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We study the XAI (explainable AI) on the face recognition task, particularly the face verification here. Face verification is a crucial task
in recent days and it has been deployed to plenty of applications, such as access control, surveillance, and automatic personal log-on
for mobile devices. With the increasing amount of data, deep convolutional neural networks can achieve very high accuracy for the
face verification task. Beyond exceptional performances, deep face verification models need more interpretability so that we can trust
the results they generate. In this paper, we propose a novel similarity metric, called explainable cosine (𝑥𝐶𝑜𝑠), that comes with a
learnable module that can be plugged into most of the verification models to provide meaningful explanations. With the help of 𝑥𝐶𝑜𝑠 ,
we can see which parts of the two input faces are similar, where the model pays its attention to, and how the local similarities are
weighted to form the output 𝑥𝐶𝑜𝑠 score. We demonstrate the effectiveness of our proposed method on LFW and various competitive
benchmarks, resulting in not only providing novel and desiring model interpretability for face verification but also ensuring the
accuracy as plugging into existing face recognition models.
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1 INTRODUCTION

Recent years have witnessed rapid development in the area of deep learning and it has been applied to many computer
vision tasks, such as image classification [1, 14], object detection [28], semantic segmentation [32], and face verification
[33], etc. In spite of the astonishing success of convolutional neural networks (CNNs), computer vision communities
still lack an effective method to understand the working mechanism of deep learning models due to their inborn
non-linear structures and complicated decision-making process (so-called “black box”). Moreover, when it comes to
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Fig. 1. Example of 𝑥𝐶𝑜𝑠 framework. Traditional face verification models provide no spatial clues about why the two images are
the same identity or not. The models equipped with our proposed 𝑥𝐶𝑜𝑠 module allow the user to visualize the similarity map between
two people for each part of a face and our model cares to produce the final similarity score, 𝑥𝐶𝑜𝑠 (explainable cosine). The < 𝑆,𝑊 >𝐹

denotes the Frobenius inner product between 𝑆 and𝑊 . We can see that 𝑥𝐶𝑜𝑠 module can be plugged into any existed deep face
verification models and the existed face verification models can be more easily interpreted with our proposed 𝑥𝐶𝑜𝑠 .

security applications (e.g., face verification for mobile screen lock), the false-positive results for unknown reasons by
deep learning models could lead to serious security and privacy issues. The aforementioned problems will make users
insecure about deep learning based systems and also make developers hard to improve them. Therefore, it is crucial to
increase transparency during the decision-making process for deep learning models. A rising field to address this issue is
called explainable AI (XAI) [12], which attempts to empower the researcher to understand the decision-making process
of neural nets via explainable features or decision processes. With the support of explainable AI, we can understand
and trust the neural networks’ prediction more. In this work, we focus on building a more explainable face verification
framework with our proposed novel 𝑥𝐶𝑜𝑠 module. With 𝑥𝐶𝑜𝑠 , we can exactly know how the model determines the
similarity score via examining the local similarity map and the attention map.

We begin our work with a pivotal question: ”How can the model produce more explainable results?” To answer this
question, we first investigate the pipeline of current face verification models and then introduce the intuition of the
human decision-making process for face verification.

Next, we formulate our definition of interpretability and design the explainable framework that meets our needs.
State-of-the-art face verification models [9, 21] extract deep features of a pair of face images and compute the cosine

similarity or the L2-distance of the paired features. Two images are said to be from the same person if the similarity is
larger than a threshold value. However, with this standard procedure, we can hardly interpret these high dimensional
features with our knowledge. Although some previous works [4, 6, 30] attempt to visualize the most salient features, the
saliency maps produced by these methods are mostly used to locate objects in a single image rather than interpret the
similarity of two faces. In contrast, our framework interprets the verification result by combining the local similarity
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map and the attention map. (cf. Fig. 5) With the proposed method, we can strike a balance between verification accuracy
and visual interpretability.

We observe that humans usually decide whether the two face images are from the same identity by comparing their
face characteristics. For instance, if two face images are from the same person, then the same parts of the two face
images should be similar, including the eyes, the nose, etc. Based on this insight, we develop a novel face verification
framework, 𝑥𝐶𝑜𝑠 , which behaves closely to our observation.

Illustrated by the observation above, we define the interpretability in the face verification that the output similarity
metric aims to provide not only the local similarity information but also the spatial attention of the model. Based
on our definition of interpretability, we propose a similarity metric, 𝑥𝐶𝑜𝑠 , that can be analyzed in an explainable
way. As shown in Fig. 1, we can insert our novel 𝑥𝐶𝑜𝑠 module1 into any deep face verification networks and get two
spatial-interpretable maps. Here we plug the proposed 𝑥𝐶𝑜𝑠 module into ArcFace [9] and CosFace [34]. The first map
displays the cosine similarity of each grid feature pair, and the second one shows what the model pays attention to.
With the two visualized maps, we can directly understand which grid feature pair is more similar and important for the
decision-making process.

The main contributions of this work are as follows:

• We address the interpretability issue in the face verification task from the perspective of local similarity and
model attention, and propose a novel explainable metric, 𝑥𝐶𝑜𝑠 (explainable cosine).

• We treat the convolution feature as the face representation, which preserves location information while remaining
good verification performances.

• The proposed 𝑥𝐶𝑜𝑠 module can be plugged into various face verification models, such as ArcFace [9] and CosFace
[34] (cf. Table 1).

2 RELATEDWORK

2.1 Face Verification

The face verification task has come a long way these years. GaussianFace [23] first proposed Discriminative Gaussian
Process Latent Variable Model that surpasses human-level face verification accuracy. Due to the emerging of deep
learning, DeepFace [27], SphereFace [21], CosFace [34], and ArcFace [9] achieve great performances on the face
verification task with different loss function designs and deeper backbone architectures. However, there are still
challenging scenarios that might cause a verification failure like cross-age [7, 42] or occlusion [24]. In [25], the face
images of different ages are treated as a face time series, and then the Multi-Features Fusion and Decomposition (MFFD)
model is applied to solve the Age-Invariant Face Recognition task. Faced with the incorrect verification result, the user
can hardly understand the cause of the failure.

2.2 Explainable AI

With the rising demand for explainable AI, there have been plenty of works related to this topic in recent years.
Visualizations of convolution neural networks using saliency maps are the main techniques used in [6, 30, 43]. In [11],
the importance estimation network produces a saliency map for every prediction so that doctors can make accurate
diagnoses with the diagnostic visual interpretation. However, as we have mentioned, the saliency map is more suitable
for locating objects. Knowledge Distillation [16] is another path to interpretable machine learning because we can

1The module is publicly available at https://github.com/ntubiolin/xcos
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Proposed Explainable Face Verification Pipeline 
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Fig. 2. Proposed Architecture. Our proposed architecture contains one modified CNN backbone and two branches for 𝑥𝐶𝑜𝑠 and
identification. The CNN backbone is responsible for extracting face feature for each identity. To preserve the position information of
each feature point, the final flatten and fully-connected layers of the backbone (e.g., ArcFace [9] or CosFace [34]) are replaced with an
1 by 1 convolution. On the 𝑥𝐶𝑜𝑠 branch, we compute one patched cosine map S (i.e. 𝑐𝑜𝑠𝑝𝑎𝑡𝑐ℎ in the figure) by measuring the cosine
similarity element-wisely between the two feature maps of compared images. Meanwhile, an attention weight mapW is generated
by our attention mechanism based on the two feature maps. The patched cosine map S is then weighted summed according to the
attention weight map W to get the final 𝑥𝐶𝑜𝑠 similarity value. The 𝑥𝐶𝑜𝑠 is supervised under the cosine similarity generated by
another face recognition model like ArcFace. The identification branch flattens the extracted feature and passes it into another fully
connected layer for ID prediction. The loss 𝐿𝑖𝑑 is used to stabilize the training process and can be any common face recognition loss
like the one in ArcFace.

transfer the learned knowledge from the teacher model to the student model. [22] realizes this idea through distilling
Deep Neural Networks into decision trees. In our work, the current face verification model functions as the teacher
model to supervise the 𝑥𝐶𝑜𝑠 module with the cosine similarity values it produces.

Decomposing the deep feature into interpretable components can reveal how the model makes decisions. BagNet [2]
combines the bag-of-local-feature concept with convolution neural network models and performs well on ImageNet.
By classifying images based on the occurrences of patched local features without considering their spatial ordering,
Bagnet [2] provides a straightforward way to quantitatively analyze how exactly each patch of the image impacts the
classification results.

In [8], the proposed method generates a report that quantitatively describes which visual semantic parts contribute
the most. Although [8] also explains the CNN model by decomposing the output into different visual concepts, it might
be not easy to apply [8] on modern face verification models due to the difficulty in generating task-specific visual
concepts. In comparison, the visual concept of our proposed method is defined as how similar two face parts are, which
needs neither annotation labor nor a pretrained concept extractor. Therefore, xCos might be more suitable for the face
verification task.

4
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In [38], the class activation maps augmentation is used to discover discriminative visual cues by applying overlapped
activation penalty. The difference between our proposed method and [38] is the information in the heatmap. The
heatmap in [38] indicates the feature similarity, while the heatmap in our proposed method represents the importance
of each local similarity. The core idea of our proposed method is to tell which grids contribute more to the global
(dis)similarity with the importance heatmap. In [15], the authors mentioned that there are many challenges to provide
AI explanations, such as the lack of one satisfying formal definition for effective human-to-human explanations.
However, [29] outlines four desirable characteristics for explanation methods, including interpretable, local fidelity,
model-agnostic, and global perspective, and our work manages to satisfy these criteria by constructing interpretable
maps with local information in the field of face verification. In [36], the proposed “inpainting game” takes the triplet
image pair to investigate how much the saliency map overlaps the ground-truth inpainting mask. It provides a novel
metric to evaluate the quality of the attention map in one explainable face recognition system. Our work, however, is to
generate new kinds of similarity/attention maps specifically for the face verification problem, not to invent a way to
measure the quality of explainability.

The most related work is [40]. In this work, the authors applied the spatial activation diversity loss and the feature
activation diversity loss to learn more structured face representations and force the interpretable representations to be
discriminative. Their definition of interpretability of the face representation is that each dimension of the representation
can represent a face structure or a face part. Nevertheless, the visualization produced by their method cannot accentuate
dominant filters or responses in the face verification task because it is conditioned on a single image instead of one
verification pair. Compared to [40], our model can provide both the quantitative and qualitative reasons that explain
why two face images are from the same person or not. If the two face images are viewed as the same person by the
model, our proposed method can clearly show which patches on the face are more representative than others via
providing local similarity values and the attention weights.

3 PROPOSED APPROACH

First, we define the ideal properties of 𝑥𝐶𝑜𝑠 metric. Second, we propose three possible 𝑥𝐶𝑜𝑠 formulas.

3.1 Ideal xCos Metric

Compared with the traditional cosine similarity for face verification, the ideal 𝑥𝐶𝑜𝑠 (explainable cosine) metric should
not only output a single similarity score but also produce spatial explanations on it. That is, 𝑥𝐶𝑜𝑠 should enable
humans to understand why the two face images are from the same person (or not) by showing the composition of
𝑥𝐶𝑜𝑠 value in terms of components that make sense to humans (e.g., their noses look similar). Besides this
explainable property, face verification models using 𝑥𝐶𝑜𝑠 as the metric should remain good performance so that it
could be used to replace cosine metric in real scenarios.

3.2 xCos Candidates.

Given a face image 𝐼 and a CNN feature extractor 𝐶 , we can get the grid features 𝐹𝐼 of size (ℎ𝐹 ,𝑤𝐹 , 𝑐𝐹 ):

𝐹𝐼 = 𝐶 (𝐼 ) ∈ Rℎ𝐹 ,𝑤𝐹 ,𝑐𝐹 (1)

The overall similarity score of 𝑥𝐶𝑜𝑠 is the weighted sum of local similarities, and the weights are from the attention
map W. To concisely demonstrate the core idea of 𝑥𝐶𝑜𝑠 , we first formulate 𝑥𝐶𝑜𝑠 metric as a general function of 𝐹𝐴 , 𝐹𝐵 ,
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andW:

𝑥𝐶𝑜𝑠 (𝐹𝐼𝐴 , 𝐹𝐼𝐵 ,W) =
ℎ𝐹∑︁
𝑖=1

𝑤𝐹∑︁
𝑗=1

𝑤𝑖, 𝑗 ∗ 𝑐𝑜𝑠 (𝐹 𝑖, 𝑗𝐼𝐴
, 𝐹

𝑖, 𝑗

𝐼𝐵
) (2)

where 𝐹 𝑖, 𝑗
𝐼

is the grid feature at position (𝑖, 𝑗), W ∈ Rℎ𝐹 ,𝑤𝐹 is the attention matrix,𝑤𝑖, 𝑗 ∈ W is the attention weight at
position (𝑖, 𝑗), and 𝐼𝐴, 𝐼𝐵 refer to two different face images A and B. Three candidates are proposed for the 𝑥𝐶𝑜𝑠 metric:

3.2.1 Patched 𝑥𝐶𝑜𝑠 . The most intuitive 𝑥𝐶𝑜𝑠 implementation is to set equal importance for each grid. This 𝑥𝐶𝑜𝑠
candidate simply realizes the idea that every pair of the grids on faces should be similar if the two faces are from the
same person. By comparing the patched 𝑥𝐶𝑜𝑠 with the following 𝑥𝐶𝑜𝑠 variants, we can know whether every grid in the
spatial feature shares the same importance. We let unit attention U:

U =
1

ℎ𝐹 ∗𝑤𝐹
Jℎ𝐹 ,𝑤𝐹

(3)

where Jℎ𝐹 ,𝑤𝐹
is the all-ones matrix of size (ℎ𝐹 ,𝑤𝐹 ), and the patched 𝑥𝐶𝑜𝑠 can be calculated in this way:

𝑥𝐶𝑜𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑑 = 𝑥𝐶𝑜𝑠 (𝐹𝐼𝐴 , 𝐹𝐼𝐵 ,U) (4)

3.2.2 Correlated-patched 𝑥𝐶𝑜𝑠 . Inspired by [4], the facial information is contained majorly around the nose and the
periocular region, so there exists an unequal amount of information for different parts of the face. Therefore, we come
up with a method to extract the overall importance level for different parts. By calculating the correlation weights of
the overall pair similarities and similarities of a given patch, we can get a rough idea of whether the local similarity for
certain face parts can represent the global similarity. We can change the unit attention to correlated-attention P, with
the global face features 𝑓𝐼𝐶 , 𝑓𝐼𝐷 extracted from any target deep face verification model:

P ∈ Rℎ𝐹 ,𝑤𝐹 (5)

where the element 𝑝𝑖, 𝑗 in P is the Pearson correlation of the set{
(𝑐𝑜𝑠 (𝐹 𝑖, 𝑗

𝐼𝐶
, 𝐹

𝑖, 𝑗

𝐼𝐷
), 𝑐𝑜𝑠 (𝑓𝐼𝐶 , 𝑓𝐼𝐷 ))

}
(6)

over all the image pairs (𝐼𝐶 , 𝐼𝐷 ) in the training dataset (C, D are arbitrary identity indices in the dataset). As a result,
we get the formula of correlated-patched 𝑥𝐶𝑜𝑠:

𝑥𝐶𝑜𝑠𝑐𝑜𝑟𝑟 = 𝑥𝐶𝑜𝑠 (𝐹𝐼𝐴 , 𝐹𝐼𝐵 ,P) (7)

3.2.3 Attention-patched 𝑥𝐶𝑜𝑠 . The attention-patched 𝑥𝐶𝑜𝑠 enables the attention to be conditioned on the input image
pair. This design is beneficial when the attention module needs to highlight or de-emphasize some parts of the images.
For example, the attention weights for where the mask is put on should be decreased, and the attention weights for
salient characteristics like big eyes or tiny mouths should be increased. Therefore, we propose another kind of 𝑥𝐶𝑜𝑠
metric which learns the attention L, i.e.

L = 𝑀𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝐹𝐼𝐴 , 𝐹𝐼𝐵 ) ∈ Rℎ𝐹 ,𝑤𝐹 (8)

, where𝑀𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is a CNN module. The learned attention L is supervised by the cosine similarity of 𝑓𝐼𝐴 and 𝑓𝐼𝐵 that
are generated with any target face verification model. With this module, we can formulate the attention-patched 𝑥𝐶𝑜𝑠
as follows:

𝑥𝐶𝑜𝑠𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑥𝐶𝑜𝑠 (𝐹𝐼𝐴 , 𝐹𝐼𝐵 , L) (9)
6
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3.3 Network Architecture

For current face verification models, the main obstacle to interpretability is that the fully connected layer removes the
spatial information, so it is hard for humans to understand how the convolution features before the fully connected
layer are combined in a human sense. To address this problem, we propose a two-streamed network with a slightly
different backbone and one plug-in 𝑥𝐶𝑜𝑠 module, as described in the following sections:

3.3.1 Backbone Modification. We attempt to learn the face representation which is not only discriminative but also
spatially informative. To achieve this goal, we choose the backbone of the target face recognition model, called 𝑓 (𝐶 ′(𝐼 )),
delete its fully-connected part 𝑓 (𝑥) for face feature extraction, and then append the 1 by 1 convolutional layer𝐶1𝑥1 after
the original convolutional layers 𝐶 ′(𝐼 ), i.e. the 𝐶 (𝐼 ) in the previous subsection is equal to 𝐶1𝑥1 (𝐶 ′(𝐼 )). The resulting
feature 𝐹𝐼 plays two roles:

(1) When it is flattened, 𝐹𝐼 represents the entire face.
(2) When it is viewed as the grid features, the local information of every grid 𝐹 𝑖, 𝑗

𝐼
is used to compute local similarities

and attention weights.

3.3.2 Patched Cosine Calculation. Given a pair of face convolutional features, 𝐹𝐼𝐴 , 𝐹𝐼𝐵 , each of size (ℎ𝐹 ,𝑤𝐹 , 𝑐𝐹 ), the
proposed method computes the cosine similarity in each grid pair and generates a patched cosine map S ∈ Rℎ𝐹 ,𝑤𝐹 . Each
element in this map S represents the similarity of each corresponding grid. With this patched cosine map S, we can
inspect which parts of the face images are considered similar by the model.

3.3.3 𝑥𝐶𝑜𝑠 Calculation. Given two convolutional feature maps, 𝐹𝐼𝐴 , 𝐹𝐼𝐵 , we can first compute the patched cosine map
S and generate the attention mapW ∈ {U,P, L}. Then, we perform the Frobenius inner product < S,W >𝐹 to get the
value of 𝑥𝐶𝑜𝑠 . Specifically, we sum over the results of element-wise multiplication on the attention map W and the
patched cosine map S, and then obtain the 𝑥𝐶𝑜𝑠 value defined in 3.2.

3.3.4 Attention on Patched Cosine Map. Given two face images, 𝐼𝐴 and 𝐼𝐵 , we compute their cosine similarity with any
target face verification model, i.e. let 𝑐 ′ = 𝑐𝑜𝑠 (𝑓𝐼𝐴 , 𝑓𝐼𝐵 ). Then, the attention module𝑀𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 can be learned with two
feature maps 𝐹𝐼𝐴 , 𝐹𝐼𝐵 and the supervising cosine score 𝑐 ′.

Inside𝑀𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝐹𝐼𝐴 , 𝐹𝐼𝐵 ), we use convolution layers to perform dimensionality reduction for the two face features
𝐹𝐼𝐴 , 𝐹𝐼𝐵 , and then fuse the 2 deduced features by the concatenation along the channel dimension. Next, we feed the
fused feature into two convolution layers, normalize the output feature map, and get the attention map L ∈ Rℎ,𝑤 .

After getting L, we apply element-wise multiplication on the attention map L and the patched cosine map S, sum the
results to get the 𝑥𝐶𝑜𝑠𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 with value 𝑐 , and calculate the L2-Loss of 𝑐 and 𝑐 ′ so that L is trainable.

3.3.5 Multitasking for Two-branched Training. As shown in Fig. 2, the proposedmethod contains two branches, including
the identification branch and the 𝑥𝐶𝑜𝑠 branch.

The identification branch is trained with the flattened 1 by 1 convolution feature 𝐹𝐼𝐴 , 𝐹𝐼𝐵 , and the loss function for
the identification task, L𝑖𝑑 , can be the one from ArcFace [9], CosFace [34], or any target deep face recognition model.
Take ArcFace [9], for example, the L𝑖𝑑 is:

L𝑖𝑑 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑠 (𝑐𝑜𝑠 (𝜃𝑦𝑖 +𝑚))

𝑒𝑠 (𝑐𝑜𝑠 (𝜃𝑦𝑖 +𝑚)) +∑𝑛
𝑗=1, 𝑗≠𝑦𝑖 𝑒

𝑠 (𝑐𝑜𝑠 (𝜃 𝑗 ))
(10)
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, where 𝑁 is the batch size, 𝑦𝑖 denotes the 𝑖-th identity class, 𝑠 is the normalized embedding feature for the input
image, 𝜃𝑦𝑖 is the angle between the 𝑖-th class embedding and the input embedding, and𝑚 is the angular margin penalty.

The 𝑥𝐶𝑜𝑠 branch performs the task of regressing the 𝑥𝐶𝑜𝑠 value 𝑐 to the cosine value 𝑐 ′ calculated from the target
model, and L𝑐𝑜𝑠 , the loss of regressing 𝑥𝐶𝑜𝑠 to cosine value, is L2-Loss:

L𝑐𝑜𝑠 =
1
𝑁 ′

𝑁 ′∑︁
𝑛=1

(𝑐𝑛 − 𝑐 ′𝑛)2 (11)

, where the 𝑁 ′ refers to the number of image pairs in each batch, and 𝑛 denotes the 𝑛-th pair in one batch.
The overall loss function for the two-branched training is:

L = L𝑐𝑜𝑠 + 𝜆 · L𝑖𝑑 (12)

, where 𝜆 is the trade-off weight and 𝜆 = 1 is chosen in all experiments below. L𝑐𝑜𝑠 guides the regression of 𝑥𝐶𝑜𝑠
value, while L𝑖𝑑 makes the identity feature more discriminative.

4 EXPERIMENTS

4.1 Implementation Details

4.1.1 Datasets. We use publicly available MS1M-ArcFace [9, 13] as training data, and use LFW [17], AgeDB-30 [26]
[10], CFP [31], CALFW [42], VGG2-FP [3], AR database [24], and YTF [37] as our testing datasets.

4.1.2 Data Preprocessing. We follow the data preprocessing pipeline that is similar to [9, 21, 34]. We first use MTCNN
[41] to detect faces. Then we apply similarity transform with 5 facial landmark points on each face to get aligned images.
Next, we randomly horizontal-flip the face image, resize it into 112 x 112 pixels, and follow the convention [34, 35] to
normalize each pixel (in [0, 255] for each channel) in the RGB image by subtracting 127.5 then dividing by 128.

4.1.3 CNN Setup. We mainly apply the same backbone as the one in ArcFace [9]. However, we replace the last fully
connected layer and the flatten layer before it with the 1 by 1 convolutional layer (input channel size = 512; output
channel size = 32), and call the output of it as grid features 𝐹𝐼 . A RGB image 𝐼 of size (112, 112, 3) will result in a grid
feature 𝐹𝐼 of size (7, 7, 32). When training the face identification branch, we flatten the grid feature 𝐹𝐼 into a 1-D vector
with dimension 1568.

4.1.4 𝑥𝐶𝑜𝑠 Module Setup. Given two grid features, 𝐹𝐼𝐴 , 𝐹𝐼𝐵 , of size (7, 7, 32), our goal is to produce one attention map L
and one patched cosine map S. The attention map L is obtained by performing convolution over the fused grid features.
First, we use a convolution layer with kernel size = 3 and padding = 1 to perform dimension reduction on 𝐹𝐼 with the
output channel dimension = 16. The two reduced convolution features of size (7, 7, 16) are then concatenated into a
new fused grid feature of size (7, 7, 32). Second, we feed the fused grid feature into another two convolution layers to
get the output L, of size (7, 7). Finally, we normalize the attention map with a softmax function to make sure the sum of
all the 49 grid attention weights is 1. The patch-cosine map S ∈ R7,7 is obtained by computing the grid-wise cosine
similarity between any paired grid features from 𝐹𝐴 and 𝐹𝐵 . The 𝑥𝐶𝑜𝑠 value is calculated by performing the Frobenius
inner product between L and S. The learning rate is 1e-3 for all models, and it is divided by 10 after 12, 15, 18 epochs.

4.2 Quantitative Results
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Method Accuracy
Human performance [20] 97.53%

GaussianFace [23] (non-Deep) 97.79%
CosFace [34] 99.33%
ArcFace [9] 99.83%

attention-patched 𝑥𝐶𝑜𝑠 (Ours, CosFace) 99.67 %
attention-patched 𝑥𝐶𝑜𝑠 (Ours, ArcFace) 99.35 %

Table 1. Face verification accuracy on LFW dataset. Compared to other face verification models, the proposed 𝑥𝐶𝑜𝑠 module
significantly improves explainability with a minimal drop of performances.

BackBone ArcFace [9] CosFace [34]
Methods baseline* patch. corr. atten. baseline* patch. corr. atten.
Feature Layer FC 1x1 FC 1x1
Attention Type - U P L - U P L
LFW [17] (%) 99.45 99.23 99.12 99.35 99.28 99.63 99.60 99.67
YTF [37] (%) 95.06 95.50 95.56 95.50 96.24 96.92 96.92 96.92
VGG2-FP [3] (%) 89.94 91.14 91.22 90.54 91.86 93.66 93.66 93.38
AgeDB-30 [26] [10] (%) 91.60 92.47 92.73 93.81 89.60 95.20 95.28 95.93
CALFW [42] (%) 92.55 93.23 93.17 94.08 91.30 94.83 94.77 95.10
CFP-FF [31] (%) 99.08 99.09 99.13 99.31 98.80 99.44 99.44 99.44
CFP-FP [31] (%) 87.56 88.60 88.64 88.08 90.61 93.07 93.16 93.54

Table 2. Ablation Studies. The patch., corr., and atten. refer to the patched 𝑥𝐶𝑜𝑠 , correlated-patched 𝑥𝐶𝑜𝑠 , and attention-patched
𝑥𝐶𝑜𝑠 mentioned in Section 3.2, respectively; ArcFace [9] and CosFace [34] represent common backbone models used in face
identification. From this table, we can observe that (1) 𝑥𝐶𝑜𝑠 brings explainability without degrading the performance; (2) The plug-in
𝑥𝐶𝑜𝑠 attention module can perform well in different face verification backbones. Note (*): We train the baseline with the same
training setting for 𝑥𝐶𝑜𝑠 and turn off the testing time augmentation to have a fair comparison.

4.2.1 Face Verification Performance. To demonstrate the effectiveness of our proposed method, we show the perfor-
mance of 𝑥𝐶𝑜𝑠 in the Table 1. From Table 1, we can observe that the 𝑥𝐶𝑜𝑠 module not only provides explainability with
the trade-off of a little drop of accuracy but also produces promising performance gain over the human performance
and some earlier non-deep face verification models like GaussianFace [23].

4.2.2 Ablation Studies. As shown in Table 2, we use the face recognition models without the backbone modification as
baseline, and then observe the effectiveness of 𝑥𝐶𝑜𝑠 via applying different attention weightsW ∈ {U,P, L}. In pursue
of a fair comparison, we train the baseline with the same setting of 𝑥𝐶𝑜𝑠 except the feature extraction layer, and turn off
the testing time augmentation for the baseline because it will apply an averaging operation over features, which leads
to the mix of spatial information for our convolutional features. Among most of the testing datasets, attention-patched
𝑥𝐶𝑜𝑠 achieves the best performances, suggesting that our attention module takes effect. However, in datasets VGG2-FP
[3] and CFP-FP [31], it seems that the patched 𝑥𝐶𝑜𝑠 and the correlated-patched 𝑥𝐶𝑜𝑠 may get a better result than the
attention-patched 𝑥𝐶𝑜𝑠 . We hypothesize that our proposed models, which are trained on aligned face images, do not
perform as expected due to the huge pose difference and pose variations in these two datasets. Also, both the baseline
model and our purposed 𝑥𝐶𝑜𝑠 models have noticeable performance drops between the pose-varying datasets and
datasets without pose variations. Therefore, we believe this is a general issue for all the face verification models which
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Fig. 3. The correlation between the xCos and the cosine value. For each pair of photos in the LFW [17] dataset, the xCos
value and the cosine similarity are computed from the proposed model and the pretrained ArcFace [9] model respectively. The high
correlation coefficient (r=0.98) shows that the 𝑥𝐶𝑜𝑠 branch of the proposed model learns from the existent ArcFace model.

do not handle pose variations by design. We discuss how to optimize both the explainability and the model performance
in Section 5.3.

4.2.3 Computational Cost. Although there are some additional costs to calculate the pairwise cosine similarity and
attention map in our system, the feature extraction process is still the computational bottleneck. When ignoring all disk
reading and writing time and running on an i7-3770 CPU with a 1080ti GPU, the inference for a pair of faces takes 6.1
ms and 6.7 ms for the original model and our 𝑥𝐶𝑜𝑠 model, respectively. Compared to the explainability gain over the
original model, this efficiency drop is negligible.

4.2.4 The effectiveness of regressing xCos to the cosine value. In Section 3.3.5, the output of 𝑥𝐶𝑜𝑠 branch is regressed
with the cosine value of the target face verification model. Fig. 3 demonstrates the effectiveness of the regression task
on the LFW [17] dataset. By correlating the similarity scores, the spatial maps generated from the 𝑥𝐶𝑜𝑠 branch can be
one interpretation of how the target model produces the verification result.

4.3 Qualitative Results

4.3.1 Visualizations of 𝑥𝐶𝑜𝑠 . As shown in Fig. 4, there are two interesting phenomena worth mentioning:

(1) The area around central columns is of great interest to the 𝑥𝐶𝑜𝑠 model. By observing the weight distributions on
the attention maps, we can conclude that the central convolution feature is influential for the model to verify the
identity.

(2) The area near mouths and chins is of greater importance than the upper parts of faces. People may wear hats,
change hairstyles, or become bald as growing older, so the model pays less attention to the area on the top
of faces. On the contrary, the variations of the shape of mouths and chins are constrained to the color of lips
or facial expression like smiling. For instance, the fourth row in Fig. 4(a) and the second row in Fig. 4(d) both
contain faces with hats, while the model pays less attention to those facial parts which are occupied with hats.

4.3.2 Comparison with saliency methods. Saliency methods like Grad-CAM [30] provide attention-like heat maps.
However, it is mainly for identification tasks but not verification tasks. Fig.5 shows four qualitative results of Grad-CAM.

10
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(a) True Positive Examples (b) True Negative Examples

(c) False Positive Examples (d) False Negative Examples

Fig. 4. Qualitative Results. The third and the fourth columns of each example represent the patched cosine similarity maps and the
attention weights maps. In the fourth row of (a), our model pays attention (green grids in theW) to the similar shapes of the two
noses (blue grids in the S), rather than the different hairstyles (red grids in the S). In the first row of (d), it is clear that the hands
distracts the model. With the visualizations, we can alarm users to put their hands away to avoid verification failure. With the aid of
our proposed cosine similarity map S and attention mapW, we can easily interpret the visualized results in the confusion matrix.
Thus, users can be more confident to know when models go right (or wrong), and 𝑥𝐶𝑜𝑠 can play a role in helping optimize the design
of the face verification model.

It is hard for us to interpret why the two face images are verified as the same person or not. Several previous works
have dealt with finding the pixels that contribute the most. However, those works, even the most relevant one [40], (1)
provide no local similarity information in their saliency maps and (2) hardly focus on the face verification task. (See
Table 3.) Contrarily, 𝑥𝐶𝑜𝑠 not only highlights essential regions but tells users which grids are (dis)similar. Revealing
local similarity helps users debug the verification system, for example, by showing the local dissimilarities caused by
hand occlusion (e.g., the first row of Fig 4(d)).
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Our method Grad-CAM

Fig. 5. Comparison with Saliency Methods (1) The first row shows one true positive pair. It is interpretable with the proposed
𝑥𝐶𝑜𝑠 that the forehead area is not similar and not important for the verification result, while it is hard for a human to interpret how
the two individual heat maps around the forehead contribute to the result by applying saliency methods like Grad-CAM [30] on the
ArcFace [9] model. (2) The second row is one true negative pair. The saliency method just puts the most significant pixels side by side,
while our method reveals that the dissimilarity caused by the cap is not important for the 𝑥𝐶𝑜𝑠 model. Both pairs are from the LFW
[17] dataset.

local
importance

local
similarity

verification
metric

𝑥𝐶𝑜𝑠 V V 𝑥𝐶𝑜𝑠 + S +W
saliency maps* V X cosine value

Table 3. Differences between 𝑥𝐶𝑜𝑠 and saliencymaps. S andW are the interpretable maps defined in the paper. Note (*): saliency
maps are methods whose outputs are two individual heat maps for one verification pair.

5 DISCUSSIONS

5.1 Additional Robustness to Occlusion

Since the local similarities are independently calculated and the learned attention is conditioned on the input image
pair, our method should be more robust than the original model when faces are partially occluded. For instance, the
occlusions around the forehead and the eyes hardly contribute to the verification result in Fig. 6. We quantitatively test
the robustness to occlusion on two datasets. AR face [24] is a natural occlusion face database with around 4K faces of 126
subjects and thus it is a good test set for the occlusion experiment. We select the faces with scarfs or glasses and exclude
those which can not be detected by MTCNN [41]. After the selection, 1488 images are used to randomly generate 6000
positive pairs and 6000 negative pairs. As shown in Fig. 7(a), our proposed methods outperform the original ArcFace
model even without the attention module. Besides, we use the free-form masks in [5] to create synthetic CASIA [39]
and LFW [17] occlusion datasets for fine-tuning and testing, respectively. There is one mask that occupies about x% out
of the total area for each image in the training or testing dataset (See Fig. 7(c) for examples.) From Fig. 7(b), it can be
concluded that the proposed 𝑥𝐶𝑜𝑠 method has less performance drop than the original face verification model.
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TP

TN

(a) Occlusion around the forehead (b) Occlusion around the eyes

Fig. 6. The Patched Cosine Maps and the Attention Matrices of two Occluded Face Triplets. The “TP”(True Posi-
tive)/“TN”(True Negative) row compares one image to one positive/negative image, respectively. The visualizations for the triplet
images reveal which grid (dis)similarities are important. In (a), the attention matrices show that the occlusion around the forehead is
not important, but the (dis)similarities around the nose, chin, and eyes are essential for the verification. In (b), the dissimilarities
around the eyes do not affect the verification score a lot. With the xCos module, the verification result can be interpreted with local
similarities and attention weights.

(a) (b) (c)

x%=5% x%=15%

x%=25% x%=35%

Fig. 7. (a) Face Verification Accuracy on the Occlusion Subset of AR Database [24]. The proposed 𝑥𝐶𝑜𝑠 method provides not
only explainability but also additional robustness to partially occluded faces. (b) Face Verification Accuracy on the x% Masked
LFW [17] Free-form masks [5] are applied on the images of LFW dataset. (c) Examples of the x% Synthetic Occlusion Dataset.
The proposed 𝑥𝐶𝑜𝑠 has less performance drop than common face recognition models, including ArcFace and CosFace.

5.2 How to Evaluate theQuality of the Attention Matrices

What kind of attention matrix is good remains an open question due to the lack of a universal definition of “good”
attention quality. For the synthetic dataset in [36], the absolute quality of the attention matrices can be calculated using
the protocol in [36]. For a real-world dataset, it is not easy to explicitly evaluate the quality of the attention matrix for a
specific verification pair, because there are no human-annotated ground truths for the importance of local similarities.
However, there may exist some methods that measure the relative quality of attention matrices. For example, we can
determine the relative quality of two types of attention, e.g., the correlated-attention and the learned attention, by
comparing the performance of models with them. This measurement is based on the assumption that higher verification
performance results from better attention matrices. Since the primary purpose of our proposed method is to design
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interpretable maps specifically for the face verification problem, we leave the investigation of measuring the absolute
quality of attention matrices to future works.

5.3 How to Adapt xCos From Frontal Images to Profile Ones

In this work, we open a new avenue for the explainability in the face recognition task. As the pilot study for the
emerging problem, we have to take two steps to make our research more convincing: (1) verify that plugging the
proposed explainable module into SoTA face recognition models does not degrade the overall verification performance
on the ideal test setting (e.g., test on the aligned LFW dataset); (2) Extend the usage of 𝑥𝐶𝑜𝑠 to other rigorous experiment
settings, like face images with significant pose variations or extreme illuminations. We are optimistic to see that our
work, which realizes the main idea in stage (1), is going to inspire more future research on face applications with critical
conditions.

There are plenty of papers embarked on tackling various challenging conditions, including low light/ resolution
settings or large pose variations, cross-age, etc. Following our successful attempt in the first stage, we believe the
research communities can adapt the 𝑥𝐶𝑜𝑠 module for many other face recognition problems. For example, some previous
works have explored the possibility of recovering the canonical view of face images from non-frontal images using SAE
[19], CNN [44], and GAN [18] models, and we can extend the usage of 𝑥𝐶𝑜𝑠 to the cross-pose scenario by performing
these preprocessing method first.

6 CONCLUSIONS

We propose a novel metric for the face verification task, called 𝑥𝐶𝑜𝑠 (explainable cosine). The proposed metric decom-
poses the overall similarity of two face images into patched cosines and one attention map. With this metric, humans
can intuitively understand which parts of the faces are similar and how important each grid feature is. We believe
that 𝑥𝐶𝑜𝑠 can be used to inspect the behavior of the face verification model and bridge the gap between the model
complexity and human understanding in an explainable way.
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