding keywords “possible disease target").
The inverted index is stored in a relational database for fast
searches and it is used to match tokens (sequences of key-
words in a user query) against the RDF data. More precisely,
the index stores: keywords (N-grams of literals indexed), the
indexed instance URI, the class of this instance, the property
from which the keywords were indexed (e.g. label), as well as
the PageRank score of the instance (see Table 1). PageRank
scores are computed using the approach presented in [12].

• Schema Graph Extractor: This module is used in order to
enrich the (incomplete) schema of the knowledge graph(s)
using instance-level data from the RDF store. The Schema
Graph is essentially the accurate schema of the integrated
RDF data which Bio-SODA automatically extracts from data
instances6. Moreover, the Schema Graph serves as the basis
for constructing candidate query graphs from selected entry
points (i.e., matches for tokens in a user question).
Computing a Schema Graph allows the system to compen-
sate for incomplete schema information, for example, in cases
where domains and ranges for properties are either missing
or ill-defined. A second benefit of the Schema Graph is that
it enables integrating multiple data models from different
knowledge graphs.
Extracting the schema graph is achieved via SPARQL queries
that compute, for example, domains and ranges of all proper-
ties, based on the classes of the instances which they connect.
As a simplified example, a triple asserting “Migraine→ possi-
bleDrug → Ibuprofen" will result in Disease → possibleDrug
→ Drug being added to the Schema Graph.

6Note that multiple RDF sources can be combined, as long as they are semantically
aligned - i.e. they have at least one common concept, such as Gene.

SSDBM ’21, July 06-07, 2021,Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, and Kurt Stockinger

Lookup Key URI Class Property PageRank
stroke side_effects:C0038454 sider:side_effects sider:side-EffectName 0.34
drug drugbank:drugs owl:Class rdfs:label 91
drug sider:drugs owl:Class rdfs:label 2.3
possible
disease target

diseasome:possible-DiseaseTarget rdf:Property uri_match 80

Table 1: Inverted Index Sample. The lookup key is used for fast searches based on keywords from a user question. The re-
maining information is used in attaching candidate matches to the Schema Graph (see description in Section 5) in order to
construct the corresponding query graphs. A lookup key can consist of multiple keywords. The same lookup key can appear
multiple times.

Currently, as a minimum requirement we assume that each
instance in the RDF data has a well-defined class, i.e. an ex-
plicit rdf:type. If this is not the case, additional preprocessing
with external tools (for example, using RDF schema discov-
ery techniques [20]), would be required in order to properly
define types for all RDF instances.

We note here that indexing is a preprocessing step that is only
required once, when the system is initialized. Afterwards, updates to
the RDF store can be incorporated periodically through incremental
updates (appends) to the inverted index, while the Schema Graph
only needs to be recomputed in case of schema changes.

5.2 SPARQL Query Generation Phase
Given a natural language question, the goal of the Bio-SODA system
is to translate it into a set of ranked candidate SPARQL queries, such
that the top ranked query is the closest to the user’s query intent.
In the following, we detail the role of each component involved in
this translation process, namely the Lookup Module, the Candidate
Ranking Module, the Query Graph Construction Module, the Query
Graph Ranking Module and the Query Executor Module.

• Lookup Module:
The lookup module has the role of retrieving the best candi-
date matches for tokens identified in a user query. A token is
defined by the longest sequence of keywords that matches an
entry in the Inverted Index (implemented in a relational data-
base for fast searches). For example, in the question “What
are the possible disease targets of Ibuprofen?" the two tokens
extracted will be “possible disease target" (corresponding to
an RDF property name) and “Ibuprofen" (corresponding to
one or more Drug instances).

• Candidate Ranking Module:
The lookup module can return a large number of candidate
matches per token. In order to find best candidate matches,
the ranking module groups together equivalent matches and
ranks them in order of relevance to the initial query. For
example, instances of the class Drug with matching rdfs:label
are grouped together. In our running example illustrated in
Figure 3, the genes BRCA1 and BRCA2 are a match for the
keyword BRCA.
Furthermore, both string similarity and node importance are
taken into account when ranking. Including the PageRank
score as a measure of importance in the knowledge graph

reduces the influence of the quality of labels assigned (labels
which can be imprecise, see discussion in Section 3).
The intuition behind this is that domain knowledge graphs
usually cluster around a few important concepts, which will
be reflected in the PageRank scores of the corresponding
nodes. For example, UniProt7 [34], a protein knowledge base
containing more than 60 billion triples, includes only 177
classes at the time of writing. Out of these, only few classes,
such as Protein and Annotation, have a central role, and will
usually be the target of domain expert questions.
Likewise, in the case of the CORDIS EU projects dataset (see
Section 6 for details), two different classes of Projects are
available, EC-Project and ERC-Project. However, there is sig-
nificantly more information in the dataset for the first class.
In the lack of query logs or handcrafted rules for mapping
query tokens to the correct candidates, the PageRank score
can serve as a good proxy for ranking candidates according
to node centrality, similarly to the initial approach used by
web search engines [32].
As an added benefit, scoring with PageRank also ensures
that metadata matches are prioritized. For example, Drug as
a class name will rank higher than an instance match.
Finally, to ensure that candidate matches not only have good
string similarity, but are also semantically similar, word em-
beddings are also used in the candidate ranking. The similar-
ity comparison ensures that spurious matches, such as gene
compared to oogenesis, are discarded based on a pre-defined
similarity threshold in the system configuration.
Any word embeddings can in principle be used with Bio-
SODA. For the two main bioinformatics use cases considered
in this paper, we use Word Vectors extracted from PubMed,
as described in [28]. The candidate ranking module presents
to the user top N matches per query token, where N is con-
figurable in the system.

• Query Graph Construction Module:
The goal of this module is to use the matches from the pre-
vious step to generate a list of candidate query graphs. We
extend the approach presented in [16] to translate matches
to query graph patterns. More precisely, we apply the itera-
tive algorithm shown in Algorithm 1: for each set of candi-
date matches (one match per query token), we augment the
Schema Graph by attaching the candidate matches to their

7https://sparql.uniprot.org/

https://sparql.uniprot.org/

Bio-SODA: Enabling Natural LanguageQuestion Answering over Knowledge Graphs without Training Data SSDBM ’21, July 06-07, 2021,

Algorithm1: Iterative graph-based approach for construct-
ing query graphs from candidate matches
Data:
𝑀𝑛×𝑡 : the matrix of ranked candidate matches, where
𝑛 = the number of candidate matches per token,
𝑡 = the number of tokens in the user question.
𝑀𝑖 = a set of candidates covering one match per token (i.e.
the 𝑖𝑡ℎ row vector of the𝑀𝑛×𝑡 matrix).
𝐺 : Schema Graph of the RDF data
Result: 𝑆 : the ranked set of candidate query graphs

1 foreach 𝑀𝑖 ∈ 𝑀 do
2 𝑄𝐺𝑖 = 𝜙 (empty graph)
3 foreach candidate match 𝑇𝑗 ∈ 𝑀𝑖 do
4 if 𝑇𝑗 = a RDF property then
5 Get domain 𝐷 and range 𝑅 of 𝑇𝑗 from 𝐺 ;
6 Add 𝐷 and 𝑅 as vertices to 𝑄𝐺𝑖 ;
7 Add edge 𝑇𝑗 between 𝐷 and 𝑅 in 𝑄𝐺𝑖 ;
8 if multiple domains / ranges for 𝑇𝑗 then Create

a new copy of 𝑄𝐺𝑖 per alternative;
9 else
10 Compute in schema graph 𝐺 :
11 shortest paths between class of 𝑇𝑗 and classes

of other matches 𝑇𝑧 in𝑀𝑖 ;
12 Add shortest paths to 𝑄𝐺𝑖

13 if multiple alternatives exist then
14 Create a new copy of 𝑄𝐺𝑖 per alternative;
15 end
16 end
17 Add spanning tree extracted from 𝑄𝐺𝑖 to result set 𝑆

(Steiner tree approximation)
18 end
19 𝑆_𝑠𝑜𝑟𝑡𝑒𝑑 = sort 𝑆 by sum of match score of composing

vertices. On a tie, sort by the weight (i.e. the number of
edges) of spanning tree.

20 return 𝑆_𝑠𝑜𝑟𝑡𝑒𝑑

corresponding class. Next, we find the minimal subgraph
that covers all matches. For this purpose, we solve the ap-
proximate Steiner tree problem by computing the minimal
spanning tree that covers one match per token.
Note that there might be multiple such subgraphs, given
that two classes can be connected via multiple properties.
However, unless the user can be involved in disambiguat-
ing, it is important to generate all the variants, given that
two equal-length subgraphs might actually have opposite
semantics. Recall the example shown in Figure 2, where the
properties e.g, isAbsentIn versus isExpressedIn both connect
the same two classes, but represent disjoint result sets.
Finally, in some cases handcrafted rules for inferring new
concepts or relationships are required, due to the complexity
of the corresponding query graphs. In such cases translating
user questions into SPARQL cannot be done via simple en-
tity linking methods. Therefore, if needed, our approach also
supports adding rules to derive implicit information from the

original knowledge graph as part of the question answering
pipeline. These rules are implemented as sub-queries similar
to the SELECT SPARQL query form. In this case, the rule
head is the SPARQL query projection, and the rule body is
the WHERE clause content.

• Query Graph Ranking Module:
The query graph ranking module plays an important role in
presenting the user with a meaningful, ordered list of results.
In contrast to existing work, we do not return the overall
minimal subgraph as the top result, but rather the graph
that maximizes the sum of the match scores of the candidates
covered. To understand why this is the case, consider the
following question: “What are the drugs for asthma?". This
question translates to a 2-hop query graph, joining Drug
and Disease via the possibleDiseaseTarget path (see Figure
2). However, one likely scenario is that the description of a
Drug instance includes the keyword asthma. In this case, the
minimal query graph would be 1-hop only, retrieving only
Drug instances that explicitly contain the keyword in the
description, probably a small subset of all instances which
have the corresponding Disease as a possible target. In this
case, the minimal result would have good precision, but very
low recall.

• Query Executor Module:
Finally, the query executor translates the ranked query graphs
into SPARQL queries, assigning meaningful variable names,
also adding human-readable fields to the result set wherever
possible. Importantly, we do not only return the best result,
but rather a ranked list of possible interpretations (top N,
where N is configurable in the system). This gives the user
the opportunity to inspect the results in order to choose
only the interpretation (i.e. SPARQL query) that matches the
question intent.

6 EXPERIMENTS
In this section we evaluate the F1-score performance of Bio-SODA
for translating natural language questions to SPARQL and compare
it against state-of-the-art systems for querying RDF-based knowl-
edge graphs. Note that we focus on top-performing open-source
systems that are publicly available for testing and do not require
training data [1].

In particular, we tested Sparklis [15], a generic query builder
system for knowledge graphs8. Furthermore, we compared against
GFMed [26] which was top ranked in the QALD4 biomedical chal-
lenge and specifically designed for this dataset. Apart from this,
we use GFMed’s publicly available grammar9 to evaluate how the
system performs outside of the official QALD4 biomedical dataset.
In addition, we compared our approach against SQG [44], a system
for query generation over knowledge graphs10.

8A live demo can be tested with any SPARQL endpoint at http://www.irisa.fr/LIS/
ferre/sparklis/
9See http://cs-gw.utcluj.ro/~anca/GFMed/index.html
10Available at https://github.com/AskNowQA/SQG/

http://www.irisa.fr/LIS/ferre/sparklis/
http://www.irisa.fr/LIS/ferre/sparklis/
http://cs-gw.utcluj.ro/~anca/GFMed/index.html
https://github.com/AskNowQA/SQG/

SSDBM ’21, July 06-07, 2021,Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, and Kurt Stockinger

6.1 Datasets
Three datasets were considered for evaluating Bio-SODA, see Table
2. Importantly, all three are real-world, in-use datasets. For each
dataset, we briefly highlight the specific challenges that need to be
tackled in the context of designing a generic question answering
system:

(1) The QALD4 biomedical dataset is composed of Sider, Drug-
Bank and Diseasome. This dataset includes several chal-
lenges such as multiple Drug classes and identical terms
describing both Disease and Side Effects instances, which are
connected via owl:sameAs properties.

(2) The bioinformatics dataset is composed of the Bgee (gene
expression) [4] and OMA (orthology) [2] RDF stores. Given
the highly specialized domain information contained in these
sources, a particularity of this dataset is that questions can
include complex concepts which translate to long SPARQL
query graphs. An added challenge deriving from this is that
the same concepts can be connected through multiple equal-
length paths with semantically different or even opposite
meanings.

(3) The CORDIS dataset of EU-funded projects. Although this
dataset has a simpler schema, the challenge here is that
questions can have a higher degree of ambiguity. In some
cases, multiple interpretations are valid – for example, many
terms are reused often and in a variety of contexts, such as
“Big Data". This can be either part of a project title, a topic or
even an organization name. Therefore, identifying the query
intent in some cases (e.g. Show Big Data projects) cannot be
done without user disambiguation.

6.2 Queries
We have reused the official 50 queries of the QALD4 biomedical chal-
lenge11. We do not distinguish between training and test queries.
Indeed, we report performance metrics for all systems we tested
across the entire set of 50 queries. Given that the test set was also
available to participants in the official challenge, we believe this to
be a fair evaluation. We do not change the questions in the official
challenge, not even in cases where we could identify mistakes in
the question. Furthermore, as opposed to previous work using this
benchmark [39], we do not materialize triples based on owl:sameAs
statements and only use the exact dataset, as provided in the official
benchmark.

For the bioinformatics dataset, in collaboration with domain
experts, we created a benchmark of 30 queries, in increasing order of
complexity, across two datasets, namely Bgee andOMA. The queries
represent real information needs of domains experts within the
field of gene expression and orthology, using the publicly available
RDF data of Bgee12 and OMA13. The average number of triple
patterns per query here is 7 (not taking into account joint queries
between the two sources, which have even higher complexity), with
some questions jointly targeting 4 entities or more (Gene, Species,
Anatomical Entity, Developmental Stage). In contrast, in existing

11https://github.com/ag-sc/QALD/blob/master/4/data
12https://bgee.org/sparql
13https://sparql.omabrowser.org/sparql

benchmarks, such as LC-Quad [40], queries with only 2 entities are
already considered complex.

In order to test Bio-SODA using an entirely different domain, us-
ing the CORDIS dataset of EU funded projects, we created a test set
of 30 queries in increasing order of complexity. Given the relatively
simple structure of this data model, the average number of triple
patterns per query is close to that of existing KGQA benchmarks
[40], with an average 2.3 triple patterns per query. However, the
complexity stems from the usage of filters, literals in the query, as
well as the higher degree of ambiguity.

Queries across the three datasets include aggregations, negations,
and make extensive use of filters.

All questions, as well corresponding SPARQL queries, are avail-
able in the Evaluation folder of our GitHub repository14.

6.3 Results
We use the standard evaluation metrics of precision (P), recall (R)
and F1-score, macro-averaged over all questions in the dataset. For
Bio-SODA in particular, although the system generates a ranked
list of possible interpretations, we report numbers based on the top
answer only (Precision@1). The results are presented in Table 3
and discussed in the following section. For easy accessibility to the
Bio-SODA system, as well as reproducibility of the results, we also
provide a demo page for each of the three datasets, available online
(see Section 1).

We will now discuss the performance of each system in more
detail.

GFMed shows the highest F1-score for the QALD4 dataset. How-
ever, it cannot (nor was it intended to) be used outside this dataset
without rewriting the set of grammar rules that are strictly designed
for question answering over specific releases of Diseasome, Drug-
bank and Sider. Hence, the F1-score for the bioinformatics dataset
and the CORDIS datasets is 0.

SQG on the other hand, originally evaluated on the LC-Quad
[40] benchmark, does not support complex multi-hop questions,
nor filters or queries involving literals. “Show me projects which
started in 2020?" is an example of such a query, where 2020 is a
numerical literal, as opposed to a linkable entity. While in the case
of LC-Quad these limitations do not impact performance, all three
datasets considered in our evaluation include such features, which
explains the poorer performance of SQG: an F1-score of 0.42 in the
case of QALD4, only 0.33 in the CORDIS dataset, and finally 0.16 in
the case of the bioinformatics dataset. We note that these results
are a theoretical best, since for SQG we assume perfect entity and
property linking, leading to the highest performance it can achieve.

Finally, Sparklis is not a question answering system per-se, but
rather a query builder, which helps users form the correct ques-
tion by composing building blocks starting from examples of class
names, properties, values etc. Therefore, in order to answer ques-
tions, we needed to rephrase them from the available building
blocks manually. On the positive side, we found Sparklis to be a
powerful system, because it enables building a rich variety of query
types out-of-the-box. To achieve this, only the SPARQL endpoint
URL of the target RDF data store is required.

14Evaluation in https://github.com/anazhaw/Bio-SODA/

https://github.com/ag-sc/QALD/blob/master/4/data
https://bgee.org/sparql
https://sparql.omabrowser.org/sparql
https://github.com/anazhaw/Bio-SODA/

Bio-SODA: Enabling Natural LanguageQuestion Answering over Knowledge Graphs without Training Data SSDBM ’21, July 06-07, 2021,

Dataset Sources #Classes #Triples Size on Disk
QALD4-biomedical Drugbank, Diseasome, Sider 12 0.69 M 200 MB
Bioinformatics Bgee, OMA 37 430 M 30 GB
CORDIS EU projects dataset 26 6.5 M 1 GB

Table 2: Descriptions of the 3 public datasets used in our evaluation.

Datasets and Systems Precision Recall F1
Dataset 1: QALD4
GFMed 1 0.99 0.99
SQG 0.42 0.42 0.42
Sparklis (5.5 steps/query) 0.88 0.88 0.88
Bio-SODA 0.61 0.60 0.60
Dataset 2: Bioinformatics
GFMed 0 0 0
SQG 0.16 0.16 0.16
Sparklis - - -
Bio-SODA 0.6 0.6 0.6
Dataset 3: CORDIS
GFMed 0 0 0
SQG 0.33 0.33 0.33
Sparklis (6.2 steps/query) 1 1 1
Bio-SODA 0.66 0.66 0.66

Table 3: Performance of translating natural language ques-
tions to SPARQL. By considering a perfect user of the Spark-
lis tool, the minimum number of manual steps for compos-
ing a query (averaged over all queries) is shown between
parentheses.

Using the query building methodology of Sparklis, 44 out of 50
questions in the QALD4 biomedical benchmark can be answered.
Furthermore, all questions in the CORDIS dataset can also be an-
swered. Although this result might seem surprising, recall that
the major challenge of this dataset is disambiguation. The manual
query building process in Sparklis addresses exactly this problem,
provided that the user knows very well how the data are structured
and semantically represented. Therefore, on the negative side, we
found that the query building methodology requires precise under-
standing of the data model, especially if multiple classes have the
same label, as is the case in QALD4.

For example, answering the question Which drugs might lead
to strokes? requires knowing that the Drugs class to be used is the
one in Sider, as opposed to the one in Diseasome. Furthermore,
formulating questions in Sparklis is a manual and therefore time-
consuming process. Even when making the strong assumption that
the user has perfect knowledge of the data model, as well as of
the features of Sparklis (for example, how to correctly formulate
aggregations, which can be challenging), the minimal number of
manual steps required to formulate questions is on average 5.5
interactions per question for QALD4 and 6.2 for CORDIS, with a
maximum of 10 for the more complex questions. In most cases,
the question resulting from composing the building blocks will be
significantly different from a true natural language question.

We did not pursue this approach on the bioinformatics dataset,
because complex concepts in this dataset (ortholog, paralog) can-
not be expressed through the query building mechanism. More
precisely, Sparklis does not support complex property paths.

Bio-SODA is a middle-ground between the generic, but manual
approach of Sparklis, and the grammar-based approach of GFMed,
which is not easily transferable to a new domain. More precisely,
Bio-SODA achieves relatively good performance (around 0.6 F1-
score) across the three datasets without requiring manual interven-
tion. The only exception are two custom rules for the bioinformatics
dataset, which help answer 4 out of 30 queries.

Although GFMed has the best results for QALD4, it cannot be
used outside this dataset without a complete rewriting of the gram-
mar rules. Sparklis also achieves better results on the two datasets
tested, but with the big disadvantage that it is a manual approach,
where the user must understand the data model in order to com-
pose questions correctly. Our findings are further detailed in the
Evaluation folder in our GitHub repository.

6.4 Impact of Ranking Algorithm
In this section we study the impact for our ranking algorithm on the
performance of Bio-SODA. In particular, we conducted an ablation
study to quantify the importance of ranking by PageRank score
of candidate matches. For this purpose, we disable our ranking
algorithm and instead use a simple string similarity-based ranking
algorithm for candidate matches, returning the overall minimal
subgraph as the top answer.

The results, displayed in Table 4, show that ranking makes a
crucial difference, in particular for the CORDIS dataset. The reason
for this is that for most of the keywords that describemetadata (such
as class names, like Project Topic or Subject Area), there exists in
the dataset a project whose acronym matches exactly. For example,
there exist projects with acronyms such as Topic, Area, Host, Code,
which are (according to string similarity only) classified as best
matches for tokens in the original question. Constructing the overall
minimal subgraph leads to wrong results in almost all cases, except
for only 3 out of 30 questions, where there is no ambiguity. Note
that adding no other change aside from considering PageRank scores
in ranking enables answering 17 more queries out of 30 for this
dataset.

6.5 Error Analysis and Remaining Problems
In the QALD4 biomedical benchmark, Bio-SODA correctly an-
swered 30 out of 50 questions with an additional 2 partially cor-
rect. We note that 1 question in QALD4 cannot be answered by
Sparklis nor Bio-SODA due to missing label information. More pre-
cisely, the instance <http://www4.wiwiss.fu-berlin.de/diseasome/
resource/genes/EDNRB> is the target of the question “Which genes
are associated with Endothelin receptor type B?". However, the
label Endothelin receptor type B is not assigned in the official dataset

<http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/EDNRB>
<http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/EDNRB>

SSDBM ’21, July 06-07, 2021,Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, and Kurt Stockinger

Dataset (a) Correct with
Bio-SODA
Ranking

(b) Correct with
String Similarity

Ranking
QALD4 30/50 23/50
Bioinformatics 18/30 12/30
CORDIS 20/30 3/30

Table 4: Ablation study on the Bio-SODA performance
of translating natural language questions to SPARQL: (a)
SPARQL candidate query ranking with node centrality mea-
sure versus (b) traditional ranking approachwith string sim-
ilarity and overall minimal subgraph as top result.

of the benchmark, nor can it be derived from the URI fragment, for
example. Upon closer inspection, it becomes clear that the question
is ill-formulated. Since EDNRB itself is a gene, the correct question
should be “Which diseases are associated with EDNRB?". In total,
we have found at least 4 out of 50 entries in the dataset to contain
errors, either in the question formulation, or in the ground truth
answer. These have already been discussed in previous studies [39].

An additional number of questions cannot be answered by Bio-
SODA across the three datasets due to other reasons. We summarise
them in Figure 5, explained in the following:

• Aggregations. Our system currently does not support ques-
tions that require aggregations, such as Count, Sum etc. An
example of such a question would be Count the projects in the
life sciences domain. A possible solution to this would be to
include pre-defined patterns or training a question classifier
for this purpose.

• Superlatives/Comparatives. Another unsupported feature in
the current prototype is the use of quantifiers (superlatives
or comparatives). An example would be Which drug has the
highest number of side-effects?

• Conjunctions. Conjunctive questions which involve multiple
instances of the same class are not supported in the current
prototype. An example of such a case is List drugs that lead
to strokes and arthrosis. This limitation derives from our
methodology in computing the minimal subgraph covering
candidate matches, which would require special handling for
cases when multiple candidates of the same class are present
in a question.

• Properties with same domain and range. Stemming from the
same limitation mentioned above, these properties are cur-
rently not supported. In QALD4, the only instance of this is
the diseaseSubtypeOf property, which has the Disease class
as both domain and range. In the bioinformatics dataset we
handle symmetric properties describing ortholog and paralog
genes through custom rewrite rules.

• Ranking. One of the major sources of failure in our prototype
remains ranking. In the QALD4 dataset, ranking problems
affect 4 out of 50 queries. An example is:What are the diseases
caused by Valdecoxib?. Here, the system cannot correctly
choose Drug - sideEffect - Side_Effect over the alternative
Disease - possibleDrug - Drug. The reason for this is that the
Disease class matches exactly the term in the question, while

the Drug class in Diseasome has a higher PageRank score
than the one in Sider.

• Incomplete information. This problem affects mainly the re-
sults in the QALD4 dataset, more precisely 4 out of 50 queries.
We have already covered the example of the question tar-
geting the EDNRB gene, which lacks the correct label in the
official dataset. We currently do not enrich the inverted in-
dex with synonyms or external information, which means
questions must be formulated in terms of the available vo-
cabulary of the dataset. However, this limitation could be
addressed by indexing synonyms from external data sources.
Additional three questions cannot be answered because they
refer to URIs that do not have any class defined in the data,
therefore the system cannot attach the candidate matches
anywhere in the Schema Graph.
An example is the drugType property, which can take two val-
ues, either http://www4.wiwiss.fu-berlin.de/drugbank/ resource/
drugtype/experimental or http://www4.wiwiss.fu-berlin.de/
drugbank/resource/drugtype/approved. We believe a better
modelling of the data should have provided, for example,
either these as a xsd:anyURI datatype, given they are not
used for any other purposes, or defined some class for both.

• Query complexity (difficult queries). The bioinformatics dataset
covers queries with high complexity, which are difficult to
solve especially since they include symmetric properties,
with multiple instances of the same class, each filtered ac-
cording to different conditions.
An example of such a question is: Retrieve Oryctolagus cu-
niculus’ proteins encoded by genes that are orthologous to Mus
musculus’ HBB-Y gene. Here, the task is to retrieve Gene
instances in a particular Taxon (species), namely the rab-
bit (Oryctolagus cuniculus), which are orthologs (symmetric
property) of a second instance of Gene, labeled HBB-Y, in
a different species, namely the mouse (Mus musculus). The
resulting query has over 15 triple patterns, with 3 filters (the
2 species names plus the gene name).

• Others. Two questions in the QALD4 dataset have particular
challenges, the first being a stemming error. In the question
Give me drugs in the gaseous state, the term gaseous cannot
be correctly stemmed to gas. The second type of error is due
to unsupported ASK queries, e.g. Are there drugs that target
the Protein kinase C beta type?. Here, Bio-SODA retrieves
examples of such drugs, instead of the boolean True. How-
ever, we do not consider this a fundamental limitation and a
question type classifier could be added in future work.

We report a more detailed analysis of all systems considered in this
paper in the Evaluation folder in our GitHub repository.

7 LESSONS LEARNED
Considering the challenges of question answering over knowledge
graphs introduced in Section 3, we highlight the following design
goals for natural language processing engines:

• Generality: The system should be easily adaptable to new
datasets. In particular, the system should be able to answer
questions in a new domain with minimal manual interven-
tion and without relying on extensive training data, which is

http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/experimental
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/experimental
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/approved
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/approved
https://github.com/anazhaw/Bio-SODA/tree/master/Evaluation

Bio-SODA: Enabling Natural LanguageQuestion Answering over Knowledge Graphs without Training Data SSDBM ’21, July 06-07, 2021,

0

5

10

15

20

QALD4 Bioinformatics CORDIS

Others

Query Complexity

Incomplete Information

Ranking

Symmetric Properties

Conjunctions

Superlatives/Comparatives

Aggregations

Figure 5: Bio-SODA failure analysis. Out of the total 50 questions in the QALD4 biomedical benchmark, Bio-SODA cannot
correctly answer 20. A further 12 out of 30 cannot be answered in the bioinformatics dataset, mainly due to query complexity
(some queries having more than 10 triple patterns). Finally, on the CORDIS dataset 10 out of 30 queries cannot be answered, a
large fraction of which include features currently unsupported in Bio-SODA: aggregations, comparatives, conjunctions etc.

hard to obtain in many domains. Along this line, a desirable
property is also the ability to cope with “real-world" datasets,
dealing with incompleteness in the data, for example in the
form of:
– missing schema information (should be inferred from
instance-level data);

– missing labels (should be incorporated from URIs when-
ever meaningful);

• Extensibility: The system should easily work with multiple
datasets (provided they are already semantically aligned—
i.e., data integration is a prior requirement). Many studies
introduce possible approaches for data integration, includ-
ing a recent approach for ontology-based data integration,
covering one of the bioinformatics use cases presented in
this paper [37].

• Configurability: The database owner must be able to spec-
ify which properties (e.g. labels, descriptions) should be
searchable using the system. Our experience with real-world
datasets showed that in general it is not desirable for all
properties to be indexed and thus be searchable. As an ex-
ample, in many cases, fields in the queried data sources can
be either redundant or too verbose. In bioinformatics, these
are abstracts of papers that are assigned as values to an RDF
property, whose length can therefore be up to 300 words.
Similarly, in the CORDIS dataset, these are the abstracts of
the EU projects. These cases should be handled through a
dedicated approach, for example, based on classical informa-
tion retrieval methods as discussed in [29].

• Explainability: The system should clearly guide the user
through how a question was processed and interpreted. This
starts from explaining which concepts were matched in re-
lation to the original question, continuing with how these
candidate matches are composed together in a query graph
in order to provide the final SPARQL query. Finally, the

query results should be understandable as well. Therefore,
the projected variable names should also be meaningful.

8 CONCLUSIONS AND OUTLOOK
In this paper we have introduced Bio-SODA, a question answering
system for domain knowledge graphs, which we evaluated across
three real-world datasets pertaining to different domains: biomed-
ical, gene orthology and gene expression, and finally EU-funded
projects. Our results have shown that Bio-SODA outperforms state-
of-the-art systems that are publicly available for testing by a 20%
F1-score improvement and more. The main advantage of Bio-SODA
over existing open-source systems is that it can handle complex,
multi-triple pattern queries without requiring user guidance and
training data. Bio-SODA uses a novel ranking approach that takes
into account both string and semantic similarity, as well as node
centrality of candidate matches. Our experiments demonstrate that
our ranking approach improves the quality of results, particularly
in the context of datasets which can suffer from redundancy and
imprecise labels.

As a first step in future work, we plan to add user feedback to
the question answering process by involving the user in a disam-
biguation dialog for selecting the best candidate matches. We also
plan to consider the users’ feedback for ranking the best answer
among resulting candidate queries. As a long term direction for fu-
ture research, we envision compiling a benchmark of cross-domain
question-answer pairs, similarly to the Spider benchmark in the
relational database world [43], which would enable research into
refining pre-trained KGQA models for new domains.

ACKNOWLEDGMENTS
We thank the Swiss National Science Foundation for funding (NRP
75, grant 407540_167149), Lukas Blunschi for the implementation
of the SODA system for keyword search system over relational
databases [5], on which our prototype is based, and Katrin Affolter

SSDBM ’21, July 06-07, 2021,Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, and Kurt Stockinger

for important contributions to the natural language processing
pipeline in Bio-SODA.

REFERENCES
[1] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. 2019. A comparative

survey of recent natural language interfaces for databases. The VLDB Journal 28,
5 (2019), 793–819.

[2] Adrian M Altenhoff, Clément-Marie Train, Kimberly J Gilbert, Ishita Mediratta,
Tarcisio Mendes de Farias, David Moi, Yannis Nevers, Hale-Seda Radoykova,
Victor Rossier, Alex Warwick Vesztrocy, et al. 2021. OMA orthology in 2021:
website overhaul, conserved isoforms, ancestral gene order and more. Nucleic
acids research 49, D1 (2021), D373–D379.

[3] Sihem Amer-Yahia, Georgia Koutrika, Frederic Bastian, Theofilos Belmpas, Mar-
tin Braschler, Ursin Brunner, Diego Calvanese, Maximilian Fabricius, Orest
Gkini, Catherine Kosten, Davide Lanti, Antonis Litke, Hendrik Lücke-Tieke,
Francesco Alessandro Massucci, Tarcisio Mendes de Farias, Alessandro Mosca,
Francesco Multari, Nikolaos Papadakis, Dimitris Papadopoulos, Yogendra Patil,
Aurélien Personnaz, Guillem Rull, Ana Sima, Ellery Smith, Dimitrios Skoutas,
Srividya Subramanian, Guohui Xiao, and Kurt Stockinger. 2021. INODE: Build-
ing an End-to-End Data Exploration System in Practice [Extended Vision].
arXiv:2104.04194 [cs.LG]

[4] Frederic B Bastian, Julien Roux, Anne Niknejad, Aurélie Comte, Sara S Fon-
seca Costa, Tarcisio Mendes De Farias, Sébastien Moretti, Gilles Parmentier,
Valentine Rech De Laval, Marta Rosikiewicz, et al. 2021. The Bgee suite: in-
tegrated curated expression atlas and comparative transcriptomics in animals.
Nucleic Acids Research 49, D1 (2021), D831–D847.

[5] Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, and Kurt
Stockinger. 2012. Soda: Generating sql for business users. Proceedings of the
VLDB Endowment 5, 10 (2012), 932–943.

[6] Angela Bonifati, Wim Martens, and Thomas Timm. 2019. An analytical study of
large SPARQL query logs. The VLDB Journal (2019), 1–25.

[7] Ursin Brunner and Kurt Stockinger. 2021. ValueNet: A Natural Language-to-SQL
System that Learns from Database Information. International Conference on Data
Engineering (ICDE) (2021).

[8] Nilesh Chakraborty, Denis Lukovnikov, Gaurav Maheshwari, Priyansh Trivedi,
Jens Lehmann, and Asja Fischer. 2019. Introduction to Neural Network based
Approaches for Question Answering over Knowledge Graphs. arXiv preprint
arXiv:1907.09361 (2019).

[9] Daniel Deutch, Nave Frost, and Amir Gilad. 2020. Explaining Natural Language
query results. The VLDB Journal 29, 1 (2020), 485–508.

[10] Dennis Diefenbach, Andreas Both, Kamal Singh, and Pierre Maret. 2018. Towards
a question answering system over the semantic web. Semantic Web Preprint
(2018), 1–19.

[11] Dennis Diefenbach, José Giménez-Garcıa, Andreas Both, Kamal Singh, and Pierre
Maret. 2020. QAnswer KG: Designing a portable Question Answering System
over RDF data. (2020).

[12] Dennis Diefenbach and Andreas Thalhammer. 2018. Pagerank and generic entity
summarization for rdf knowledge bases. In European Semantic Web Conference.
Springer, 145–160.

[13] Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann.
2019. Lc-quad 2.0: A large dataset for complex question answering over wikidata
and dbpedia. In International Semantic Web Conference. Springer, 69–78.

[14] Paolo Ferragina and Ugo Scaiella. 2010. Tagme: on-the-fly annotation of short text
fragments (by wikipedia entities). In Proceedings of the 19th ACM international
conference on Information and knowledge management. 1625–1628.

[15] Sébastien Ferré. 2017. Sparklis: an expressive query builder for SPARQL endpoints
with guidance in natural language. Semantic Web 8, 3 (2017), 405–418.

[16] Katerina Gkirtzou, Kostis Karozos, Vasilis Vassalos, and Theodore Dalamagas.
2015. Keywords-to-sparql translation for rdf data search and exploration. In
International Conference on Theory and Practice of Digital Libraries. Springer,
111–123.

[17] Thierry Hamon, Natalia Grabar, and Fleur Mougin. 2017. Querying biomedical
linked data with natural language questions. Semantic Web 8, 4 (2017), 581–599.

[18] Thierry Hamon, Natalia Grabar, Fleur Mougin, and Frantz Thiessard. 2014. De-
scription of the POMELO System for the Task 2 of QALD-2014. CLEF (Working
Notes) 1212 (2014), 28.

[19] Ali Hasnain, Qaiser Mehmood, Syeda Sana e Zainab, Muhammad Saleem, Claude
Warren, Durre Zehra, Stefan Decker, and Dietrich Rebholz-Schuhmann. 2017.
Biofed: federated query processing over life sciences linked open data. Journal
of biomedical semantics 8, 1 (2017), 13.

[20] Kenza Kellou-Menouer and Zoubida Kedad. 2015. Schema discovery in RDF data
sources. In International Conference on Conceptual Modeling. Springer, 481–495.

[21] Andreas Kokkalis, Panagiotis Vagenas, Alexandros Zervakis, Alkis Simitsis, Geor-
gia Koutrika, and Yannis Ioannidis. 2012. Logos: a system for translating queries
into narratives. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data. 673–676.

[22] Fei Li and HV Jagadish. 2014. Constructing an interactive natural language
interface for relational databases. Proceedings of the VLDB Endowment 8, 1 (2014),
73–84.

[23] Fei Li and HV Jagadish. 2016. Understanding natural language queries over
relational databases. ACM SIGMOD Record 45, 1 (2016), 6–13.

[24] Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Sören Auer. 2017. Neural
network-based question answering over knowledge graphs onword and character
level. In Proceedings of the 26th international conference on World Wide Web. 1211–
1220.

[25] Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty,
Asja Fischer, and Jens Lehmann. 2019. Learning to rank query graphs for com-
plex question answering over knowledge graphs. In International Semantic Web
Conference. Springer, 487–504.

[26] Anca Marginean. 2017. Question answering over biomedical linked data with
grammatical framework. Semantic Web 8, 4 (2017), 565–580.

[27] Pablo N Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. 2011.
DBpedia spotlight: shedding light on the web of documents. In Proceedings of the
7th international conference on semantic systems. 1–8.

[28] SPFGH Moen and Tapio Salakoski2 Sophia Ananiadou. 2013. Distributional
semantics resources for biomedical text processing. Proceedings of LBM (2013),
39–44.

[29] Stefanie Nadig, Martin Braschler, and Kurt Stockinger. 2020. Database Search vs.
Information Retrieval: A Novel Method for Studying Natural Language Querying
of Semi-Structured Data. In International Conference on Language Resources and
Evaluation (LREC).

[30] Axel-Cyrille Ngonga Ngomo, Lorenz Bühmann, Christina Unger, Jens Lehmann,
and Daniel Gerber. 2013. Sorry, i don’t speak SPARQL: translating SPARQL
queries into natural language. In Proceedings of the 22nd international conference
on World Wide Web. 977–988.

[31] Alex Olieman, Hosein Azarbonyad, Mostafa Dehghani, Jaap Kamps, and Maarten
Marx. 2014. Entity linking by focusing DBpedia candidate entities. In Proceedings
of the first international workshop on Entity recognition & disambiguation. 13–24.

[32] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
pagerank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[33] Heiko Paulheim and Christian Bizer. 2013. Type inference on noisy rdf data. In
International semantic web conference. Springer, 510–525.

[34] Nicole Redaschi, UniProt Consortium, et al. 2009. Uniprot in RDF: Tackling data
integration and distributed annotation with the semantic web. Nature precedings
(2009), 1–1.

[35] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R Mittal, and Fatma Özcan. 2016. ATHENA: an ontology-driven
system for natural language querying over relational data stores. Proceedings of
the VLDB Endowment 9, 12 (2016), 1209–1220.

[36] Ahmad Sakor, Kuldeep Singh, and Maria-Esther Vidal. 2019. FALCON: An Entity
and Relation Linking Framework over DBpedia. (2019).

[37] Ana Claudia Sima, Tarcisio Mendes de Farias, Erich Zbinden, Maria Anisimova,
Manuel Gil, Heinz Stockinger, Kurt Stockinger, Marc Robinson-Rechavi, and
Christophe Dessimoz. 2019. Enabling semantic queries across federated bioinfor-
matics databases. Database 2019 (2019).

[38] Kuldeep Singh, Ioanna Lytra, Arun Sethupat Radhakrishna, Saeedeh Shekarpour,
Maria-Esther Vidal, and Jens Lehmann. 2018. No one is perfect: Analysing the
performance of question answering components over the dbpedia knowledge
graph. arXiv preprint arXiv:1809.10044 (2018).

[39] Dezhao Song, Frank Schilder, Charese Smiley, Chris Brew, Tom Zielund, Hiroko
Bretz, Robert Martin, Chris Dale, John Duprey, TimMiller, et al. 2015. TR discover:
A natural language interface for querying and analyzing interlinked datasets. In
International Semantic Web Conference. Springer, 21–37.

[40] Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. 2017.
Lc-quad: A corpus for complex question answering over knowledge graphs. In
International Semantic Web Conference. Springer, 210–218.

[41] Christina Unger, Corina Forascu, Vanessa Lopez, Axel-Cyrille Ngonga Ngomo,
Elena Cabrio, Philipp Cimiano, and Sebastian Walter. 2014. Question answering
over linked data (QALD-4).

[42] Svitlana Vakulenko, Javier David Fernandez Garcia, Axel Polleres, Maarten de
Rijke, and Michael Cochez. 2019. Message Passing for Complex Question An-
swering over Knowledge Graphs. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. 1431–1440.

[43] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and
text-to-sql task. arXiv preprint arXiv:1809.08887 (2018).

[44] Hamid Zafar, Giulio Napolitano, and Jens Lehmann. 2018. Formal query genera-
tion for question answering over knowledge bases. In European Semantic Web
Conference. Springer, 714–728.

[45] Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, and Hong Cheng. 2018. Question answer-
ing over knowledge graphs: question understanding via template decomposition.
Proceedings of the VLDB Endowment 11, 11 (2018), 1373–1386.

https://arxiv.org/abs/2104.04194

	Abstract
	1 Introduction
	2 Related Work
	3 Challenges of Natural Language Processing over Knowledge Graphs
	4 Bio-SODA: A High-Level Perspective
	5 Bio-SODA: System Architecture
	5.1 Preprocessing Phase
	5.2 SPARQL Query Generation Phase

	6 Experiments
	6.1 Datasets
	6.2 Queries
	6.3 Results
	6.4 Impact of Ranking Algorithm
	6.5 Error Analysis and Remaining Problems

	7 Lessons Learned
	8 Conclusions and Outlook
	Acknowledgments
	References

