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Abstract
Tracing is a popular method for evaluating, investigating,
and modeling the performance of today’s storage systems.
Tracing has become crucial with the increase in complexity
of modern storage applications/systems, that are manipu-
lating an ever-increasing amount of data and are subject to
extreme performance requirements. There exists many trac-
ing tools focusing either on the user-level or the kernel-level,
however we observe the lack of a unified tracer targeting
both levels: this prevents a comprehensive understanding of
modern applications’ storage performance profiles. In this
paper, we present EZIOTracer, a unified I/O tracer for both
(Linux) kernel and user spaces, targeting data intensive ap-
plications. EZIOTracer is composed of a userland as well as
a kernel space tracer, complemented with a trace analysis
framework able to merge the output of the two tracers, and in
particular to relate user-level events to kernel-level ones, and
vice-versa. On the kernel side, EZIOTracer relies on eBPF to
offer safe, low-overhead, low memory footprint, and flexible
tracing capabilities. We demonstrate using FIO benchmark
the ability of EZIOTracer to track down I/O performance
issues by relating events recorded at both the kernel and user
levels. We show that this can be achieved with a relatively
low overhead that ranges from 2% to 26% depending on the
I/O intensity.

CCS Concepts: • Information systems → Storage man-
agement; •Computer systems organization→ Secondary
storage organization; • Software and its engineering→
Secondary storage; File systems management.

Keywords: Storage system, tracing tools, Linux I/O stack,
Kernel, eBPF
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1 Introduction
In the era of Big data, High Performance Computing (HPC)
and cloud systems, applications are manipulating an un-
precedented scale of data volume. Indeed, the International
Data Corporation (IDC) has estimated that the worldwide
installed base of storage capacity will grow to 6.8 zettabytes
(ZB) in 2020, an increase of 16.6% over 2019 [25]. In that
context, a deep understanding of modern storage systems’
performance is absolutely crucial to efficiently manage a
massive and ever-increasing volume of data [42].

Tracing is a widely used method for evaluating, investigat-
ing, andmodeling the performance of storage systems [37]. It
consists of adding software probes at instrumentation points,
i.e. strategic locations in the program as well as in the storage
stack. These probes are used to collect certain data (trace
event) that will be analyzed to study the performance profile
of a storage system.
Many tracers have been proposed. On the one hand, sev-

eral trace application I/Os at the user level [1–4, 8, 13, 20, 24,
29, 38, 40, 41]. They focus on events regarding program and
library I/O buffers management, lock contention, user-level
I/O requests, etc. On the other hand, some tracers target the
Operating System (OS) kernel [6, 7, 11, 16, 18, 21–23, 31–
33, 36, 37]. They allow to collect events at various levels
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of the storage management stack [37, 44, 45], in order to
break down the latency of application requests, to monitor
in-kernel inter-application interference, caches management,
etc.
As shown by the wide variety of existing tools in each

of the two aforementioned categories, tracing at both the
user and the kernel levels is crucial in order to fully un-
derstand the performance profile of a storage system sub-
ject to a particular application workload. In that context,
we observe that there exist no tool designed to consider
both levels in a unified way. Although some kernel-space
tracers/frameworks [16, 18, 21–23] provide support for user-
space probes that can be used to trace some particular func-
tion calls, the use of these probes requires potentially ex-
pensive application porting which is unacceptable in some
situations (e.g. proprietary application which sources are
unavailable). Furthermore, simply using a pair of existing
tracers, one from each category, does not solve the problem
because of a fundamental lack of compatibility: there is no
easy way to relate events recorded at one level with events
monitored at the other level (e.g. the various in-kernel block-
level read requests triggered by a user-level call to fread()).
Existing tracers also use a variety of output formats that are
sometimes incompatible. We conclude that in order to fully
understand, investigate, model and optimize the complex I/O
behavior of modern applications running on top of sophisti-
cated OS storage management stacks, there is a strong need
for a unified user- and kernel-level storage I/O tracer.

To address this issue, in this paper we propose EZIOTracer,
a unified I/O tracer for both kernel-space and user-space, fo-
cusing on data-intensive applications running on top of the
LinuxOS. EZIOTracer relies on threemain components: First,
IOTracer, a kernel-level tracing tool we developed, monitor-
ing I/O operations at various levels of the Linux kernel I/O
stack (Virtual File System, page cache, file system and block
layer. Second, EZTrace, an existing user-level tracer [40]
monitoring I/O events by intercepting calls to selected func-
tions of various popular HPC/data-intensive libraries. Finally,
EasyTraceAnalyzer (ETA), an existing generic trace analysis
framework that we upgraded to be able to merge the traces
generated by IOTracer and EZTrace into a unified trace that
links I/O events from both the kernel-space and user-space.

The kernel-level tool IOTracer, makes use of the extended
Berkeley Packet Filters, eBPF [22], a feature that was first
added to Linux since version 3.15. eBPF can run various types
of sandboxed programs, including lightweight monitoring
tools, in the Linux kernel without changing the kernel source
code or loading potentially unsafe kernel modules. It can be
used for various application domains such as networking,
security, application profiling/tracing and performance trou-
bleshooting. IOTracer makes use of different types of probes
(tracepoint, kprobe, kretprobe, etc) and leverages eBPF filter-
ing capacities [22] in order to keep both its runtime overhead

as well as its memory footprint low and configurable accord-
ing to the degree of precision requested by the user: it is
indeed possible to trace not only the entire system, but also
to filter the tracing process online based on a PID as well as
a given file or a directory.

EZTrace is an existing user-space tracer [40] that aims at
generating automatically execution traces from HPC pro-
grams. EZTrace supports the recording of calls to functions
of different parallel programming models (MPI, OpenMP,
Pthread, and others) with a possible monitoring of the pro-
cesses memory consumption. To that end, EZTrace either
uses the ld_preload functionality of modern dynamic link-
ers, or dynamically patches the application binary [9].
ETA is a generic trace analysis framework that can read

traces under different file formats like OTF2 [19], or Paje [15].
EZIOTracer relies on this framework to merge the traces
generated by IOTracer and EZTrace into one unified trace.
The unified trace contains and links I/O events from both
the kernel- and the user-space. ETA relies on the type, the
address, the size, the timestamp of the I/O request as well as
the thread identifier issuing this request to merge and unify
both traces.
We have tested and evaluated EZIOTracer using the FIO

benchmark [10] with multiple scenarios. The experiments
demonstrate EZIOTracer’s ability to record in a unified trace
I/O events that happen in userland and in the kernel. Ana-
lyzing the multi level events allows to detect the source of
performance problems in several scenarios. The evaluation
also shows that EZIOtrace has an overhead that ranges from
2% to 26% depending on the I/O intensity.
The contributions presented in this paper are the follow-

ing:

• We introduce IOTracer, a kernel-level Linux I/O tracer
leveraging eBPF for low overhead, high precision, and
safety;

• We integrate IOTracer with the user-level application
tracer EZTrace into a unified tracer called EZIOTracer.
This integration includes a method to unify and merge
the outputs of both IOTracer and EZTrace using an
analysis framework named ETA;

• We evaluated EZIOTracer, and we show that EZIO-
Tracer successfully pinpoints bottlenecks in several
parallel I/O intensive scenarios using FIO.

The rest of this paper is structured as follows: Section 2
presents related works. Section 3 presents our unified tracer
EZIOTracer and details each of its components showing the
interactions between them. Section 4 describes the evalua-
tion part of EZIOTracer using various use cases and studying
relevant metrics. Section 5 concludes and discusses perspec-
tives for future work.
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2 Related Works
Tracing is a highly popular techniques targetting modern
storage system performance, including monitoring, evalua-
tion/comparison, performance debugging and optimization,
characterization/ modelling, etc. Many tools have been pro-
posed to trace application storage I/Os in user space [1–
4, 8, 13, 20, 24, 29, 38, 40, 41]. They monitor various storage-
related events from standard libraries such as calls to read or
fread, as well as from highly popular libraries such as MPI.
These tools can give information about high level metrics
such as the time elapsed between sending and completing
an I/O request, the request data size and the library I/O
buffers management, etc. Nevertheless, this information is
sometimes insufficient to fully understand all the intricacies
leading to the complex I/O performance profiles that can be
observed during tasks such as performance debugging or
optimization. In the context of these user-space tools, one of
the main reasons behind these issues is the lack of kernel-
space information such as inter-application interference at
the operating system level.

Other tools/frameworks [6, 7, 11, 16, 18, 21–23, 31–33, 36,
37] can collect I/O patterns at the kernel level and monitor
such cross-application interactions, overcoming the limits
of the user application level tracers mentioned above. How-
ever they suffer from the inverse problem: as they do not
cover user space, it is sometimes hard to link performance
issues observed in the kernel to the user space events from
which they may have been triggered. This lack of unified and
global user/kernel tracing coverage prevents from getting
a comprehensive understanding of modern storage system
complex performance profiles.

Only a few tools make it possible to trace I/O at both user
and kernel levels [16, 18, 22, 23, 26, 35]. Unfortunately, these
tools present several problems: First, they are often very
generic and most can be qualified as a mechanism rather
than a tracer, and developing a proper storage I/O tracer on
top of them requires a non-negligible engineering effort. For
example, tools such as exposed user-land probes (Userland
Statically Defined Tracing, USDT) require to update and
recompile application code, which is unacceptable in some
situations (e.g. proprietary application which sources are
unavailable). Second, these generic mechanisms are designed
to trace many subsystems [16, 18, 22, 23] (process, memory,
storage I/O, network, virtualization) rather that focusing on
storage, which may increase their intrusiveness.

3 EZIOTracer Design
In this section, we present the design of the EZIOTracer tool.
We start by giving an overview of the tool. Then, we describe
its main components. In the last part of this section, using
a sequence diagram, we show the interaction/cooperation
between/of the main components of EZIOTracer.

3.1 EZIOTracer Overview
Figure 1 presents an overview of EZIOTracer architecture.
As shown in this figure, our system is composed of three
main components. The first is EZTrace, a user-space tracer
which traces calls from user processes to popular HPC/data-
intensive libraries such as OpenMP and POSIX threads. A
second component is IOTracer, a kernel-space tracer that
traces I/O requests at each level of the Linux I/O stack. The
last component is the EasyTraceAnalyzer (ETA), a generic
analysis framework, which retrieves the traces made by the
two aforementioned tracers and merges them into a single
unified trace. This unified trace allows to get a global and
comprehensive understanding of the application’s perfor-
mance profile, and can then be studied manually or auto-
matically processed by analysis tools. For example, it can be
used to detect particular user events leading to performance
issues in the kernel such as lock contention triggered by
inter-application interference. Other use-cases include the
identification of the kernel-level mechanisms slowing down
user-level request, such as cache management and disk opti-
mization tasks. In the rest of this section, we detail each of
EZIOTracer’s components.

Note that in this part, we will not detail the existing user-
space tracer EZTrace as it is already detailed in [40].

3.2 EZTrace
EZTrace [40] is an existing Open Source user-space tracer1
that targets HPC/data-intensive applications. EZTrace is a
modular tracer and uses plugins in order to trace functions
from different libraries and parallel programming runtimes
(Pthread, OpenMP, Posix I/O, etc.). The interception is re-
alized by injecting monitoring code using the ld_preload
functionality of modern dynamic linkers, see Figure 1. The
loaded plugins intercept applications events and produce a
trace in the OTF2 [19] format. The recorded events contain
entry/exit information (eg. thread id, timestamp, parameter
values) on the intercepted functions. This trace can be vi-
sualized with tools like ViTE [14], or analysed with trace
analysis tools.

3.3 IOTracer
For tracing storage I/O events at various levels of the Linux
kernel I/O stack, we developed IOTracer 2. The decision to
develop a new kernel-level tracer rather than use an existing
one was made mainly because existing non-generic tracers
are too specific. Indeed, they either focus only on a subset of
the storage stack such as the block layer [11] or on a subset
of storage devices such as embedded Flash [31, 32]. Also,
some of these existing tracers are obsolete due to the use of
depreciated tracing mechanism such as Jprobes [31, 32, 34].

1Available as open source at https://eztrace.gitlab.io/eztrace
2Available as open source at https://github.com/medislam/IOTracer

https://eztrace.gitlab.io/eztrace
https://github.com/medislam/IOTracer


CHEOPS ’21, April 26, 2021, Online, United Kingdom M. I. Nass et al.

Figure 1. EZIOTracer architecture and its integration in Linux: the tracers on the left are composed of the user-space (EZTrace,
grey box) and kernel (IOTracer, dark blue box) parts. The userland tracer monitors an application and uses LD_PRELOAD to
trace particular functions calls such as POSIX I/Os. The kernel one uses eBPF to monitor calls to functions at various levels of
the kernel storage stack (green boxes on the left). After the traces are collected, they are merged by ETA into a unified trace
(orange box on the top right).

Tracing frameworks [16, 18, 21–23, 36] are generic, allow-
ing to trace events all over the kernel. IOTracer was built
based on the BPF compiler collection (BCC) [5] to instrument
the Linux kernel. BCC relies on the eBPF framework [22]
which offers safe, low-overhead, low memory footprint and
flexible in-kernel tracing capabilities.
As shown in Figure 1, IOTracer traces I/O requests at

various levels over the entire Linux I/O storage stack: the
Virtual File System (VFS), the page cache, the File System
(FS), and the block layer. In each of these levels, IOTracer
uses different probes placed on kernel functions in order
to intercept I/O events, see Figure 1. The next section de-
tails each of the IOTracer probes, which are summarized
in Table 1. IOTracer focuses on data read/write operations,
as they represent the most performance critical operations,
and it targets the common Ext4 file system [39] on block
devices. However, IOTracer can easily be extended and we
leave out support for further operations (metadata opera-
tions, memory-mapped I/Os, etc.), more file systems, and
additional devices (such as NVMe) for future work.

3.3.1 IOTracer Probes. Probes are placed using eBPF/BCC
on functions at various levels of the storage I/O stack, see
Figure 1. Each probe has an associated handler that is exe-
cuted when the function in question is called. Each handler

Table 1. IOTracer probes

Probe Event description
vfs_write Data write operation on a file

at the VFS level
vfs_read Data read operation from a

file at the VFS level
generic_file_write_iter Data write operation in the

page cache
generic_file_read_iter Read operation from the page

cache (i.e. page cache hit)
ext4_file_write_iter Beginning of the handling of

a write operation at the Ext4
File System level

ext4_file_read_iter Beginning of the handling of
a read operation at the Ext4
File System level

submit_bio Start of a block I/O request
bio_endio Completion of a block I/O re-

quest

records in the trace a timestamp and a series of parameters
that are specific to the function called.
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VFS Level. A user application wanting to perform a read
or write operation on a file first calls the appropriate function
of the system call interface. Upon reception by the kernel,
this system call is then redirected to the VFS layer. The lat-
ter is the software layer in the kernel that provides the file
system interface to user-space programs. It also provides
an abstraction within the kernel which allows different file
system implementations to coexist (e.g. block, in-memory,
pseudo file systems, etc.) [27][12]. In order to monitor I/O
operations at the VFS level, IOTracer places two probes, on
the vfs_write and vfs_read functions (see Figure 1), in
order to mark the arrival of a write I/O operation or a read
I/O operation at the VFS layer.

Page Cache. The page cache is a DRAM cache used by
Linux mainly to speed up storage access [12]. On read re-
quest, the kernel searches for the page in the cache and
serves the read directly from DRAM if the page is found
(cache hit). If not, the kernel retrieves the page from the
underlying block device (cache miss). Compared to a read
hit, a read miss in the page cache incurs a significant latency.
Upon reception of a write request, the kernel updates the
page in the cache with new data. The modified page can
be sent immediately to the block device, or it can remain
in the dirty (modified) state in the cache, depending on the
synchronization policy of the kernel.

As shown in Figure 1, IOTracer uses two probes in the page
cache, generic_file_write_iter and generic_file_read_iter,
to indicate respectively a write and a read I/O operations.
Note that, for write operations, data are always written in
the page cache before being synchronized with the disk, un-
less the file is opened with the O_DIRECT flag. Page cache
misses and hits for read requests can easily be inferred from
the trace by checking if a given VFS read operations triggers
file system operations (cache miss) or not (cache hit).

FS Level. As previouslymentioned, an I/O operation should
be first served from the page cache if the data exists in the
cache. Otherwise, the I/O operation will be forwarded to the
concrete file system that performs several tasks of address
resolution and translation, transforming a logical I/O oper-
ation (I/O issued by the application to the file system) to a
physical operation intended for the lower layers of the I/O
stack. These operations are issued by the file system to the
block layer.

In this work we focus on Ext4 as it is a widely used Linux
file system; in particular, it is the default one for many Linux
distributions [17, 39]. Note that IOTracer is easily extensible
to support other file systems as one would simply have to
provide the file read and write functions to the tracer which
corresponds to adding approximately dozen lines of code to
probe a function in the new file system.

To mark the entry time of an I/O operation at the file sys-
tem level, IOTracer uses two probes: ext4_file_write_iter

and ext4_file_read_iter (see Figure 1) to indicate respec-
tively the start of handling of a write operation and a read
operation in the File System level.

Block Level. Once the I/O operation arrives in the block
layer, the block layer creates a list of block I/O structures
called bio [30], the basic container for block I/Os within the
kernel. Each structure represents an I/O operation to be sub-
mitted to disk. The bio structures are queued and scheduled
in the block layer depending to various objectives/algorithms,
e.g. to minimize hard disk head movement or to increase the
overall throughput by merging small requests, before redi-
recting I/O operations to the hardware driver. As a matter
of fact, with these optimization tasks at the block level, the
processing of an I/O operation could be delayed in order to
optimize the overall performance of the system, for exam-
ple to apply request reordering algorithms. To keep track
the lifetime of an I/O operation at the block level, IOTracer
uses two probes at the block layer level: submit_bio and
bio_endio, see Figure 1. The former probe marks the entry
time of an I/O operation (be it a write or a read operation)
at the block while the latter marks its completion time.

It is worth mentioning that in the case of storage systems
with a NVMe interface, the I/O operations take another path
in the block layer (they bypass the scheduler) [43], and to
intercept them, it is necessary to use other probes which will
be added to IOTracer in the future.
After having presented the different probes used by IO-

Tracer in each level of the Linux I/O stack, in the next part,
we first detail the event recording mechanism deployed by
IOTracer and then, the event filtering methods offered by
IOTracer.

3.3.2 Event Recording. As aforementioned, IOTracer is
based on eBPF to collect I/O events in the Linux kernel. eBPF
allows three different mechanisms to transfer data from the
kernel space to the user space: (1) the perf buffer, a kernel ring
buffer supporting per event push operation from a tracer,
(2) eBPF maps, a key-value structure useful for performing
various statistics (e.g. request latencies, number of requests,
etc.) and (3) the debugfs file system to write directly into
a global file named trace_pipe. Note that trace_pipe is
globally shared between several tracers, so concurrent pro-
grams will have clashing eBPF output and the reading will
be inconsistent [5]. IOTracer uses the perf buffer to record
per event custom data [5]. As shown in Figure 1, using this
mechanism, the captured events are saved in a custom C
structure (struct log in Figure 1) which will be pushed to
the perf buffer using the perf_submit function. Then, data
must be fetched in user space with the perf_buffer_poll
function. It is worth mentioning that in case of the perf buffer
saturation (i.e. the frequency of events written in the buffer
is higher than the frequency of reads), two methods can be
employed: either ignore the new events or overwriting the
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oldest events with the new ones. In this work, we deploy the
first method: ignore new events.
The main parameters that are recorded at each kernel

level by IOTracer are: <"timestamp", "address", "size",
"type", "thread id", "inode">. These parameters are
used to relate kernel level events to user space ones, and vice-
versa, and then to analyze the performance of the associated
I/O request.

3.3.3 Filters. In order to increase the precision of the trace,
to preserve the memory footprint and to minimize the run-
time overhead, IOTracer leverages eBPF’s filtering capabil-
ities and offers two filtering methods: (1) filtering by PID
and (2) filtering by file or directory inode. The former forces
IOTracer to record only the events initialized by (a thread of)
the process given by its PID. Events initialized by other pro-
cesses will be ignored. The latter forces IOTracer to record
events issued to a specific file if a file inode is given or events
issued for all files within a directory if a directory inode is
given. The two filtering methods can be combined to trace
specific file (or directory) with a specific process, or sepa-
rately.
One must note that IOTracer depends on the functions

and symbols provided by the kernel which change from
one version to another. The current design of IOTracer is
made to be supported by recent version (5.10) of the Linux
kernel. However, it is possible to easily adapt IOTracer to be
supported by other versions of the Linux kernel bymodifying
the used eBPF’s probes.

3.4 EasyTraceAnalyzer
EasyTraceAnalyzer (ETA) is an Open Source3 generic trace
analysis framework built in C++. ETA reads traces under dif-
ferent file formats like OTF2 [19], or Paje [15], and internally
builds an abstract trace representation. This internal repre-
sentation gives access to communications, computing units
(e.g. threads, or processes) and events in a unified manner,
allowing to implement trace analysis algorithms regardless
of the initial trace format.

Trace Merging and Analysis. In order to analyze the
whole I/O stack of an application, we extend ETA for it to be
able to merge the traces generated by EZTrace and IOTracer
into one trace that contains I/O events from both the user and
kernel spaces. This processing is executed post-mortem, once
the tracing is over, and it does not affect the performance of
the application. To achieve the merge, ETA first identifies
the execution flows that correspond to the same threads in
both traces. ETA relies on a common thread identification
convention used in both EZTrace and IOTracer. The user and
kernel events from a thread can then be integrated in a single
trace. Since EZTrace uses clock_gettime and IOTracer uses

3Available as open source at https://gitlab.com/parallel-and-distributed-
systems/easytraceanalyzer

bpf_ktime_get_ns, the recorded timestamps use the same
reference clock (that is the number of nanoseconds elapsed
since the boot).

Merging the traces into a single execution flow boils down
to applying a merge sort between two arrays, as depicted
in Figure 2. The complexity of the merging of traces is thus
linear with regards to the number of events. The trace result-
ing of EZTrace and IOTracer merging can be exported under
OTF2 format for further analysis using ETA or another trace
analysis suite.

3.5 EZIOTracer Components Interaction
As shown earlier, EZIOTracer involves several components:
EZTrace to trace I/O operations in the user space, IOTracer to
trace I/O operations at the kernel level, and ETA tomerge and
unify the traces made by EZTrace and IOTracer. In this part,
we will show, using a sequence diagram, the interactions
between the different components of EZIOTracer.
The managing component in EZIOTracer is EZTrace. As

depicted in Figure 3, to use EZIOTracer, the user first launches
EZTrace and specifies the filters to be used in IOTracer. EZ-
Trace instruments the application according to the selected
plugins, and it calls IOTracer while specifying the filters en-
tered previously by the user. Then, EZTrace starts recording
the I/O events of application taking place in the user space.
For each intercepted I/O event, EZTrace records OTF2 events
at the beginning and the end of the function call.

Meanwhile, IOTracer traces the I/O operations in the ker-
nel space and saves them to a text file format. When the
traced user application ends its execution, EZTrace stops log-
ging I/O events and sends an endmessage to IOTracer. Then,
the ETA framework (1) converts the trace made by IOTracer
to OTF2 format, and then (2) merges both traces made by
EZTrace and IOTracer which now use the same OTF2 format.
The final unified and merged trace, containing I/O events in
both user and kernel spaces for the application being traced,
is returned to user for later and in-depth analysis.

4 Evaluation
In this section, we evaluate the EZIOTracer tool. We start by
giving the evaluation methodology. Then, we describe the
used experimental platform. Finally, we discuss the obtained
results.

4.1 Methodology
This evaluation has two goals:

1. To demonstrate the ability of EZIOTracer to detect I/O
bottlenecks and pinpoint the source of I/O performance
problems given a unified user-kernel trace recorded
by EZIOTracer;

2. To evaluate the overhead of our tool, i.e. the perfor-
mance loss due to the logging of I/O operations in both
user and kernel spaces for a given application.

https://gitlab.com/parallel-and-distributed-systems/easytraceanalyzer
https://gitlab.com/parallel-and-distributed-systems/easytraceanalyzer


EZIOTracer: Unifying Kernel and User Space I/O Tracing for Data-Intensive Applications CHEOPS ’21, April 26, 2021, Online, United Kingdom

Thread 1

Thread 1

Thread 1

Thread 2

Thread 2

Thread 2

EZTrace

IOTracer

EZIOTracer

fopenfopen fread freadvfs_read fwritevfs_read vfs_writefwrite vfs_write

fread freadvfs_read vfs_read fread freadvfs_read vfs_read

vfs_read vfs_read vfs_writevfs_write

vfs_read vfs_read vfs_read vfs_read

fopenfopen fread fread fwritefwrite

fread fread fread fread

time

Figure 2. Merging the user- and kernel-two traces of two threads captured by EZTrace and IOTracer: timestamps from a
common clock source are used to order events in the output unified trace.

Figure 3. Sequence diagram illustrating EZIOTracer opera-
tion and execution.

First, to demonstrate the usefulness of EZIOTracer in the
detection of bottlenecks, we relied on the computation of the
SCI score [28]. It is a theoretical estimation of the Slowdown
Caused by thread Interference, which calculation method
is given below in the related subsection. By analyzing the
contention scores of applications with and without I/O buffer
(buffered and non-buffered I/Os below), we demonstrate that
thanks to the unified traces from the two levels, we were able
to locate and rationally analyze the source of the contention.
Second, to measure the overhead of EZIOtracer, we com-

pared three different software configurations:
• The vanilla configuration, in which the application
runs without tracing;

• The EZTrace configuration, in which the application
runs with user-space tracing only, through the use of
with EZTrace. All the Posix I/O functions calls (e.g.
read, write, fread, fwrite, etc.) are logged;

• The EZIOTracer configuration, in which the applica-
tion runs with user- and kernel-level tracing through
the use of EZIOTracer.

Table 2. Experimental configuration.

Buffered I/O Non-buffered I/O
I/O block size 4 KiB 4 KiB

Number of threads 1,2,4,8,16,32,64 1,2,4,8,16,32,64
Data file size 100 MiB 10 MiB

In terms of traced application we used the FIO bench-
mark [10], following two different settings: (1) traditional
buffered I/Os that leverage the Linux page cache; and (2) non-
buffered I/Os which bypass the page cache and access the
storage device directly through the use of the O_DIRECT open
flag. As described in Table 2, for each setting, we vary the
number of FIO threads generating I/Os to be 1, 2, 4, 8, 16, 32
and 64. Each thread writes in parallel (with the other threads)
a 100 MiB data file in case of buffered I/Os and a 10 MiB data
file in case of non-buffered I/Os (since the non-buffered I/O
are very slow, we reduced the amount of written data to
speed up the experiments), with a 4096 bytes request size
using the FIO sync engine (basic write functions [10]) doing
only sequential writes. We report the minimum, maximum,
and average of 5 measurement times of each experiment.
In all our experiments, all the kernel space I/O events were
successfully captured: IOTracer did not miss any I/O event
due to a saturation of the perf buffer.

4.2 Experimental Platform
To conduct experiments, we used a server equipped with
2 Intel Xeon Gold 5220R clocked at 2.20 GHz (turbo 4GHz)
with 24 cores/48 threads each, and 192 GiB of DRAM. The
machine has two 1.2 TiB 10K RPM disks in RAID1, controller
by a PERC H740P RAID controller. It runs Linux 5.10, and
programs are compiled with GCC 10.2.

4.3 Detection of I/O Bottlenecks
In this part, we evaluate how EZIOTracer can be used for
locating a contention problem in the I/O stack. We analyze
the traces generated with the user-space only EZTrace, and
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(a) Non-buffered I/O. (b) Buffered I/O.

Figure 4. Evolution of FIO top contention score with the number of I/O threads.

then with the unified kernel- and user-space EZIOTracer. We
compute the Slowdown Caused by thread Interference (SCI)
score [28].

4.3.1 SCI Score Calculation. The SCI score is computed
as follows: we browse the trace files and detect I/O opera-
tions as sequences of events (for instance for EZIOTracer the
following sequence: {Enter write}, {Enter VFS_write},
{Exit VFS_write}, {Exit write}), and we compare the
duration 𝐷𝑖 for similar sequences in the trace. For each set
of similar sequences, we consider that the fastest sequence
is almost contention free, and its duration 𝐷𝑚𝑖𝑛 is the dura-
tion of an I/O operation when there is no contention. This
assumption is based on existing work on the SCI metric [28].
We then compute the total slowdown of the sequence caused
by contention: 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =

∑
𝑛=1 𝐷𝑛 − 𝐷𝑚𝑖𝑛 .

A single thread relative slowdown is computed as the sum
of all its I/O sequences’ slowdowns divided by the life dura-
tion of the thread, that is the sum of I/O time and compute
time of the thread. It represents the proportion of time the
thread lost due to contention. Thus, a contention score of 0
means that the sequence did not suffer from contention and
all the sequences have the same duration 𝐷𝑚𝑖𝑛 . A contention
score close to 1 means that the thread spends most of its
execution time waiting due to contention. We report the top
contention score of an application execution (i.e. of a trace)
as the maximum score among all threads.
The use of the SCI score allows us (1) to show the ability

of EZIOtracer to unify and to link I/O events from both
user and kernel spaces when computing the SCI score, and
(2) to detect I/O performance problems by pointing out I/O
requests suffering a contention problem (I/O requests with a
high SCI score).
Figures 4a and 4b report the top contention score mea-

sured when running FIO with non-buffered (Figure 4a) and

Table 3. Number of traced events for the 32 threads experi-
ment.

Level Buffered I/O (100 MiB Non-buffered I/O (10 MiB)
VFS 673193 80867
FS 673193 80868

Block 0 86458
User 819201 81921

buffered (Figure 4b) I/Os. As expected, the contention score
is low when FIO runs with few threads, and it grows as
the number of thread increases. One should notice that con-
tention values for the two experiments are not comparable.
Indeed, in the case of non-buffered I/Os, the variation of
I/O times are lower than for buffered I/Os. In the latter case,
the minimum contention occurs when the requests are sat-
isfied from the main memory. Thus the difference with the
case where requests are satisfied from the storage system is
higher.
The contention score, when we consider only the user-

space events (EZTrace), is similar to the one measured when
both user-space and kernel-space events are considered,
which is consistent as the contention does not depend on the
tracers used. In the next subsections, we analyze how com-
bining I/O events from both the user and the kernel spaces
allow to pinpoint the source of performance problems.

4.3.2 PerformanceAnalysis of FIOwithNon-Buffered
I/Os. In order to detect the source of the contention when
running FIO with non-buffered I/O, we analyze in details one
set of traces obtained when running 32 threads. The EZTrace
trace (that only contains user-space I/O events) shows that
the threads spend up to 29% of their run time in the write
function. Moreover, this function has a low contention score
ranging from 0.02 to 0.08 for most of the 32 the threads.



EZIOTracer: Unifying Kernel and User Space I/O Tracing for Data-Intensive Applications CHEOPS ’21, April 26, 2021, Online, United Kingdom

(a) Non-buffered I/O. (b) Buffered I/O.

Figure 5. Evolution of FIO throughput with the number of I/O threads.

However, several threads have higher contention scores (up
to .2). This indicates that for some threads the application
suffers from moderate I/O contention. However, it does not
indicate whether the source of the performance problem is
in the kernel, or in user-space.

To pinpoint the performance problem, we analyzed EZIO-
Tracer’s unified trace file that contains user and kernel I/O
events. It appears that all calls to write generate a syscall
that records 80867 VFS_write, 80868 FS_write, and 86458
BLK_write events as shown in Table 3. Note that when mul-
tiplying the number of events by the block size (4 KiB) and
dividing by the number of threads (here 32), we find the
approximate file size used (10 MiB).

This indicates that the performance problem in this appli-
cation comes from the kernel space as all I/Os are submitted
to the I/O block layer. This confirms the fact that when acti-
vating the O_DIRECT flag, all write operations traverse the
whole I/O stack without taking advantage from the page
cache. This creates a contention at the kernel level when the
number of I/O threads is high. The contention metric used
does not show a high value as all I/Os go through the I/O
stack, so the execution time difference is small.

4.3.3 Performance Analysis of FIO with Buffered I/Os.
In this section, we analyze the trace files generated by EZIO-
Tracer when running FIO with buffered I/O. We analyze in
details one set of traces obtained when running 32 threads.
The EZTrace trace (application trace) shows that the I/O

threads spend up to 67% of their execution in the write
function, whose contention score ranges from 0.14 to 0.34.
In order to identify the source of this contention problem,
we analyze the file that contains both EZTrace and IOTracer
events.

In the EZIOTracer trace (that contains both user and ker-
nel events), the number of events at the kernel level shows

that even if all application level calls to write generate a
call to a VFS_write and a FS_write, the block layer seldom
generates, see Table 3. This shows that the write traffic is
mostly absorbed by the page cache. Note that the difference
between the number of events at the user and kernel level
is mainly due to the write back policy used by the kernel
which delays the writes. As a consequence, the EZIOTracer
stopped the tracing before all requests traverse the kernel
(this is subject to future enhancement).

4.4 Overhead of EZIOTracer
We evaluated the overhead of logging the I/O operations of
an application with EZIOTracer.

We present FIO’s throughput for our 3 scenarios (no trac-
ing, user tracing only with EZTrace, unified user-kernel trac-
ing with EZIOTracer) on Figure 5a. We observe that with
non-buffered I/O, the measured throughput increases as the
number of threads grows higher. For large number of threads,
the maximum throughput (around 330 MiB/s) is reached and
performance stops increasing. This is consistent with the
measured SCI score reported in Figure 4a. The throughput
grows linearly for small numbers of threads (i.e. when the
contention is low), and it grows moderately when the num-
ber of threads is 16 or higher (i.e. when the contention is
moderate). Instrumenting the application with EZTrace, or
EZIOTracer has little effect on the measured performance:
for 64 threads, EZTrace and EZIOTracer degrade the perfor-
mance by respectively 2.1%, and 4.3%.
With buffered I/O, the measured throughput quickly in-

creases and reaches a maximum of about 12 GiB/s with
16 threads, see Figure 5b. This is consistent with the mea-
sured throughput reported in Figure 4b. For small number
of threads, the throughput increases, and it stalls with 16 or
more threads (i.e. when the SCI score becomes significant).
Collecting user-space I/O events with EZTrace causes a 5%
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performance degradation in most cases. Instrumenting both
user-space and kernel-space I/O with EZIOTracer degrades
the performance by up to 26%. This is due to the overhead of
instrumentation that is constant. Since buffered I/O generate
many fast I/O operations, the overhead becomes noticeable.
To summarize, the experiments show that logging I/O

events that occur in the user space allows to detect perfor-
mance issues. However, logging both user and kernel I/O
events permits to pinpoint the source of the contention in
the I/O stack. It also shows that the performance degradation
caused by EZIOTracer can be low to moderate depending on
the application I/O intensity.

5 Conclusion
In this paper, we propose EZIOTracer, a unified I/O tracer
that monitors and links I/O events in both kernel- and user-
space in order to fully understand, investigate, model and
optimize the complex I/O behavior of modern storage sys-
tems. EZIOTracer relies on three tools (1) EZTrace, to record
calls from user processes to libraries at the user-space level;
(2) IOTracer, an in-kernel eBPF-based tool we developed, trac-
ing I/O requests at various levels of the Linux I/O stack; and
(3) ETA, that we modified, to merge the traces generated by
IOTracer and EZTrace into a unified trace. The experiments
demonstrate EZIOTracer capacity to record the unified user-
kernel performance behavior, and show that EZIOTracer has
an overhead that ranges from 2% to 23% depending on the
I/O intensity.

For future works, we plan to test EZIOTracer with exten-
sive experimentation using real HPC/Big data applications
with different use cases. We are currently extending EZIO-
Tracer to support MPI jobs. Also, we plan to extend EZIO-
Tracer to support memory-mapped I/Os tracing, other file
systems types like ReiserFS, BtrFS and ZFS, and other stor-
age interfaces like NVMe. EZIOTrace will be made available
online under an open source license.
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