
HAL Id: hal-03349823
https://hal.science/hal-03349823

Submitted on 20 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting file lifetimes for data placement in
multi-tiered storage systems for HPC

Luis Thomas, Sebastien Gougeaud, Stéphane Rubini, Philippe Deniel, Jalil
Boukhobza

To cite this version:
Luis Thomas, Sebastien Gougeaud, Stéphane Rubini, Philippe Deniel, Jalil Boukhobza. Predicting
file lifetimes for data placement in multi-tiered storage systems for HPC. Operating Systems Review,
2021, 55 (1), pp.99-107. �10.1145/3469379.3469392�. �hal-03349823�

https://hal.science/hal-03349823
https://hal.archives-ouvertes.fr

Predicting file lifetimes for data placement in
multi-tiered storage systems for HPC

Luis Thomas
luis.thomas@ensta-bretagne.org

ENSTA Bretagne
Lab-STICC, CNRS, UMR 6285

Brest, France

Sebastien Gougeaud
sebastien.gougeaud@cea.fr

CEA
Bruyères-le-Châtel, France

Stéphane Rubini
stephane.rubini@univ-brest.fr

Univ. Brest
Lab-STICC, CNRS, UMR 6285

Brest, France

Philippe Deniel
philippe.deniel@cea.fr

CEA
Bruyères-le-Châtel, France

Jalil Boukhobza
jalil.boukhobza@ensta-bretagne.fr

ENSTA Bretagne
Lab-STICC, CNRS, UMR 6285

Brest, France

Abstract
The emergence of Exascale machines in HPC will have the
foreseen consequence of putting more pressure on the stor-
age systems in place, not only in terms of capacity but also
bandwidth and latency. With limited budget we cannot imag-
ine using only storage class memory, which leads to the use
of a heterogeneous tiered storage hierarchy. In order to make
the most efficient use of the high performance tier in this
storage hierarchy, we need to be able to place user data on
the right tier and at the right time. In this paper, we assume
a 2-tier storage hierarchy with a high performance tier and
a high capacity archival tier. Files are placed on the high
performance tier at creation time and moved to capacity tier
once their lifetime expires (that is once they are no more
accessed). The main contribution of this paper lies in the
design of a file lifetime prediction model solely based on its
path based on the use of Convolutional Neural Network. Re-
sults show that our solution strikes a good trade-off between
accuracy and under-estimation. Compared to previous work,
our model made it possible to reach an accuracy close to
previous work (around 98.60% compared to 98.84%) while
reducing the underestimations by almost 10x to reach 2.21%
(compared to 21.86%). The reduction in underestimations is
crucial as it avoids misplacing files in the capacity tier while
they are still in use.

CCSConcepts: • Information systems→ Information stor-
age systems; Storage management; Hierarchical storage
management; Information lifecycle management;

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of a national government. As such,
the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.
CHEOPS ’21, April 26, 2021, Online, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8302-8/21/04. . . $15.00
https://doi.org/10.1145/3439839.3458733

Keywords: Data placement, Multi-Tier Storage, File lifetime,
Convolutional Neural Network, Machine Learning, High
Performance Computing, Heterogeneous Storage, Storage
Hierarchy

ACM Reference Format:
Luis Thomas, Sebastien Gougeaud, Stéphane Rubini, Philippe De-
niel, and Jalil Boukhobza. 2021. Predicting file lifetimes for data
placement in multi-tiered storage systems for HPC. In Workshop
on Challenges and Opportunities of Efficient and Performant Stor-
age Systems (CHEOPS ’21), April 26, 2021, Online, United Kingdom.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3439839.
3458733

1 Introduction
The amount of data generated in the world seems to grow
exponentially, from 4 zetabytes in 2013 to an estimated 185
zetabytes in 2025 [4]. This trend will continue as new su-
percomputers are already reaching the exaflop in AI driven
workloads [37]. Storage has always been a performance bot-
tleneck in High Performance Computing (HPC) [28][36][20].
In order to cope with the amount of data that Exascale ma-
chines will produce, storage systems need to improve both
in terms of capacity and speed (bandwidth and latency) [20].
Since no single storage technology is capable of fulfilling
both those roles at a reasonable cost [13], we need to use a
hierarchy of different storage technologies. The combined
use of Flash-based drives, magnetic drives (HDD) and tapes
is standard [24] in HPC systems. Memory class storage such
as 3dX-point are expected to join the aforementioned hier-
archy in production to partially fill the gap between DRAM
and Flash [17][5].

The management of this hierarchy is a complex endeavour.
Parallel distributed file systems such as Lustre [12] are used
to manage the vast amount of disks and data across those
disks. The standard architecture used in HPC is a three tier
hierarchy [19] composed of clusters of Flash-based drives,
magnetic drives and tapes each grouped together in storage

https://doi.org/10.1145/3439839.3458733
https://doi.org/10.1145/3439839.3458733
https://doi.org/10.1145/3439839.3458733

CHEOPS ’21, April 26, 2021, Online, United Kingdom Thomas and Gougeaud, et al.

nodes and managed by a parallel distributed file system or an
object store such as DAOS [22]. Because the storage capacity
available on the high performance tier is often an order
of magnitude lower than that of the other tiers [24], the
fastest tier of this hierarchy should only contain a subset of
files for the time period during which they require such a
performance.
In our work, we used a hierarchy of two tiers, a high

performance tier and a capacity tier used for archival purpose.
The aforementioned issue of data placement over the storage
tiers can be translated in two main research questions: 1)
when to store files in the performance tier and 2) when to
move them to the capacity tier. Questioning about how data
should be moved/scheduled from a tier to another is out of
the scope of this paper, so is the prefetching issue.
Several state-of-the-art work solutions investigated the

data placement of objects or files in high performance tiers
[32] [35] [34]. They were mainly performed for hybrid stor-
age systems composed of flash-based disks and magnetic
drives. A large proportion of those studies such as [23] [3]
relied on continuous system monitoring of I/O patterns [27]
to infer the moment at which data should be placed in such
tier and when they should be evicted. While those strategies
performed well in terms of I/O performance, the exhaustive
monitoring used makes them hardly usable in large produc-
tion systems [15] [2]
In [25], the authors solely relied on file names to infer

the time duration where files are accessed, thus reducing
drastically the monitoring cost. In fact, they observed that
in some CEA (French Atomic Energy Commission) [10][6]
supercomputers[7] [8], 45.80% of the files were never ac-
cessed 10 seconds after their creation [25]. They defined the
duration between the last access to a file and its creation time
as the file lifetime. They used machine learning approaches
to predict file lifetimes based only on their paths. Paths were
chosen as input for two reasons: (1) the path of the file is
known at creation time and (2) it often contains metadata
about the user and/or the application that created it. With
this prediction in hand, they placed each file in the high
performance tier once created and moved it to the capacity
tier when the file lifetime expires.
The performance of previous solution was measured ac-

cording to two metrics: (1) the accuracy, it is defined as the
percentage of lifetime predictions that are within an order
of magnitude from the real value; (2) the under-estimation,
defined as the percentage of predictions that are below the
real lifetime value. This is particularly important as underes-
timated file lifetime would result in a premature file eviction
leading to a performance degradation. In this previous work,
the authors used two Convolutional Neural Networks (CNN):
(1) a CNN trained for accuracy (2) and another trained to
produce the least amount of under-estimations, for that they
used different cost functions. Then trade-offs were found.

In this paper, like previous work [25], we used the access
path of a file to accurately predict when a file will last be
accessed. While previous work used two Convolutional Neu-
ral Network using two different loss functions, we propose
to use a single Convolutional Neural Network using a cus-
tom loss function in order to reduce the computing power
necessary for a prediction. To achieve this, we designed the
custom loss function to optimize the ratio between accuracy
and under-estimations. The intuition behind the design of
the custom loss function stems from multi task learning[16],
we used the weighted average of the two loss functions used
in previous work [25]. Our objective is to increase the ac-
curacy of our predictions while maintaining a low level of
under-estimations. We also used early-stopping to prevent
overfitting.
Using a dataset of 5 millions entries from a production

system at CEA and through several experiments we empir-
ically found that the best weights/ratios between the two
loss functions was around 0.2 for the loss function yield-
ing high accuracy and 0.8 for the loss function yielding
low under-estimations. With this setting we were able to
train our network to reach 98.60% accuracy while keeping
under-estimations under 2.21%. In comparison previouswork
achieved 98.84% accuracy and 21.86% under-estimations us-
ing their highly accurate loss function while the other loss
function yielded 90.91% accuracy and 0.88% under-estimations.
Our solution is also more flexible since we can tune the
weights of the loss function to either favor high accuracy or
low under-estimations.

We first go over the background of this study, by describ-
ing the storage system used at CEA along with the software
used to manage data life cycle. Then we describe the solution
we designed. We evaluate and analyze our results. We then
go over the related work and finally we conclude this paper
with our final analysis and future work.

2 Background
This section introduces the overall system architecture con-
sidered and sketched in Fig. 1. The first section describes
the used HPC multi tiered storage system architecture rep-
resented by the two storage servers in the top left corner of
Fig. 1 (high performance and high capacity tiers). The sec-
ond section introduces the Robinhood policy engine which
is represented by the right side of Fig. 1, Robinhood is a
software that provides fast access to file metadata in HPC
storage systems.

2.1 The Storage Hierarchy in HPC
Scientific applications such as weather simulations, genomic
sequencing or geoscience necessitate petabytes of storage
for datasets and results. These data are archived and their
results keep growing larger. Caching and prefetching strate-
gies were put in place in order to speed up the process of

Predicting file lifetimes for data placement in multi-tiered storage systems for HPC CHEOPS ’21, April 26, 2021, Online, United Kingdom

reading and writing to storage memory which is several or-
ders of magnitude slower than main memory (DRAM) which
is itself orders of magnitude slower than cache and CPU
registers [18]. In order to get the best latency and through-
put, a common solution is to use Flash-based drives as an
intermediate between traditional magnetic drives and main
memory [38] [4]. The use of tape is the final piece of the
puzzle, as it is used to archive the data. Tapes have a latency
of around 20 seconds or more [24]. Data stored on tapes does
not consume any power which makes it an ideal solution
for long term storage. Finally, tape as a technology has the
best $/GB ratio and is a necessary technology to reach the
exabyte at a feasible economic cost. As an example, 60% of
the storage capacity of the TGCC [9], a CEA supercomputer,
relies on tapes.

Figure 1. Simplified view of the system.

2.2 Robinhood Policy Engine
Robinhood Policy Engine [21] is a versatile tool to manage
contents of large file systems, it is developed by the CEA [6].
It maintains a replicate of file system metadata in a database
that can be queried at will. It makes it possible to schedule
mass action on file system entries by defining attribute-based
policies. Robinhood is linked to the file system through the
changelog as shown on the right side of Fig. 1. It stores all
metadata information about the file system in a SQL database
which makes it possible to retrieve the state of the file system
at any time. In a production system, this translates tomillions
of file entries, with their associated creation time, last access
and last modification time. We used the data extracted from
Robinhood in the proposed contribution.

3 Predicting file lifetime for data
placement

This section aims to describe the full scope of our contribu-
tion, beginning with an overview of our solution inside the
existing storage system. We explain how our training and
validation data is processed and describe how our solution
works.

Figure 2. View of the training process

3.1 Overall predicting system architecture
Our contribution consists in a file lifetime predicting system
that takes as input file paths. Fig. 1 shows a simplified view
of the existing data management system where our solution
would be integrated. In the top right corner are Lustre [12]
instances with 2 storage servers, those servers contain differ-
ent media types. The one on the right is a metadata server,
it contains metadata about the other Lustre file systems and
is connected to them with a secondary network called "man-
agement network" with lower latency and bandwidth than
the High Performance Data Network. The applications are
running on compute nodes which are not represented in
this figure; applications are connected to the Lustre Storage
Server through the High Performance Data Network.
On the right side of the figure, the block labeled "Robin-

hood Policy Engine" [21] represents the software solution
used to create migration policies between the different tiers.
Robinhood is connected to the management network and
reads metadata changes from the metadata server. This is
represented by the "changelog reader" in the figure. These
metadata changes are processed and stored in a database.
The database then receives SQL queries to check the state
of the file systems without having to contact the metadata
server directly. An administrator can then create a policy by
periodically checking the state of the file system through the
Robinhood database; such policies include data migrations
or purges.
Our solution would stand inside Robinhood and filters

only the "File creation" events. The path of the file would
be processed to generate a prediction of its lifetime. The
prediction would then update the database entry related to
the file. These predictions are to be used to create a data
migration policy, the files with expired lifetimes would be

CHEOPS ’21, April 26, 2021, Online, United Kingdom Thomas and Gougeaud, et al.

moved from high performance tier to capacity tier. In Fig. 1,
this would translate in a migration from the SSD storage
server (high performance tier) to the HDD storage server
(capacity or archival storage), thus granting us more space
for newly created files on the performance tier.

3.2 File lifetime training framework
In order to work, our machine learning solution has to be
trained on real examples. Training is an iterative process, we
refer to each training pass as an epoch. An epoch is defined
as the number of times the neural network has processed
the entire dataset.

Fig. 2 shows the overall CNN training process. In our case,
we used data from a production Robinhood database which
had to be processed in order to remove fields with missing
information. Those data are then transformed into a form
that can be understood by a machine learning model. Then
we design a model using Tensorflow and Keras to describe the
layers of our Convolutional Neural Network and its hyper
parameters such as the learning rate or the number of epochs.
The model then goes through training and its performance is
evaluated by a loss function (also referred to as cost function).
The loss function is fundamental to the learning process as
it will define how the neural network will change its param-
eters. Previous work [25] used two different loss function
to achieve either high accuracy or low under-estimations,
we proposed a custom loss function using both of them. The
three main components are described in the next sections.

3.3 Dataset processing
Data processing is a necessary part of our training system,
its role is to transform the data from its source into a form
that a machine learning solution can use. In our case we
need fixed size inputs and file paths have variable sizes. We
need also in this phase to define and normalize the metric of
lifetime of files.

Our solution uses data from a production system at CEA [10].
They were extracted from a Robinhood Database used to
monitor a production file system. Raw data extracted in this
manner were the result of an SQL query, a Comma Sepa-
rated Value (CSV) file that can be viewed as a table. This
table contains fields with information on each file in the file
system. We had access to the path, time of last access (or
read), time of last modification (write), creation time and
other associated metadata for each file.
The first step of data processing consists in processing

each field of the CSV file in order to remove incoherent data
such as a creation time being later than the last access time.
The path column of each field was then converted from a
character string of variable length (ex: /foo/bar/user/project/...)
to a fixed size array of 256 integers. This size was chosen
arbitrarily based on the commonly observed size of the paths.
When the path was longer than 256 characters it was trun-
cated from the start because we observed that the right part

of the path contains more relevant information such as the
username, the file extension, etc. The transformed paths were
considered as inputs for our CNN.

Figure 3. Lifetime distribution.

The second step of data processing is to define the life-
time metric. There are three fields containing time infor-
mation available in Robinhood: the creation time, the time
of last access and the time of last modification. We came
up with two possible definitions for the lifetime: 𝐷𝑒𝑓 .1 =

𝑙𝑜𝑔10(𝑙𝑎𝑠𝑡 𝑚𝑜𝑑𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 − 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) and 𝐷𝑒𝑓 .2 =
𝑙𝑜𝑔10(𝑙𝑎𝑠𝑡 𝑎𝑐𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒 − 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒). The decimal loga-
rithm is used to discretize lifetime values. Fig.3 shows the
distribution of lifetimes for each definition. The x-axis repre-
sents the decimal logarithm (log10) of the lifetime in seconds
and on the y-axis is the percentage of files close to that life-
time. The bars represent the amount of files belonging to a
certain lifetime slice in our dataset. It shows from left to right
the lifetime distribution according to 𝐷𝑒𝑓 .1 and 𝐷𝑒𝑓 .2. We
decided to use 𝐷𝑒𝑓 .2, i.e. the time of last access minus the
creation time because it contains more relevant information
since the time of the last access can either be a write or a
read while the time of last modification is always a write op-
eration. This means that a prediction based on 𝐷𝑒𝑓 .1 might
evict some files before a read and thus would result in a per-
formance penalty. So we defined the lifetime as the decimal
logarithm of the difference between the time of last access
and the creation time.

3.4 Model Architecture
The CNN model architecture used in this paper was inspired
from a previous work [25] which itself relied on [31]. A sim-
plified representation of the model is shown on Fig.4. The
architecture of the model is made of 12 layers: 1 input layer,
10 hidden layers and 1 output layer; Given the current trends
in computer vision, this is a small CNN by its number of
layers, but rather large in terms of parameters. For exam-
ple, Inception v4 [33] contains 70 layers for 36.5 millions
parameters while our model contains around 100 millions
parameters (also referred as "weights"). We kept the same
network layout as it performed adequately on this task in
previous work [25] despite its number of parameters.

Predicting file lifetimes for data placement in multi-tiered storage systems for HPC CHEOPS ’21, April 26, 2021, Online, United Kingdom

Figure 4. Simplified view of the model.

The training starts with the input layer, it fetches data
from the dataset and passes it to the embedding layer.

Figure 5. Example of character embedding.

3.4.1 Embedding Layer. The embedding layer transforms
the 256 bytes long input into a matrix of 256 by 32 floating
numbers, we kept this size from previous work [25] and
through multiple tries with different embedding values (16,
32, 48, 64). Fig. 5 shows an example with an 8 byte long input
and an embedding size of 4. Each character is mapped to
an array of floating numbers, these numbers change during
training because they are learning parameters. We use em-
bedding for two reasons: first, in order to leverage CNN, we
need to transform the file paths into matrices of fixed size.
Second because the alternative method to embedding, which
is one hot encoding, takes too much space [30]. In our case
one hot encoding would have multiplied the size of the input
matrix by 3.

3.4.2 Convolutional Layers. The next layers are the con-
volutional layers, they extract spatial data from the embed-
ding layer that makes sense to the neural network. Theo-
retically a convolutional layer produces a set of matrices
containing features about the data it gets fed. Convolutional
layers are defined by two parameters 1) the number of output
matrices and 2) the size of the kernel used (128 and 5 for
example). Pooling layers are used to reduce the dimension of

the input matrices of the next convolutional layer. Our model
contains two convolutional layers and two pooling layers as
shown in Fig. 4. The process of finding the right amount of
layers is empirical and again was the result of experiments in
previous work [25]. The output of a convolutional layer can
be represented as a series of matrices containing features.
The layer that sits between the convolutional layers and

the dense layers in Fig. 4 is the flatten layer, its role is to
serialize the output of the last convolutional layer into a 1
dimensional array. Dense layers are defined by the number
of neurons they contain. Each value in the output of the
flatten layer is connected to each neuron in the dense layer.
The dense layers are fully connected to each others. Almost
all of the learning parameters are located in the dense layers,
the weights in the previous layers (convolution, embedding)
are negligible.

The output of the network takes the output of a dense layer
made out of a single node and returns the lifetime of the file as
previously defined. This model solves a regression problem
since it returns a discrete value instead of probabilities to
belong to a certain class.

3.5 Loss function
The goal of training a CNN like any other networks is to
minimize a loss function. The loss function is used during
training to compare the changes needed to be applied to the
CNN in order to increase accuracy in the next iteration. It
takes as inputs the predicted lifetime value and the real one.
We present 4 loss function in this subsection, the first

is one of the most commonly used in regression tasks, the
following two were used by previous work [25] to train their
CNNs. Finally we present our custom loss function which
makes use of the two from previous work, thus the need to
explain how they work.
One of the most commonly used loss function in regres-

sion tasks is Mean Squared Error or L2 [26]. MSE is the sum
of squared distances between the real value and predicted
values, it is defined as:

𝑀𝑆𝐸 =
1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

where 𝑦 represents the real value and 𝑦 the predicted
value. MSE should be used when the target values follow a
normal distribution as this loss function would significantly
penalize large errors.We observed that our data do not follow
a normal distributionwhich explains why previouswork [25]
chose another loss function that is less affected by outliers
in the data.

Previous work [25] used logcosh, which is another regres-
sion loss function, in order to achieve high accuracy. It is
defined as:

CHEOPS ’21, April 26, 2021, Online, United Kingdom Thomas and Gougeaud, et al.

𝐿 =
1
𝑛

𝑛∑
𝑖=1

log(cos(𝑦𝑖 − 𝑦𝑖))

where𝑦 represents the real value and𝑦 the predicted value.
It works like MSE except that it is less affected by outliers
in the dataset. Previous work [25] also used quantile99 to
achieve a low-level of under-estimations. quantile99 is the
name given by [25] for the quantile loss function when the
quantile is 0.99. Quantile loss function is defined as:

𝐿𝑞 =
1
𝑛

𝑛∑
𝑖=1

max(𝑞 · (𝑦𝑖 − 𝑦𝑖), (𝑞 − 1) · (𝑦𝑖 − 𝑦𝑖))

where 𝑞 represents the quantile value, 𝑦 the real value
and 𝑦 the predicted value. This loss function gives different
values to over-estimations and under-estimations based on
the quantile value. The closer the quantile value is to 1 the
more it will penalize the under-estimations. The same is true
for over-estimation, the closer the quantile is to 0 the more it
will penalize over-estimations. A quantile value of 0.5 shows
the same behavior as MSE.

The loss function used to train our model is a custom one.
We realized through [16] that using the weighted average of
quantile99 and logcosh allowed us to combine their properties
while alowing for a higher flexibility thanks to the used
weights. The custom loss function can be represented as:

𝑐𝑢𝑠𝑡𝑜𝑚𝑙𝑜𝑠𝑠 () = 𝑤𝑎 · 𝑙𝑜𝑔𝑐𝑜𝑠ℎ() +𝑤𝑢 · 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒99()
where𝑤𝑎 +𝑤𝑢 = 1. By modifying the value of the wieghts
𝑤𝑎 and𝑤𝑢 we can either favor high accuracy or low under-
estimations.
The goal of this approach is to allow our solution to be

adapted according to the system state, for instance, disk
usage, I/O bandwidth, performance delta between tiers, the
QoS required by the application, etc.
We evaluated different weight configurations in our ex-

perimentation, that is :
(𝑤𝑎,𝑤𝑢) ∈ {(0.5, 0.5), (0.4, 0.6), (0.3, 0.7), (0.2, 0.8), (0.1, 0.9)},
the results we obtained are discussed in Section 4.

4 Experimental Evaluation
This section covers the methodology used to evaluate our so-
lution and the results we obtained against previous work [25].
We also discuss the flexibility of our solution by tuning the
weights of our custom loss function.

4.1 Methodology
We trained the convolutional neural network in a docker
container which had access to 4 Tesla V100 GPU. We used an
optimization called mixed-precision in order to reduce the
training time on GPU. We used Tensorflow 2 [1] to conduct
all our experiments. With this optimization enabled, it took
2 hours to train our model (while the training lasted 4 hours

Table 1. Comparison of previous work against our solution

evaluation metric logcosh quantile99 our solution

accuracy 98.84% 90.91% 98.60%
under-estimations 21.86% 0.88% 2.21%

Table 2. Comparison of different weighted loss function for
each (𝑤𝑎 ,𝑤𝑢) value

eval. metric (0.5,0.5) (0.4,0.6) (0.3,0.7) (0.2,0.8) (0.1,0.9)

accuracy 98.83% 98.75% 98.74% 98.60% 97.95%
under-est. 6.22% 2.53% 2.48% 2.21% 1.34%

without mixed precision). In order to reduce training time
we used early-stopping which monitors if the network is
over-trained and if so stops the training.

The dataset we used contains 5 millions entries of real data
from a production system in HPC. We pre-processed this
dataset in order to keep only the path and the lifetime of each
file using the method discussed in section 3. We used 70% of
data for training and 30% for validation. The validation data
were chosen randomly.

The metrics used to evaluate the performance of the net-
work are the accuracy and the under-estimations.

4.2 Results
Table 1 shows the performance of logcosh and quantile99
against our solution, best values are emphasized. In this table,
the weights of the loss function used for our solution were
0.2 for logcosh and 0.8 for quantile99. While not reaching
the accuracy of logcosh our solution manages to be 7.5%
more precise than quantile99. On the other hand the number
of under-estimations is almost divided by ten compared to
logcosh.
By tuning the weights of our loss function we can fur-

ther approach either the accuracy of logcosh or the under-
estimations of quantile99. Table 2 shows the influence of the
weights of our loss functions on the metrics we observed,
best performances are emphasized. A (0.5, 0.5) split between
logcosh and quantile99 yields an accuracy of only 0.1% lower
than logcosh alone while dividing underestimations by more
than 3. In term of under-estimations, our solution is still
outperformed by previous work using quantile99 by 0.46%
in the (0.1, 0.9) experiment. Overall we can observe that
logcosh seems to have a bigger influence on the evaluation
metrics than quantile99. Accuracy declines slowly despite
the proportion of quantile99 getting larger. Since we defined
an accurate prediction as a value an order of magnitude
away from the real value then it is possible that the pre-
dicted values are getting closer to leaving that interval as
the proportion of quantile99 increases. This would explain

Predicting file lifetimes for data placement in multi-tiered storage systems for HPC CHEOPS ’21, April 26, 2021, Online, United Kingdom

the steep decline in precision between the (0.2, 0.8) and the
(0.1, 0.9) experiments.
The conclusion we have drawn is that minimizing under-

estimation is costly in terms of accuracy; Through multiple
experiments, we were able to quantify the cost of reducing
under-estimations in term of accuracy.

5 Related work
Predicting file lifetimes with Machine Learning was investi-
gated in [25]. It was the main inspiration of this work. The
authors used two machine learning algorithms, random for-
est and a convolutional neural network (CNN). It showed
that, on a dataset of 5 million entries, random forest was
outperformed by the CNN both in terms of accuracy using
logcosh and in terms of under-estimations using quantile99
as loss functions. Another observation they made from the
data they recovered was that 45.80% of the files had a lifetime
under 10 seconds.
eXpose [31] applies character embedding to URLs in a

cybersecurity context. The embedding was used to train a
Convolutional Neural Network to recognize malicious URLs.
It is a highly influential work to the previously cited pa-
per [25].
Learning I/O Access Patterns to improve prefetching in

SSDs [11] leverages the use of Long Short-Term Memory
(LSTM) which are an extension of Recurent Neural Networks
to predict at firmware level (inside a SSD) which Logical
Block Address will be used. In [14], the authors have eval-
uated different learning algorithms, this time to model the
overall performance of SSDs for Container-based Virtual-
ization to avoid interference that would cause Service Level
Objectives violations in a cloud environment

Data-Jockey [32] is a data movement scheduling solution
that aims to reduce the complexity of moving data across a
hierarchy of storage. It uses user-made policies to balance
the load across all storage nodes and jobs. It has a view of
the entire supercomputer and the end goal is to create a
scheduler analog to SLURM for data migration jobs.

Archivist [29] is a data placement solution for hybrid em-
bedded storage, it uses a neural network to classify files
and outperforms baseline in latency access given certain
conditions.
UMAMI [23] uses a range of different monitoring tools

to capture a holistic view of the system. They show that
their holistic approach allows them to analyse performance
problems more efficiently.

The work presented in this paper follows and increments
the approach in [25]. It upgrades the previous solution by 1)
enhancing its performance in terms of accuracy and under
estimations and 2) providing the administrator with a higher
degree of flexibility by supplying a set of solutions allowing
a trade-off between accuracy and under estimations.

6 Conclusions and Future Work
In this paper we propose a method to predict the lifetime of
a file based on its path using a Convolutional Neural Net-
work. We used data from a CEA production storage system
to train our solution. We designed a custom loss function to
get our Convolutional Neural Network to achieve a trade-off
between high accuracy and low under-estimations. We then
evaluated our solution against previous work [25], which
used two loss functions: logcosh and quantile99. The results
we obtained show that when using weights of 0.8 for quan-
tile99 and 0.2 for logcosh our solution was able to reach an
accuracy close to previous work using only logcosh (98.60%
compared to 98.84%) while reducing the underestimations
by almost 10 times to reach 2.21% (compared to 21.86%).
Furthermore our solution is more flexible compared to pre-
vious work since it allows system administrators to tune the
weights of the loss function during incremental training to
either favor high precision or low underestimations.
In future work we would like to investigate the use of

our solution on a 3-tiered storage system (we used 2 tiers
in this work). In such a context, we need to investigate new
parameters to learn when to move data from one tier to
another while still keeping the burden of monitoring low.
Finally we would like to explore the use of a deeper CNN
architecture in order to reduce the number of parameters,
much like what is done in computer vision.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G Murray, Benoit Steiner, Paul Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2016. TensorFlow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016. USENIX, 265–283.
https://doi.org/10.5555/3026877.3026899 arXiv:1605.08695

[2] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy
Enos, Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksineha-
boon, Jeff Ogden, Mahesh Rajan, Michael Showerman, Joel Steven-
son, Narate Taerat, and Tom Tucker. 2014. The Lightweight Dis-
tributed Metric Service: A Scalable Infrastructure for Continuous
Monitoring of Large Scale Computing Systems and Applications.
In International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC. IEEE Computer Society, 154–165.
https://doi.org/10.1109/SC.2014.18

[3] Djillali Boukhelef, Jalil Boukhobza, Kamel Boukhalfa, Hamza
Ouarnoughi, and Laurent Lemarchand. 2019. Optimizing the cost
of DBaaS object placement in hybrid storage systems. Future Genera-
tion Computer Systems 93 (apr 2019), 176–187. https://doi.org/10.1016/
j.future.2018.10.030

[4] Jalil Boukhobza and Pierre Olivier. 2017. Flash Memory Integration (1st
ed.). ISTE Press - Elsevier.

[5] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. 2017.
Emerging NVM: A Survey on Architectural Integration and Research
Challenges. ACM Trans. Des. Autom. Electron. Syst. 23, 2, Article 14
(Nov. 2017), 32 pages. https://doi.org/10.1145/3131848

https://doi.org/10.5555/3026877.3026899
https://arxiv.org/abs/1605.08695
https://doi.org/10.1109/SC.2014.18
https://doi.org/10.1016/j.future.2018.10.030
https://doi.org/10.1016/j.future.2018.10.030
https://doi.org/10.1145/3131848

CHEOPS ’21, April 26, 2021, Online, United Kingdom Thomas and Gougeaud, et al.

[6] CEA. 2020. CEA - HPC - Computing centers. Retrieved 2021-02-23
from http://www-hpc.cea.fr/en/complexe/computing-ressources.htm

[7] CEA. 2020. CEA - HPC - TERA. Retrieved 2021-02-23 from http:
//www-hpc.cea.fr/en/complexe/tera.htm

[8] CEA. 2020. CEA - HPC - TGCC. Retrieved 2021-02-23 from http:
//www-hpc.cea.fr/en/complexe/tgcc.htm

[9] CEA. 2020. CEA - HPC - TGCC Storage system. Retrieved 2021-02-23
from http://www-hpc.cea.fr/en/complexe/tgcc-storage-system.htm

[10] CEA. 2020. English Portal - The CEA: a key player in technological
research. Retrieved 2021-02-23 from https://www.cea.fr/english/
Pages/cea/the-cea-a-key-player-in-technological-research.aspx

[11] Chandranil Chakraborttii and Heiner Litz. 2020. Learning
I/O Access Patterns to Improve Prefetching in SSDs. In The
European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML-PKDD).
https://www.researchgate.net/publication/344379801_Learning_IO_
Access_Patterns_to_Improve_Prefetching_in_SSDs

[12] Sean Cochrane, Ken Kutzer, and LMcIntosh. 2009. Solving the HPC I/O
bottleneck: Sun™ Lustre™ storage system. Sun BluePrints™ Online 820
(2009). http://nz11-agh1.ifj.edu.pl/public_users/b14olsze/Lustre.pdf

[13] Tom Coughlin. 2011. New storage hierarchy for consumer computers.
In 2011 IEEE International Conference on Consumer Electronics (ICCE).
483–484. https://doi.org/10.1109/ICCE.2011.5722696 ISSN: 2158-4001.

[14] Jean Emile Dartois, Jalil Boukhobza, Anas Knefati, and Olivier Barais.
2019. Investigating Machine Learning Algorithms for Modeling SSD
I/O Performance for Container-based Virtualization. IEEE Transactions
on Cloud Computing (2019). https://doi.org/10.1109/TCC.2019.2898192

[15] Richard Evans. 2020. Democratizing Parallel Filesystem Monitoring.
In 2020 IEEE International Conference on Cluster Computing (CLUSTER).
454–458. https://doi.org/10.1109/CLUSTER49012.2020.00065

[16] Ting Gong, Tyler Lee, Cory Stephenson, Venkata Renduchintala,
Suchismita Padhy, Anthony Ndirango, Gokce Keskin, and Oguz Elibol.
2019. A Comparison of Loss Weighting Strategies for Multi task Learn-
ing in Deep Neural Networks. IEEE Access 7 (2019), 141627–141632.
https://doi.org/10.1109/ACCESS.2019.2943604

[17] Takahiro Hirofuchi and Ryousei Takano. 2020. A Prompt Report on
the Performance of Intel Optane DC Persistent Memory Module. IEICE
Transactions on Information and Systems E103.D, 5 (May 2020), 1168–
1172. https://doi.org/10.1587/transinf.2019EDL8141 arXiv: 2002.06018.

[18] Bruce Jacob, Spencer Ng, and David Wang. 2007. Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[19] Kathy Kincade. 2019. UniviStor: Next-Generation Data Stor-
age for Heterogeneous HPC. Retrieved 2021-02-23 from
https://cs.lbl.gov/news-media/news/2019/univistor-a-next-
generation-data-storage-tool-for-heterogeneous-hpc-storage/

[20] S Klasky, Hasan Abbasi, M Ainsworth, Jong Youl Choi, Matthew Curry,
T Kurc, Q Liu, Jay Lofstead, Carlos Maltzahn, Manish Parashar, Norbert
Podhorszki, Eric Suchyta, F Wang, M Wolf, C.S. Chang, R. Churchill,
and Stéphane Ethier. 2016. Exascale Storage Systems the SIRIUS Way.
Journal of Physics: Conference Series 759 (Oct. 2016), 012095. https:
//doi.org/10.1088/1742-6596/759/1/012095

[21] Thomas Leibovici. 2015. Taking back control of HPC file systems
with Robinhood Policy Engine. International Workshop on the Lustre
Ecosystem: Challenges and Opportunities (2015). arXiv:1505.01448 http:
//arxiv.org/abs/1505.01448

[22] Zhen Liang, Johann Lombardi, Mohamad Chaarawi, and Michael
Hennecke. 2020. DAOS: A Scale-Out High Performance Storage
Stack for Storage Class Memory. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 12082 LNCS. Springer, 40–54.
https://doi.org/10.1007/978-3-030-48842-0_3

[23] Glenn K. Lockwood, Wucherl Yoo, Suren Byna, Nicholas J. Wright,
Shane Snyder, Kevin Harms, Zachary Nault, and Philip Carns. 2017.

UMAMI: A recipe for generating meaningful metrics through holistic
I/O performance analysis. In Proceedings of PDSW-DISCS 2017 - 2nd
Joint InternationalWorkshop on Parallel Data Storage and Data Intensive
Scalable Computing Systems - Held in conjunction with SC 2017: The
International Conference for High Performance Computing, Networking,
Storage a. 55–60. https://doi.org/10.1145/3149393.3149395

[24] Jakob Lüttgau, Michael Kuhn, Kira Duwe, Yevhen Alforov, Eugen
Betke, Julian Kunkel, and Thomas Ludwig. 2018. Survey of Storage
Systems for High-Performance Computing. Supercomputing Frontiers
and Innovations 5, 1 (April 2018), 31–58–58. https://doi.org/10.14529/
jsfi180103 Number: 1.

[25] Florent Monjalet and Thomas Leibovici. 2019. Predicting File Lifetimes
with Machine Learning. In High Performance Computing, Vol. 11887
LNCS. Springer, 288–299. https://doi.org/10.1007/978-3-030-34356-
9_23

[26] Feiping Nie, Zhanxuan Hu, and Xuelong Li. 2018. An investigation for
loss functions widely used in machine learning. Communications in
Information and Systems 18, 1 (2018), 37–52. https://doi.org/10.4310/
cis.2018.v18.n1.a2

[27] Hamza Ouarnoughi, Jalil Boukhobza, Frank Singhoff, and Stéphane Ru-
bini. 2014. A multi-level I/O tracer for timing and performance storage
systems in IaaS cloud. In 3rd IEEE International Workshop on Real-Time
and Distributed Computing in Emerging Applications (REACTION). IEEE
Computer Society, 1–8.

[28] John K Ousterhout. 1990. Why Aren’t Operating Systems Getting
Faster As Fast as Hardware? 1990 Summer USENIX Annual Technical
Conference (1990), 247–256.

[29] Jinting Ren, Xianzhang Chen, Yujuan Tan, Duo Liu, Moming Duan,
Liang Liang, and Lei Qiao. 2019. Archivist: A Machine Learning As-
sisted Data Placement Mechanism for Hybrid Storage Systems. In 2019
IEEE 37th International Conference on Computer Design (ICCD). 676–679.
https://doi.org/10.1109/ICCD46524.2019.00098 ISSN: 2576-6996.

[30] Pau Rodríguez, Miguel Bautista, Jordi Gonzàlez, and Sergio Escalera.
2018. Beyond One-hot Encoding: lower dimensional target embedding.
Image and Vision Computing 75 (05 2018). https://doi.org/10.1016/j.
imavis.2018.04.004

[31] Joshua Saxe and Konstantin Berlin. 2017. eXpose: A Character-Level
Convolutional Neural Network with Embeddings For Detecting Mali-
cious URLs, File Paths and Registry Keys. arXiv:1702.08568 [cs] (Feb.
2017). http://arxiv.org/abs/1702.08568 arXiv: 1702.08568.

[32] Woong Shin, Christopher Brumgard, Bing Xie, Sudharshan Vazhkudai,
Devarshi Ghoshal, Sarp Oral, and Lavanya Ramakrishnan. 2019. Data
Jockey: Automatic Data Management for HPC Multi-tiered Storage
Systems. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 511–522. https://doi.org/10.1109/IPDPS.2019.
00061 ISSN: 1530-2075.

[33] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexan-
der A. Alemi. 2017. Inception-v4, inception-ResNet and the im-
pact of residual connections on learning. In 31st AAAI Conference
on Artificial Intelligence, AAAI 2017. AAAI press, 4278–4284. https:
//doi.org/10.5555/3298023.3298188 arXiv:1602.07261

[34] Bharti Wadhwa, Surendra Byna, and Ali Butt. 2018. Toward Trans-
parent Data Management in Multi-Layer Storage Hierarchy of HPC
Systems. In 2018 IEEE International Conference on Cloud Engineering
(IC2E). 211–217. https://doi.org/10.1109/IC2E.2018.00046

[35] Lipeng Wan, Zheng Lu, Qing Cao, Feiyi Wang, Sarp Oral, and Bradley
Settlemyer. 2014. SSD-optimized workload placement with adap-
tive learning and classification in HPC environments. In 2014 30th
Symposium on Mass Storage Systems and Technologies (MSST). 1–6.
https://doi.org/10.1109/MSST.2014.6855552

[36] Wenguang Wang. 2004. Storage Management for Large Scale Sys-
tems. Ph.D. Dissertation. CAN. https://doi.org/10.5555/1123838
AAINR06171.

http://www-hpc.cea.fr/en/complexe/computing-ressources.htm
http://www-hpc.cea.fr/en/complexe/tera.htm
http://www-hpc.cea.fr/en/complexe/tera.htm
http://www-hpc.cea.fr/en/complexe/tgcc.htm
http://www-hpc.cea.fr/en/complexe/tgcc.htm
http://www-hpc.cea.fr/en/complexe/tgcc-storage-system.htm
https://www.cea.fr/english/Pages/cea/the-cea-a-key-player-in-technological-research.aspx
https://www.cea.fr/english/Pages/cea/the-cea-a-key-player-in-technological-research.aspx
https://www.researchgate.net/publication/344379801_Learning_IO_Access_Patterns_to_Improve_Prefetching_in_SSDs
https://www.researchgate.net/publication/344379801_Learning_IO_Access_Patterns_to_Improve_Prefetching_in_SSDs
http://nz11-agh1.ifj.edu.pl/public_users/b14olsze/Lustre.pdf
https://doi.org/10.1109/ICCE.2011.5722696
https://doi.org/10.1109/TCC.2019.2898192
https://doi.org/10.1109/CLUSTER49012.2020.00065
https://doi.org/10.1109/ACCESS.2019.2943604
https://doi.org/10.1587/transinf.2019EDL8141
https://cs.lbl.gov/news-media/news/2019/univistor-a-next-generation-data-storage-tool-for-heterogeneous-hpc-storage/
https://cs.lbl.gov/news-media/news/2019/univistor-a-next-generation-data-storage-tool-for-heterogeneous-hpc-storage/
https://doi.org/10.1088/1742-6596/759/1/012095
https://doi.org/10.1088/1742-6596/759/1/012095
https://arxiv.org/abs/1505.01448
http://arxiv.org/abs/1505.01448
http://arxiv.org/abs/1505.01448
https://doi.org/10.1007/978-3-030-48842-0_3
https://doi.org/10.1145/3149393.3149395
https://doi.org/10.14529/jsfi180103
https://doi.org/10.14529/jsfi180103
https://doi.org/10.1007/978-3-030-34356-9_23
https://doi.org/10.1007/978-3-030-34356-9_23
https://doi.org/10.4310/cis.2018.v18.n1.a2
https://doi.org/10.4310/cis.2018.v18.n1.a2
https://doi.org/10.1109/ICCD46524.2019.00098
https://doi.org/10.1016/j.imavis.2018.04.004
https://doi.org/10.1016/j.imavis.2018.04.004
http://arxiv.org/abs/1702.08568
https://doi.org/10.1109/IPDPS.2019.00061
https://doi.org/10.1109/IPDPS.2019.00061
https://doi.org/10.5555/3298023.3298188
https://doi.org/10.5555/3298023.3298188
https://arxiv.org/abs/1602.07261
https://doi.org/10.1109/IC2E.2018.00046
https://doi.org/10.1109/MSST.2014.6855552
https://doi.org/10.5555/1123838

Predicting file lifetimes for data placement in multi-tiered storage systems for HPC CHEOPS ’21, April 26, 2021, Online, United Kingdom

[37] HPC Wire. 2020. Fujitsu and RIKEN Take First Place Worldwide in
TOP500, HPCG, and HPL-AI with Supercomputer Fugaku. Retrieved
2021-01-25 from https://www.hpcwire.com/off-the-wire/fujitsu-and-
riken-take-first-place-worldwide-in-top500-hpcg-and-hpl-ai-with-
supercomputer-fugaku/

[38] Orcun Yildiz, Amelie Zhou, and Shadi Ibrahim. 2017. Eley: On the
Effectiveness of Burst Buffers for Big Data Processing in HPC Systems.
In 2017 IEEE International Conference on Cluster Computing (CLUSTER).
87–91. https://doi.org/10.1109/CLUSTER.2017.73

https://www.hpcwire.com/off-the-wire/fujitsu-and-riken-take-first-place-worldwide-in-top500-hpcg-and-hpl-ai-with-supercomputer-fugaku/
https://www.hpcwire.com/off-the-wire/fujitsu-and-riken-take-first-place-worldwide-in-top500-hpcg-and-hpl-ai-with-supercomputer-fugaku/
https://www.hpcwire.com/off-the-wire/fujitsu-and-riken-take-first-place-worldwide-in-top500-hpcg-and-hpl-ai-with-supercomputer-fugaku/
https://doi.org/10.1109/CLUSTER.2017.73

