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Many dynamic graph algorithms have an amortized update time, rather than a stronger worst-case guarantee.

But amortized data structures are not suitable for real-time systems, where each individual operation has

to be executed quickly. For this reason, there exist many recent randomized results that aim to provide a

guarantee stronger than amortized expected. The strongest possible guarantee for a randomized algorithm

is that it is always correct (Las Vegas) and has high-probability worst-case update time, which gives a bound

on the time for each individual operation that holds with high probability.

In this article, we present the first polylogarithmic high-probability worst-case time bounds for the dy-

namic spanner and the dynamic maximal matching problem.

(1) For dynamic spanner, the only known o(n) worst-case bounds were O (n3/4) high-probability worst-

case update time for maintaining a 3-spanner and O (n5/9) for maintaining a 5-spanner. We give a

O (1)k log3 (n) high-probability worst-case time bound for maintaining a (2k−1)-spanner, which yields

the first worst-case polylog update time for all constant k . (All the results above maintain the optimal

tradeoff of stretch 2k − 1 and Õ (n1+1/k ) edges.)
(2) For dynamic maximal matching, or dynamic 2-approximate maximum matching, no algorithm with

o(n) worst-case time bound was known and we present an algorithm withO (log5 (n)) high-probability
worst-case time; similar worst-case bounds existed only for maintaining a matching that was (2 + ϵ )-
approximate, and hence not maximal.

Our results are achieved using a new approach for converting amortized guarantees to worst-case ones for

randomized data structures by going through a third type of guarantee, which is a middle ground between

the two above: An algorithm is said to have worst-case expected update time α if for every update σ , the
expected time to process σ is at most α . Although stronger than amortized expected, the worst-case expected

guarantee does not resolve the fundamental problem of amortization: A worst-case expected update time of

O (1) still allows for the possibility that every 1/f (n) updates requires Θ( f (n)) time to process, for arbitrarily

high f (n). In this article, we present a black-box reduction that converts any data structure with worst-case
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expected update time into one with a high-probability worst-case update time: The query time remains the

same, while the update time increases by a factor of O (log2 (n)).
Thus, we achieve our results in two steps: (1) First, we show how to convert existing dynamic graph

algorithms with amortized expected polylogarithmic running times into algorithms with worst-case expected

polylogarithmic running times. (2) Then, we use our black-box reduction to achieve the polylogarithmic

high-probability worst-case time bound. All our algorithms are Las-Vegas-type algorithms.
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1 INTRODUCTION

A dynamic graph algorithm is a data structure that maintains information in a graph that is being
modified by a sequence of edge insertion and deletion operations. For a variety of graph properties
there exist dynamic graph algorithms for which amortized expected time bounds are known and
the main challenge is to de-amortize and de-randomize these results. Our article addresses the first
challenge: de-amortizing dynamic data structures.

An amortized algorithm guarantees a small average update time for a “large enough” sequence
of operations: Dividing the total time for T operations by T leads to the amortized time per oper-
ation. If the dynamic graph algorithm is randomized, then the expected total time for a sequence
of operations is analyzed, giving a bound on the amortized expected time per operation. But in
real-time systems, where each individual operation has to be executed quickly, we need a stronger
guarantee than amortized expected time for randomized algorithms. The strongest possible guar-
antee for a randomized algorithm is that it is always correct (Las Vegas) and has high-probability

worst-case update time, which gives an upper bound on the time for every individual operation
that holds with high probability. (The probability that the time bound is not achieved should be
polynomially small in the problem size.) There are many recent results that provide randomized
data structures with worst-case guarantees (see, e.g., References [2–4, 16, 18, 25, 31, 33, 36]), often
via a complex “deamortization” of previous results.

In this article, we present the first algorithms with worst-case polylog update time for two
classical problems in the dynamic setting: dynamic spanner and dynamic maximal matching. In
both cases, polylog amortized results were already known, but the best worst-case results required
polynomial update time.

Both results are based on a new de-amortization approach for randomized dynamic graph al-
gorithms. We bring attention to a third possible type of guarantee: An algorithm is said to have
worst-case expected update time α if for every update σ , the expected time to process σ is at most α .
On its own this guarantee does not resolve the fundamental problem of amortization, since a worst-
case expected update time ofO (1) still allows for the possibility that every 1/f (n) updates requires
Θ( f (n)) time to process, for arbitrarily high f (n). But by using some relatively simple probabilis-
tic bootstrapping techniques, we show a black-box reduction that converts any algorithm with a
worst-case expected update time into one with a high-probability worst-case update time.

This leads to the following deamortization approach: Rather than directly aiming for high-
probability worst-case, first aim for the weaker worst-case expected guarantee and then apply the
black-box reduction. Achieving such a worst-case expected bound can involve serious technical
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challenges, in part because one cannot rely on the standard charging arguments used in amortized
analysis. We nonetheless show how to achieve such a guarantee for both dynamic spanner and
dynamic maximal matching, which leads to our improved results for both problems.

Details of the New Reduction. We show a black-box conversion of an algorithm with worst-case
expected update time into onewith worst-case high-probability update time: Theworst-case query
time remains the same, while the update time increases by a log2 (n) factor. Our reduction is quite
general, but with our applications to dynamic graph algorithms in mind, we restrict ourselves to
dynamic data structures that support only two types of operations: (1) update operations, which
manipulate the internal state of the data structure, but do not return any information, and (2)
query operations, which return information about the internal state of the data structure, but do
not manipulate it. We say the data structure has update time α if the maximum update time of any
type of update (e.g., insertion or deletion) is α .

Theorem 1.1. Let A be an algorithm that maintains a dynamic data structure D with worst-case

expected update time α for each update operation and let n be a parameter such that the maximum

number of items stored in the data structure at any point in time is polynomial in n. We assume

that for any set of elements S such that |S | is polynomial in n, a new version of the data structure D
containing exactly the elements of S can be constructed in polynomial time. If this assumption holds,

then there exists an algorithm A′ with the following properties:

(1) For any sequence of updates σ1,σ2, . . . , A
′ processes each update σi in O (α log2 (n)) time with

high probability. The amortized expected update time of A′ is O (α log(n)).
(2) A′ maintains Θ(log(n)) data structures D1,D2, ...,DΘ(log(n)) , as well as a pointer to some Di

that is guaranteed to be correct at the current time. Query operations are answered with Di .

The theorem applies to any dynamic data structure, but we will apply it to dynamic graph
algorithms. Due to its generality, however, we expect that the theorem will prove useful in other
settings as well. When applied to a dynamic graph algorithm, n denotes the number of vertices,
and at mostn2 elements (the edges) are stored at any point in time. Note that our assumption about
polynomial preprocessing time for any polynomial-size set of elements S is satisfied by the vast
majority of data structures, and is in particular satisfied by all dynamic graph algorithms that we
know of.

Observe that a high-probability worst-case update time bound ofO (α log2 (n)) allows us to stop
the algorithm whenever its update time exceeds theO (α log2 (n)) bound and in this way obtain an
algorithm that is correct with high probability.

Remark 1.2. By Item 2, the converted algorithmA′ stores a slightly different data structure than
the original algorithm A, because it maintains O (log(n)) copies Di of the data structure in A. The
data structure in A′ is equally powerful to that in A because it can answer all the same queries in
the same asymptotic time: A′ always has a pointer to some Di that is guaranteed to be fixed, so it
can useDi to answer queries. Themain difference is that the answers produced byA′may have less
“continuity” than those produced by A: For example, in a dynamic maximal matching algorithm,
if each query outputs the entire maximal matching, then a single update may change the pointer
in A′ from some Di to some D j , and A

′ will then output a completely different maximal matching
before and after the update. However, combining A′ with the very recent black-box reduction in
Reference [38], we can turn A′ into a “continuous” one at the cost of an extra (1 + ϵ ) factor in the
approximation. By applying this reduction with ϵ ′ = ϵ/2, we obtain a fully dynamic algorithm for
maintaining a matching with an approximation factor of 2(1+ϵ/2) = (2+ϵ ) and a high-probability
worst-case update time of O (log6 (n) + 1/ϵ ). (See the end of Section 4 for more explanations.)
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Note that this issue does not arise in our dynamic spanner algorithm, as the spanner is formed
by the union of the spanners of all copies.

First Result: Dynamic Spanner Maintenance. Given a graph G, a spanner H with stretch α is a
subgraph of G such that for any pair of vertices (u,v ), the distance between u and v in H is at
most an α factor larger than their distance in G. In the dynamic spanner problem the main goal

is to maintain, for any given integer k ≥ 2, a spanner of stretch 2k − 1 with Õ (n1+1/k ) edges; we
focus on these particular bounds, because spanners of stretch 2k − 1 andO (n1+1/k ) edges exist for
every graph [6], and this tradeoff is presumed tight under Erdős’s girth conjecture. The dynamic
spanner problem was introduced by Ausiello, Franciosa, and Italiano [5] and has been improved
upon by References [8, 16, 21]. There currently exist near-optimal amortized expected bounds:
A (2k − 1)-spanner can be maintained with expected amortized update time O (1)k [8] or time
O (k2 log2 (n)) [24]. The state-of-the-art for high-probability worst-case lags far behind: O (n3/4)
update time for maintaining a 3-spanner, and O (n5/9) for a 5-spanner [16]; no o(n) worst-case
update time was known for larger k . All of these algorithms exhibit the stretch/space tradeoff
mentioned above, up to polylogarithmic factors in the size of the spanner1.

We give the first dynamic spanner algorithm with polylog worst-case update time with high
probability for any constant k , which significantly improves upon the result of Reference [16]
both in update time and in range of k . Our starting point is the earlier result of Baswana, Khurana,
and Sarkar [8] that maintains a (2k − 1) spanner with O (n1+1/k log2 (n)) edges with update time
O (1)k . We show that while their algorithm is amortized expected, it can be modified to yield worst-
case expected bounds: this requires a few changes to the algorithm, as well as significant changes
to the analysis. We then apply the reduction in Theorem 1.1.

Theorem 1.3. There exists a fully dynamic (Las Vegas) algorithm for maintaining a (2k −1) span-

ner with O (n1+1/k log6 (n) log log (n)) edges that has worst-case expected update time O (1)k log(n).

Theorem 1.4. There exists a fully dynamic (Las Vegas) algorithm for maintaining a (2k − 1)
spanner with O (n1+1/k log7 (n) log log (n)) edges that has high-probability worst-case update time

O (1)k log3 (n).

The proof follows directly from Theorem 1.3 and Theorem 1.1. In the case of maintaining a
spanner, the potential lack of continuity discussed in Remark 1.2 does not exist, as instead of
switching between the O (log(n)) spanners maintained by the conversion in Theorem 1.1, we can
just let the final spanner be the union of all of them. This incurs an extra log(n) factor in the size
of the spanner.

Second Result: Dynamic Maximal Matching. Amaximum cardinalitymatching can bemaintained
dynamically in O (n1.495) amortized expected time per operation [37]. Due to conditional lower
bounds of Ω(

√
m) on the time per operation for this problem [1, 30], there is a large body of work

on the dynamic approximate matching problem [4, 7, 11, 13–15, 18, 27, 28, 34, 35, 39]. Still the only
algorithms with polylogarithmic (amortized or worst-case) time per operation require a 2 or larger
approximation ratio.

A matching is said to be maximal if the graph contains no edges between unmatched vertices.
A maximal matching is guaranteed to be a 2-approximation of the maximummatching, and is also

1A standard assumption for the analysis of randomized dynamic graph algorithms is that the “adversary” who supplies

the sequence of updates is assumed to have fixed this sequence σ1, σ2, ... before the dynamic algorithm starts to operate,

and the random choices of the algorithm then define a distribution on the time to process each σi . This is called an

oblivious adversary. Our dynamic algorithms for spanners and matching share this assumption, as does all work prior to

the conference version of this article. A randomized dynamic matching algorithm that does not need this assumption was

presented in Reference [40].
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a well-studied object in its own right (see, e.g., References [7, 23, 26, 29, 32, 34, 39]). The ground-
breaking result of Baswana, Gupta, and Sen [7] showed how to maintain a maximal matching (and
so 2-approximation) with O (log(n)) expected amortized update time. Solomon [39] improved the
update time to O (1) expected amortized. There has been recent work on either deamortizing or
derandomizing this result [4, 11, 14, 15, 18]. Most notably, the two independent results in Refer-
ences [18] and [4] both present algorithms with polylog high-probability worst-case update time
that maintain a (2+ϵ )-approximate matching. Unfortunately, all these results come at the price of
increasing the approximation factor from 2 to (2 + ϵ ), and in particular no longer ensure that the
matching is maximal. One of the central questions in this line of work is thus whether it is possible
to maintain a maximal matching without having to use both randomization and amortization.

We present the first affirmative answer to this question by removing the amortization require-
ment, thus resolving an open question of Reference [4]. Much like for dynamic spanner, we use
an existing amortized algorithm as our starting point: namely, theO (log(n)) amortized algorithm
of Reference [7]. We then show how the algorithm and analysis can be modified to achieve a
worst-case expected guarantee, and then we apply our reduction.

Theorem 1.5. There exists a fully dynamic (Las Vegas) algorithm for maintaining a maximal

matching with worst-case expected update time O (log3 (n)).

Theorem 1.6. There exists a fully dynamic (Las Vegas) algorithm that maintains a maximal

matching with high-probability worst-case update time O (log5 (n)).

The proof follows directly from Theorem 1.5 and Theorem 1.1. As in Remark 1.2 above, we note
that our worst-case algorithm in Theorem 1.6 stores the matching in a different data structure
than the original amortized algorithm of Baswana et al. [7]: While the latter stores the edges of
the maximal matching in a single list D, our algorithm stores O (log(n)) lists Di , along with a
pointer to some specific list D j that is guaranteed to contain the edges of a maximal matching. In
particular, the algorithm always knowswhichD j is correct. The pointer toD j allows our algorithm
to answer queries about the maximal matching in optimal time.

Discussion of Our Contribution. Wepresent the first dynamic algorithmswithworst-case polylog
update times for two classical graph problems: dynamic spanner and dynamic maximal matching.
Both results are achieved with a new de-amortization approach, which shows that the concept
of worst-case expected time can be a very fruitful way of thinking about dynamic graph algo-
rithms. From a technical perspective, the conversion from worst-case expected to high-probability
worst-case (Theorem 1.1) is relatively simple. The main technical challenge lies in showing how
the existing amortized algorithms for dynamic spanner and maximal matching can be modified to
be worst-case expected. The changes to the algorithms themselves are not too major, but a very
different analysis is required, because we can no longer rely on charging arguments and poten-
tial functions. Our tools for proving worst-case expected guarantees can be used to de-amortize
other existing dynamic algorithms has already been used for two novel fully dynamic maximal
independent set algorithms [9, 19] and we expect it to find further use. For example, the dynamic
coloring algorithm of Reference [12], the dynamic spectral sparsifier algorithm of Reference [3],
the dynamic distributed maximal independent set algorithm of Reference [17], and the dynamic
distributed spanner algorithm of Reference [8] (all amortized) seem like natural candidates for our
approach.

Section 2 provides a proof of the black-box reduction in Theorem 1.1. Section 4 presents our
dynamic matching algorithm, and Section 3 presents our dynamic spanner algorithm.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 29. Publication date: October 2021.



29:6 A. Bernstein et al.

2 CONVERTING WORST-CASE EXPECTED TO HIGH-PROBABILITY WORST-CASE

In this section, we give the proof of Theorem 1.1. To do so, we first prove the following theorem
that restricts the length of the update sequence and then show how to extend it.

Theorem 2.1. Let A be an algorithm that maintains a dynamic data structure D with worst-case

expected update timeα , letn be a parameter such that the maximum number of items stored in the data

structure at any point in time is polynomial in n, and let � be a parameter for the length of the update

sequence to be considered that is polynomial in n. Then there exists an algorithmA′ with the following

properties:

(1) For any sequence of updates σ1,σ2, . . . ,σ� with � polynomial in n, A′ processes each update

σi in O (α log2 (n)) time with high probability. The amortized expected update time of A′ is

O (α log(n)).
(2) A′ maintains Θ(log(n)) data structures D1,D2, . . . ,DΘ(log(n)) , as well as a pointer to some Di

that is guaranteed to be correct at the current time. Query operations are answered with Di .

Proof. Let q = c log(n) for a sufficiently large constant c . The algorithm runs q versions of the
algorithm A, denoted A1, . . . ,Aq , each with their own independently chosen random bits. This
results in q data structures Di . Each Di maintains a possibly empty buffer Li of uncompleted up-
dates. If Li is empty, then Di is marked as fixed, otherwise it is marked as broken. The algorithm
maintains a list of all the fixed data structures, and a pointer to the Di of smallest index that is
fixed.

Let r = 4α log(�) = O (α log(�)). Given an update σj the algorithm adds σj to the end of each Li

and then allows each Ai to run for r steps. Each Ai will work on the uncompleted updates in Li ,
continuing where it left off after the last update, and completing the first uncompleted update
before starting the next one in the order in which they appear in Li . If within these r steps all
uncompleted updates in Li have been completed, thenAi marks itself as fixed; otherwise, it marks
itself as broken. If at the end of update σj all of the q data structures Di are broken, then the algo-
rithm performs a Flush, which simply processes all the updates in all the versions Ai : This could
take much more than r work, but our analysis will show that this event happens with extremely
small probability. The Flush ensures Property 2 of Theorem 2.1: at the end of every update, some
Di is fixed.

By linearity of expectation, the expected amortized update time is O (αq) = O (α log(n)), and
the worst-case update time is rq = O (α log2 (n)) unless a Flush occurs. All we have left to show is
that after every update the probability of a Flush is at most (1/2)q = 1/nc . We use the following
counter analysis:

Definition 2.2. We define the dynamic counter problem with positive integer parameters α (for av-

erage), r (for reduction), and � (for length) as follows: Given a finite sequence of possibly dependent
random variables X1,X2, . . . ,X� such that for each t , E[Xt ] ≤ α , we define a sequence of counters
Ct that changes over a finite sequence of time steps. LetC0 = 0 and letCt = max(Xt +Ct−1 − r , 0).

As we show in Lemma 2.3 with constant probabilityCt is 0. We use this fact as follows: LetAi be
any version. Each Di exactly mimics the dynamic counter of Definition 2.2: X j corresponds to the
time it takes for Ai to process update σj ; by the assumed properties of A, we have E[X j ] = α . The
counterCj then corresponds to the amount of work thatAi has left to do after the jth update phase;
in particular, Cj = 0 corresponds to Di being fixed after time j, which by Lemma 2.3 occurs with
probability at least 1/2. Since all the q versions Ai have independent randomness, the probability
that all the Di are broken and a Flush occurs is at most (1/2)q = 1/nc . �
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Lemma 2.3. Given a dynamic counter problem with parameters α , r , and �, if r ≥ 4α log(�) and

α ≥ 1 then for every t , we have Pr[Ct = 0] ≥ 1/2.

Proof of Lemma 2.3. Let us focus on some Ct , and say that k is the critical moment if it is the
smallest index such that Cj > 0 for all k ≤ j ≤ t . Note that there is exactly one critical moment
if Ct > 0 (possibly k = t ) and none otherwise. Define Bi (B for bad) for 0 ≤ i ≤ log(t ) to be the
event that the critical moment occurs in interval (t + 1 − 2i+1, t + 1 − 2i ]. Thus,

Pr[Ct > 0] = Pr[B0 ∨ B1 ∨ B2 . . . ∨ Blog(t )] =
∑

0≤i≤log(t )

Pr[Bi ] . (1)

We now need to bound Pr[Bi ]. Note that if Bi occurs, then Cj > 0 for t + 1 − 2i ≤ j ≤ t . Thus, the
counter reduces by r at least 2i times between the critical moment and time t (2i and not 2i − 1
because the counter reduces at time t as well). Furthermore, the counter is always non-negative.
Thus,

Bi →
∑

t+1−2i+1≤j≤t

X j ≥ r2i ,

meaning that the event Bi implies the event
∑

t+1−2i+1≤j≤t X j ≥ r2i . Plugging in for r = 4α log(�)
and recalling that if event E1 implies E2 then Pr[E1] ≤ Pr[E2], we have that

Pr[Bi ] ≤ Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑
t+1−2i+1≤j≤t

X j ≥ 2 · log(�) · α · 2i+1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2)

Now observe that, by linearity of expectation,

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑
t+1−2i+1≤j≤t

X j

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
∑

t+1−2i+1≤j≤t

E[X j ] ≤ α · 2i+1 . (3)

Combining the Markov inequality with Equations (2) and (3) yields Pr[Bi ] ≤ 1/(2 log(�)) for
any i . Plugging that into Equation (1), and recalling that t ≤ �, we get Pr[Ct > 0] ≤∑

0≤i≤log(t ) 1/(2 log(�)) ≤ 1/2. �

Note that the log(�) factor is necessary, even though intuitively r = O (α ) should be enough,
since at each step the counter only goes up by α (in expectation) and goes down by r > α , so we
would expect it to be zero most of the time. And that is in fact true: with r = 4α one could show
that for any �, the probability thatCt = 0 for at least half the values of t ∈ [0, �] is at least 1/2. But
this claim is not strong enough, because it still leaves open the possibility that even if the counter
is usually zero, there is some particular time t at which Pr[Ct = 0] is very small.

To exhibit this bad case, consider the following sequenceX1,X2, . . .X� , where eachXt is chosen
independently and is set to 2r (� + 1 − t ) with probability α

2r (�+1−t ) and to 0 otherwise. It is easy

to see that for each t ≤ �, we have E[Xt ] = α . Now, what is Pr[C� = 0]? For each t ≤ � if
Xt � 0, the counter will reduce by r (� + 1 − t ) from time t to time �, which still leaves us with
C� ≥ 2r (� + 1 − t ) − r (� + 1 − t ) > 0. Let Yt be the indicator variable for the event that Xt � 0.
Then, Pr[C� > 0] = Pr[Y1 ∨ Y2 . . . ∨ Y�]. This probability is hard to bound exactly, but note that
since the Yt ’s are independent random variables between 0 and 1 and we can apply the following
Chernoff bound:

Lemma 2.4 (Chernoff Bound). Let Y1,Y2, . . . ,Yk be a sequence of independent random variables

such that 0 ≤ Yt ≤ U for all t . Let Y =
∑

1≤t ≤k Yt and μ = E[Y ]. Then the following two properties
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hold for all δ > 0:

Pr[Y ≤ (1 − δ )μ] ≤ e−
δ 2μ
2U , (4)

Pr[Y ≥ (1 + δ )μ] ≤ e−
δ μ
3U . (5)

Formulation 1 with δ = .74 yields that if
∑

1≤t ≤� E[Yt ] ≥ 4, then

Pr[C� = 0] = Pr

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤t ≤�

Yt < 1

⎤
⎥
⎥
⎥
⎥
⎦

< .34 < 1/2 .

Thus, to have Pr[C� = 0] ≥ 1/2, we certainly need
∑

1≤t ≤� E[Yt ] < 4. Now observe that

∑
1≤t ≤�

E[Yt ] =
α

2r

∑
1≤t ≤�

1

� + 1 − t =
α · Ω(log �)

r
.

Thus, to have
∑

1≤t ≤� E[Yt ] ≤ 4, we indeed need r = Ω(α log(�)).
This now completes the proof of all parts of Theorem 2.1.
Finally, we observe that the restriction to an update sequence of finite length is mainly a tech-

nical constraint and we show next how to remove it. The basic idea is to periodically rebuild a
new copy of the data structure “in the background” by spreading this computation over the time
period.

Proof of Theorem 1.1. Note that if the data structure does not allow any updates, then Theo-
rem 2.1 gives the desired bound. Otherwise, the data structure allows either insertions or deletions
or both. In this case, we use a standard technique to enhance the algorithm A′ from Theorem 2.1
providing worst-case high probability update time for a finite number of updates to an algorithm
A′′ providing worst-case high probability update time for an infinite number of updates. Recall
that we assume that the maximum number of items that are stored in the data structure at any
point in time as well as the preprocessing time to build the data structure for any set S of size poly-
nomial in n is polynomial in n. Let this polynomial be upper bounded by nc for some constant c.
We break the infinite sequence of updates into non-overlapping phases, such that phase i consists
of all updates between update i × nc to update (i + 1) × nc − 1.

During each phase the algorithm uses two instances of algorithm A′, one of them being called
active and one being called inactive. For each instance the algorithm has a pointer that points
to the corresponding data structure. Our new algorithm A′′ always points to the data structures
D1,D2, . . . ,Dlog(1/p ) of the active instance, where p is a suitably chosen parameter. In particular, it
also points to the Di for which the active instance ensures correctness. At the end of a phase the
inactive data structure of the current phase becomes the active data structure for the next phase
and the active one becomes the inactive one.

Additionally, A′ keeps a list L of all items (e.g., edges in the graph) that are currently stored in
the data structure, stored in a balanced binary search tree, such that adding and removing an item
takes time O (logn) and the set of items that are currently in the data structure can be listed in
time linear in their number.

We now describe how each of the two instances is modified during a phase. In the following,
when we use the term update, we mean an update in the (main) data structure.

(1) Active instance. All updates are executed in the active instance and these are the only modi-
fications performed on the active data structure.

(2) Inactive instance. During the first nc/2 updates in a phase, we do not allow any changes
to L, but record all these updates. Additionally during the first nc/4 updates in the phase, we
enumerate all items in L and store them in an array by performing a constant amount of work
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of the enumeration and copy algorithm for each update. Let S denote this set of items. During
the next nc/4 updates, we run the preprocessing algorithm for S to build the corresponding data
structure, again by performing a constant amount of work per update. This data structure becomes
our current version of the inactive instance.

We also record all updates of the second half of the phase. During the third nc/4 updates in
the phase, we forward to the inactive instance and to L all nc/2 updates of the first half of the
current phase by performing two recorded updates to the inactive instance and to L per update
in the second half of the phase. Finally, during the final nc/4 updates, we forward to the inactive
instance and to L all nc/2 updates of the second half of the current phase, again performing two
recorded update per update. This process guarantees that at the end of a phase the items stored in
the active and the inactive instance are identical.

The correctness of this approach is straightforward. To analyze the running time, observe that
each update to the data structure will result in one update being processed by the active instance
and at most two updates being processed in the inactive instance. Additionally, maintaining L
increases the time per update by an additive amount of O (logn). By the union bound, our new
algorithmA′′ spends worst-case time 2 ·O (α log(n) log(1/p)) with probability 1− 2/p. By linearity
of expectation,A′′ has amortized expected update time 2·O (α log(1/p)). By initializing the instance
in preparation with the modified probability parameter p ′ = p/2, we obtain the desired formal
guarantees. �

3 DYNAMIC SPANNER WITH WORST-CASE EXPECTED UPDATE TIME

In this section, we give a dynamic spanner algorithm with worst-case expected update time that,
by our main reduction, can be converted to a dynamic spanner algorithm with high-probability
worst-case update time with polylogarithmic overheads. We heavily build upon prior work of
Baswana et al. [8] and replace a crucial subroutine requiring deterministic amortization by a ran-
domized counterpart with worst-case expected update time guarantee. In Section 3.1, we first give
a high-level overview explaining where the approach of Baswana et al. [8] requires (deterministic)
amortization and how we circumvent it. We then, in Section 3.2, give a more formal review of the
algorithm of Baswana et al. together with its guarantees and isolate the dynamic subproblem we
improve upon. Finally, in Section 3.3, we give our new algorithm for this subproblem and work
out its guarantees.

3.1 High-level Overview

Recall that in the dynamic spanner problem, the goal is to maintain, for a graph G = (V ,E) with
n = |V | vertices that undergoes edge insertions and deletions, and a given integerk ≥ 2, a subgraph

H = (V , F ) of size |F | = Õ (n1+1/k ) such that for every edge (u,v ) ∈ E there is a path from u to v
in H of length at most 2k − 1. If the latter condition holds, then we also say that the spanner has
stretch 2k − 1.

The algorithm of Baswana et al. emulates a “ball-growing” approach for maintaining hierarchi-
cal clusterings. In each “level” of the construction, we are given some clustering of the vertices
and each cluster is sampled with probability p = 1

n1/k . The sampled clusters are grown as follows:

Each vertex in a non-sampled cluster that is incident on at least one sampled cluster joins one of
these neighboring sampled clusters. Thus, for each unclustered vertex, there might be a choice
as to which of its neighboring sampled clusters to join. Furthermore, the algorithm distinguishes
the edge that a non-sampled vertex uses to “hook” onto the sampled cluster it joins. All sampled
clusters (after possibly being extended by the hooks) together with the edges between them move
to the next level of the hierarchy and in this way the growing of clusters is repeated k − 1 times.
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The main idea why this hierarchy gives a good spanner is the following: If a vertex belonging to
an unsampled cluster has many neighboring clusters, then one of them is likely to be a sampled
one and so the vertex joins a sampled cluster and is passed on to the next level of the hierarchy.
Conversely, if it stays at the current level of the hierarchy, then it only has few neighboring clus-
ters, namely, O ( 1

p
) = O (n1/k ) many in expectation. For such vertices, one can therefore afford to

add one edge per neighboring cluster to the spanner. By doing so, it is ensured that there is a path
of length 2k − 1 for each incident edge as every cluster has radius at most k − 1.

This hierarchy is maintained with the help of sophisticated data structures and some crucial
applications of randomization to keep the expected update time low. One important aspect for
bounding the update time in such a hierarchical approach is the following: It is not sufficient to
analyze the update time at each level of the hierarchy in isolation, as updates performed to one
level might lead to changes in the clustering that lead to induced updates to the next level. In
principle, by such a propagation of updates, a single update to the input graph might lead to an
exponential number of induced updates to be processed by the last level. Baswana et al. show that
the amortized expected number of induced updates at level i per update to the input graph is at
most O (1)i . Our contribution in this section is to remove the amortization argument, i.e., to give
a bound of O (1)i with worst-case expected guarantee

In the first level of the hierarchy, each vertex is a singleton cluster and each non-sampled vertex
picks, among all edges going to neighboring sampled vertices, one edge uniformly at random as
its hook. Now consider the deletion of some edge e = (u,v ). If e was not the hook of u, then the
clustering does not need to be fixed. However, if e was the hook, then the algorithm spends time
up toO (deg(u)) for picking a new hook, possibly joining a different cluster, and if so informing all
neighbors about the cluster change. If the adversary deleting e is oblivious to the random choices
of the algorithm (both the choice of the sampled singleton clusters and the choice of the hooks),
then every edge incident on u has the same probability of being the hook of u, i.e., the probability
of e being the hook of u is 1

deg(u ) . Thus, the expected update time is 1
deg(u ) ·O (deg(u)) = O (1).

The situation is more complex at higher levels, when the clusters are not singleton anymore.
While the time spent upon deleting the hook is stillO (degi (u)), where degi (u) is the degree ofu at

level i , one cannot argue that the probability of the deleted edge being the hook isO ( 1
degi (u ) ). To see

why this could be the case, Baswana et al. provide the following example of a “skewed” distribution
of edges to neighboring clusters: Suppose u has � = Θ( 1

p
log(n)) neighboring clusters such that

there are Θ(n) edges from u into the first neighboring cluster and each remaining neighboring
cluster has only one edge incident on u. Now there is a quite high probability (namely, 1 − p ≈ 1)
that the first cluster is not sampled and with high probability O (log(n)) of the remaining clusters
will be sampled, as follows from the Chernoff bound. Thus, if u picked the hook uniformly at
random from all edges into neighboring sampled clusters, then it would join one of the single-
edge clusters with high-probability. As there are � edges incident on u from these single-edge
clusters, this gives a probability of approximately 1

� for some deleted edge (u,v ) being the hook,

which can be much larger than 1
degi (u ) . This problem would not appear if among all edges going

to neighboring clusters a pth fraction would be incident on sampled clusters. Then, intuitively
speaking, one could argue that the probability of some edge e = (u,v ) being the hook of u is
at most p · 1

Ω(p degi (u )) , the probability that the cluster containing v is a sampled one times the

probability that a particular edge among all edges to sampled clusters was selected.
This is why Baswana et al. introduce an edge filtering step to their algorithm. By making a

sophisticated selection of edges going to the next level of the hierarchy, they can ensure that
(a) among all such selected edges going to neighboring clusters a pth fraction goes to sampled
clusters and (b) to compensate for edges not being selected for going to the next level, each vertex
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only needs to addO ( 1
p
log2 (n)) = O (n1/k log2 (n)) edges to neighboring clusters to the spanner. The

filtering boils down to the following idea: For each vertex u, group the neighboring non-sampled
clusters intoO (log(n)) buckets such that clusters in the same bucket have approximately the same
number of edges incident onu. For buckets that are large enough (containing Θ( 1

p
log(n)) clusters),

a standard Chernoff bound for binary random variables guarantees that apth fraction of all clusters
in the respective range for the number of edges incident on u go to sampled clusters. As all these
clusters have roughly the same number of edges incident on u, a Chernoff bound for positive
random variables with bounded aspect ratio also guarantees that a pth fraction of the edges of
these clusters will go to sampled clusters. Therefore, one gets the desired guarantee if all edges
incident on clusters of small buckets are prevented from going to the next level in the hierarchy.
To compensate for this filtering, it is sufficient to add one edge—picked arbitrarily—from u to each
cluster in a small bucket to the spanner. As there are at most O (log(n)) small buckets containing
O ( 1

p
log(n)) clusters each, this step is affordable without blowing up the asymptotic size of the

spanner too much.
Maintaining the bucketing is not trivial, because whenever a cluster moves from one bucket to

the other it might find itself in a small bucket coming from a large bucket, or vice versa. To enforce
the filtering constraint, this might cause updates to the next level of the hierarchy. One way of
controlling the number of induced updates is amortization: Baswana et al. use soft thresholds for
the upper and lower bounds on the number of edges incident on u for each bucket. This ensures
that updates introduced to the next level can be charged to updates in the current level, and leads
to an amortized bound of O (1) on the number of induced updates. Note that the filtering step is
the only part in the spanner algorithm of Baswana et al. where this deterministic amortization
technique is used. If it were not for this specific sub-problem, the dynamic spanner algorithm
would have worst-case expected update time.

Our contribution is a new dynamic filtering algorithm with worst-case expected update time,
which then gives a dynamic spanner algorithm with worst-case expected update time. Roughly
speaking, we achieve this as follows: Whenever the number of edges incident on u for a cluster c
in some bucket j (with 0 ≤ j ≤ O (log(n))) exceeds a bucket-specific threshold of α j , we move c up
to the appropriate bucket with probability Θ( 1

α j
) after each insertion of an edge between u and c .

This ensures that, with high probability, the number of edges tou for clusters in bucket j is at most
O (α j log(n)). Such a bound immediately implies that the expected number of induced updates to

the next level per update to the current level is O ( 1
α j
· α j log(n)) = O (log(n)), which is already

non-trivial but also unsatisfactory because it would lead to an overall update time ofO (log(n))k/2

for a (2k−1)-spanner, instead ofO (1)k/2 as in the case of Baswana et al. By a more careful analysis,
we do actually obtain theO (1)k/2-bound. By taking into account the diminishing probability of not
having moved up previously, we argue that the probability to exceed the threshold by a factor of

2t is proportional to 1/e (2t ) . This bounds the expected number of induced updates by
∑

t ≥1 2
t/e (2t ) ,

which converges to a constant. A similar, but slightly more sophisticated approach, is applied for
clusters moving down to a lower-order bucket. Here, we essentially need to adapt the sampling
probability to the amount of deviation from the threshold because, in the analysis, we have fewer
previous updates available for which the cluster has not moved, compared to the case of moving
up.

3.2 The Algorithm of Baswana et al.

In the following, we review the algorithm of Baswana et al. [8] for completeness and isolate the
filtering procedure we want to modify. We deviate from the original notation only when it is
helpful for our purposes.
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3.2.1 Static Spanner Construction. Let us first explain the principle behind the algorithm of
Baswana et al. by reviewing a purely static version of the construction.

Given an integer parameter k ≥ 2, the construction uses clusterings C0,C1, . . . ,Ck−1 of sub-
graphs G0 = (V0,E0),G1 = (V1,E1), . . . ,Gk−1 = (Vk−1,Ek−1), both to be specified in the following,
whereG0 = G and, for each 0 ≤ i ≤ k−2,Gi+1 is a subgraph ofGi (i.e.,Vi+1 ⊆ Vi and Ei+1 ⊆ Ei ). For
each 0 ≤ i ≤ k − 1, a cluster of Gi is a connected subset of vertices of Gi and the clustering Ci is a
partition ofGi into disjoint clusters. To control the size of the resulting spanner, the clusterings are
partially determined by a hierarchy of randomly sampled subsets of vertices S0 ⊇ S1 ⊇ · · · ⊇ Sk

in the sense that each cluster c in Ci contains a designated vertex of Si called the center of c . This
sampling is performed by setting S0 = V , Sk = ∅, and by forming Si , for each 1 ≤ i ≤ k − 1, by
selecting each vertex from Si−1 independently with probability p = 1

n1/k . In addition to the clus-

terings, the construction uses a forest (Vi , Fi ) consisting of a spanning tree for each cluster of Ci

rooted at its center such that each vertex in the cluster has a path to the root of length at most i .
Informally, level i of this hierarchy denotes all the sets of the construction indexed with i . Initially,
G0 = G, F0 = ∅ and the clustering C0 consists of singleton clusters {v} for all vertices v ∈ S0 = V .

We now review how to obtain, for every 0 ≤ i ≤ k − 1, the graph Gi+1 = (Vi+1,Ei+1), the
clustering Ci+1 of Gi+1, and the set of edges Fi+1, based on the graph Gi = (Vi ,Ei ), the clustering
Ci , the edge set Fi , and the set of vertices Si+1. Let Ri be the set of all “sampled” clusters in the
clusteringCi , i.e., all clusters inCi whose cluster center is contained in Si+1. Furthermore, letVi+1

be the set consisting of all vertices of Vi that belong to or are adjacent to clusters in Ri and let
Ni be the set consisting of all vertices of Vi that are adjacent to, but do not belong to, clusters in
Ri . Finally, for every u ∈ Vi , let Ei (u) denote the set of edges of Ei incident on u and any other
vertex of Vi , and, for every u ∈ Vi and every c ∈ Ci , let Ei (u, c ) denote the set of edges of Ei

incident on u and any vertex of c . For each vertex u ∈ Ni , the construction takes an arbitrary
edge (u,v ) ∈ ⋃

c ∈Ri
Ei (u, c ) as the hook of u at level i , called hook(u, i ). Now the clustering Ci+1

is obtained by adding each vertex u ∈ Ni to the cluster of the other endpoint of its hook and the
forest Fi+1 is obtained from Fi by extending the spanning trees of the clusters by the respective
hooks. To compensate for vertices that cannot hook onto any cluster in Ri , let Xi be a set of edges
containing for each vertex v ∈ Vi \ Vi+1 exactly one edge of Ei (u, c )—picked arbitrarily—for each
non-sampled neighboring cluster c ∈ Ci \Ri . Finally, the edge set Ei+1 is defined as follows: Every
edge (u,v ) ∈ Ei with u,v ∈ Vi+1 belongs to Ei+1 if and only if u and v belong to different clusters
in Ci+1 and at least one of u and v belongs to a sampled cluster (in Ri ) at level i .

The static spanner H now consists of the set of edges
⋃

0≤i≤k−1 (Fi ∪Xi ). To analyze the stretch
of H , consider some edge e = (u,v ) and let i be the largest index such that e ∈ Ei . If u and v are
contained in the same cluster in the clusteringCi , then the path from u to v in Fi via the common
cluster center has length at most 2i ≤ 2k −2, as each cluster has radius at most i ≤ k −1. If u andv
are contained in different clusters in the clustering Ci , then Xi contains an edge e ′ = (u,v ′) from
u to the cluster ofv . Now there is a path in H of length at most 2i + 1 ≤ 2k − 1 from u tov ′ by first
taking the edge e ′ to v ′ and then taking the path from v ′ to v in Fi via the common cluster center.

To analyze the size of the spanner, observe first that each forest Fi consist of at most n− 1 edges.
Furthermore, for each 0 ≤ i ≤ k − 2, each vertex inVi \Vi+1, which is the set of vertices not being
adjacent to a sampled cluster, is adjacent to at most 1

p
= n1/k clusters in expectation (all of which

are non-sampled clusters) Thus, the number of edges contributed toXi by each vertex inVi \Vi+1 is
at most n1/k in expectation. At level k−1, no clusters are sampled ones anymore andXk−1 contains
for each vertex in Vk−1 one edge to each neighboring cluster. As the number of clusters has been
reduced to n1/k in expectation at level k − 1, each vertex in Vk−1 again contributes n1/k edges to
Xk−1 in expectation. This results in an overall spanner size of O (kn1+1/k ) in expectation.
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3.2.2 Dynamic Spanner Maintenance. The dynamic spanner algorithm uses the same defini-
tions as above, with some minor modifications regarding how the hooks and the sets Ei are deter-
mined, and an additional edge set Yi being included inH for each level i . Note that the sampling of
S0 ⊇ S1 ⊇ · · · ⊇ Sk is performed a priori at the initialization and does not change over the course
of the algorithm. At each level i (for 0 ≤ i ≤ k − 1), instead of selecting an arbitrary edge from
(u,v ) ∈ ⋃

c ∈Ri
Ei (u, c ) as the hook of u for each vertex u ∈ Ni , the hook is picked uniformly at

random guaranteeing the following “hook invariant”:

(HI) For every edge (u,v ) ∈ ⋃
c ∈Ri

Ei (u, c ), where
⋃

c ∈Ri
Ei (u, c ) is the set of edges of Ei incident

on u and any vertex contained in a cluster of Ri , Pr[(u,v ) = hook(u, i )] = 1
|⋃c∈Ri

Ei (u,c ) | .

The main idea of Baswana et al. is that this simple method of choosing the hook leads to a fast
update time if an additional filtering step is performed for selecting the edges that go to the next
level.

For this purpose, the algorithmmaintains, for eachu ∈ Ni , and for certain parameters λ ≥ д > 1,
0 < ϵ < 1 anda > 1, a partition of the non-sampled neighboring clusters ofu into �logд (n)� subsets
called “buckets,” a set of edges Fi (u) ⊆ ⋃

c ∈Ci \Ri
Ei (u, c ) and a set of clusters Ii (u) ⊆ Ci \ Ri

such that2:

(F1) For every 0 ≤ j ≤ �logд (n)� and every cluster c in bucket j,
д j

λ
≤ |Ei (u, c ) | ≤ λдj .

(F2) For every edge (u,v ) ∈ Fi (u), the bucket containing the cluster of v contains at least � :=
4γaλ2 1

ϵ 3n
1/k ln(n) ln(λ) clusters (where γ ≤ 80 is a given constant).

(F3) For every edge (u,v ) ∈ ⋃
c ∈Ci \Ri

Ei (u, c ) \ Fi (u), the (unique) cluster of v in Ci is contained

in Ii (u).3

Intuitively, the set Fi (u) is a filter on the edges from u to non-sampled neighboring clusters and
only edges to non-sampled clusters in Fi (u) may be passed on to the next level in the hierarchy.
The clusters in Ii (u) are those for which not all edges incident on u are contained in Fi (u) and
thus the algorithm has to compensate for these missing edges to keep the spanner intact. For this
purpose, the algorithm maintains a set of edges Yi containing, for each vertex u ∈ Vi+1 and each
cluster c ∈ Ii (u), exactly one edge from Ei (u, c )—picked arbitrarily.4 In the following, we call an
algorithm maintaining Fi (u) and Ii (u) satisfying (F1), (F2), and (F3) for a given vertexu a dynamic

filtering algorithm with parameters ϵ and a.
For every vertexu, let Ei (u) = Fi (u)∪⋃

c ∈Ri
Ei (u, c ) (where the latter is the set of edges incident

on u from sampled clusters). Now, the edge set Ei+1 is defined as follows. Every edge (u,v ) ∈ Ei

with u,v ∈ Vi+1 belongs to Ei+1 if and only if u and v belong to different clusters in Ci+1 and one
of the following conditions holds:

2Here, we slightly deviate from the original presentation of Baswana et al. by making the filtering process more explicit

and also by giving the set Ii (u ) a name. We further deviate by suggesting to maintain this partitioning into buckets (which

we call dynamic filtering) for each node in Vi (a superset of Ni ). This does not increase the asymptotic running time of

the overall algorithm and avoids special treatment when vertices join or leave Ni . Baswana et al. explicitly provide an

argument for charging the initialization for of a vertex joining Ni to a sequence of induced updates. We believe that our

variant that avoids initialization slightly simplifies the formulation of Theorem 3.3.
3The filtering algorithm of Baswana et al. guarantees the following stronger version of (F3): For every cluster c ∈ Ci \ Ri

either Ei (u, c ) ⊆ Fi (u ) or c ∈ Ii (u ). However, for the spanner algorithm to be correct, only the weaker guarantee of

(F3) stated above is necessary. We will use this degree of freedom in our new filtering algorithm to avoid unnecessary

“bookkeeping” work.
4Note that the lack of “disjointness” between Fi (u ) and Ii (u ) might lead to the situation that some edge is contained in

both Yi and Fi (u ). This was not the case in the original algorithm of Baswana et al., but it is correct to allow this behavior

and allows us to avoid unnecessary “bookkeeping” work in our new filtering algorithm.
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• At least one of u and v belongs to a sampled cluster (in Ri ) at level i , or
• (u,v ) belongs to Ei (u) as well as Ei (v ).

Having defined this hierarchy, the dynamic spanner H consists of the set of edges
⋃

0≤i≤k−1 (Fi ∪
Xi ∪ Yi ).

3.2.3 Sketch of Analysis. As explained above, it follows from standard arguments that |Fi∪Xi | ≤
O (n1+1/k ) for each 0 ≤ i ≤ k − 1. Furthermore, the size of Yi is bounded by n · maxu |Ii (u) | for
each 0 ≤ i ≤ k − 1. The stretch bound of 2k − 1 follows from the clusters having radius at most
k − 1 together with an argument that for each edge e = (u,v ) not moving to the next level u has
an edge to the cluster of v (or vice versa) in one of the Xi ’s or one of the Yi ’s. Finally, the fast
amortized update time of the algorithm is obtained by the random choice of the hooks. Roughly
speaking, the algorithm only has to perform significant work when the oblivious adversary hits
a hook upon deleting some edge (u,v ) from Ei ; this happens with probability Ω( 1

|Ei (u ) | ) and—by

using appropriate data structures—incurs a cost ofO ( |Ei (u) |), yielding constant expected cost per
update to Ei . More formally, the filtering performed by the algorithm together with invariant (HI)
guarantees the following property.

Lemma 3.1 ([8]). For every 0 ≤ i ≤ k − 1 and every edge (u,v ) ∈ Ei , Pr[(u,v ) = hook(u, i )] ≤
1+2ϵ
|Ei (u ) | for any constant 0 < ϵ ≤ 1

4 .

The main probabilistic tool for obtaining this guarantee is a Chernoff bound for positive random
variables. Compared to the well-known Chernoff bound for binary random variables, the more
general tail bound needs a longer sequence of random variables to guarantee a small deviation
from the expectation with high probability: the overhead is a factor of b log(b), where b is the
ratio between the largest and the smallest value of the random variables.

Theorem 3.2 ([8]). Let o1, . . . ,o� be � positive numbers such that the ratio of the largest to the

smallest number is at most b, and let Z1, . . . ,Z� be � independent random variables such that Zi

takes value oi with probability p and 0 otherwise. Let Z = ∑
1≤i≤� Zi and μ = E[Z] =

∑
1≤i≤� oip.

There exists a constant γ ≤ 80 such that if � ≥ γab 1
ϵ 3p

ln(n) log(b) for any 0 < ϵ ≤ 1
4 , a > 1, and a

positive integer n, then the following inequality holds:

Pr[Z < (1 − ϵ )μ] <
1

na
.

The running-time argument sketched above only bounds the running time of each level “in
isolation.” For every 0 ≤ i ≤ k − 1, one update toGi could lead to more than one induced update to
Gi+1. Thus, the hierarchical nature of the algorithm leads to an exponential blow-up in the number
of induced updates and thus in the running time. Baswana et al. further argue that the hierarchy

only has to be maintained up to level � k
2 � by using a slightly more sophisticated rule for edges to

enter the spanner from the top level. Together with a careful choice of data structures that allows
constant expected time per atomic change, this analysis gives the following guarantee.

Theorem 3.3 (Implicit in [8]). Assume that for constant 0 < ϵ < 1 and a > 1 there is a fully

dynamic edge filtering algorithm F, in expectation, generates at most U (n) changes to Fi (u) per

update to Ei (u) and, in expectation, has an update time of U (n) · T (n). Then, for every k ≥ 2, there

is a fully dynamic algorithm S for maintaining a (2k − 1)-spanner of expected size O (kn1+1/k +

knmaxi,u |Ii (u) |) with expected update time O ((3 + 4ϵ + U (n))k/2 · T (n)). If the bounds on F are

amortized (worst-case), then so is the update time ofS.

3.2.4 Summary of Dynamic Filtering Problem. As we focus on the dynamic filtering in the rest
of this section, we summarize the most important aspects of this problem in the following: In
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a dynamic filtering algorithm, we focus on a specific vertex u ∈ Vi at a specific level i of the
hierarchy, i.e., there will be a separate instance of the filtering algorithm for each vertex inVi . The
algorithm takes parameters 0 < ϵ < 1 and a > 1 and fixes some choice of λ ≥ д > 1. It operates
on the subset of edges of Ei incident on u and any vertex v in a non-sampled cluster c ∈ Ci \ Ri .
These edges are given to the filtering algorithm as a partition

⋃
c ∈Ci \Ri

Ei (u, c ), whereCi \ Ri , the

set of non-sampled clusters at level i , will never change over the course of the algorithm.5 The
dynamic updates to be processed by the algorithm are of two types: insertion of some edge (u,v )
to some Ei (u, c ), and deletion of some edge (u,v ) from some Ei (u, c ). The goal of the algorithm is
to maintain a partition of the clusters into �logд (n)� buckets numbered from 0 to �logд (n)�, a set

of clusters Ii (u) and a set of edges Fi (u) such that conditions (F1), (F2), and (F3) are satisfied.
Condition (F1) states that clusters in the same bucket need to have approximately the same

number of edges incident on u. The “normal” size of |Ei (u, c ) | for a cluster c in bucket j would be

дj and the algorithm makes sure that
д j

λ
≤ |Ei (u, c ) | ≤ λдj . Thus, the ratio between the largest

and the smallest value of |Ei (u, c ) | among clusters c in the same bucket is at most λ2. This value
corresponds to the parameter b in Theorem 3.2. The edges in Fi (u) serve as a filter for the dynamic
spanner algorithm in the sense that only edges in this set are passed on to level i+1 in the hierarchy.
Condition (F2) states that an edge (u,v ) may only be contained in Fi (u) if the bucket containing the
cluster ofv contains at least � := 4γaλ2 1

ϵ 3n
1/k ln(n) ln(λ) clusters. Here, the choice of � comes from

Theorem 3.2; a is a constant that controls the error probability, ϵ controls the amount of deviation
from the mean in the Chernoff bound, and γ is a constant from the theorem. Condition (F3) states
that clusters c for which some edge incident on u and c is not contained in Fi (u) need to be
contained in Ii (u) (called inactive clusters in Reference [8]). Intuitively, this is the case, because
for such clusters the spanner algorithm cannot rely on all relevant edges being present at the next
level and thus has to deal with these clusters in a special way.

The goal is to design a filtering algorithm with a small value of λ that has small update time. An
additional goal in the design of the algorithm is to keep the number of changes performed to Fi (u)
small. A change to Fi (u) after processing an update to Ei (u, c ) is also called an induced update as,
in the overall dynamic spanner algorithm, such changes might appear as updates to level i + 1
in the hierarchy, i.e., the insertion (deletion) of an edge (u,v ) to (from) Fi (u) might show up as
an insertion (deletion) at level i + 1. As this update propagation takes place in all levels of the
hierarchy, we would like to have a dynamic filtering algorithm that only performs O (1) changes
to Fi (u) per update to its input.

3.2.5 Filtering Algorithm with Amortized Update Time. The bound of Baswana et al. follows by
providing a dynamic filtering algorithm with the following guarantees:

Lemma 3.4 (Implicit in [8]). For any a > 1 and any 0 < ϵ ≤ 1
4 , there is a dynamic filtering

algorithm with amortized update time O ( 1
ϵ

) for which the amortized number of changes performed

to Fi (u) per update to Ei (u) is at most 4 + 10ϵ such that Ii (u) ≤ O ( a
ϵ 7n

1/k log2 (n)), i.e., U (n) =

4 + 10ϵ = O (1) and T (n) = O ( 1
ϵ

).

Note that the dynamic filtering algorithm is the only part of the algorithm by Baswana et al. that
requires amortization. Thus, if one could remove the amortization argument from the dynamic fil-
tering algorithm, one would obtain a dynamic spanner algorithm with worst-case expected guar-
antee on the update time, which in turn could be strengthened to a worst-case high-probability
guarantee. This is exactly how we proceed in the following:

5Note that if vertices join or leave clusters, then the dynamic filtering algorithm only sees updates for the corresponding

edges.
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To facilitate the comparison with our new filtering algorithm, we shortly review the amortized
algorithm of Baswana et al. Their algorithm uses д = λ = 1

ϵ
where ϵ is a constant that is opti-

mized to give the fastest update time for the overall spanner algorithm. This leads to O (logд (n))

overlapping buckets such that all clusters in bucket j have between дj−1 and дj edges incident onu.
The algorithm does the following: Every time the number of edges incident onu of some cluster c

in bucket j grows to дj+1, c is moved to bucket j + 1, and every time this number falls to дj−1, c is
moved to bucket j − 1. The algorithm further distinguishes active and inactive buckets such that
active buckets contain at least � clusters and all inactive buckets contain at most κ� clusters for
some constant κ. An active bucket will be inactivated if its size falls to � and an inactive bucket
will be activated if its size grows to κ�. Additionally, the algorithm makes sure that Fi (u) consists
of all edges incident on clusters from active buckets and that Ii consists of all clusters in inactive
buckets.

By employing these soft thresholds for maintaining the buckets and their activation status,
Baswana et al. make sure that for each update to Ei (u) the running time and the number of changes
made to Fi (u) is constant. For example, every time a cluster c is moved from bucket j to bucket j+1
with a different activation status, the algorithm incurs a cost of at mostO (дj+1)—i.e., proportional
to |Ei (u, c ) |—for adding or removing the edges of Ei (u, c ) to Fi (u). This cost can be amortized over
at leastдj+1−дj = Θ(дj+1) insertions to Ei (u, c ), which results in an amortized cost ofO (д) = O ( 1

ϵ
),

i.e., constant when 1
ϵ
is constant. Similarly, the work connected to activation and de-activation

is O (д) when amortized over Θ(�) clusters joining or leaving the bucket, respectively.

3.3 Modified Filtering Algorithm

In the following, we provide our new filtering algorithm with worst-case expected update time,
i.e., we prove the following theorem:

Theorem 3.5. For every 0 ≤ i ≤ k−1 and everyu ∈ Ni , there is a filtering algorithm that has worst-

case expected update timeO (log(n)) and per update performs at most 10.6 changes toFi (u) in expecta-

tion, i.e.,U (n) = 10.6 andT (n) = O (log(n)). The maximum size ofIi (u) isO (n1/k log6 (n) log log(n)).

Together with Theorem 3.3, the promised result follows:

Corollary 3.6 (Restatement of Theorem 1.3). For every k ≥ 2, there is a fully dynamic al-

gorithm for maintaining a (2k − 1)-spanner of expected size O (kn1+1/k log6 (n) log log(n)) that has

worst-case expected update time O (14k/2 log(n)).

We now apply the reduction of Theorem 1.1 to maintain O (log(n)) instances of the dynamic
spanner algorithm and use the union of the maintained subgraphs as the resulting spanner. The
reduction guarantees that, at any time, one of the maintained subgraphs, and thus also their union,
will indeed be a spanner and that the update-time bound holds with high probability.

Corollary 3.7 (Restatement of Theorem 1.4). For every k ≥ 2, there is a fully dynamic al-

gorithm for maintaining a (2k − 1)-spanner of expected size O (kn1+1/k log7 (n) log log(n)) that has

worst-case update time O (14k/2 log3 (n)) with high probability.

3.3.1 Design Principles. Our new algorithm uses the following two ideas: First, we observe that
it is not necessary to keep only the edges incident from clusters of small buckets away from Fi (u).
We can also, somewhat more aggressively, keep away the edges incident from the first � clusters
of large buckets out of Fi (u). In this way, we avoid that many updates are induced if the size of a
bucket changes from small to large or vice versa. Our modified filtering is deterministic based only
on the current partitioning of the clusters into buckets and on an arbitrary, but fixed ordering of
vertices, clusters, and edges. This is a bit similar to the idea in Reference [16] of always keeping
the “first” few incident edges of each vertex in the spanner.
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Second, we employ a probabilistic threshold technique where, after exceeding a certain thresh-
old on the size of the set Ei (u, c ), a cluster c changes its bucket with probability roughly inverse to
this size threshold. Moving a cluster is an expensive operation that generates changes to the set
of filtered edges, which the next level in the spanner hierarchy has to process as induced updates.
The idea behind the probabilistic threshold approach is that by taking a sampling probability that
is roughly inverse to the number of updates induced by the move, there will only be a constant
number of changes in expectation. A straightforward analysis of this approach shows that in each
bucket the size threshold will not be exceeded by a factor of more than O (log(n)) with high prob-
ability, which immediately bounds the expected number of changes to the set of filtered edges by
O (log(n)). By a more sophisticated analysis, taking into account the diminishing probability of
not having moved up previously, we can show that exceeding the size threshold by a factor of 2t

happens with probability O (1/2e t
). Thus, the expected number of induced updates is bounded by

an exponentially decreasing series converging to a constant. A similar, but slightly more involved
algorithm and analysis is employed for clusters changing buckets because of falling below a certain
size threshold.

We remark that a deterministic deamortization of the filtering algorithm by Baswana et al. might
be possible in principle without resorting to the probabilistic threshold technique, maybe using
ideas similar to the deamortization in the dynamic matching algorithm of Bhattacharya et al. [15].
However, such a deamortization needs to solve non-trivial challenges and the other parts of the
dynamic spanner algorithmwould still be randomized. Furthermore, we believe that the probabilis-
tic threshold technique leads to a significantly simpler algorithm. Similarly it might be possible to
use the probabilistic threshold technique to emulate the less aggressive filtering of Baswana et al.
that only filters away edges incident on large buckets. Here, not using the probabilistic threshold
technique seems the simpler choice.

3.3.2 Setup of the Algorithm. In our algorithm, described below for a fixed vertex u, we work
with an arbitrary, but fixed, order on the vertices of the graph. The order on the vertices induces
an order on the edges, by lexicographically comparing the ordered pair of incident vertices of
the edges, and an order on the clusters, by comparing the respective cluster centers. For each
0 ≤ j ≤ �log(n)�, we maintain a bucket by organizing the clusters in bucket j in a binary search
tree Bj , employing the aforementioned order on the clusters. Similarly, for 0 ≤ j ≤ �log(n)�,
we organize the edges incident on u and each bucket j in a binary search tree Tj , i.e., a search
tree ordering the set of edges

⋃
c ∈Bj

Ei (u, c ), where these edges are compared lexicographically as
cluster-edge pairs.

We set λ = 2 �log(4+ln(n))� = O (log(n)), � = 4γaλ2 1
ϵ 3n

1/k ln(n) ln(λ) = O (n1/k log3 (n) log log(n))

and, for every 0 ≤ j ≤ �log(n)�, we set α j = 2j . Our algorithm will maintain the following
invariants for every 0 ≤ j ≤ �log(n)�:
(B1) For each cluster c in bucket j,

α j

λ
≤ |Ei (u, c ) | ≤ λα j .

(B2) The edges of the first � · λα j cluster-edge pairs of Tj (or all cluster-edge pairs of Tj if there
are less than � · λα j of them) are not contained in Fi (u) and the remaining edges of Tj are
contained in Fi (u).

(B3) The first 1 + λ2� clusters of Bj are contained in Ii (u) and the remaining clusters of Bj are
not contained in Ii (u).

Observe that invariant (B1) is equal to condition (F1) and that invariant (B3) immediately implies
the claimed bound on Ii (u) as there are O (log(n)) buckets, each contributing O (λ2�) clusters.

Furthermore, the invariants also imply correctness in terms of conditions (F2) and (F3) because
of the following reasoning: For condition (F2), let (u,v ) ∈ Fi (u) and let c denote the cluster of v .
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Then, by invariant (B2), there are at least � · λα j cluster-edge pairs contained in Tj that are lexico-
graphically smaller than the pair consisting of c and (u,v ). As each cluster in bucket j has at most
λα j edges incident on u by invariant (B1), it follows that there are at least � clusters contained in
bucket j as otherwise Tj could not contain at least � · λα j cluster-edge pairs.

For condition (F3), let (u,v ) ∈ Ei (u) \ Fi (u) and let c denote the cluster of v . Then the pair
consisting of c and (u,v ) must be among the first � · λα j entries of Tj by invariant (B2). As each

cluster in bucket j has at least
α j

λ
edges incident on u by invariant (B1), there are thus at most

λα j

α j /λ
� = λ2� clusters in bucket j that are smaller than c in terms of the chosen ordering on the

clusters. It follows that c must be among the first 1 + λ2� clusters of Bj and by invariant (B3) is
thus contained in Ii (u) as required by condition (F1).

3.3.3 Modified Bucketing Algorithm. The algorithm after an update to some edge (u,v ) is as
follows, where we denote the unique cluster of v by c:

• If the edge (u,v ) was inserted, then check if one of the following cases applies:
—If |Ei (u, c ) | = 1 after the insertion (i.e., c becomes a neighbor ofu), thenmove c into bucket 0

by performing the following steps:
(1) Add c to B0.
(2) Add (u,v ) to T0.

—If |Ei (u, c ) | ≥ 2α j after the insertion, where j is the number c’s current bucket, then do the

following: Flip a biased coin that is “heads” with probability min( 1
α j
, 1). If the coin shows

“heads” or if |Ei (u, c ) | = λ · α j , then move cluster c up to bucket j ′ = �log( |Ei (u, c ) |)� by
performing the following steps:

(1) Remove c from Bj and add it to Bj′ .
(2) Remove all edges of Ei (u, c ) from Tj and add them to Tj′ .

• If the edge (u,v ) was deleted, then check if one of the following cases applies:
—If |Ei (u, c ) | = 0 after the deletion (i.e., c ceases to be a neighbor of u), then move c out of

bucket 0 by performing the following steps:
(1) Remove c from B0.
(2) Remove (u,v ) from T0.

—If |Ei (u, c ) | ≤ α j

2 after the deletion, where j is the number c’s current bucket, then do the

following: Flip a biased coin that is “heads” with probability min( 2
2t+1

α j
, 1) for the maximum

t ≥ 1 such that |Ei (u, c ) | ≤ α j

2t (i.e., t = �log(
α j

|Ei (u,c ) | )�). If the coin shows “heads” or if

|Ei (u, c ) | = α j

λ
, then move cluster c down to bucket j ′ = �log( |Ei (u, c ) |)� by performing

the following steps:
(1) Remove c from Bj and add it to Bj′ .
(2) Remove all edges of Ei (u, c ) from Tj and add them to Tj′ .

Additionally, invariants (B2) and (B3) are maintained in the trivial way by making the necessary
changes to Fi (u) after a change to Tj and to Ii after a change to Bj , respectively. Furthermore,
invariant (B1) is satisfied because the following invariant (B1’) holds as well for every 0 ≤ j ≤
�log(n)� by the design of the algorithm:

(B1’) Whenever a cluster c moves to bucket j,
α j

2 < |Ei (u, c ) | < 2α j .

3.3.4 Analysis of Induced Updates and Running Time. We now analyze the update time and the
number of changes to Fi (u) per update to some Ei (u, c ) for some cluster c . These changes are also
called induced updates.
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If by the update c becomes a neighbor ofu, then one cluster is added to B0 and one edge is added
to T0. Similarly, if by the update c ceases to be a neighbor u, then one cluster is removed from B0

and one edge is removed from T0. Clearly, both of these cases lead to at most 2 changes to Fi (u)
and a running time of O (logn) as both B0 and T0 are organized as binary search trees.

Now observe that each other type of update causes at most one move of c from some bucket j
to some other bucket j ′. Each such move can be processed in time O ( |Ei (u, c ) | logn), as only the
cluster c is moved from some binary search tree Bj to another binary search tree Bj′ and cor-
respondingly only |Ei (u, c ) | cluster-edges pairs are moved from the binary search tree Tj to the
binary search tree Tj′ . To analyze the number of changes to Fi (u), consider the following case
distinction for some cluster-edge pair (c, (u,v )) being moved from Tj to Tj′ :

• If (c, (u,v )) is among the first � · λα j cluster-edge pairs of Tj before being removed from Tj

and is among the first � · λα j′ cluster-edge pairs of Tj′ after being added to Tj′ , then (u,v ) is
neither contained in Fi (u) before nor after the move. Furthermore, at most one cluster-edge
pair might start being among the first � · λα j pairs in Tj (resulting in the removal of the
corresponding edge from Fi (u)) and at most one cluster-edge pair might stop being among
the first � · λα j′ pairs in Tj′ (resulting in the addition of the corresponding edge to Fi (u)).
Thus, we perform at most 2 changes to Fi (u) for moving (c, (u,v )).
• If (c, (u,v )) is among the first � · λα j cluster-edge pairs of Tj before being removed from Tj

and is not among the first � · λα j′ cluster-edge pairs of Tj′ after being added to Tj′ , then
(u,v ) is not contained in Fi (u) before the move, but it is contained in Fi (u) after the move.
Furthermore, at most one cluster-edge pair might start being among the first � · λα j pairs
in Tj (resulting in the removal of the corresponding edge from Fi (u)) and no cluster-edge
pair will stop being among the first � · λα j′ pairs inTj′ . Thus, we perform at most 2 changes
to Fi (u) for moving (c, (u,v )).
• If (c, (u,v )) is not among the first � ·λα j cluster-edge pairs ofTj before being removed fromTj

and is among the first � · λα j′ cluster-edge pairs of Tj′ after being added to Tj′ , then (u,v ) is
contained in Fi (u) before the move, but it is not contained in Fi (u) anymore after the move.
Furthermore, no cluster-edge pair will start being among the first � · λα j pairs in Tj and at
most one cluster-edge pair might stop being among the first � · λα j′ pairs in Tj′ (resulting
in the addition of the corresponding edge to Fi (u)). Thus, we perform at most 2 changes
to Fi (u) for moving (c, (u,v )).
• If (c, (u,v )) is not among the first � ·λα j cluster-edge pairs ofTj before being removed fromTj

and is not among the first � ·λα j′ cluster-edge pairs ofTj′ after being added toTj′ , then (u,v )
is contained in Fi (u) before and after the move. Furthermore, no cluster-edge pair will start
being among the first � · λα j pairs in Tj and no cluster-edge pair will stop being among the
first � · λα j′ pairs in Tj′ . Thus, we perform no changes to Fi (u) for moving (c, (u,v )).

Thus, for each move of a cluster c , we incur at most 2|Ei (u, c ) | changes to Fi (u).
For technical reasons, we go on by giving slightly different analyses for the cases of moving up

and moving down.

Moving Up. For every integer 1 ≤ t ≤ log(λ)−1, let pt be the probability that 2tα j ≤ |Ei (u, c ) | <
2t+1α j when c is moved up and let q be the probability that |Ei (u, c ) | = λ · α j when c is moved
up. Note that this covers all events for c being moved up. As observed above, each move induces
at most 2|Ei (u, c ) | updates, where |Ei (u, c ) | < 2t+1α j with probability pt and |Ei (u, c ) | ≤ n in any
case. Thus, by the law of total expectation, the expected number of induced updates per insertion
to Ei (u, c ) is at most ∑

1≤t ≤log(λ)−1
pt · 2 · 2t+1α j + q · 2n .
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We now bound pt , the probability that 2tα j ≤ |Ei (u, c ) | < 2t+1α j when c is moved up. As soon

as |Ei (u, c ) | exceeds the threshold 2α j , each insertion makes c move up with probability 1
α j

(when

the biased coin shows “heads”). For t = 1, we clearly have pt ≤ 1
α j
. For 2 ≤ t ≤ log(λ) − 1, pt

is determined by one “heads” preceded by at least 2tα j − 2α j “tails” in the coin flips of previous
insertions to Ei (u, c ), i.e., pt is bounded by

pt ≤
1

α j
·
(
1 − 1

α j

) (2t−2) ·α j

≤ 1

α j
· 1

e2t−2 .

Here, we use the inequality (1 − 1
x

)x ≤ 1
e
, where e is Euler’s constant. Similarly, q, the probability

that |Ei (u, c ) | = λα j with λ = 2 �log(4+ln(n))� when c is moved up, is determined by α j (�a ln(n)� +
2) − 2α j “tails.” Thus, q is bounded by

q ≤ 1

e2�log(4+ln(n ))�−2
≤ 1

e2+ln(n)
=

1

e2n
.

We can now bound the expected number of induced updates by

∑
1≤t ≤log(λ)−1

pt · 2 · 2t+1α j + q · 2n =
1

α j
· 2 · 22α j +

∑
2≤t ≤log(λ)−1

1

α j
· 1

e2t−2 · 2 · 2
t+1α j +

1

e2n
· 2n

≤ 8 + 4 ·
∑

2≤t<∞

2t

e2t−2 + 0.28

≤ 8 + 4 · 0.57 + 0.28

≤ 10.6 .

Moving Down. For every 1 ≤ t ≤ log(λ) − 1, let pt be the probability that
α j

2t+1 < |Ei (u, c ) | ≤ α j

2t

when c is moved down and let q be the probability that |Ei (u, c ) | = α j

λ
when c is moved down.

As observed above, each move induces at most 2|Ei (u, c ) | updates and thus, by the law of total
expectation, the expected number of induced updates per deletion from Ei (u, c ) is at most

∑
1≤t ≤log(λ)−1

pt · 2
α j

2t
+ q · 2n .

We now bound pt , the probability that
α j

2t+1 < |Ei (u, c ) | ≤ α j

2t when c is moved down. For t = 1,

we clearly have p1 ≤ 23

α j
= 8

α j
, as this is the probability that just a single coin flip made the cluster

move down. For 2 ≤ t ≤ log(λ) − 1, observe that for |Ei (u, c ) | ≤ α j

2t to hold, there must have
been at least t − 1 subsequences of deletions such that after every deletion in subsequence s we
had

α j

2s+1 < |Ei (u, c ) | ≤ α j

2s (where 1 ≤ s ≤ t − 1). Observe that the sth subsequence consists of

ds :=
α j

2s − α j

2s+1 =
α j

2s+1 many deletions. Remember that during the sth subsequence the probability

of c moving down is rs := min( 2
2s+1

α j
, 1). If rs < 1, then by the inequality (1 − 1

x
)x ≤ 1

e
we have

(1 − rs )ds =

(
1 − 22s+1

α j

) αj

2s+1

=

(
1 − 22s+1

α j

) αj

22s+1 ·2s

≤ 1

e2s .
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In the other case, rs = 1, we clearly have (1−rs )ds = 0 ≤ 1
e2s . Now pt is determined by one “heads”

preceded by at least ds “tails” for each subsequence s , i.e., pt is bounded by

pt ≤
22t+1

α j
·

∏
1≤s≤t−1

(1 − rs )ds

≤ 22t+1

α j
·

∏
1≤s≤t−1

1

e2s

=
22t+1

α j
· 1

e
∑

1≤s≤t−1 2s

=
22t+1

e2t−2α j

.

Similarly, q, the probability that |Ei (u, c ) | = α j

λ
with λ = 2 �log(4+ln(n))� when c is moved down, is

bounded by

q ≤ 1

e2�log(4+ln(n ))�−2
≤ 1

e2+ln(n)
=

1

e2n
.

We can now bound the expected number of induced updates by∑
1≤t ≤log(λ)−1

pt · 2 ·
α j

2t
+ q · 2n = p1 · 2 ·

α j

2
+

∑
2≤t ≤log(λ)−1

pt · 2 ·
α j

2t
+ q · 2n

≤ 8

α j
· 2 ·

α j

2
+

∑
2≤t ≤log(λ)−1

22t+1

e2t−2α j

· 2 ·
α j

2t
+

1

e2n
· 2n

≤ 8 + 4 ·
∑

2≤t<∞

2t

e2t−2 + 0.28

≤ 8 + 4 · 0.57 + 0.28

≤ 10.6 .

This concludes the proof that the expected number of induced updates is at most 10.6.

4 DYNAMIC MAXIMAL MATCHING WITH WORST-CASE EXPECTED UPDATE TIME

In this section, we turn to proving Theorem 1.5.6 We achieve our result by modifying the algorithm
of Baswana et al. [7], which achieves amortized expected timeO (log(n)). We start by describing the
original algorithm of Baswana et al. and then discuss why their algorithm does not provide a worst-
case expected guarantee and themodifications wemake to achieve this guarantee. Throughout this
section, we define a vertex to be free if it is not matched, and we define mate(v ), for matched v ,
to be the vertex that v is matched to.

4.1 The Original Matching Algorithm of Baswana et al.

High-level Overview. Let us consider the trivial algorithm for maintaining a maximal matching.
Insertion of an edge (u,v ) is easy to handle inO (1) time: If u and v are both free, then we add the
edge to the matching; otherwise, we do nothing. Now consider deletion of an edge (u,v ). If (u,v )
was not in the matching, then the current matching remains maximal, so there is nothing to be
done and the update time is only O (1). If (u,v ) was in the matching, then both u and v are now

6The correctness proof had to be significantly extended due to a mistake in our SODA 2019 paper.
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free and must scan all of their neighbors looking for a new neighbor to match to. The update time
is thus O (max {degree(u),degree(v )}). This is the only expensive operation.

At a very high level, the idea of the Baswana et al. algorithm is to create a hierarchy of the
vertices (loosely) according to their degrees. High degree vertices are more expensive to handle.
To counterbalance this, the algorithm ensures that when a high degree vertex v picks a new mate,
it chooses that mate at random from a large number of neighbors ofv . Thus, although the deletion
of the matching edge (v,mate(v )) will be expensive, there is a high probability that the adversary
will first have to delete many non-matching (v,w ) (which are easy to process) before it finds
(v,mate(v )). (Recall that the algorithm of Baswana et al. and our modification both assume an
oblivious adversary.)

Setup of the Algorithm. Let l0 = �log4 (n)�.
• Each edge (u,v ) will be owned by exactly one of its endpoints. Let Ov contain all edges
owned by v . Loosely speaking, if (u,v ) ∈ Ov , then v is responsible for telling u about any
changes in its status (e.g., v becomes unmatched or changes levels in the hierarchy), but not
vice versa.
• The algorithm maintains a partition of the vertices into l0 + 2 levels, numbered from −1 to
l0. During the algorithm, when a vertex moves to level i , it owns at least 4i edges. Level −1
then contains the vertices that own no edges. The algorithm always maintains the invariant
that if level(u) < level(v ), then edge (u,v ) ∈ Ov .
• For every vertex u, the algorithm stores a dynamic hash table of the edges in Ou . The algo-
rithm also maintains the following list of edges foru: For each i ≥ level(u), let Ei

u be the set
of all those edges incident on u from vertices at level i that are not owned by u. The set Ei

u

will be maintained in a dynamic hash table. However, the onus of maintaining Ei
u will not

be on u, because these edges are by definition not owned by u. For example, if a neighbor v
of u moves from level i > level(u) to level j > i , then v will remove (u,v ) from Ei

u and

insert it to E j
u .

Invariants and Subroutines. Define N<j (v ) to contain all neighbors of v strictly below level j
and N=j (v ) to contain all neighbors of v at level exactly j. The key invariant of the hierarchy is
that a vertex moves up to a higher level in the hierarchy (via what we call a Rise operation) it
will have sufficiently many neighbors below it. For j > level(v ), define ϕv (j ) = |N<j (v ) |, and
ϕv (j ) = 0 otherwise.7 We now describe some guarantees of the Baswana et al. algorithm. Note
that the hierarchy only maintains an upper bound on N<j (v ) (Invariant 3), not a lower bound;
a lower bound on N<j (v ) only comes into play when v picks a new matching edge (Matching
Property). More specifically, right before a mate is randomly selected for a node v on level j the
algorithm makes sure that |N<j (v ) | ≥ 4j

• Invariant 1: Each edge is owned by exactly one endpoint, and if the endpoints of the edge
are at different levels, then the edge is owned by the endpoint at higher level. (If the two
endpoints are at the same level, then the tie is broken appropriately by the algorithm.)
• Invariant 2: Every vertex at level ≥ 0 is matched and every vertex at level −1 is free.
• Invariant 3: For each vertex v and for all j > level(v ), ϕv (j ) < 4j holds true.
• Invariant 4: Both endpoints of a matched edge are at the same level.
• Matching Property: If a vertex v at level j > −1 is (temporarily) unmatched, then the
algorithm proceeds as follows: If |N<j (v ) | ≥ 4j , v picks a new mate uniformly at random

from N<j (v ); If |N<j (v ) | < 4j , then v falls to level j − 1 and is recursively processed there

7Baswana et al. gave an equivalent definition in terms of the Ov and Ei
v structures.
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(i.e., depending on the size of N<j−1 (v ), v either picks a random mate from N<j−1 (v ) or
continues to fall).

Invariants 1 and 3 combined imply that |Ov | ≤ ϕv (j + 1) ≤ 4level(v )+1 = O (4level(v ) ) and

N=level(v ) (v ) ≤ 4level(v )+1 = O (4level(v ) ) if level(v ) < l0. For level(v ) = l0, 4
l0+1 ≥ n, so

trivially |Ov | = O (4level(v ) ) and N=level(v ) (v ) = O (4level(v ) ).

Remark 4.1. Observe that if wemaintain these invariants, thenwe always have amaximalmatch-
ing: By Invariant 1, each edge e is owned by exactly one endpoint v . As by Invariant 3 a vertex
at level −1 owns no edges, the endpoint v is at level ≥ 0, and by Invariant 2, v must be matched.
Thus, every edge has an endpoint that is matched.

We now consider the procedures used by the algorithm of Baswana et al. to maintain the hierar-

chy and the maximal matching. The bulk of the work is in maintaining Ov , E j
v , and ϕv (j ), which

change due to external additions and deletions of edges, and also due to the algorithm internally
moving vertices in the hierarchy to satisfy the invariants above. We largely stick to the notation
of the original paper, but we omit details that remain entirely unchanged in our approach. See
Section 4 in Reference [7] for the original algorithm description (and its analysis).

• CheckForRise(v, i) increases ϕv (i ) by one, whereas Decrement-ϕ(v, i) decreases it. (The
paper of Baswana et al. instead called the increment function Increment-ϕ, but we choose
CheckForRise because it better fits the details of our algorithm.) Note that CheckFor-
Rise(v, i) might trigger a call to Rise(v, i, j) and the logic that we use for triggering this
call differs from that in Reference [7] as we also have probabilistic rises; see below.
• Rise(v, i, j) (new notation) moves a vertex v from level i to level j. This results in changes
to many of the O and E lists. In particular, v takes ownership of all edges (v,w ) with w ∈
N<j (v ). Moreover, for any vertexw ∈ N<i (v ), edge (v,w ) is removed from Ei

w , and for every

w ∈ N<j (v ), edge (v,w ) is added to E j
w . As a result, the algorithm runs Decrement-ϕ(w,k)

for every w ∈ N<j (v ), and every i < k ≤ j. A careful analysis bounds the total amount of
bookkeeping work at O (4j ) (see Lemma 4.4).
• Fall(v, i) (new notation)movesv from level i to level i−1. As above this leads to bookkeeping
work: Ow , Ei

w , and Ei−1
w change for many neighbors of w of v . Note that only edges (v,w )

previously owned byv are affected, so by Invariant 3, the total amount of bookkeeping work
is at most |Ov | = O (4i ).
The algorithm must also do CheckForRise(w, i) for everyw that was previously in N<i (v ),
incrementing ϕw (i ). Such an increment might result inw violating Invariant 3 (if ϕw (i ) goes
from 4i − 1 to 4i ), in which case the algorithm executes Rise(w, level(w ), i)). Moreover, if
w ′ was the previous mate ofw , then edge (w,w ′) is removed from the matching to preserve
invariant 4, so the algorithm must also execute FixFreeVertex(w) and FixFreeVertex(w ′)
(see below), which can in turn lead to more calls to Fall and Rise. One of the main tasks of
the analysis is to bound this cascade.
• FixFreeVertex(v) handles the case when a vertexv is unmatched; this can happen because
the matching edge incident to v was deleted, or because v newly rose/fell to level i , where
i = level(v ). Following theMatching Property, if |N<i (v ) | < 4i , then the algorithm executes
Fall(v, i), followed by FixFreeVertex(v). However, if |N<i (v ) | ≥ 4i , thenv remains at level
i and picks a new mate by executing RandomSettle(v, i).
• RandomSettle(v, i) finds a new mate w for a vertex v at level i assuming that |N<i (v ) | ≥
4i . The algorithm picks w uniformly at random from N<i (v ). Let � = level(w ) < i . The
algorithm first does Rise(w, �, i) (to satisfy Invariant 4) and then matches v to w . Note that
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if � � −1, thenw had a previous matew ′ that is now unmatched, so the algorithm now does
FixFreeVertex(w ′).

Handling Edge Updates. We now show how the algorithm maintains the invariants under edge
updates. First consider the insertion of edge (u,v ). Say w.l.o.g. that level(v ) ≥ level(u). Then

(u,v ) is added to Ov and to Elevel(v )
u . The algorithm must then execute CheckForRise(u, j) and

CheckForRise(v, j) for every j > level(v ). This takes timeO (log(n)) andmight additionally result
in some level � for which ϕv (�) ≥ 4� (or ϕu (�) ≥ 4�), in which case Invariant 3 is violated so the
algorithm performs Rise(v, level(v ), �) (or Rise(u, level(u), �)). If ϕv (�) ≥ 4� for multiple levels
�, then v rises to the highest such �.

Now consider the deletion of an edge (u,v ) with level(v ) ≥ level(u). The algorithm first

doesO (log(n)) work of simple bookkeeping: It removes (u,v ) from Ov and Elevel(v )
u and executes

the corresponding calls to Decrement-ϕ. If (u,v ) was not a matching edge, then the work ends
there: Unlike with CheckForRise, the procedure Decrement-ϕ cannot lead to the violation of
any invariants. By contrast, the most expensive operation is the deletion of a matched edge (u,v ),
because the algorithm must execute FixFreeVertex(u), and FixFreeVertex(v).

Analysis Sketch. Whereas our final algorithm is very similar to the original algorithm of Baswana
et al., our analysis is mostly different, so we only provide a brief sketch of their original analysis.
The basic idea is that because a vertex v is only responsible for edges in Ov , processing a vertex
at level i takes time O (4i+1) (Invariant 3). The crux of the analysis is in arguing that vertices at
high level are processed less often. There are two primary ways a vertex v can be processed at
level i . (1) v rises to level i because ϕv (i ) goes from 4i − 1 to 4i . This does not happen often
because many CheckForRise(v, i) are required to reach such a high ϕv (i ). (2) the matching edge
(v,mate(v )) is deleted from the graph. This does not happen often, because by Matching Property,
v originally picks its mate at random from at least 4i options, so since the adversary is oblivious,
it will in expectation delete many non-matching edges (v,w ) (which are easy to process) before it
hits upon (v,mate(v )).

4.2 Our Modified Algorithm

Recall the definition of ϕv (j ) for any vertex v with i = level(v ) and level j:

ϕv (j ) =

{
|N<j (v ) | if j > i
0 otherwise.

There are two reasons why the original algorithm of Baswana et al. does not guarantee a worst-
case expected update time.

1:The algorithmuses a hard threshold forϕv (i ): the update that increasesϕv (i ) from 4i−1 to 4i is
guaranteed to lead to the expensive execution of Rise(v, level(v ), i). Thus, while their algorithm
guaranteed that overall few updates lead to this expensive event, it is not hard to construct an
update sequence that forces one particular update to be an expensive one. To overcome this, we
use a randomized threshold, where every time ϕv (i ) increases, v rises to level i with probability
Θ(log(n)/4i ).

2: Consider the deletion of an edge (u,v ) where i = level(v ) ≥ level(u). Baswana et al. showed
that this deletion takes time O (log(n)) if u � mate(v ), and time O (4i ) if u = mate(v ). At first
glance this seems to lead to an expected-worst-case guarantee:We know by theMatching Property
that v picked its mate at random from a set of at least 4i vertices, so if we could argue that for any
edge (u,v ) we always have Pr[mate(v ) = u] ≤ 1/4i , then the expected time to process any deletion
would be just O (log(n)).
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Unfortunately, in the original algorithm it is not the case that Pr[mate(v ) = u] ≤ 1/4i . To
see this, consider the following star graph with center v . In the sequence of updates to the edges
incident to a vertex v , in which v will be always at level i , every updated edge (u,v ) will have
level(u) < level(v ), and |N<i (v ) | will always be between 4i and 2 · 4i . The other vertices in the
sequence are v ′, x1,x2, . . . ,x4i−1 and y1,y2, . . . ,y4i−1. At the beginning, v has an edge to v ′ and
to all the xi . The update sequence repeats the following cyclical process for very many rounds:
insert an edge to every yi , delete the edge to every xi , insert an edge to every xi , delete the edge
to every yi , insert the edge to every yi , and so on. Note that the edge from v to v ′ is never deleted.
We claim that as we continue this process for a long time, Pr[mate(v ) = v ′] → 1. The reason is
that the algorithm of Baswana et al. only picks a new mate forv when the previous matching edge
was deleted. But the process repeatedly deletes all edges except (v,v ′), so it will continually pick
a new matching edge at random until it eventually picks (v,v ′), at which point v ′ will remain the
mate of v throughout the process. The original algorithm of Baswana et al. is thus not worst-case
expected: If the adversary starts with the above (long) sequence and then deletes (v,v ′), then this
deletion is near-guaranteed to be expensive because Pr[mate(v ) = v ′] ∼ 1.

One way to overcome this issue is to give v a small probability of resetting its matching edge
every time a neighbor ofv undergoes certain kinds of changes in the hierarchy; this would ensure
that even if (v,v ′) becomes the matching edge at some point during the process, it will not stick
forever. This is the approach we will take.

4.2.1 List of Changes to the Baswana et al. Algorithm. We now describe the changes that we
make the original algorithm of Baswana et al. [7]. Full pseudocode for our algorithm is given in
Algorithms 1 and 2.

• To simplify the algorithm, we remove the lists Ov , Ei
v , and the notation of ownership. (Note

that the original algorithm also could be changed in this way.) Instead, we keep for each
vertex v the following sets in a dynamic hash table and also maintain their respective sizes:
(a) For each level j > level(v ) the set N=j (v ), i.e., all edges incident to neighbors on level
j, and (b) one set containing the set N<level(v )+1 (v ), i.e., all edges incident to neighbors on
level level(v ) and below.
• Invariants 2–4 are exactly the same as above, Invariant 1 is no longer needed as we no longer
use the concept of ownership.
• Define C to be a sufficiently large constant used by the algorithm.
• Whenever the algorithm executes CheckForRise(v, i) for a vertex v with level(v ) < i , the
algorithm: (1) performs Rise(v, level(v ), i) with probability prise = C log(n)/4i . We call this
a probabilistic rise. (2) always performs Rise(v, level(v ), i) if ϕv (i ) increases from 4i − 1 to
4i ; we call this a threshold rise. (The original algorithm of Baswana et al. only performed
threshold rises. Our new version modifies line 13 in the pseudocode of Procedure process-
free-vertices of Reference [7], as well as the paragraph “Handling insertion of an edge” in
Section 4.2 in Reference [7].)
• Matching Property* If a vertex v at level i > −1 is (temporarily) unmatched and
|N<i (v ) | ≥ 4i/(32C log(n)), then v will pick a new mate uniformly at random from N<i (v ).
If |N<i (v ) | < 4i/(32C log(n)), then v falls to level i − 1 and is recursively processed from
there. Note that Matching Property* is identical to Matching Property above, but with
4i/(32C log(n)) instead of 4i . This leads to the following change in procedure FixFreeV-
ertex(v). Let i = level(v ): If |N<i (v ) | ≥ 4i/(32C log(n)), then the algorithm executes Ran-
domSettle(v, i), and if |N<i (v ) | < 4i/(32C log(n)), then it executes Fall(v, i). (Our version
modifies line 5 of Procedure falling of Reference [7].)

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 29. Publication date: October 2021.



29:26 A. Bernstein et al.

• Wewill keep a Boolean responsible(v ) for each vertexv , which is set to True if thematching
edge (v,w ) was chosen during RandomSettle(v, �). In this case, we say thatv is responsible

for the matched edge. If v is free, then responsible(v ) is False. Each matching edge will
have exactly one endpoint with responsible(v) set to True, and free vertices will always be
set to False.
• We make the following change for processing an adversarial insertion of edge (u,v ): The al-
gorithm executes ResetMatching(u) with probabilitypreset

level(u )
and it executes ResetMatch-

ing (v ) with probability preset
level(v )

, where preset
i = 1/4i+3. If responsible(u) = True, then Re-

setMatching(u) simply picks a new matching edge for u by removing edge (u,mate(u))
from the matching and then calling FixFreeVertex(u) and FixFreeVertex(mate(u)); if
responsible(u) is False, then ResetMatching(u) does nothing. (Our version modifies the
paragraph “Handling insertion of an edge” in Section 5.2 of Reference [7].)
• We also make the following change to procedure Fall(v, i): All edges of the set N<i (v ) are
traversed, not just the ones owned by v . Since |N<i+1 (v ) | = O (4i+1) (by Invariant 3), the
running time analysis of Reference [7] remains valid. Furthermore, recall that as a result of
v falling to level i−1,v now belongs to N=i−1 (u) for every neighboru ofv at level i−1. Each
such neighbor u then executes ResetMatching(u) with probability preset

level(u )
. (Our version

modifies lines 3 and 4 in Procedure falling of Reference [7].)

Pseudocode. We give the pseudocode for the whole modified algorithm in Algorithms 1 and 2.
The pseudocode shows how the basic procedures of the algorithm (e.g., Rise, Fall, FixFreeVertex,
ResetMatching) call each other.We note that in the pseudocode, whenever the algorithm changes
the level of a vertex in the hierarchy it also performs straightforward bookkeeping work that adjusts
all sets N<i (v ) and N=i (v ) to match the new hierarchy. For example, if a vertex falls from level i to
level i−1, then for every edge (v,w ) withw ∈ N<i+1 (v ), we do the following: if level(w ) = i , then
we transfer w from N<i+1 (v ) to N=i (v ); if level(w ) = i − 1, then we transfer w from N=i (w ) to
N<i (w ) and from N<i+1 (v ) to N<i (v ); and if level(w ) < i − 1, then we transferw from N=i (w ) to
N=i−1 (w ) and from N<i+1 (v ) to N<i (v ). Note that by Invariant 3 ϕi+1 (v ) < 4i+1 = O (4level(v ) ) and,
thus, the bookkeeping can be done in time O (4level(v ) ).

The matching maintained by the algorithm in the pseudocode is denoted byM. Note that for
technical reasons calls of FixFreeVertex(v) for vertices v in our algorithm are not executed im-
mediately. Instead, we maintain a global FIFO queue Q of vertices v for which we still need to
perform FixFreeVertex(v), implemented as a doubly-linked list. To avoid adding the same vertex
to the queue twice and enable us to a vertex in the queue at the end of the queue, we store at every
vertex a pointer to its position in the queue. If a vertex is not in the queue, then this pointer is set
to NIL.

4.3 Correctness of the Modified Algorithm

To show the correctness of the modified algorithm, we need to show that it fulfills
Invariants 2–4 and that Matching Property* holds. We will do so in this subsection. Termination
is guaranteed in the next section, which shows that the expected time to process an adversarial
edge insertion/deletion is finite.

Lemma 4.2. Invariants 2–4, and Matching Property* hold before and after the processing of each

edge update. Also, for every free vertex v , we have responsible(v ) is False, and for any matching

edge (v,w ), responsible(v ) is True if and only if (v,w ) was last chosen to enter the matching during

a call to RandomSettle(v, ·); as a consequence, exactly one of responsible(v ) and responsible(w )
is True.
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ALGORITHM 1: Fully Dynamic Maximal Matching Algorithm

1 prisei ← C log(n)/4i for some large constant C

2 preseti ← 1/4i+3 Initialize empty queue Q

3 Procedure Delete(u, v) // Process deletion of edge (u,v )
4 Perform bookkeeping work for deletion of (u,v )

5 if (u,v ) ∈ M then

6 Perform bookkeeping work for deletion of (u,v )

7 Set responsible(u) and responsible(v ) to False

8 Add u to end Q (or move u to end if it is already in Q)

9 Add v to end of Q (or move v to end if it is already in Q)

10 ProcessQueue()

11 Procedure Insert(u, v) // Process insertion of edge (u,v )
12 Perform bookkeeping work for insertion of (u,v )

13 foreach j > max {level(u), level(v )} in increasing order do

14 CheckForRise(v , j)

15 CheckForRise(u, j)

16 With probability preset
level(u )

do ResetMatching(u)

17 With probability preset
level(v )

do ResetMatching(v)

18 ProcessQueue()

19 Procedure ProcessQueue()

20 while Q is not empty do

21 Pop the first vertex v in Q

22 FixFreeVertex(v)

Proof. Responsibilities: The claims about responsible(v ) follow trivially from the pseudocode,
as we always explicitly maintain these properties.

Invariant 2: To show invariant 2, we need to show that (a) every vertex on a level larger than −1
is matched and (b) every vertex on level −1 is free. We show the claim by induction on the number
of updates. Initially the graph is empty and every vertex is unmatched and on level −1. Thus, the
claim holds. Assume now that the claim holds before an edge insertion or deletion. We will show
that it holds also after the edge insertion or deletion was processed.

We first show (a). A vertex v on level larger than −1 can violate Invariant 2 if (1) its matched
edge was deleted or (2) it became unmatched in procedure RandomSettle or Rise. In both cases
v is placed on the queue (if it is not already there). Then the current procedure completes and then
other calls to FixFreeVertex might be executed before the call FixFreeVertex(v) is started. Thus,
it is possible that the hierarchy has changed between the time whenv was placed on the queue and
the time when its execution starts. This is the reason why FixFreeVertex(v) first checks whether
v is still on a level larger than −1 and whether it is still unmatched. If this is not the case, then
v fulfills Invariant 2. If this is still the case, then the main body of FixFreeVertex(v) is executed,
which either matches v with RandomSettle(v ,level(v )) or it decreases the level of v (if v does
not have “enough” neighbors on levels below level(v )) and then places v on the queue. As the
update algorithm does not terminate until the queue is empty, it is guaranteed that all vertices
fulfill (a) at termination of the update.

To show (b) note that a vertex u is only matched in procedure RandomSettle and in this case
it needs to be on a level i such that either the vertex u itself or its newly matched partner v fulfill
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ALGORITHM 2: Fully Dynamic Maximal Matching Algorithm

23 Procedure ResetMatching(v) // Called only if level(v ) > −1
24 if responsible(v ) = False then

25 Exit Procedure ResetMatching

26 w ← mate(v )

27 M ←M \ {(v,w )} // Unmatch v and w

28 Set responsible(v ) to False // Note: responsible(w ) was already False, since v was

responsible for (v,w )

29 Add v to end of Q (or move v to end if it is already in Q)

30 Addw to end of Q (or movew to end if it is already in Q)

31 Procedure FixFreeVertex(v)
32 i ← level(v )

33 Compute N<i (v ) from N<i+1 (v )

34 if i > −1 and v is unmatched then

35 if |N<i (v ) | ≥ 4i/(32C log (n)) then

36 Compute N<i (v )

37 RandomSettle(v , i)

38 else

39 Fall(v , i)

40 Procedure RandomSettle(v , i) // Called only if |N<i (v ) | ≥ 4i/(32C log (n)
41 Pickw ∈ N<i (v ) uniformly at random

42 Rise (w, level(w ), i)

43 M ←M ∪ {(v,w )} // Match v and w

44 responsible(v ) ← True

45 Procedure Fall(v , i)
46 Compute N<i (v ) and N=i (v ) from N<i+1 (v )

47 Perform bookkeeping work to move v from level i to level i − 1

48 foreach w ∈ N<i (v ) do

49 CheckForRise(w , i) // v joins N<i (w )

50 foreach w ∈ N=i−1 (v ) do

51 With probability preseti−1 do ResetMatching(w)

52 Add v to end of Q (or move v to end if v is already in Q)

53 Procedure CheckForRise(v , i) // Called when |N<i (v ) | increases for i > level(v )
54 if |N<i (v ) | ≥ 4i then Rise(v , level(v ), i) // Threshold rise

55 else With probability prisei do Rise(v , level(v ), i) // Probabilistic rise

56 Procedure Rise(v , i , j)
57 if ∃(v,w ) ∈ M then // Check if v is matched with some neighbor w
58 M ←M \ {(v,w )} // Unmatch v and w

59 Set responsible(v ) and responsible(w ) to False

60 Addw to end of Q (or movew to end if it is already in Q)

61 Perform bookkeeping work to move v from level i to level j

62 Add v to end of Q (or move v to end if it is already in Q)
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the property that there is at least one neighbor in a level below level i . As −1 is the lowest level, it
follows that i > −1, which shows (b).

Invariant 3: For Invariant 3, we need to show for all j > level(v ) that |N<j (v ) | < 4j . We show
the claim by induction on the number of updates. The property certainly holds at the beginning
of the algorithm when there are no edges. Assume it was true before the current edge update.
We will show that it also holds after the current edge update. Let v be a vertex. The set N<j (v )
increases only if (i) a neighborw drops from a level at or above j to a level below j or (ii) an edge
incident to v is inserted. We show next that Invariant 3 holds in either case. In case (i), since each
execution of Fall decreases the level of a vertex only by one, the set N<j (v ) can only increase
if a neighbor w drops from j to j − 1. As a consequence, it follows that the sets N<k (v ) for all

k � j are unchanged, and, thus, |N<k (v ) | < 4k for all k � j, i.e., there is only one set N< · (v ) that
might violate the invariant, namely, N<j (v ) and in this case |N<j (v ) | = 4j . The fall ofw from level
j calls CheckForRise(v, j), which in turn immediately calls Rise(v ,level(v ),j) if |N<j (v ) | = 4j .

After v has moved up to level j, it holds that for all k > j that |N<k (v ) | < 4k as this was also
true before the rise. Thus, Invariant 3 holds again for v . In case (ii) in the insertion operation the
function CheckForRise(v, j) is called for every level j that is larger than the level of v . If for one
of these levels, let us call it i , |N<i (v ) | ≥ 4i , then v is moved up to the highest level j for which
|N<j (v ) | ≥ 4j . Thus, Invariant 3 is guaranteed.

Invariant 4: For Invariant 4, we have to show that the endpoints of every matched edge are at
the same level. Note that two verticesv andw only become matched in procedure RandomSettle
and right before that the vertex (out of the two) on the lower level is “pulled up” to the level of the
higher vertex. Thus, both are at the same level when they are matched.

Matching Property*: FinallyMatching Property* holds for every vertexv for the following reason:
As soon as a vertex becomes unmatched, v is placed on the queue. Whenever this call is executed,
it checks whether |N<i (v ) | ≥ 4i/(32C log(n)), where i = level(v ), is fulfilled and if so, it calls
RandomSettle(v ,i), which in turn picks a random neighbor of N<i (v ) and matches v with it. If,
however, |N<i (v ) | < 4i/(32C log(n)), then FixFreeVertex(v) calls the procedure Fall(v ,i). The
procedure Fall checks again whether it still holds that |N<i (v ) | < 4i/(32C log(n)), and if so v is
moved one level down. Since in this case the vertex is still unmatched, Fall(v ,i) also insertsv into
the queue, which later on results in a call to FixFreeVertex(v) executed on v’s new level i − 1.
Thus,v continues to fall until it either reaches a level i where |N<i (v ) | ≥ 4i/(32C log(n)) (in which
case it is matched there) or until it reaches level −1, in which case |N<i (v ) | = 0 < 1. Hence, in
either case Matching Property* holds. �

Remark 4.3. We later prove a stronger version of Lemma 4.2, which shows that Invariant 4 and
relaxed version of Invariants 3 hold not just at the end of processing an adversarial update, but
also at all points in the middle of processing an update. See Lemma 4.11 for more details.

4.4 Analysis of the Modified Algorithm

Note that each procedure used by the algorithm (e.g., Fall or FixFreeVertex) incurs two kinds
of costs:

• Bookkeeping work: As discussed above, if the procedure changes the level of a vertex,
then the algorithm must do bookkeeping work to maintain the various sets N<level(v )+1 (v )
and N=j (v ) data structures.
• Recursive work: A change in the hierarchy could lead other vertices to violate one of the
invariants, and so lead to the execution of further procedures.

We start with the easier task of analyzing the bookkeepingwork. The Fall, RandomSettle, and
FixFreeVertex procedures all require O (4i ) time to process a vertex v at level i: this is because
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the bookkeeping work only requires us to look at N<i+1 (v ), which by Invariant 3 contains at most
O (4i+1) edges. We now analyze the bookkeeping required for procedure Rise:

Lemma 4.4. Rise(v, i, j) requires O (4j ) bookkeeping work.

Proof. Although they do not state it as such, this lemma holds for the original Baswana et al.
algorithm as well. Whenv rises from level i to level j, the algorithm performs bookkeeping of two
sorts. First, every neighbor u of v whose level is less than j must update N=j (v ) and either N=i (v ),
if level(u) < i , or N<level(u )+1 (u) if i ≤ level(u) < j. By Invariant 3 there are at most O (4j )
neighbors to update. Second, every neighbor u of v in N<j (v ) must execute Decrement-ϕ(u,k)
for every max {i, level(u)} < k ≤ j. The total cost is upper bounded by

O (N<j (v ) · (j − i ) +
j−1∑

k=i+1

|N=k (v ) |), (6)

where N=k (v ) is the number of neighbors ofv at level k . But note that for k > i , |N=k (v ) | < 4k + 1,
since otherwise v would have violated Invariant 3 for level k even before the procedure call that
led to Rise(v, i, j). Similarly, |N<i (v ) | < 4i+1 + 1. Plugging these bounds into Equation (6) yields

j−1∑
k=i

O (4k ) = O (4j ). �

Before analyzing the recursive work, we bound the probability that CheckForRise(v, i) calls
Rise. The chance of a probabilistic rise is always the same prise = Θ(log(n)/4i ). We now bound
threshold-rises. For this, we need to introduce the notion of a hierarchy. When we refer to the
(graph) hierarchy H (t ) at time t , we mean the current graph G, the level assigned to each vertex
at time t , as well as the set of edges in the matching at time t .

The sequence of oblivious updates predefined by the adversary gives some probability distribu-
tion on the point in time (in the sequence of updates) to process the first call to CheckForRise,
the second call to CheckForRise, the third one, and so on.

Lemma 4.5. For any k , it holds with high probability that the kth call to CheckForRise does not
lead to a threshold rise.

Proof. Let Bv,i be the bad event that the kth call to CheckForRise increments ϕv (i ) from 4i −1
to 4i . It is enough to show that ¬Bv,i occurs with high probability; we can then union bound over
all pairs (v, i ). Let tk be the time at which this kth call to CheckForRise occurs, and note that at
the beginning of time tk , we have level(v ) < i , since, otherwise, we would have ϕv (i ) = 0 and
no threshold rise would occur. Now, let t be the earliest point in time such that level(v ) < i in
the entire time interval from t to tk , i.e., t is either the start of the algorithm or a point in time
when v falls below level i . It is not hard to see that because Matching Property* only allows a
vertex to fall to below level i when |N<i (v ) | < 4i/(32C log(n)), it must be the case that at time
t , we have ϕv (i ) < 4i/(32C log(n)) < 4i/2. (There is also the fringe case t = 0; in this case
ϕv (i ) = 0 at time t , because in the fully dynamic setting one can assume w.l.o.g. that the graph
starts empty.) Thus, there must have been at least 4i/2 calls to CheckForRise(v, i) in time interval
(t , tk ), and by the assumption that level(v ) < i in this entire time interval, none of these 4i/2 calls
to CheckForRise(v, i) led to a probabilistic rise. But each probabilistic rise occurs independently
with probability C log(n)/4i (for a sufficiently large C), so a simple Chernoff bound shows us that
with high probability this event does not occur. �

We now turn to bounding the recursive work incurred by a procedure. Let us first define this
more formally. Bringing attention to the pseudocode, we note that each procedure is either directly
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called by some previous procedure, or, in the case of FixFreeVertex(v), it is indirectly called by
the procedure that added v to the queue; we say that the called procedure is caused by the calling
procedure and, in case of FixFreeVertex(v), we say that it is caused by the last procedure that
affected v’s position on the queue, either by placing it on the queue or by moving it to the end.
For example, a procedure Fall leads to many calls to CheckForRise, and so can potentially lead
to many calls to procedure Rise. We can thus construct a causation tree for each adversarial edge
update, whose root is the procedure handling the adversarial edge update and where the parent
procedure causes all the children procedure calls. We then say that the total work of a procedure
is the bookkeeping work of that procedure, plus (recursively) the total work of all of its children
in the causation tree; equivalently, the total work of a procedure is the total bookkeeping work
required to process all of its descendants in the causation tree.

We now show that for any vertex v at level i = level(v ), the expected total work of any call
to Fall(v, i), RandomSettle(v, i), or FixFreeVertex(v) is at mostO (4i ). The running time of the
remaining procedures ResetMatching, CheckForRise, and Rise can then be easily analyzed in
terms of the analysis of the earlier three procedures. Note that the time to process any procedure
at time t depends on two things: the hierarchy at time t and the random coin flips made after time
t . Thus, we can define E

fall
i (v,H (t )) to be the expected total work to process Fall(v, i) given that

the state of the current hierarchy isH (t ), where the expectation is taken over all coin flips made
after time t . (We assume that in the hierarchyH (t ) vertex v has level i , since otherwise Fall(v, i)
is not a valid procedure call.) We define E

settle
i (v,H (t )) and E

free
i (v,H (t )) analogously. We say

that some hierarchyH (t ) is valid if it satisfies all of the hierarchy invariants above; note that our
dynamic algorithm always maintains a valid hierarchy.

We are now ready to introduce our key notation. We let E
fall
i be the maximum of all E

fall
j (v,H ),

where themaximum is taken over all levels j ≤ i , all verticesv , and all valid hierarchiesH in which
v has level j. Define E

settle
i and E

free
i accordingly. Define E

max
i = max{Efall

i ,E
settle
i ,Efree

i }. Note that
because E

max
i takes the maximum over all valid hierarchies, it is an upper bound on the expected

time to process any update at level i . We now prove a recursive formula for bounding E
max
i .

Lemma 4.6. E
max
i ≤ O (4i ) + 3E

max
i−1

Proof. We first show that E
settle
i ≤ O (4i ) + E

max
i−1 . RandomSettle(v, i) picks some random mate

v ′ for v with level(v ′) < i , performs O (4i ) bookkeeping work to move v ′ to level i (Lemma 4.4),
and then causes a single other procedure call, namely, FixFreeVertex(old-mate(v ′)); this caused
procedure call occurs at some level less than i , so the expected total work can be upper bounded
by E

max
i−1 .

Now consider FixFreeVertex(v), where i = level(v ). Thework of this procedure is to construct
N<i+1 (v ) from N<i+1 (v ) isO (4i ). The algorithm then causes one other procedure call: either Ran-
domSettle(v, i) or Fall(v, i), depending on the size of N<i (v ). We have already bounded E

settle
i ,

so all that remains is to bound E
fall
i .

Recall that the algorithm only executes Fall(v, i) when N<i (v ) < 4i/(32C log(n)). The proce-
dure Fall requires the standard O (N<i+1 (v )) = O (4i ) bookkeeping work, and it also causes a call
to FixFreeVertex(v) at level i − 1, which has E

max
i−1 expected total work. Fall(v, i) can also lead

to additional updates at level i − 1 due to ResetMatching: See Line 51 of Algorithm 2. Finally,
unlike the other procedures, Fall(v, i) can also cause additional procedure calls at level i . This
can happen because each neighbor u of v at level ≤ i − 1 executes CheckForRise(u, i) (line 49)
(note that it is not possible that a neighbor calls a CheckForRise(u, j) for j > i) . This has a small
chance of resulting in Rise(u, level(u), i) (either through a probabilistic rise or through a thresh-
old rise—see Lemma 4.5), followed by FixFreeVertex(u), where level(u) = i , and FixFreeVer-
tex(old-mate(u)), where level(old-mate(u)) ≤ i − 1.
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Let X reset be the random variable that stands for the number of ResetMatching(u) triggered
by the fall of v , and note that every such vertex is at level i − 1. Let X rise be the number of
Rise(u, level(u), i) triggered by the fall. Note that E[X reset] ≤ 1/4, because v is at level i before
the fall, so by Invariant 3, v has at most 4i+1 neighbors at level i − 1, and each neighbor has a
preset

i−1 = 1/4i−1+3 probability of being reset. We now argue that E[X rise] ≤ 1/16. By Matching Prop-

erty*, v has at most 4i/(32C log(n)) neighbors u at lower level before the fall, each of which exe-
cutes CheckForRise(u, i). Our modification to the original algorithm ensures that this increment
has a prise = C log(n)/4i chance of inducing a probabilistic-rise, and by Lemma 4.5 the probability
of a threshold-rise is negligible (Lemma 4.5), so for simplicity, we upper bound it by C log(n)/4i .
Thus: E[X rise] = [4i/(16C log(n))][2C log(n)/4i ] = 1/16.

We now consider the total work to process a fall. First, the fall automatically triggers O (4i )
bookkeeping work plus it causes a procedure call at level i − 1; by definition, the expected total
work to process this additional procedure call can be upper bounded with E

max
i−1 . We also have

to do additional work for each call to ResetMatching or Rise. Each reset causes two additional
procedure calls at level i − 1, whose running time we upper-bound by 2E

max
i (using the fact that

E
max
i−1 ≤ E

max
i ). Each Rise procedure requiresO (4i ) bookkeeping work and causes a new call at level

i , as well as a call at another level less than i (due to the old mate w becoming free). We upper-
bound the time to execute these two calls at level i or less again by 2E

max
i . Note that this upper

bound allows to achieve a crucial probabilistic independence: Although the value of X rise might
be correlated with the time to process these calls to Rise (both depend on the current hierarchy),
the value of X rise is completely independent from E

max
i , since the latter takes the maximum over all

valid hierarchies and so does not depend on the current hierarchy. Now, recall that E[X reset] ≤ 1/4
and E[X rise] ≤ 1/16. Putting it all together, we can write a recursive formula for E

max
i .

E
max
i ≤ O (4i ) + E

max
i−1 + (2E

max
i +O (4i ))

∞∑
k=1

kPr[X reset + X rise = k]

≤ O (4i ) + E
max
i−1 + (2E

max
i +O (4i )) (E[X rise + X reset])

= O (4i ) + E
max
i−1 + (2E

max
i +O (4i ))

5

16
< O (4i ) + E

max
i−1 +

5

8
E
max
i . �

Bringing 5
8E

max
i to the left side of the inequality and multiplying it by 8/3 it leads to the statement

of the lemma.

Corollary 4.7. The expected total work for a call to FixFreeVertex, Fall, RandomSettle, Rise,

or ResetMatching or CheckForRise at level i isO (4i ), where Rise(v, i ′, i) is said to be a procedure

call at level i .

Proof. Solving the recurrence relation in Lemma 4.6 yields E
max
i = O (4i ), which gives us the

desired bound for FixFreeVertex, Fall, and RandomSettle. Procedure ResetMatching causes
two calls to FixFreeVertex, so the sameO (4i ) bound applies. Procedure Rise requiresO (4i ) book-
keeping work (Lemma 4.4), and then causes at most two other calls to FixFreeVertex, each of
which we know has expected total workO (4i ). Procedure CheckForRise doesO (4i ) bookkeeping
work and then causes at most one call to Procedure Rise at level i . Thus, the same O (4i ) bound
applies. �

4.5 Bounding the Probability that an Edge Appears in the Matching

Now thatwe have analyzed the time to process the individual procedure calls, we turn our attention
to the time required to process an adversarial edge insertion/deletion. Note that the most direct
reason the algorithm might have to perform a procedure call at level i is the deletion of matching
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edge (v,mate(v )) with v and mate(v ) at level i . Our modifications to the algorithm allow us to
do without the charging argument of Baswana et al., and instead directly bound the probability
that a deleted edge (x ,y) is a matching edge. Note that for (x ,y) to be a matching edge, it must
have been chosen by a RandomSettle(x , i) or RandomSettle(y, i) for some level i . There are thus
2(l0 + 1) = O (2 log(n)) possible procedure calls that could have created this matching edge: we
bound the probability of each separately.

Lemma 4.8. Let (x ,y) be any edge at any time t∗ during the update sequence, and let 0 ≤ � ≤⌊
log4 (n)

⌋
be any level in the hierarchy. Then: Pr[at time t∗, (x ,y) is a matching edge at level � and

responsible(x ) is True] = O (log3 (n)/4� ), where the probability is over all random choices made by

the algorithm. (Note that this is equivalent to the probability that (x ,y) was chosen by RandomSet-
tle(x , �).)

Corollary 4.9. Let (x ,y) be any edge at any time t∗ during the update sequence, and let 0 ≤
� ≤ ⌊

log4 (n)
⌋

be any level in the hierarchy. Then: Pr[at time t∗, (x ,y) is a matching edge at level �]

= O (log3 (n)/4� ), where the probability is over all random choices made by the algorithm.

Proof of Corollary 4.9. For any edge (x ,y) at level � that is in the matching, we have that
either responsible(x ) or responsible(y) is True. We can thus apply Lemma 4.8 to each of those
two cases and union bound the two resulting probabilities. �

The proof of this lemma is very involved, and the rest of this subsection is devoted to proving
it. Let us first briefly discuss the naive approach and why it fails to work. Let t be the last time
before t∗ that RandomSettle(x ,�) is called, and note that assuming responsible(x ) is True at
time t∗ the matching edge is precisely the matching edge picked at time t . Matching Property*
guarantees that at any given call to RandomSettle(x ,�) only has a O (log(n)/4� ) probability of
picking the specific edge (x ,y). Thus, it is tempting to (falsely) argue that at time t the probability
that RandomSettle(x ,�) picked edge (x ,y) is at most O (log(n)/4� ). But this might not be true,
because although RandomSettle(x ,�) picks an edge uniformly at random from many options, the
fact that we condition on t being the last random settle before t∗ means that we condition on
events after time t , which can greatly skew the distribution at time t . Consider, for illustration,
the update sequence in the star graph at the beginning of Section 4.2: The sequence repeatedly
inserts and deletes all edges other than (v,v ′), so any edge other than (v,v ′) is unlikely to be the
last matching edge, since it will soon be deleted. To overcome this issue, we now present a more
complex analysis that (loosely speaking) bounds the total number of times RandomSettle(x ,�) is
called in some critical time period.

One of the main difficulties of the proof is that we have to be very careful with the assumption
of obliviousness. The model assumes that adversarial updates are oblivious to our hierarchy, so the
specificmate thatv chooses in some RandomSettle(v,k) will not affect future adversarial updates.
But the internal changes made by the algorithm might not be oblivious: If v chooses the specific
edge (v,w ), then this will change the level of w , which will lead to changes to the neighbors of
w , which might indirectly increase the probability of some ResetMatching(x ), which will lead to
the removal of (x ,y) from the matching. Thus, internal updates are adaptive to internal random
choices.

To overcome this adaptivity issue, we will show that the higher levels of the hierarchy are in
fact oblivious to random choices made by lower levels of the hierarchy.

Comparison to the analysis of Baswana et al. Our proof of Lemma 4.8 consists of two main parts.
The first part, which includes Sections 4.5.1 and 4.5.2, establishes that higher levels of the hierar-
chy are independent from random choices made on lower levels. This part is very similar to an
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analogous proof of independence in Baswana et al. [7] (see Lemma 4.13, Theorem 4.2, Lemma 4.17),
although we use different notation that is more amenable to the second part of the proof.

In the second part of the proof, which includes Sections 4.5.3 and 4.5.4, we show that this inde-
pendence allows us to prove Lemma 4.8. This part is entirely new to our article, because the claim
does not hold for the original algorithm of Baswana et al. [7]. We show how our modifications
of Reference [7], and especially our introduction of the ResetMatching procedure, allows us to
replace the fundamentally amortized guarantees of Reference [7] with the universal upper bound
on the probability in Lemma 4.8.

4.5.1 Hierarchy Changes and Invariants during the Processing. So far, we have only concerned
ourselves with the state of the hierarchy after it completes processing some adversarial update. But
the algorithm can make many changes to the hierarchy while processing only a single adversarial
update. In this section, we will need notation to analyze the hierarchy in the middle of processing.

Definition 4.10. We refer to a change in the hierarchy as any of the following operations. All line
numbers relate to Algorithm 1 or 2.

(1) Removing an edge (x ,y) from the matching in Line 27 or 58;
(2) Adding an edge (x ,y) to the matching in Line 43;
(3) Moving a vertex from some level i to some level j > i , and the associated bookkeeping

changes in Line 61 in Rise (·, i, j );
(4) Moving a vertex from some level i to level i − 1, and the associated bookkeeping changes in

Line 47 in Fall (·, i);
(5) Performing an adversarial insertion of edge (x ,y) in Line 12;
(6) Performing an adversarial deletion of edge (x ,y) in Line 6.

Given any execution of our dynamic algorithm let σ1,σ2, . . . be the sequence of all hierarchy-
changes made by the algorithm.

In Lemma 4.2, we showed that right after the algorithm has completed the processing of some
adversarial insertion/deletion, the hierarchy satisfies Invariants 2–4. Note, however, that if we look
at the hierarchy right after some change σi , then Invariant 2 might be violated, since Algorithm 1
might not yet have terminated, so there might still be free vertices that need fixing. Also Invariant
3 needs to be (slightly) relaxed to Invariant 3’:

• Invariant 3’: For each vertex v and for all j > level(v ), ϕv (j ) ≤ 4j holds true.

Thus, we now show that Invariants 3’ and 4 are true in every instantiation of the hierarchy, i.e., at
any point in the algorithm.

Lemma 4.11 (Generalized Invariants). LetH be the hierarchy right after some change σi . Then,

H satisfies Invariants 3’ and 4 above. (Note that Matching Property* certainly continues to hold,

because it corresponds to the behavior of the algorithm itself, not to any hierarchy invariant.)

Proof. For Invariant 4, the only time we insert an edge (v,w ) into the matching is in Line 43 of
RandomSettle and Line 42 ensures that whenwe do so, we have level(v ) = level(w ). Whenever
a vertex falls in level it is a free vertex, so Invariant 4 is trivially preserved. Finally, a vertex only
rises in level inside the Rise operation, and Line 58 ensures that we only perform the actual rise
on a free vertex.

The proof for Invariant 3’ is much more involved, though it is conceptually straightforward.
Recall that Invariant 3’ states that ϕv (i ) ≤ 4i for all vertices v and level i; see the beginning of
Section 4.2 for the definition of ϕv (i ).
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Define a hierarchy change to be risky if it increases ϕv (i ) for some pairv, i . Since ϕv (i ) can only
increase when |N<i (v ) | increases or when v drops from level i to i − 1, it is easy to check that our
algorithm only performs two types of risky hierarchy changes: (A) an adversarial insertion of edge
(u,v ) and (B) the falling of a vertex from some level j to level j − 1. These changes to the hierarchy
are made in Line 12 of Algorithm 1 and Line 47 of Algorithm 2, respectively.

Given a vertex v and a level i , we say that pair v, i is violating if ϕv (i ) ≥ 4i . Note that only a
risky operation can cause a pair to become violating. We now prove Invariant 3 via induction on
the number of risky hierarchy changes.

Induction Hypothesis: Consider any risky hierarchy change σ . Then, right before σ , all pairs v, i
are non-violating; that is, we have ϕv (i ) < 4i for every vertex v and level i .

Induction Basis: The proof of the base case is trivial: When the algorithm begins, we haveϕv (i ) =
0 for every pair v, i , and this continues to hold before the first risky change, because non-risky
changes cannot increase any ϕv (i ).

Induction Step: Assume that the induction hypothesis holds for some risky change σ . We now
show that it also holds for the next risky change σ ′. We consider two cases:

Case 1: σ corresponds to Line 47 in Procedure Fall (v, i). Note that the algorithm performs
no risky hierarchy changes between executing Lines 47 and 52 (including all the sub-routines
called in between). Thus, it is sufficient to show that by the time the algorithms finish Procedure
Fall (v, i) in Line 52 there are no violating pairs; this will then continue to hold until the next
risky operation σ ′, because the non-risky operations in between cannot create new violating pairs
or cause already fixed pair to become violating again. Note that because all the hierarchy changes
made during Fall (v, i) (e.g., the rising of vertices) are non-risky, it is in fact enough to show that
every pairw, j is or becomes non-violating at some point between Lines 47 and 52.

The effect of the hierarchy change σ that causes v to fall from level i to level i − 1 is to increase
ϕw (i ) = |N<i (w ) | by 1 for every neighbor w that is in N<i (v ). By the induction hypothesis, we
then have ϕw (i ) ≤ 4i for all such pairs, while all other pairs remain non-violating. Now, for every
w ∈ N<i (v ) the Fall (v, i) operation executes CheckForRise (w, i) (Line 49). When the algorithm
executes CheckForRise (w, i), ifϕw (i ) < 4i , thenwe are done, because as argued above it is enough
to show that w, i is non-violating at some point during the execution of Fall (v, i). If ϕw (i ) = 4i ,
then the algorithm raisesw to level i (threshold rise in CheckForRise (w, i)), so after the rise, we
have level(w ) = i and ϕw (i ) = 0 < 4i , as desired.

Case 2: σ corresponds to Line 12 Procedure Insert (u,v). Note that the algorithm performs
no risky hierarchy changes between Line 12 and Line 16 (including subroutines called by lines in
between). Thus, analogously to the previous case, it is enough to show that every pair w, j is or
becomes non-violating at some point between the execution of Line 12 and Line 16. The effect of the
hierarchy change σ that inserts edge (u,v ) is to increase ϕu (j ) = |N<j (u) | and ϕv (j ) = |N<j (v ) | for
every j > max{level(u), level(v )}. We focus on the pairs u, j, since the pairs v, j are analogous.
For every such pair u, j the algorithm executes CheckForRise (u, j) (Line 14). As in Case 1, if
ϕu (j ) < 4j when the algorithm executes CheckForRise (u, j), then pair u, j is non-violating and
we are done. If ϕu (j ) = 4j , then again as in Case 1, the algorithm raises u to level j, which leads to
ϕu (j ) = 0 < 4j , so j,u becomes non-violating. �

4.5.2 Upper and Lower Hierarchy and Hierarchical Independence. We now formally separate
changes to the upper and lower parts of the hierarchy and then show the independence of the
upper hierarchy from the lower hierarchy.

Definition 4.12. We say that a hierarchy change σ is above level � if one of the following holds:

(1) The change removes/adds an edge (u,v ) from/to the matching for which level(u) > �.
(Recall that level(u) = level(v ) by Invariant 4.)
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(2) The change raises a vertex from level i to level j > i with j > � (it does not matter if i > �).
(3) The change moves a vertex from level i to level i − 1 with i > �.
(4) The change is an adversarial insertion/deletion of edge (x ,y) (regardless of level(x ) and

level(y)).

For any execution of the dynamic algorithm, let S = σ1,σ2, . . . be the sequence of changes made
to the hierarchy. Let S� = σ �

1 ,σ
�
2 , . . . be the subsequence of S consisting of all changes at level > �:

That is, S� contains all σi above level �, in the same order as in S .

To prove independence of the hierarchy above level �, we will think of the algorithm as using
two different random bit-streams.

Defining higher and lower random bits: LetA be the sequence of updates made by the adversary:
Since the adversary is oblivious, we can fix this sequence in advance. Let B be the entire sequence
of random bits used by the algorithm. If the algorithm is given all of (A,B) as input, then it will
always produce the same hierarchy.

Now, let us conceptualize the same algorithm a bit differently. Let � be the fixed level in the
statement of Lemma 4.8. We will have two sequences of random bits: B>� and B≤� . Whenever the
algorithm runs RandomSettle(v,k) for anyv ∈ V , if k > �, then it chooses the new random mate
for v using the bits in B>� ; otherwise, it uses the bits in B≤� . Similarly, whenever the algorithm
executes Rise (v, level(v ),k) with probability prise

k
, the random bits for prise

k
are taken from B>� if

k > �, and from B≤� otherwise. Finally, whenever the algorithm executes ResetMatching(v) with
probability preset

level(v )
, the random bits for preset

level(v )
are taken from B>� if level(v ) > � and from B≤�

otherwise.
Note that the execution of the algorithm is completely determined by the triplet (A,B>�,B≤� ).

Previously, we only fixed the update sequence A and assumed the bits in B>�,B≤� were chosen
randomly. We now modify this as follows: Given any fixed sequence of bits B+, we say that the

algorithm run with B>� set to B+ if the bits from B>� are always taken from B+, but the bits from B≤�
are chosen randomly. Then, when we speak of probabilities in such an execution, the probability
is only over the bits in B≤� .

The lemma and its corollary below formally states the independence of the hierarchy above
level �. Intuitively, the lemma says the following: Fix a sequence of adversarial updates A and
a sequence of bits B+, and say that we run our dynamic matching algorithm with B>� set to B+.
Then, the sequence S� of changes above � is deterministically determined by B+; in other words,
the sequence will always be the same regardless of the random bits in B≤� . There is one caveat:
When a vertex v rises from level i to j > � (change type 2 in Definition 4.12), although v and j are
always deterministically determined by B+, i may depend on B≤� if i ≤ �.

Lemma 4.13 (Hierarchical Independence). Let B1,B2 be any two bit sequences for B≤� . Let

σ �
1 , . . . be the sequence of changes above � performed by the execution that uses A,B+,B1 and let

τ �1 , . . . be the sequence of changes above � performed by the execution that uses A,B+,B2. Then,

every σ �
k

is equivalent to τ �
k

in the following sense:

• If σ �
k

moves vertex v from level i to level j > i (with j > �), then τ �
k

moves the same vertex v
from level i ′ to the same level j > i ′; moreover, i � i ′ is only possible if i ≤ � and i ′ ≤ �.
• If σ �

k
is any other type of change above �, then σ �

k
is identical to τ �

k
.

Proof. Although it is somewhat involved, conceptually speaking, the proof is quite simple: We
go through the possible operations of the algorithm and show by induction that because both algo-
rithms use the same bits B+ for B>� , the two executions always have the same above-� hierarchy.
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Intuitively, the induction hypothesis is that all times, both executions have the same above-�
hierarchy as well as the same queueQ of free vertices above level � (see Algorithm 1). The issue is
that when we say “at all times,” this does not refer to execution time, since one algorithm may be
ahead of the other. Instead, as in the lemma statement, we formalize the intuition by talking about
the sequence of above-� changes and of changes to Q .

Defining Relevant Operations: Let Ai be the execution of the algorithm running onA,B+,Bi for
i = 1, 2. Consider the following sequence of operations γ1,γ2, . . . consisting of (i) above-� changes
and (ii) changes (addition/removal/move-to-end) to the queue formed by this execution.Whenever
the execution makes an above-� hierarchy-change, we add this change to the end of the sequence.
Similarly, whenever the execution adds or removes a vertex v to queue Q or moves v to end of Q
with level(v ) > �, we add this change to the end of the sequence. We refer to the γi as relevant

operations. LetA2 be the execution running onA,B+,B2 and define relevant operations δ1,δ2, . . .
analogously for this execution. We say that γi = δi if one of the following holds:

• Both γi and δi add/remove/move-to-end the same vertex v in Q and v has the same level
when γi is performed in execution A1 as when δi is performed in execution A2.
• γi and δi correspond to the same non-rise hierarchy change.
• Both γi and δi raise the same vertex v to the same level above �.

Claim 4.14 (Main Claim). For every i , we have γi = δi .

It is easy to verify that themain claim proves Lemma 4.13, as it implies that the above-� hierarchy
and the above-� free vertices evolve in the same way, which is strictly stronger than the lemma
statement, which only concerns the hierarchy changes. We prove the claim by induction.

Induction Hypothesis: For any i , for all j ≤ i it holds that γj = δ j and that both executionsA1 and
A2 have used the same number of bits from B+.

Induction Bases: The base case is trivially true, since the graph starts empty, so γ1 and δ1 both
correspond to the same adversarial insertion.

Induction Step: To show the inductive step, we will consider somewhat larger chunks of the
algorithm. We note that all relevant operations performed by the algorithm—whether hierarchy
changes or changes to Q—occur in one of three scopes in Algorithm 1.

Definition 4.15. Define the delete-body of Algorithm 1 to consist of the execution of all lines in
Procedure Delete(u,v) except ProcessQueue() in Line 10, including all subroutines called during
the execution of these lines. Define the insert-body to consist of the execution of all of Procedure
Insert(u,v) except ProcessQueue() in Line 18, including all subroutines called during the execu-
tion of these lines. Finally, define the fix-body to contain Lines 21–22, including all subroutines
called during the execution of these lines. We say that the fix-body is above level � if the vertex v
popped from Q has level(v ) > �.

Definition 4.16. We say that a relevant operationγi orδi is primary if it is an adversarial insertion,
an adversarial deletion, or the removal of a vertex v from Q with level(v ) > � (this last change
always occurs in Line 21). (Note that only a removal from Q counts as a primary change: not an
insertion or a move in Q .)

Observation 4.17. All relevant operations performed by the algorithm occur within either an

insert-body, a delete-body, or a fix-body above level �. Moreover, each of these three bodies always

begins with a primary change γi , and each primary change initiates the corresponding body of the

algorithm.

By the observation above, the proof of the Main Claim consists of three possible cases summa-
rized in the following claim:
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Claim 4.18. Assume that γk = δk is an adversarial deletion or insertion of some edge (u,v ), that
the main claim holds for every i ≤ k , and that both executions A1 and A2 have used the same
number of bits from B+ up to operation γk , respectively, δk . Let γq be the next primary change
performed by executionA1. Then γr = δr for each r ∈ [k,q]; that is, the main claim holds for every
i ≤ q, and that and that both executions A1 and A2 have use the same number of bits from B+

between operation up to operation γq , respectively, δq .
The same holds if γk = δk pops some vertex v from Q with level(v ) > �.

It is easy to check that the claim above proves the Main Claim. We first start with a definition
and a couple observations.

Definition 4.19. For any j, let H 1
j and Q1

j be the above-� hierarchy of execution A1 and the

(ordered) queue of above-� vertices after γ1, . . . ,γj have been performed. Define H 2
j and Q2

j

analogously.

Observation 4.20. Say that the main claim holds for all i ≤ k . Then, H 1
k
= H 2

k
and Q1

k
= Q2

k
.

Moreover, if a vertex v has level(v ) > � in H 1
k
= H 2

k
, then the bit responsible(v ) is the same in

both hierarchies.

Observation 4.21. Consider any fix-body that is not above level �. Then, during the execution of

these lines, no relevant changes can occur. This observation can be verified by looking at the flow of

our algorithm, and observing that fixing a vertex at level ≤ � can only make hierarchy changes at

level ≤ � and add/move vertices to Q with level ≤ �.

Proof of Claim 4.18. (A) We first show the claim for a deletion, as this is the simplest case.
Note that by Observation 4.20, whether or not (u,v ) ∈ M will be the same in both executions.
Thus, either both executions add u and v to the end of Q , or they make no relevant changes, so
both executions make the same relevant changes in the delete-body, and so continue to have the
same above-� hierarchy and queue.

Now, if the above-� queue is empty at the end of this delete-body, then by Observation 4.21, the
next primary change in both executions will be an adversarial insertion/deletion from A, which
is clearly the same in both executions. Else, sinceQ is the same in both executions after the delete-
body, ifv is the first vertex inQ with level(v ) > �, then the popping ofv will be the next primary
operation in both executions. Either way, the next primary operation γq = δq is the same in both
executions and neither uses any bits of B+.

(B) We next show the claim for the case of an insertion. In Line 13 the algorithm computes j =
max{level(u), level(v )}. Note that, since the above-� hierarchies are the same in both executions
when the insert-body begins (Observation 4.20), if j > �, then j will be the same in both executions.
However, if j ≤ �, then no relevant operations will occur in Lines 13–15 and we only have to
analyze the ResetMatching operations in Line 16 and Line 17 (see below). Thus, we can assume
that j > � and that both executions now execute lines CheckForRise(v, j) and CheckForRise(u, j).
We now focus on CheckForRise(v, j); the argument for u is identical.

The first line of CheckForRise(v, j) checks if N<j (v ) ≥ 4j : Since the above-� hierarchies of
A1 and A2 are the same and since j > �, it is follows that N<j (v ) is the same in both execu-
tions. Thus, either both executions will perform the same threshold rise or neither will. The next
line of CheckForRise(v, j) performs a rise with probability prise

i . Since j > �, the bits used to de-
termine this probabilistic rise come from B+, and so are the same in both executions. Note that
both executions access the same bit from B+, as by the induction hypothesis both executions have
looked at the same bits in B+ so far. Thus, again, either both operations perform the same rise and
the corresponding relevant changes or neither do. They also consume the same number of bits
from B+.
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Afterwards they will use the same bits in B+ to decide whether to execute a ResetMatching(u)
and/or ResetMatching(v). Within a ResetMatching(w) exactly the same operations will be ex-
ecuted as the same vertices are responsible for an edge (Observation 4.20).

Thus, the above-� hierarchy and queue continue to be the same in both executions throughout
the insert-body and the number of bits of B+ that are used is identical. By the same argument as
in (A), the next primary operation will also be the same.

(C) Finally, we show the claim if δk pops some vertex v from Q with level(v ) > �. In this case,
the algorithm executes FixFreeVertex(v) in both executions. Recall that we assume in the lemma
statement that i = level(v ) > �. Thus, since the above-� hierarchies are the same at the beginning
of the fix-body (Observation 4.20), we know that when we compute sets N<i (v ) and N<i+1 (v ) in
Line 33 of Algorithm 2, each set will be the same in both executions. Thus, either they will both
execute the If statement of Line 35 or they will both execute the Else statement of Line 39.

If they both execute the If statement, then they both execute RandomSettle(v, i). Note that the
random matew picked by this RandomSettle will be the same in both executions because i > �,
sow is picked according to bits in B+, which are the same in both executions. Thus, in the case of
the If statement, it is easy to check that all relevant operations performed by the fix-body will be
the same in both executions and the number of consumed bits of B+ is identical.

Now, say that the algorithm instead executes Fall(v, i) from the Else statement. Then the algo-
rithm performs CheckForRise(w, i) for every w ∈ N<i (v ). Because N<i (v ) are the same in both
executions, the same operations CheckForRise(w, i) are performed. By the same argument as in
(B), these CheckForRise(w, i) then lead to the same relevant operationsγr = δr in both executions
and use the same number of bits from B+. The algorithm then performs ResetMatching(w) for
each w ∈ N=i−1 (v ). Once again, if i − 1 ≤ �, then none of these operations are relevant, so the
claim trivially holds. Otherwise, i − 1 > � and, since the above-� hierarchy is the same in both
executions up to this point, we have that N=i−1 (v ) is the same in both executions and they will
both use the same bits and the same number of bits from B+ to decide whether to perform a Reset-
Matching(w). Within a ResetMatching(w) exactly the same operations will be executed as the
same vertices are responsible for an edge. Thus, they will have identical results in both executions.

We have thus shown that throughout the fix-body, both executions perform the same relevant
operations, have the same above-� hierarchy and queue, and use the same number of bits from B+.
By the same argument as in (A), the next primary operation will also be the same. �

We have thus proved the main claim and completed the proof of Lemma 4.13. �

Throughout our analysis, we will rely on the corollary below, which is an extension of
Lemma 4.13. We start with an informal description.

Informal Description of Corollary 4.22: Say that we run our algorithm on a fixed update se-
quence A and that at some point during the algorithm, we call procedure RandomSettle(x , �).
LetN<� (x ) = {y1, . . .yk }whenwe call the procedure. LetYi be the event that RandomSettle(x , �)
picksyi as the mate of x ; since the mate of x is chosen uniformly at random from N<� (x ), we know
that Pr[Yi ] = 1/k . This statement remains true no matter what happened before this execution of
RandomSettle(x , �), since RandomSettle uses fresh randomness. However, say that E is some
event that depends on the entire sequence of hierarchy changes made by the algorithm, including
those after the call to RandomSettle. In this case, we might have Pr[Yi | E] � Pr[Yi ]; for exam-
ple, since E depends on the entire sequence, it might be the case that E can be true only if Yi is
true. The crux of our corollary is that if we consider an event E>� that depends on all hierarchy
changes before the call to RandomSettle(x , �) and also on future above-� changes made by the
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algorithm, then we can indeed state that Pr[Yi | E>�] = Pr[Yi ] = 1/k . The same is true of a call to
ResetMatching(x ), as long as level(x ) ≤ � when the call is made.

Corollary 4.22. Fix some adversarial update sequenceA, and consider the execution of the algo-

rithm on A. The following two properties hold:

• Consider some call to RandomSettle(x , �), let N<� (x ) = {y1, . . .yk } when the call is made,

and letYi be the event thatyi is chosen as mate(x ) as a result of the call. Let Spast be the sequence

of all hierarchy changes before this call to RandomSettle(x , �) and let S� be the sequence of

all above-� hierarchy changes after the call. Let E>� be any event that depends only on Spast

and S� ; that is, whether E>� is true or false is uniquely determined by these sequences. Then,

for all 1 ≤ i ≤ k , Pr[Yi | E>�, Spast] = Pr[Yi | Spast] = 1/k .

• Assume that at some point, we reach a line that executes ResetMatching(u) with some proba-

bility p (Line 16 of Algorithm 1 or Line 51 of Algorithm 2) and that at this point, level(u) ≤ �.
As above, let Spast be the sequence of all hierarchy changes before this line, let S� be the se-

quence of all above-� hierarchy changes after the call, and let E>� be any event that depends

only on Spast and S� . Let Y be the event that the ResetMatching(u) is in fact executed. Then

Pr[Y | E>�, Spast] = Pr[Y | Spast] = p.

Proof. The proof follows easily from Lemma 4.13. We will only prove the first property about
RandomSettle(x , �); the property about ResetMatching(x ) can be proved in the same fashion.

Since RandomSettle(x , �) picks a random mate using fresh randomness that is independent
from all previous choices made by the algorithm, we have Pr[Yi | Spast] = 1/k . By Bayes’ law, we
have

Pr[Yi | E>�, Spast] = Pr[Yi | Spast]
Pr[E>� | Yi , Spast]

Pr[E>� | Spast]
.

We now show that Pr[E>� | Yi , Spast] = Pr[E>� | Spast], which will complete the proof. As in
the setup of Lemma 4.13, we can think of the algorithm as running on bit streams B>� and B≤� .
Since E>� depends only on Spast, the adversarial updates A and above-� changes, we know from
Lemma 4.13 that whether or not E>� is true depends only on Spast,A and the bits in B>� . We will
next show that Yi only depends on bits of B≤� that are independent from Spast. All the bits in B≤�
are by definition independent from B>� , and, by the obliviousness of the adversary, fromA. Thus,
Yi is an event that depends only on random bits that are independent from the random bits/events
that E>� depends on, so we have Pr[E>� | Yi , Spast] = Pr[E>� | Spast], as desired.

It remains to show that Yi only depends on bits of B≤� that are independent from Spast. This
follows from the fact that Yi is determined by the call to RandomSettle(x , �) made after all the
changes in Spast have already occurred. Because the call is at level �, the bits come fromB≤� ; because
the call uses fresh randomness, these bits are independent from Spast. �

4.5.3 Proof of Lemma 4.8. With the hierarchical independence in place, we are now ready to
begin the proof of Lemma 4.8. We will actually prove a slightly stronger statement, which shows
that only the bits in B≤� need to be random for the lemma to hold; the bits in B+ can be chosen
adversarially.

Lemma 4.23 (Stronger Version of Lemma 4.8). Let 0 ≤ � ≤ ⌊
log4 (n)

⌋
be any level in the

hierarchy. LetA be the sequence of adversarial updates, and fix any bit stream B+. Consider running

our dynamic matching algorithm with B>� set to B+. Let (x ,y) be any edge at any time t∗ during

the update sequence. Then: Pr[at time t∗, (x ,y) is a matching edge at level � and responsible(x ) is

True] = O (log3 (n)/4� ), where the probability is over all random bits in B≤� .
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We will proceed as follows: We will define a special type of hierarchy change, called pivotal
change, and will first show (Lemma 4.32) that if a pivotal change exists before time t∗, then the
desired statement of Lemma 4.23 holds. Next (Lemma 4.35), we show that a pivotal change exists be-
fore time t∗ with high probability. To do that we focus our attention on relevant hierarchy changes,
which are formalized in the definitions of (�,v )-critical changes and (�,v )-reset-opportunities
below.

For the rest of this section, we set α� = 4000 · log(n) · 4� and β� = α/4 = 1000 · log(n) · 4� .

Definition 4.24. Let x ,y, t∗, �,B+ be the variables from the statement of Lemma 4.23. Consider
some execution of the algorithm with B>� set to B+. Let E lemma refer to the property that (x ,y)
is a matching edge at level � and that responsible(x ) is true and let E lemma

t ∗ be the event that

E lemma holds at time t∗. Note that Lemma 4.23 is equivalent to the statement that Pr[E lemma
t ∗ ] =

O (log3 (n)/4� ), where the probability is over all random bits in B≤� .

To characterize which changes in the hierarchy can lead to changes in the matching, we intro-
duce the following definition:

Definition 4.25. For any vertex v and any level �, we say that a hierarchy change σ is an (�,v )-
critical change if σ is a change above � and one of the following holds:

(1) σ changes level(v ).
(2) For some neighborw of v , σ changes level(w ) from � + 1 to �.
(3) For some neighborw of v , σ raisesw from a level ≤ � to a level > �.
(4) σ is an adversarial insertion/deletion of some edge (v,w ) incident to v (regardless of level).

We need this definition for the following reason: Only a (level(v ),v )-critical change can make
the matched edge (v,u) with responsible v unmatched, as shown in the next lemma.

Lemma 4.26. A matched edge (u,v ) with responsible v becomes unmatched only after a

(level(v ),v )-critical change.

Proof. A matched edge (u,v ) with responsible v becomes unmatched only if (a) it is deleted,
(b) one of its endpoints u or v moves to a higher level, or (c) a ResetMatching(v ) was executed.
Note that a ResetMatching(u) would have no effect, as u is not responsible for the matched edge.

Furthermore, ResetMatching(v ) is only called if a neighbor of v falls from level level(v ) + 1
to level level(v ) or an edge incident to v is inserted.

We can summarize this as follows: Amatched edge (u,v ) with responsiblev becomes unmatched
only if (a) an edge incident to v is inserted or if the matched edge incident to v is deleted, (b)
either u or v moves to a higher level, or (c) a neighbor of v falls from level level(v ) + 1 to level
level(v ). Note that all of these changes are (level(v ),v )-critical. Thus, a matched edge (u,v ) with
responsible v becomes unmatched only after a (level(v ),v )-critical change. �

We also need to characterize after what type of hierarchy changes a ResetMatching-operation
can be executed. This is the reason for the following definition:

Definition 4.27. For any vertex v and level �, we say that a hierarchy change σ is an (�,v )-reset-
opportunity if one of the following holds:

(1) For some neighborw of v , σ changes level(w ) from � + 1 to �.
(2) σ is an adversarial insertion of some edge (v,w ) incident to v (regardless of level).

Lemma 4.28. A ResetMatching(v ) operation is executed only after a (level(v ),v )-reset

opportunity.
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Proof. The operation ResetMatching(v ) is called either after an adversarial insertion of an
edge incident to v or if a neighbor of v drops from level level(v ) + 1 to level(v ). �

Observation 4.29. If v is at level � with responsible(v ) set to True, and the algorithm performs

a change σ that is a (�,v )-reset opportunity, then with probability preset
�
= 1/4�+3 the algorithm does

ResetMatching(v). (See Line 51 of Algorithm 2 and Line 16 of Algorithm 1.)

4.5.4 Intuition for the Proof of Lemma 4.23. With all our definitions in place, we now give a
brief intuition for the proof of Lemma 4.23. Let σ1, . . . ,σq∗ be all the hierarchy changes performed

by the algorithm up to time t∗. Recall that we want to bound the probability that E lemma holds after
change σq∗. Let us focus on any change σi , and consider two cases.

Case 1: There are many (�,x )-critical changes between σi and σq∗. Note that whether or not we
fall in Case 1 is independent of any random choices made after σi (recall that only bits from B≤� are
random), because these (�,x )-critical changes are by definition changes above �, so we can apply
Corollary 4.22. We will show that in Case 1, either one of these critical changes causes x to change
level (and hence to pick a new mate), or they will cause so many (�,x ) reset-opportunities that by
Observation 4.29 there is a high probability that the algorithm will perform a ResetMatching(x )
before change σq∗. Either way, x will pick a new random mate at some point between σi , . . . ,σq∗,
so the matching at change σi bears no relevance to the matching at change σq∗. Any σi in Case 1
can thus be effectively ignored.

Case 2: There are few (�,x )-critical changes between σi and σq∗. For simplicity, let us assume

that none of these (�,x )-critical changes change the level of x , and when σi is performed, E lemma is
false. For E lemma to become true, some hierarchy change between σi and σq∗ must choose (x ,y) as
the matching. By Matching Property*, we know that any one particular RandomSettle(x , �) has
only a small chance of picking (x ,y); to complete the proof, we will show that because we are in
Case 2, there are (with high probability) few executions of RandomSettle(x , �) betweenσi andσq∗.
The reason there are few executions is that if RandomSettle(x , �) picks somematching edge (x , z),
then the only way the algorithm calls a new RandomSettle(x , �) is if the edge (x , z) is removed
from the matching due to an adversarial deletion or a hierarchy change. We will show that this can
only occur due to a (�,x )-critical change, and that moreover, any (�,x )-critical change is unlikely
to affect (x , z), because z was chosen at random from among many choices, and the (�,x )-critical
changes are independent of this random choice (Corollary 4.22). Since there are few (�,x )-critical
changes remaining (because we are in Case 2), they are unlikely to cause many executions of
RandomSettle(x , �).

Formalizing the Proof. We now define the notion of a pivotal change, which corresponds to a
hierarchy change that satisfies the assumptions of Case 2 in the above intuition.

Definition 4.30. Define x ,y, �,B+, t∗ as in the statement of Lemma 4.23. Let σ1, . . . ,σq∗ be the
sequence of hierarchy changes up to time t∗. Consider some execution of the dynamic matching
algorithm with B>� set to B+. We say that some change σ performed by the algorithm is pivotal

for time t∗ if it satisfies all of the following properties:

(1) The number of (�,x )-critical changes between σ and σq∗ is at most α� . (Recall that α� =

4000 · logn · 4� .)
(2) There are no (�,x )-critical changes between σ and σq∗ that alter the level of x . (Note that x

may still move levels due to hierarchy changes that are not above �.)
(3) E lemma is false right after change σ .

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 29. Publication date: October 2021.



A Deamortization Approach for Dynamic Spanner and Dynamic Maximal Matching 29:43

Technical note: The lemmas and definitions are made cleaner if at the very beginning of the algo-
rithm (when the graph is still empty) we insert a dummy update σ dummy that does nothing; this is
solely to allow for the possibility that the so-to-speak 0th update σ dummy is itself pivotal.

The crucial property of a change σ that is pivotal for time t∗ is as follows: Whether σ is pivotal
for t∗ or not only depends on (i) the hierarchy at the time of change σ , (ii) the above-� changes
between σ and time t∗, and (iii) adversarial updates.

Lemma 4.31. Consider a change σ = σi with i < t∗. Whether σ is pivotal for time t∗ is uniquely

determined by (i) the hierarchy at the time of change σ including the responsible bits, (ii) the above-�
changes between σ and time t∗, and (iii) adversarial updates.

Proof. We will show that each of the properties of a pivotal change depend only on the hier-
archy at the time of change σ , the above-� changes between σ and time t∗, and the adversarial
updates.

For Property (1), note that whether a change is (�,x )-critical only depends on whether the
change is above � and whose node’s level it changes (if any), and whether it is an adversarial up-
date. All this can be determined for a change up to time t∗ if the information in (i)–(iii) is known.
Thus, with information (i)–(iii) it is uniquely determinedwhether there are at mostα� (�,x )-critical
changes between σ and σq∗ , i.e., whether Property (1) holds.

Property (2) guarantees that any (�,x )-critical changes that occur after σ and up to time t∗ must

be of type (2)–(4) of the definition of a critical change. As for Property (1) whether a change is
(�,x )-critical and whether it changes the level of x is uniquely determined by information (i)–(iii).

Property (3) of a pivotal change, i.e., whether E lemma is false right after σ is uniquely determined
by the hierarchy right before change σ including the responsible bits as well as on σ . �

Note that it follows from the lemma that whether a change σi with i < t∗ is pivotal depends only
on information (i)—(iii) from the lemma. We now proceed as follows: Lemma 4.32 will show that
Lemma 4.23 holds if we condition on the existence of a pivotal change for t∗; this corresponds to
Case 2 in the intuition section above. Lemma 4.35 will then show that a pivotal change exists with
high probability; this corresponds to the intuition above that Case 1 can be effectively ignored, and
only Case 2 is relevant.

Lemma 4.32. Define x ,y, �,B+, t∗ as in the statement of Lemma 4.23. Consider some execution

of the dynamic matching algorithm with B>� set to B+, and condition on the fact that during the

execution of the algorithm up to time t∗ the algorithm encounters a change σ pivot that is pivotal for

time t∗. Then, Pr[at time t∗, (x ,y) is a matching edge that was chosen by some RandomSettle(x , �)]
= O (log3 (n)/4� ), where the probability is over all random bits in B≤� .

Proof. Let σ ′1, . . . ,σ
′
α be the sequence of (�,x )-critical changes between change σ pivot and time

t∗. By definition of a pivotal change for t∗, we have that α ≤ α� , and that none of the σ ′i change
the level of x .

Recall that by definition of a pivotal change, E lemma is false after change σ pivot. Thus, for E lemma

to become true, at some point between σ pivot and t∗ the algorithm must call RandomSettle(x , �),
and this call must choose the particular edge (x ,y) as the new matching edge. Let X settle be the
random variable that is equal to the number of times we call RandomSettle(x , �) between σ pivot

and t∗ and let Esettle be the event that X settle ≤ C ′ log2 (n) for some large constant C ′. The crux of
the proof is to show that

Pr[Esettle] ≥ 1 − 1/n5. (7)
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Before proving this fact, let us show why it allows us to prove the lemma. We have that

Pr[E lemma
t ∗ ] = Pr[E lemma

t ∗ ∧ Esettle] + Pr[E lemma
t ∗ ∧ ¬Esettle] ≤ Pr[E lemma

t ∗ ∧ Esettle] +
1

n5
. (8)

We now bound Pr[E lemma
t ∗ ∧Esettle]. ByMatching Property*, an execution of RandomSettle(x , �)

has probability at most O (log(n)/4� ) of picking edge (x ,y). However, we need a bound on the
probability of (x ,y) being matched at time t∗. This is where we rely on the independence proved
in Corollary 4.22: Any call to RandomSettle(x , �) between σ pivot and t∗ (a) uses only bits from
B≤� and (b) depends only on which neighbors belong to N<� (x ) at the time of the call. Note that
(a) the used bits are fresh and (b) which neighbors belong to N<� (x ) depends only on Spast, i.e., the
sequence of hierarchy changes before this call to RandomSettle(x , �). As shown in Lemma 4.31
whether or not σ pivot is pivotal for time t∗ depends only on the hierarchy at change σ pivot (i.e., Spast),
future above-� changes, andA. Thus, it is an event that fulfills the requirements in Corollary 4.22,
which shows that mate(x ) is chosen uniformly at random from N<� (x ).

Now, by definition of Esettle there are O (log2 (n)) executions of RandomSettle(x , �) between
σ pivot and t∗. Each of these picks (x ,y) with probability O (log(n)/4� ). Thus, by a union bound,

Pr[E lemma
t ∗ ∧ Esettle] ≤ Pr[E lemma

t ∗ | Esettle] = O

(
log2 (n) · log(n)

4�

)
= O

(
log3 (n)

4�

)
. (9)

Combining the three equations above completes the proof of the lemma. Thus, all that is left to
do is to prove Equation (7).

Proof of Eqation (7). Recall that Esettle only considers the time period between σ pivot and
t∗, and that σ ′1, . . . ,σ

′
α is the sequence of (�,x )-critical changes in this time period, with α ≤ α� .

Consider some call to RandomSettle(x , �) during this time period, which results in some edge e
being chosen as the matching edge and responsible(x ) being set to True. The only way that
RandomSettle(x , �) can be called again after this point is that edge e leaves the matching. By
Lemma 4.26 this can only happen as the consequence of an (�,x )-critical change. Since by the
definition of σ pivot, none of the (�,x )-critical changes σ ′i alter the level of x , only (�,x )-critical
changes of types 2, 3, and 4 from Definition 4.25 are possible in the sequence σ ′1, . . . ,σ

′
α , i.e., the

following types of changes:

• For some neighborw of x , σ changes level(w ) from � + 1 to �.
• For some neighborw of x , σ raisesw from a level ≤ � to a level > �.
• σ is an adversarial insertion/deletion of some edge (x ,w ) incident to x (regardless of level).

We say the corresponding neighborw in such a change is the node affected by the change.
In the following, we distinguish between calls to RandomSettle(x , �) that are the consequence

of an (�,x )-reset opportunity and those that are not and in the latter case, we consider affected
node to the call to RandomSettle(x , �).

Bounding X settle. Recall that X settle is the random variable that is equal to the number of times
the algorithm calls RandomSettle(x , �) between σ pivot and t∗. Consider the sequence of the algo-
rithm’s calls to RandomSettle(x , �) and ResetMatching(x ) between σ pivot and t∗. Let X reset be
the random variable that is equal to the number of calls to RandomSettle(x , �) that are directly
preceded by a call to ResetMatching(x ) in this sequence and let X crs be the random variable
that is equal to the number of calls to RandomSettle(x , �) that are directly preceded by a call to
RandomSettle(x , �) in this sequence. Observe that trivially

X settle ≤ X reset + X crs + 1 . (10)
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(The plus one is necessary, because the sequence of calls to RandomSettle(x , �) and ResetMatch-
ing(x ) might start with a call to RandomSettle(x , �) for which then no preceding call exists.)

Bounding X reset. We will first bound X reset by bounding the corresponding number of calls to
ResetMatching(x ). For each call to ResetMatching(x ) preceding a call to RandomSettle(x , �),
we necessarily have level(x ) = � and therefore there must be some (�,x )-reset opportunity σ ′i
causing the call to ResetMatching(x ). Each (�,x )-reset opportunity has a probability of at most
preset
�
= 1/4�+3 of causing a ResetMatching(x ). By definition of σ pivot, there are at most α� =

4, 000 · log(n) ·4� (�,x )-critical changes in the sequence σ ′1, . . . ,σ
′
α . Thus, applying Chernoff bound

and a suitable choice of constants, with probability at least 1 − 1/(2n5), we have that X reset =

O (log(n)).
Bounding X crs. We will now bound X crs. In particular, we will show that with high probability

X crs < k := 1024000C log2 (n). Note that X crs is equal to the number of pairs of consecutive calls
to RandomSettle(x , �) between σ pivot and t∗ that are not interleaved with calls to ResetMatch-
ing(x ) Consider a pair of consecutive calls to RandomSettle(x , �) that are not interleaved with

calls to ResetMatching(x ). By Matching Property*, we have |N<� (x ) | ≥ 4�

32C log(n) during both

these calls to RandomSettle(x , �). Define γ := 4�

32C log(n) to be this lower bound on the number of

choices for themate of x . Lety1,y2, . . . be the sequence of nodes fromN<� (x ) appearing as affected
nodes in those (�,x )-critical changes that are not reset opportunities after the first call to Random-
Settle(x , �) in the order of first appearance. We say that the call to RandomSettle(x , �) has large

span if mate(x ) does not occur within the first (up to)
γ

2 elements of this sequence y1,y2, . . . . As
none of the reset opportunities after the first call is successful (as there is no ResetMatching(x )
before the second RandomSettle(x , �)), the fact that the first call has a large span implies that
there are at least γ/2 (�,x )-critical changes that are not reset opportunities between the two calls.

Claim 4.33. Each call to RandomSettle(x , �) has large span with probability at least 1
2 and this

bounds holds independently of which earlier calls had large span.

Proof. Consider a call to RandomSettle(x , �) and let N := N<� (x ) when this call happens. As
a result of this call, the mate mate(x ) of x is chosen uniformly at random from N with |N | ≥ γ .
Let y1, . . . ,yγ ′ be the set of nodes from N<� (x ) appearing as affected nodes in those (�,x )-critical
changes that are not reset opportunities after the call to RandomSettle(x , �) in the order of first
appearance.

Note that N only depends on the sequence of hierarchy changes before the call to RandomSet-
tle(x , �), and the sequence y1, . . . ,yγ ′ only depends on the sequence of hierarchy changes before
the call and the above-� hierarchy changes after the call. Therefore, we may apply Corollary 4.22
by which the probability that a specific yi is equal to mate(x ) is at most 1

γ
. Note that this holds

for any possible Spast, and, thus, independent of Spast. Hence, it holds in particular no matter which
previous calls to RandomSettle(x , �) had large span. It follows that mate(x ) occurs within the
first (up to)

γ

2 elements of the sequence y1, . . . ,yγ ′ with probability at most
γ

2 ·
1
γ
= 1

2 . This means

that each call to RandomSettle(x , �) has large span with probability at least 1
2 .

Note that this reasoning also shows that whether a call has large span is independent of whether
a previous call had large span. �

We next bound how often calls with large span can happen for consecutive calls to Random-
Settle(x , �).

Claim 4.34. There are at most 1
4k pairs of consecutive calls to RandomSettle(x , �) between

σ pivot and t∗ that are not interleaved with any call to ResetMatching(x ) such that the first of
these calls has large span.
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Proof. Consider any pair of consecutive calls to RandomSettle(x , �) between σ pivot and t∗ that
are not interleaved with any call to ResetMatching(x ). If the first of these two calls has large span,

then there are at least
γ

2 =
4�

64C log(n) (�,x )-critical changes that are not reset opportunities between

these two calls, as argued above. Since the total number of (�,x )-critical changes that are not reset
opportunities between σ pivot and t∗ is at most α� = 4, 000 · log(n) · 4� , it must be the case that the
situation above occurs at most α�

γ /2 = 256, 000C log2 (n) = 1
4k times. �

Recall thatX crs is the total number of pairs of consecutive calls to RandomSettle(x , �) between
σ pivot and t∗ that are not interleaved with any call to ResetMatching(x ). The claim together with
the fact that each call to RandomSettle(x , �) has large span with probability at least 1

2 gives us a
bound onX crs as follows: For each i ≥ 1, define Zi as the binary random variable that (1) if i ≤ X crs

and in the ith pair of consecutive calls to RandomSettle(x , �) the first call to RandomSettle(x , �)
has large span is 1, (2) if i ≤ X crs and in the ith pair of consecutive calls to RandomSettle(x , �) the
first call to RandomSettle(x , �) does not have large span is 0, and (3) if i > X crs is 1with probability
1
2 and 0 otherwise. Furthermore, define, for each i ≥ 1, Z ∗i as the binary random variable that is 1

with probability 1
2 and 0 otherwise.

We will now show that Pr[X crs ≥ k] ≤ Pr[
∑k

i=1 Zi ≤ 1
4k] by arguing that the event X crs ≥

k implies the event
∑k

i=1 Zi ≤ 1
4k . Observe that this implication is equivalent to the statement

Pr[
∑k

i=1 Zi ≤ 1
4k | X

crs ≥ k] = 1. Given that X crs ≥ k , it follows from the definition above
that for each i ≤ k , Zi is 1 if in the ith pair of consecutive calls to RandomSettle(x , �) the first
call to RandomSettle(x , �) had large span. In other words, conditioned on the event X crs ≥ k ,∑k

i=1 Zi is precisely the number of pairs of consecutive calls to RandomSettle(x , �) between σ pivot

and t∗ that are not interleaved with any call to ResetMatching(x ) and in which the first call to
RandomSettle(x , �) has large span. By Claim 4.34, we have that this number is at most 1

4k , i.e.,

conditioned on X crs ≥ k , we have
∑k

i=1 Zi ≤ 1
4k as desired.

Now by Claim 4.33 each Zi with i ≤ X crs is 1 with probability at least 1
2 independent of the

outcomes of the random variables with smaller index, and for i > X crs this property obviously
holds as well. More formally, the following holds for all z1, . . . zi−1 ∈ {0, 1}:

Pr[Zi = 1 | Z1 = z1, . . . ,Zi−1 = zi−1] ≥
1

2
= Pr[Z ∗i = 1] .

Under this precondition, the sum of the Zi ’s stochastically dominates the sum of the Z ∗i ’s (see

Lemma 1.8.7 in Reference [20]), i.e., Pr[
∑k

i=1 Zi ≤ λ] ≤ Pr[
∑k

i=1 Z
∗
i ≤ λ] for all λ. Using the

shorthand μ := E[
∑k

i=1 Z
∗
i ] =

1
2k , we now apply a standard Chernoff bound to get the following

estimation:

Pr[X crs ≥ k] ≤ Pr

⎡
⎢
⎢
⎢
⎢
⎣

k∑
i=1

Zi ≤
1

4
k
⎤
⎥
⎥
⎥
⎥
⎦

= Pr

⎡
⎢
⎢
⎢
⎢
⎣

k∑
i=1

Zi ≤
1

2
μ
⎤
⎥
⎥
⎥
⎥
⎦

≤ Pr

⎡
⎢
⎢
⎢
⎢
⎣

k∑
i=1

Z ∗i ≤
1

2
μ
⎤
⎥
⎥
⎥
⎥
⎦

≤ exp
(
−1
8
μ
)
= exp

(
− 1

16
k
)
≤ 1

2n5
.

Overall, we have thus argued that with probability at least 1 − 1
2n5 both X reset and X crs, and thus

X settle by Equation (10), are at most O (log2 n). �

Lemma 4.35. Define x ,y, �,B+, t∗ as in the statement of Lemma 4.23. Consider some execution of

the dynamic matching algorithm with B+ = B>� . Then, Pr[at some point during the execution the

algorithm encounters a pivotal change σ pivot for time t∗] ≥ 1 − 1/n10, where the probability is over

all random bits in B≤� .
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Proof. Let σ �
1 , . . . σ

�
q be all the (�,x )-critical changes made by the algorithm up to time t∗. We

next define two (�,x )-critical changes and argue about their relative order. (a) If q ≤ α� , then we
set σ gap = σ dummy, where σ dummy is the empty update defined in Definition 4.30. If q > α� , let σ

gap

be the (�,x )-critical change σ �
q−α�

; note that this is chosen to satisfy Property 1 of the definition

of a pivotal change (Definition 4.30). (b) Let σ level be the last (�,x )-critical change that changes
level(x ) and σ level = σ dummy if no such change exists. It is clear that σ level satisfies property 2 of
the definition of a pivotal change for t∗. Observe that σ level also satisfies property 3, because our
algorithm only alters the level of a free vertex, so x is free right after σ level, which implies that
E lemma is false at that time. (This last argument might feel like cheating, since soon after σ level

the algorithm will assign a new matching edge to x ; but these future matching edges were already
handled in Lemma 4.32, where we bounded the probability that E lemma becomes true at some point
before t∗.)

We now consider two cases. The simple case is that σ level comes after, or is the same as, σ gap. In
this case, σ level satisfies all the properties of a pivotal change for t∗, thus proving the lemma.

The second case is that σ gap comes after σ level. In this case σ gap satisfies Properties 1 and 2, but
may fail to satisfy property 3. If σ gap = σ dummy, then, since E lemma is clearly false after σ dummy (the
graph is still empty), σ dummy is itself pivotal for t∗. Also note that E lemma is false before and after
σ gap if level(x ) � � at time σ gap.

Assumption:Wecan thus assume for the rest of the proof thatσ gap � σ dummy, that level(x ) = �
right before and right after σ gap and x remains on this level until t∗.

Note that if there exists any change, let us call it σ pivot, between σ gap and t∗ such that E lemma

is false after change σ pivot, then σ pivot satisfies all the properties of a pivotal change for t∗, as all
changes after change σ gap fulfill properties 1 and 2 of a pivotal change for t∗. Let Epivot be the event
that such a σ pivot exists; we now show that Epivot is true with high probability. The crux of our
argument is to show that there are many (�,x )-reset-opportunities between σ gap and t∗: Each of
them performs a ResetMatching(x ) only with a small probability, but if there are enough of them
at least one of them will indeed perform a ResetMatching (x ), which will imply that x becomes
free, i.e., Property 3 holds after this change, i.e., it is a pivotal change for t∗. Thus, we first need to
show the following claim. Recall that β� = α�/4. Recall that we are in the case σ gap > σ level, which
implies that there are exactly α� (�,x )-critical changes between σ gap and t∗.

Claim 4.36. If σ gap > σ level, then at least β� of the α� (�,x )-critical changes between σ gap and t∗

are also (�,x )-reset-opportunities.

Proof of Claim. Because σ gap > σ level, we know that none of the (�,x )-critical changes be-
tween σ gap and t∗ change the level of x . Thus, each of these critical changes either: (1) adds a
vertex w to N=� (x ) by moving w from level � + 1 to level � (item 2 of Definition 4.25), or (2)

removes a vertex w from N≤� (x ) (item 3), or (3) it makes an adversarial update incident to x
(item 4). Let ti be the number of changes of each type. Note that t1 + t2 + t3 = α� . Types 1 and 3 are
(�,x ) reset opportunities by definition. Now, note that at the start of σ gap, since level(x ) = � (see
assumption above), Invariant 3 guarantees that |N≤� (x ) | = N<�+1 (x ) ≤ 4�+1. Moreover, N≤� can
only grow as a result of changes of types 1 and 3, and only by 1 after each such change. Thus, t2 ≤
4�+1+ t1+ t3. Thus, it follows that [# reset opportunities] = t1+ t3 ≥ (α� −4�+1)/2 ≥ α�/4 = β� . �

Back to Proof of Lemma 4.35. Let σ ∗1 , . . . ,σ
∗
β�

be (�,x )-critical changes between σ gap and t∗

that are also (�,x )-reset opportunities; these changes exist by the claim above (there may be more
than β� such changes, in which case pick any β�). Our goal is to show that E lemma is false after one
of these changes whp, which implies that Epivot holds whp.
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Let Eno-pivot
i be the event that all of the following hold right before change σ ∗i : responsible(x )

is True and level(x ) = � and the change σ ∗i does not lead to ResetMatching(x ). Recall that
by our assumption, we know that level(x ) = � for each of the σ ∗i that we are considering. We

need to show that with high probability after at least one of the changes σ ∗i E lemma is false, i.e.,

responsible(x ) = False or ResetMatching (x ) is executed in the change. Event Epivot is false if

no such change exists. Thus, Epivot can only be false if all the Eno-pivot
i are true. We thus have

Pr[¬Epivot] ≤ Pr[Eno-pivot
1 ∧ . . .∧Eno-pivot

β�
] ≤ Eno-pivot

1 ·
β�∏
i=2

Pr[Eno-pivot
i | Eno-pivot

1 ∧ . . .∧Eno-pivot
i−1 ].

We now observe that Pr[Eno-pivot
1 ] ≤ (1−preset

�
) = (1− 1/4�+3) and Pr[Eno-pivot

i | Eno-pivot
1 ∧ . . .∧

Eno-pivot
i−1 ] ≤ (1−preset

�
) = (1−1/4�+3). The reason is simply that each σ ∗i is a (�,x ) reset-opportunity,

so either responsible(x ) is False at change σ ∗i , in which case Eno-pivot
i is false by definition, or

otherwise by Observation 4.29 the algorithm performs ResetMatching (x ) with probability preset
�

.
Moreover, the probability of ResetMatching(x ) occurring is using a fresh random bit and, thus,
is clearly independent of everything that came before.

Putting everything together, we have that

Pr[¬Epivot] ≤
(
1 − 1

4�+3

)β�

=

(
1 − 1

64 · 4�
)1000·log(n) ·4�

≤ 1

n10
.

Note that this crucially relies on Corollary 4.22 to ensure that the probability of ResetMatching(x )
is not correlated with any of the future (�,x )-critical changes. �

Proof of Lemma 4.23. The proof follows immediately from the combination of Lemmas 4.35
and 4.32 �

4.5.5 Putting Everything Together. Weare now ready to prove that the algorithmprocesses every

adversarial update in expected time O (log4 (n)).

Proof of Theorem 1.5. Let us first consider the insertion of a new edge (u,v ). The algorithm

has to update some subset of Ou ,Ov ,Elevel(v )
u ,Elevel(u )

v in O (1) time, and then it has to per-
formO (log(n)) calls to CheckForRise(u, i) and CheckForRise(v, i) (Line 14 or Algorithm 1). Each
CheckForRise(v, i) has a prise = Θ(log(n)/4i ) chance of leading to a probability-rise, and a neg-
ligible probability of leading to a threshold-rise (Lemma 4.5), so plugging in the cost of a call to

Rise from Lemma 4.4, the expected total time to process the rises is O (
∑�log4 (n)�

i=0 (log(n)/4i ) · 4i =

O (log2 (n)). Insert (x ,y) also causes ResetMatching(u) and ResetMatching(v) with Probabil-

ities preset
level(u )

= 1/4level(u )+3 and preset
level(v )

= 1/4level(v )+3. By Lemma 4.6 the expected time to

process the resets is O (4level(u ) ) and O (4level(v ) ); multiplying by the reset probabilities yields an
expected time of O (1).

Let us now consider the deletion of an edge (u,v ). If (u,v ) is a non-matching edge, then as in
the case of insertion, the algorithm only needs to perform O (1) bookkeeping work and O (log(n))
calls to Decrement-ϕ(u, i); calls to Decrement-ϕ do not lead to changes in the hierarchy, so the
algorithm stops there. Thus, the only case left to consider is the deletion of a matching edge
(u,v ). By Invariant 4, level(u) = level(v ), so let us say they are both equal to �. The dele-
tion of (u,v ) requires the algorithm to execute FixFreeVertex(u) and FixFreeVertex(v), which
by Corollary 4.7 requires time O (4� ). By Corollary 4.9, the total expected update time is thus

O (
∑�log4 (n)�

�=0
4� · (log3 (n)/4� )) = O (log4 (n)). �
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Explicitly Maintaining a List of the Edges in the Matching. Both the amortized expected algorithm
of Baswana et al. [7], as well as our worst-case expected modification in Theorem 1.5, store the
matching in the simplest possible data structureD: They are both able to maintain a single list con-
taining all the edges of a maximal matching. By Remark 1.2, the high-probability worst-case result
in 1.6 stores the matching in a slightly different data structure: It stores O (log(n)) lists Di , along
with a pointer to some D j such that D j is guaranteed to contain the edges of a maximal matching.
Dynamic algorithms are typically judged by update and query time, and from this perspective our
data structure is equivalently powerful, since we can use the correct D j to answer queries about
the matching.

However, in some applications, it is desirable to maintain the matching as a single list. The
reason is that this way one ensures “continuity” between the updates: For example, theO (log(n))
update time of Baswana et al. guarantees that every update only changes the underlying maximal
matching by O (log(n)) edges (amortized). This is no longer true of our high-probability worst-
case algorithm in Theorem 1.6, because a single update might cause the algorithm to switch the
pointer from someDi to someD j ; this still results in a fast update time, but the underlyingmaximal
matching can change by Θ(n) edges.

As discussed in Remark 1.2, if we insist on maintaining a single list of edges in the matching,
then we can do so with almost the same high-probability worst-case update time as stated in
Theorem 1.6, but the resulting matching is only (2 + ϵ )-approximate and no longer maximal. This
(2 + ϵ )-approximation is achieved as follows: The algorithm of Theorem 1.6 stores O (log(n)) lists
Di , one of which is guaranteed to be a maximal matching. In particular, this algorithm maintains
a fully dynamic data structure with query access to a 2-approximate matching that can output �
arbitrary edges of the matching in time O (�). The very recent black-box reduction in Reference
[38] takes such a “discontinuous” algorithm for dynamic maximum matching and turns it into
a “continuous” one at the cost of an extra (1 + ϵ ) factor in the approximation. By applying this
reduction with ϵ ′ = ϵ/2, we obtain a fully dynamic algorithm for maintaining a matching with
an approximation factor of 2(1 + ϵ/2) = (2 + ϵ ) and a high-probability worst-case update time of
O (log6 (n) + 1/ϵ ). The reduction of Reference [38] also applies to the dynamic (2+ ϵ )-approximate
matching algorithms of Arar et al. [4] and Charikar and Solomon [18], whose update times we can
beat for certain regimes of ϵ .

5 CONCLUSION

In this article, we have provided a meta-algorithm that converts dynamic algorithms with a bound
on the worst-case expected update time into ones with a high-probability bound on the worst-
case time at the expense of logarithmic factors in the update time. We have then applied this
reduction to two graph problems: dynamic spanner and dynamic maximal matching. Our main
observation for these two problems was that certain deterministic amortization techniques in the
known algorithms can be replaced by randomized ones to obtain a worst-case expected bound
instead of an amortized one.We conjecture that this approach also works for other graph problems.
Additionally it would be interesting to have more meta-theorems for dynamic graph algorithms
in addition to sparsification [22] and the expected to high-probability conversion presented here.
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