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Abstract

Graph Neural Networks (GNNs) are a new and increasingly
popular family of deep neural network architectures to per-
form learning on graphs. Training them efficiently is chal-
lenging due to the irregular nature of graph data. The prob-
lem becomes even more challenging when scaling to large
graphs that exceed the capacity of single devices. Standard ap-
proaches to distributed DNN training, such as data and model
parallelism, do not directly apply to GNNS. Instead, two dif-
ferent approaches have emerged in the literature: whole-graph
and sample-based training.

In this paper, we review and compare the two approaches.
Scalability is challenging with both approaches, but we make
a case that research should focus on sample-based training
since it is a more promising approach. Finally, we review
recent systems supporting sample-based training.

1 Introduction

Many datasets are relational in nature: they are best repre-
sented as entities connected by relationships rather than as a
single uniform dataset or table. Graphs are a universal formal-
ism to model relational data. They are also commonly used
to integrate data coming from multiple and possibly diverse
data sources, such as relational databases, social networks,
financial transaction logs, and many others. Graph analysis
can leverage relations to get a deeper insight into data.

Machine learning and deep learning are being increasingly
used for graph analytics. Graph Neural Networks (GNNs), in
particular, represent a new family of Deep Neural Network
(DNN) architectures tailored for graphs, where the structure
of the neural network overlaps with the structure of the graph
itself [36,41]. A GNN is composed of several layers and each
layer transforms input features to output features. The output
features from a GNN are usually referred to as embeddings
and used for downstream tasks. They are the state-of-the-art
approach for several prediction and classification tasks on
graphs.

Training GNNSs presents unique challenges due to the ir-
regularity of graph data. The input to a GNN is not a set of
independent data items but a graph consisting of intercon-
nected and inter-dependent vertices. Each layer in GNN is
thus modeled as a message-passing process whereby each
vertex aggregates the features of its neighbors [12,35]. This
results in an irregular and sparse computation, which is hard
to perform efficiently. The problem becomes even more chal-
lenging when one wants to scale training to large graphs and
multiple devices. Partitioning the graph inevitably splits some
neighboring vertices across different partitions, leading to
significant communication overhead.

Scaling GNN training is an open research question. Frame-
works designed for GNN training such as DGL [35] and
PyG [12] translate message-passing specifications of GNNs
into those of DNN models, which are then run by existing
DNN frameworks (e.g., TensorFlow [1] or PyTorch [31]).
These DNN frameworks, however, are not specifically de-
signed to scale GNNs to large input graphs. Recent work has
proposed dedicated techniques to scale GNN training that fall
into one of two approaches: whole-graph and sample-based
training. In whole-graph training, message passing among
vertices is performed on the entire graph. Sample-based train-
ing first samples the graph to obtain mini-batches, then maps
each mini-batch to one device, and finally performs training
on each mini-batch independently.

In this paper, we describe and compare the two approaches
from a system scalability perspective. We discuss how scaling
is challenging under both models, but argue that sample-based
training is a more promising approach. Whole-graph training
introduces inherent coordination and communication over-
heads that are hard to overcome as the system scales. Scaling
sample-based training, on the other hand, requires (a) sam-
pling algorithms that can form mini-batches without incurring
into the “neighbor explosion” problem [14,25] and (b) scal-
able systems to execute these sampling algorithms efficiently.
We review recent research that addresses these requirements.
Based on this review, we argue that sample-based training is
a more promising approach to scaling GNN training.



2 Background

Graph Neural Networks GNNSs perform representation
learning: they take a graph as an input and map each vertex to
a d-dimensional vector, known as an embedding. Embeddings
are then used as inputs for downstream machine learning tasks,
such as vertex classification and link prediction.

GNN frameworks allow expressing models using the
message-passing paradigm [12, 35]. Each GNN layer can
be expressed as a vertex-centric message-passing round. At
the k-th layer, each vertex v aggregates the features hf,kil)
of its neighbors u € N(v) and uses that information to com-
pute its new feature hik). This happen through three functions:
a message function ¢, a reduce function p, and an update
function .

Let G = (V,E) be the input graph. The message function
computes, for each edge e, a message from the source to the
destination vertex given the features of the incident vertices
and the edge:
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The message function can simply output the features of the
source vertex h,gk_l). Some algorithms assign features also to
edges, and use those features as input to the message function.

The reduce function aggregates multiple messages sent to
the same receiving vertex, for example by summing them or

using an LSTM network:
alt) = p({mgk) te=(u,v)€EE}) WwevV

Finally, the update function takes the result of message
aggregation and computes a new feature vector by applying
DNN operators such as fully-connected layers or convolu-
tions:

W =y aby wev

By using n GNN layers, the output features of each vertex
(also called embedding) can reflect features from all its n-hop
neighbors. The three functions ¢, p, and y constitute the GNN
model and encapsulate its parameters.

Distributed DNN Training Before discussing approaches
to scale GNN training, it helps to review the basic approaches
to scale DNN training that are adopted by existing frameworks
such as TensorFlow [1] and PyTorch [31]. Scalability requires
distributing the workload across devices, typically GPUs, that
execute the DNN model. Data and model parallelism are the
most common paradigms to do large-scale DNN training.
Data parallelism partitions the input data into mini-batches
and assigns each mini-batch to one device. Each device has a
full copy of the model and it independently performs iterations
over the model (forward and backward propagation) using
the mini-batch as input. The iteration produces gradients for
the model parameters. Gradients from all devices are then
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Figure 1: Example of whole-graph and sample-based training.

aggregated, using a parameter server [23] or an all-reduce
protocol [32], and finally applied to each copy of the model.

Data parallelism is the default choice to parallelize training
because each device can complete iterations independent of
each other. It is particularly suitable for small models, such as
models with small convolutional filters, because the cost of
aggregating gradients across devices is limited [22]. However,
for large models, gradient aggregation can be a substantial
overhead. Furthermore, if the model is too large or complex,
it might exceed the capacity of one device, making data paral-
lelism insufficient.

Model parallelism partitions the model across multiple de-
vices, for example by assigning a subset of consecutive layers
to the same device. Completing an iteration requires interac-
tion among devices, which exchange the features produced by
their partition of the model. In this case, the model parameters
are not replicated and gradients can directly be applied by the
device that computes them.

Model parallelism is the best fit for models that exceed the
capacity of one device. They also perform well when each
partition of the model requires a large amount of computation
and produces small features. It does not require exchanging
gradients, so it works well with models with a large number
of parameters, such as models with many fully-connected lay-
ers [22]. An important drawback of model parallelism is that
it requires tighter coordination among devices: downstream
devices can only make progress once upstream devices send
their features. The communication and coordination cost of
model parallelism can be reduced by using techniques like
pipelining that combine mini-batching and model partition-
ing [29].



3 Scaling GNN Training

When the input graph is too large to be handled by one device,
it is necessary to use a distributed approach. However, neither
data nor model parallelism are a good fit for GNN training. A
graph is a single data structure consisting of interconnected
vertices, not a collection of small independent samples, as
typically assumed in data parallelism. There is no way to
partition the vertices of most graphs without having edges
between partitions. As discussed, on the other hand, GNN
models are relatively shallow and small compared to DNNss,
making model parallelism a bad fit for GNN as well.
Because of the uniqueness of GNNs, prior work has pro-
posed two approaches that are tailored to distributed GNN
training: whole-graph and sample-based training. We now
present and compare them. Table | reports a summary of the
comparison and Figure | shows an example of a two-layer
GNN trained on two devices using the two approaches.

Whole-Graph Training Whole-graph training was adopted
by two systems for GNN training, NeuGraph [26] and
Roc [21]. It partitions the input graph and assigns each parti-
tion to one device. One way to look at whole-graph training
is to treat the input graph as a single sample, which is then
partitioned across one of the attribute dimensions [21]. The
GNN model parameters are replicated on all devices. Each
iteration is processed one GNN layer at a time. At each layer

k, each device computes the feature vector hgk) for each vertex

v in its partition. This requires fetching the feature h,gkil) for
each neighbor u € N(v) of v, which typically include features
computed by other devices in the previous layer. Therefore, in
whole-graph training devices must exchange features to com-
plete iterations, a characteristic whole-graph training shares
with model parallelism. Whole-graph training is a form of
full-batch training: each iteration is executed on the entire
input.

In the example of Figure |, whole-graph training parti-
tions the vertices on the left side across two devices. The
edges marked in red connect vertices in two different parti-
tions. At every layer, each vertex must aggregate the features
of its neighbors, which creates cross-device communication
and coordination along those edges. In the forward pass, de-
vices exchange features (i.e., the vertex features) at each layer,
whereas in the backward pass they exchange the gradients of
the features.

Sample-Based Training Sample-based training is supported
by AliGraph [42], DistDGL [40], and PaGraph [24]. The first
two target distributed training, the last one runs on multi-GPU
systems. This approach first performs graph sampling to cre-
ate mini-batches (also referred to as samples), and then trains
on the mini-batches in parallel on different devices. The goal
of sample-based training is to enable devices to complete
iterations independently on their mini-batches without having
to exchange features. Each mini-batch includes the data nec-

essary to compute the output feature vector for some vertices
called target vertices. In a GNN model with n layers, each
mini-batch includes the input features of the n-hop neigh-
borhood of those target vertices. Sample-based training is a
form of mini-batch training since iterations are computed on
a piece of graph data.

This approach differs from data parallelism since mini-
batches contain redundant data. Each vertex is included in the
n-hop neighborhoods of multiple vertices, and can hence be
included in multiple mini-batches. Nonetheless, this approach
has analogies to data parallelism. Devices can complete itera-
tions without communicating with each other. Furthermore,
exchanging the gradients among devices is not expensive
since the model is small.

Consider again the example of Figure |. Sample-based
training creates two mini-batches and assigns them to the
two devices. The first device computes the output features of
target vertices A and G, whereas the second one computes
them for B and F. Each mini-batch includes all vertices in the
two-hop neighborhood of the target vertices assigned to the
device. Sampling the graph to obtain mini-batches is part of
the training process but it is not depicted in the figure.

Why Scaling Whole-Graph Training is Difficult The main
drawback of whole-graph training is that devices need to ex-
change features (the updated vertex features) at each GNN
layer (see Figure 1(b)). The communication complexity de-
pends on the number of edges across partitions and can be
large. Exchanging features also introduces control dependen-
cies between devices within the context of one iteration.

Data-dependent communication and coordination con-
straints among devices are a major hurdle when scaling to
large clusters. Increasing the number of partitions reduces
the computational load per worker but it also increases the
number of edges across partitions, resulting in higher commu-
nication and coordination costs both globally and locally at
each device.

These scalability bottlenecks are not unique to whole-graph
GNN training. Distributed graph computation systems such
as Pregel also partition vertices among workers [6, 13,27,43].
Each worker must coordinate with the others at each superstep
and exchange messages among neighboring vertices. There
are important differences between the two classes of systems.
In whole-graph GNN training, devices exchange known data
types (tensors) and perform known operators, for example
sparse matrix multiplication. This enables more fine-grained
vectorization and scheduling compared to graph processing
systems, where vertices execute UDFs and exchange mes-
sages that are opaque to the system. However, the commu-
nication and coordination patterns are similar. Scaling out
graph computation systems to large clusters has always been
a difficult research challenge (see for example [16]) and the
same holds for whole-graph GNN training.

Moving towards sample-based training for better scala-
bility does not necessarily means degraded model accuracy.



Model Unit of Gradient Exchange of | Exchange of | Redundant External overheads
‘ ‘ parallelism ‘ descent ‘ activations ‘ gradients computation
Whole-graph Vertex-centric Full-batch | Yes (per-layer) Yes No Graph partitioning (per-task)
Sample-based H Subgraph-centric | Mini-batch ‘ No ‘ Yes ‘ Yes ‘ Sampling (per-iteration)

Table 1: Comparison of approaches to scalable GNN training.

Although some recent system work on improving GNN train-
ing scalability point out that sampling techniques come with
potential model accuracy loss for large real-world graphs, they
compare whole-graph training with few graph sampling ap-
proaches [21,26]. The more recent graph sampling literature
has consistently shown better accuracy on common graph
benchmarks [8, 39].

A Case for Sample-Based Training In this paper, we claim
that sample-based training is a more promising approach to
distributed GNN training. Instead of revisiting known scal-
ability bottlenecks in the new context of GNNs, we should
leverage the new opportunities offered by GNNs to avoid
those bottlenecks altogether.

Sample-based training eliminates per-layer coordination
and communication costs. Devices only need to exchange
gradients, which is a small cost since the size of the model is
small and independent of the size of the graph. Using asyn-
chrony or bounded-staleness for gradient exchange can further
reduce these coordination costs.

Sample-based training also results in a more modular sys-
tem design. Once devices obtain mini-batches, they can cal-
culate gradients by using any GNN training frameworks de-
signed for graphs that fit in one device. Gradient exchange
can occur just like in data parallelism, which is already well
supported.

This does not mean that scaling sample-based training is
straightforward. There are two main challenges to scalability:
redundant work and the sampling overhead. However, recent
research indicates that both challenges can be solved.

Redundant work arises from the “neighbor explosion” prob-
lem: each vertex can have a very large number of n-hop neigh-
bors, which must be included in its mini-batch. Multiple mini-
batches are likely to overlap in many common vertices. Multi-
ple devices must then compute the features for these vertices,
resulting in redundant computation and memory costs. For
example, in Figure 1, the first-layer feature of vertex D, hg),
is computed by both devices, and the input features of vertex
A are replicated at both devices.

A solution to this problem is to sub-sample the subgraphs
constituting the mini-batches to prune some vertices and
edges. Re-sampling mini-batches at each iteration reduces
the chances of missing important information. Developing
sampling algorithms to create mini-batches that maximize
accuracy and minimize training time is a very active area of
research and has shown that this is feasible. Table 3 lists some
of these algorithms, which we discuss further in Section 4.1.

Input Graphs PPI | Reddit
GraphSAGE [14] 51% 45%
FastGCN [5] 26% 52%
LADIES [44] 40% 62%
ClusterGCN [8] 41% | 24%
GraphSAINT [39] | 25% 30%
MVS [9] 24% 25%

Table 2: Fraction of time spent in graph sampling and training
by different GNN algorithms (from [19]).

Graph sampling can take a significant portion of the total
training time in real-world applications. The computation is
irregular and is typically performed using the CPU. In our
previous work, we found that graph sampling can take up to
62% of an epoch’s time if the host has a single GPU (see
Table 2) [19]. This bottleneck is further exacerbated if the
CPU is attached to multiple GPUs consuming samples for
training. Therefore, speeding up and scaling sampling is an
important problem for graph sampling. Preliminary work on
this front shows promising results too, as we will discuss in
Section 4.2.

4 Scaling Sample-Based Training

In this section, we review recent work on graph sampling
for GNN training. We first describe algorithms to obtain the
subgraphs that constitute the mini-batches of sample-based
training. Then, we discuss systems to speed up the execution
of sampling algorithms.

4.1 Sampling Algorithms

Sampling algorithms in GNN training aim to select a subset
of vertices and edges based on certain rules. After sampling,
instead of using all neighbors as in the whole-graph training,
sample-based training constructs a vertex’s feature by only
aggregating the features of the sampled set of neighbors. Ex-
isting sampling approaches largely fall into four categories:
node-wise sampling, layer-wise sampling, subgraph-based
sampling, and heterogeneous sampling [25]. They differ in
the granularity of the sampling operation in one training mini-
batch. Heterogeneous sampling applies to heterogeneous
graphs whose edges and vertices are of different types. As our
discussion focuses on homogeneous graphs, we next elaborate
on the first three types of sampling algorithms.



Node-wise sampling applies sampling operations to each
vertex’s neighbors: a part of neighbors of a vertex are sampled
based on specific probability (e.g., uniform distribution) to
compute the vertex’s feature. One typical example is Graph-
SAGE [14]. It uniformly samples a fixed number of neighbors
for each vertex in the graph and aggregates their features to
generate the vertex’s feature in each GNN layer. The output
feature of each vertex from the final GNN layer is then used
for the GNN model’s weight update and downstream tasks.
Its variants include PinSage [38], SSE [10], VR-GCN [4], and
MYVS [9], which differ in the design of sampling functions.

Layer-wise sampling samples multiple vertices simultane-
ously for each GNN layer in one sampling step. This approach
is usually faster than node-wise sampling as it avoids the expo-
nential extension of neighbors. Example algorithms include
FastGCN [5] which samples a fixed number of vertices in
each GNN layer based on pre-calculated probability indepen-
dently and LADIES [44] and AS-GCN [15] which introduce
layer dependencies and sample vertices in the k-th GNN layer
based on vertices sampled in the k + 1-th layer.

Subgraph-based sampling samples a subgraph, which is
composed of selected vertices and edges, and conducts train-
ing using the subgraph. Existing work generate subgraphs
by either partitioning the whole graph or extending vertices
and edges using specific policies [2,8,39]. For example, Clus-
terGCN [8] first partitions the whole graph into multiple clus-
ters using graph clustering algorithms and then randomly
samples a fixed number of clusters as a mini-batch by com-
bining these clusters into a subgraph. GraphSAINT [39], on
the other hand, leverages random walk to sample neighbors
of a vertex and generate subgraphs with the selected vertices.

4.2 Systems for Efficient Sampling

Building samples of a graph is an irregular computation that
is hard to perform efficiently. Graph sampling algorithms are
designed to preserve good accuracy while generating small
mini-batches. The researchers who develop these algorithms
should not have to deal with the low-level details of hardware
architectures to optimize performance. There is an emerging
need for systems that can abstract away the graph sampling
process by offering a high-level yet generic API and an ef-
ficient runtime to execute these programs. These systems
should be able to scale to large graphs and integrate with the
training process.

Fast Graph Sampling on GPUs Sample-based GNN im-
plementations often rely on frameworks such as DGL and
PyTorch Geometric to perform GNN training on GPUs. How-
ever, they perform graph sampling on the CPU. This is in
part due to the lack of frameworks for efficient and generic
sampling on GPUs.

Our recent work on NextDoor addresses this problem [19].
NextDoor enables users to express graph sampling tasks us-
ing a general, high-level APIL. It then executes these tasks

PPI Reddit Orkut Patents Livel]

GraphSAGE | 1.30x 1.2I1x OOM 1.20x 1.22x
FastGCN 1.25% 1.52x  4.75x 2.3x 4.31x
LADIES 1.07x 1.37x  2.27x 2.1x 2.34x%
ClusterGCN 1.03x 1.20x OOM 1.4x 1.51x

Table 3: End-to-end speedups after integrating NextDoor in
GNNs over vanilla GNNs (from [19]).

Vertex next (s, transits, srcEdges, step) {

int idx = randInt (0, srcEdges.size());
return srcEdges[idx];}

int steps () {return 2;}

int sampleSize (int step) {
return (step == 0) ? 25 : 10;}

bool unique (int step) {return false;}

SamplingType samplingType () {
return SamplingType::Individual;}
Vertex stepTransits(step, s, transitIdx){
return s.prevVertex (1, transitIdx);}

Figure 2: GrapSAGE’s 2-hop neighbors sampling imple-
mented using the NextDoor API (from [19]).

efficiently using GPUs. The API is expressive enough to
support the sampling algorithms described previously. Us-
ing NextDoor can speed up the end-to-end training time of
existing GNN systems by up to 4.75x (see Table 3).

Figure 2 shows an implementation of a sampling algo-
rithm using the NextDoor API. The algorithm is used by
GraphSAGE [14], a classic GNN algorithm. This particular
implementation samples the 2-hop neighborhood of a vertex.
The steps function indicates that sampling performs two
recursive hops from the vertex. The sampleSize function
returns how many neighbors of a vertex are sampled at each
step: 25 neighbors of the starting vertex in the first step and
10 neighbors of each sampled neighbor in the second. The
next function specifies how to pick a neighbor of a vertex.

Beyond offering an easy-to-use API, NextDoor introduced
a novel approach to parallelize graph sampling called transit
parallelism. This is better suited to GPU architectures than
the approach used by other systems for graph sampling, such
as KnightKing [37] and C-saw [30], and graph mining, such
as Arabesque and others [3,7,11,17,18,28,33,34]. All these
systems expand multiple samples in parallel and assign each
sample to a group of consecutive threads, which could be
part of the same warp. This approach, which we call sample
parallelism, results in sub-optimal performance on GPUs be-
cause of their hardware architecture. GPU kernels achieve
optimal performance when threads in a warp access contigu-
ous memory locations, cache data on shared memory, and
perform the same steps. Sample parallelism does not have
these properties.

To see why, consider the example of Figure |, and suppose
that the same GPU is computing the two mini-batches for the



two devices. Each mini-batch corresponds to a sample. Sup-
pose that the algorithm is now expanding the first sample by
adding neighbors of its vertices A and G. A sample-parallel
execution of the sampling algorithm would associate the sam-
ple to a group of consecutive threads, which are likely to be
in the same warp. These threads will access the adjacency
lists of two different vertices, A and G. This leads to unco-
alesced memory accesses and poor access locality since the
two adjacency lists are located at random locations in the
GPU memory. It also results in warp divergence if the threads
scan adjacency lists of different sizes.

NextDoor uses each transit vertex as the fundamental unit
of parallelism when building the samples. A transit vertex is a
vertex whose neighbors may be added to one or more samples
of the graph. NextDoor groups all samples that need to “transit
across” a vertex and assigns the samples to consecutive GPU
threads. Each thread accesses the adjacency list of the transit
and adds one neighbor of the transit vertex to one sample.
Since all threads access the same list, NextDoor achieves
coalesced global memory reads, low warp divergence, and
effective caching using the shared memory of the GPU. We
compared two versions of NextDoor that parallelize sampling
by sample and by transit, using several sampling algorithms
implemented using NextDoor’s API. Transit parallelism has
shown to be consistently faster, as shown in [19].

Consider again the example of Figure | and suppose that
the same GPU is computing the mini-batches (i.e., the sam-
ples) for the two devices. Suppose that the two samples al-
ready contain the target vertices ({A, G} and {B, F} respec-
tively) and their one-hop neighbors ({D, H, F} and {C, D, G}
respectively). The algorithm is now expanding both samples
by adding the two-hop neighbors of the target vertices. Vertex
D is a transit vertex for both samples because the algorithm
must select neighbors of D for both samples. NextDoor as-
signs a group of consecutive threads to vertex D and both
samples. All these threads read the adjacency list of D. Ac-
cesses to the list can be coalesced and the list can be cached
in shared memory. If the threads scan the adjacency list, they
will perform the same number of steps. These properties re-
sult in better performance on GPUs because of their hardware
architecture.

Scaling to Larger Graphs Scaling sample-based training to
large graphs critically relies on scaling sampling. Once the
sampling process generates mini-batches, distributed training
on each mini-batch proceeds independently similar to data
parallelism. However, efficiently sampling large graphs that
are stored on a distributed system is non-trivial.

One research question to address is how to scale graph
sampling across devices. Some existing systems have already
explored the problem. KnightKing computes random walks
on distributed graphs and uses a graph processing system as a
substratum [37]. AliGraph [42] and DistDGL [40] are end-to-
end GNN training systems, integrating sampling and training.
PaGraph performs sample-based GNN training in multi-GPU

systems [24]. KnightKing and DistDGL run several sampling
workers that incrementally expand their samples and pull
remote graph data on demand. Distributed graph mining sys-
tems like G-Miner use a similar approach [3]. These systems,
however, differ in the way they schedule distributed sampling.
Finding the optimal strategy is still an area for research, and
it will be interesting to see whether ideas from graph mining
systems can be borrowed in this context.

Another problem with the aforementioned systems is that
they perform sampling using CPUs only. GPU-based sam-
pling has the potential to significantly reduce end-to-end
training time, as shown in NextDoor [19]. Distributed sam-
pling systems can leverage GPUs for improved throughput.
NextDoor supports multi-GPU-based sampling if the graph
fits in the device memory. How to scale the process to larger
graphs is still an open area of research. Given that GPUs are
also used for GNN training, another open issue is how to ef-
ficiently overlap sampling with training on the same set of
devices.

Finally, how to distribute and store the graph data and how
to transfer it in and out of the GPUs is another critical as-
pect in the performance of distributed sample-based train-
ing. PaGraph, for example, uses caching to minimize data
transfers [24]. More research is likely to unveil additional
optimizations.

5 Conclusions

In this paper, we have compared two approaches to scale
GNN training: whole-graph and sample-based. Whole-graph
training requires devices to coordinate and communicate at
each GNN layer, which represents a challenge for scalability.
Sample-based training avoids this coordination altogether, so
it promises better scalability. Scaling sample-based training
requires (a) sampling algorithms that can form mini-batches
without losing too much information or generating exces-
sive redundant work, and (b) systems that can execute these
algorithms efficiently. Recent work indicates that both require-
ments can be fulfilled.
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