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ABSTRACT
This paper presents a novel training method for end-to-end scene
text recognition. End-to-end scene text recognition offers high
recognition accuracy, especially when using the encoder-decoder
model based on Transformer. To train a highly accurate end-to-end
model, we need to prepare a large image-to-text paired dataset for
the target language. However, it is difficult to collect this data, espe-
cially for resource-poor languages. To overcome this difficulty, our
proposed method utilizes well-prepared large datasets in resource-
rich languages such as English, to train the resource-poor encoder-
decodermodel. Our key idea is to build amodel inwhich the encoder
reflects knowledge of multiple languages while the decoder special-
izes in knowledge of just the resource-poor language. To this end,
the proposed method pre-trains the encoder by using a multilingual
dataset that combines the resource-poor language’s dataset and the
resource-rich language’s dataset to learn language-invariant knowl-
edge for scene text recognition. The proposed method also pre-
trains the decoder by using the resource-poor language’s dataset
to make the decoder better suited to the resource-poor language.
Experiments on Japanese scene text recognition using a small, pub-
licly available dataset demonstrate the effectiveness of the proposed
method.

CCS CONCEPTS
• Computing methodologies → Object recognition; Natural
language processing.

KEYWORDS
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1 INTRODUCTION
Natural scene images contain a lot of textual information such as
store advertising signs and traffic signs. Scene text recognition is
the task of identifying texts present in images such as signs detected
from natural scene images. Scene text recognition can be applied to
many tasks such as image classification [3, 12, 13], image retrieval
[7, 12], and visual question answering [4]. Due to the appeal of
these various potential applications, research and development of
scene text recognition technology is being actively carried out in
academic and industrial fields.

With improvements in deep learning technology, many scene
text recognition methods have been proposed [18]. Most of the
conventional methods are based on end-to-end neural networks.

Typically, the input image is converted into continuous representa-
tions by using convolutional neural networks (CNNs) and bidirec-
tional long short-term memory recurrent neural networks (BLSTM-
RNNs). The obtained continuous representations are then subjected
to connectionist temporal classification (CTC) [8] which yields a
character string [6, 16, 24, 28]. Other methods use encoder-decoder
models that utilize LSTM and attention mechanisms instead of CTC
for sequence-to-sequence conversion [2, 15, 25]. Also, in recent
years, due to improvements in deep learning technology for natural
language processing, high recognition accuracy is possible from
encoder-decoder models that utilize Transformer [27]; sequence-
to-sequence conversion is realized solely by attention mechanisms,
not by RNNs such as LSTM [5, 20, 23, 29, 30, 32]. These methods
extract continuous representations, which capture the features of
the input image, in the encoder by using CNN and Transformer en-
coder, while the decoder translates the continuous representations
into character strings by using Transformer decoder.

To train a highly accurate end-to-end encoder-decoder scene text
recognition model, a large image-to-text paired training dataset
in the target language is required. While various well-prepared
large public datasets are available for English [9, 11, 21], there are
few public datasets for minor languages such as Japanese. In fact,
the public Japanese scene text dataset provided for the ICDAR2019
robust reading challenge on multilingual scene text detection and
recognition [22] has a relatively small amount of data in Japanese
(10K order) compared to publicly available English datasets (1M
order). Of course, several methods have been proposed to synthesize
training data [9, 19, 31], but these methods require the preparation
of an appropriate corpus and images in the target language and the
target domain in advance. These preparations also require expertise
and are costly. Therefore, we need a training method that can yield
an accurate scene text recognition model for the target language
from small datasets in the target language.

In this paper, we present a novel training method for an encoder-
decoder scene text recognition model for resource-poor languages.
Our method utilizes well-prepared large datasets in resource-rich
languages such as English to train a scene text recognitionmodel for
resource-poor target languages. Our key idea is to build a model in
which the encoder reflects the knowledge available in multiple lan-
guages for scene text recognition including a variety of background
images and character string shapes such as curved and tilted, and
the decoder specializes in just the knowledge of the resource-poor
language. To this end, the proposed method pre-trains the encoder
of the model by using a multilingual dataset, a combination of the
resource-poor language’s dataset and the resource-rich language’s
dataset, to learn language-invariant knowledge for scene text recog-
nition. Our method also pre-trains the decoder of the model by the
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resource-poor language’s dataset to ensure that the decoder is spe-
cific for the resource-poor language. The proposed method finally
fine-tunes the pre-trained encoder and decoder in the resource-
poor language. Our method enables us to train the model efficiently
without a large dataset in the resource-poor target language. Ex-
periments on a small publicly available Japanese dataset [22] and
a large English dataset [11] demonstrate the effectiveness of the
proposed method.

Our contributions are summarized as follows:
• We provide a training method for an end-to-end encoder-
decoder scene text recognition model for resource-poor lan-
guages that utilizes well-prepared large datasets in resource-
rich languages effectively. To the best of our knowledge,
while training methods utilizing multilingual data for end-
to-end models have been proposed in the fields of speech
and language processing [1, 14, 17], ours is the first work to
utilize multilingual data in training a scene text recognition
model.

• We conduct experiments on Japanese scene text recognition
using highly accurate Transformer-based scene text recog-
nition models [23, 29] with a detailed ablation study that
verifies the effectiveness of the proposed approach. The ex-
periments show that even a small amount of resource-rich
language’s data improves performance in the resource-poor
language.

2 TRANSFORMER-BASED SCENE TEXT
RECOGNITION

This section describes scene text recognition based on Transformer
[23, 29]. Transformer [27] was originally proposed for machine
translation and is based solely on attention mechanisms; it has
been successful in various natural language processing tasks. In
recent years, inspired by the machine translation model, scene text
recognition methods based on Transformer have been proposed
[5, 20, 23, 29, 30, 32]. High recognition accuracy has been obtained
due to its powerful language modeling abilities.

Scene text recognition is a task that estimates character string
𝑪 = {𝑐1, · · · , 𝑐𝑇 } from character image 𝑰 , where 𝑐𝑡 is the 𝑡-th
character of the string, and 𝑇 is the number of characters. In the
auto-regressive encoder-decoder recognition model based on Trans-
former, the generation probability of 𝑪 from 𝑰 is modeled as

𝑃 (𝑪 | 𝑰 ;𝚯) =
𝑇∏
𝑡=1

𝑃 (𝑐𝑡 | 𝑐1:𝑡−1, 𝑰 ;𝚯), (1)

where 𝑐1:𝑡−1 = {𝑐1, · · · , 𝑐𝑡−1}, and 𝚯 = {𝜽enc, 𝜽dec} represents
the trainable model parameter set.

Figure 1 shows network structures for a scene text recognition
model based on Transformer [23, 29]. As shown in Figure 1, the
scene text recognition model based on Transformer consists of an
encoder and a decoder.

2.1 Encoder
In the encoder, input image 𝑰 is converted into continuous vectors
𝑸 = {𝒒1, · · · , 𝒒𝐽 } as

𝑷 = CNNFeatureExtractor(𝑰 ;𝜽enc), (2)

𝑸 = Reshape(𝑷 ), (3)

where CNNFeatureExtractor() is a function that extracts im-
age features by using a CNN-based model, Reshape() is a func-
tion that translates three-dimensional image features (width ×
height×channels) into two-dimensional vectors (width×(height×
channels)), and 𝐽 is the width of the continuous vectors. The en-
coder proposed by Wang et al. [29] outputs continuous vectors 𝑸 ,
see Figure 1 (b). On the other hand, in the encoder proposed by
Sheng et al. [23] shown in Figure 1 (a), continuous vectors 𝑸 are
then projected into 𝑹 = {𝒓1, · · · , 𝒓 𝐽 } for input to the Transformer
encoder block as

𝒓 𝑗 = AddPosEnc(𝒒 𝑗 ), (4)

whereAddPosEnc() is a function that adds a continuous vector in
which position information is embedded. The Transformer encoder
composes continuous vectors 𝑺 (𝐾) from 𝑹 by using 𝐾 Transformer
encoder blocks. The 𝑘-th Transformer encoder block forms the 𝑘-th
continuous vectors 𝑺 (𝑘) from the lower layer inputs 𝑺 (𝑘−1) as

𝑺 (𝑘) = TransformerEnc(𝑺 (𝑘−1) ;𝜽enc), (5)

where 𝑺 (0) = 𝑹, and TransformerEnc() is a Transformer encoder
block that consists of a scaled dot product multi-head self-attention
layer and a position-wise feed-forward network [27]. The encoder
proposed by Sheng et al. [23] outputs continuous vectors 𝑺 (𝐾) .

2.2 Decoder
The decoder computes the generation probability of a character
string from the preceding character string and continuous vectors
output from the encoder. The predicted probabilities of the 𝑡-th
character, 𝑐𝑡 , are calculated as

𝑃 (𝑐𝑡 | 𝑐1:𝑡−1, 𝑰 ;𝚯) = Softmax(𝒖 (𝐿)
𝑡−1;𝜽dec), (6)

where Softmax() is a softmax layer with linear transformation.
The Transformer decoder forms hidden representation 𝒖 (𝐿)

𝑡−1 from
encoder output 𝑽 by using 𝐿 Transformer decoder blocks, where

𝑽 =

{
𝑺 (𝐾) in modeling by Sheng et al. [23],
𝑸 in modeling by Wang et al. [29].

(7)

The 𝑙-th Transformer decoder block forms the 𝑙-th hidden represen-
tation 𝒖 (𝑙)

𝑡−1 from the lower layer inputs𝑼 (𝑙−1)
1:𝑡−1 = {𝒖 (𝑙−1)1 , · · · , 𝒖 (𝑙−1)

𝑡−1 }
as

𝒖 (𝑙)
𝑡−1 = TransformerDec(𝑼 (𝑙−1)

1:𝑡−1, 𝑽 ;𝜽dec), (8)

whereTransformerDec() is a Transformer decoder block that con-
sists of a scaled dot product multi-head self-attention layer, a scaled
dot product multi-head source-target attention layer, and a position-
wise feed-forward network [27]. The hidden representation 𝒖 (0)

𝑡−1 is
given by

𝒖 (0)
𝑡−1 = AddPosEnc(𝒄𝑡−1), (9)

𝒄𝑡−1 = Embedding(𝑐𝑡−1;𝜽dec), (10)

where Embedding() is a linear layer that embeds the input char-
acter into a continuous vector.
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Figure 1: Network structures of a Transformer-based encoder-decoder model for scene text recognition.

2.3 Training
To train themodel, the target language’s datasetD = {(𝑰 1, 𝑪1), · · · ,
(𝑰𝑁 , 𝑪𝑁 )} is used, where 𝑁 is the number of data points. The opti-
mization of model parameters is represented as

𝜽enc, 𝜽dec = arg min
𝚯

𝑁∑︁
𝑛=1

{
− log 𝑃 (𝑪𝑛 | 𝑰𝑛;𝚯)

}
, (11)

where 𝜽enc and 𝜽dec are trained parameters.
In this paper, to train an accurate scene text recognition model

for the target language when a large dataset in the target language
is not available, i.e. the number of data points, 𝑁 , for the target
language is small, we propose a training method that utilize not
only the dataset in the resource-poor target languages but also a
well-prepared dataset of a resource-rich language.

3 PROPOSED METHOD
This section details the proposed method. The proposed method
trains the encoder-decoder scene text recognition model based on
Transformer described in Section 2 for the resource-poor target
language.

Themain idea of the proposedmethod is to utilize awell-prepared
dataset of a resource-rich language such as English to train the
recognition model for the resource-poor language. The proposed
method does not simply train the model on a dataset composed
of two languages, but trains the resource-poor language’s model
by using efficient combinations of the resource-poor language’s
dataset and the resource-rich language’s dataset. In detail, the pro-
posed method optimizes two models in pre-training at first, and
then a part of each model is used as a pre-trained encoder and a
pre-trained decoder for fine-tuning. For encoder pre-training, the
proposed method utilizes the multilingual dataset composed of the

resource-poor language’s dataset and the resource-rich language’s
dataset. By this approach, the encoder can be trained by using a
larger dataset than that possible when using only the resource-
poor language’s dataset. Therefore, the encoder can learn features
of images beyond languages including a variety of images and
character string shapes such as curved and tilted from the larger
dataset, which improves robustness effectively. On the other hand,
for decoder pre-training, the proposed method utilizes only the
resource-poor language’s dataset. This approach specializes the de-
coder for the resource-poor language. Since the decoder translates
the image features captured by the encoder into character strings,
recognition accuracy can be improved by specializing the decoder
for the resource-poor language. Finally, the pre-trained encoder
and decoder are fine-tuned by using the resource-poor language’s
dataset.

Figure 2 outlines the proposed method. The proposed method
consists of two training phases; pre-training and fine-tuning.

3.1 Pre-Training
In the pre-training phase, the proposed method uses not only the
resource-poor language’s datasetDrp = {(𝑰 rp1 , 𝑪

rp
1 ), · · · , (𝑰 rp

𝑁
, 𝑪rp
𝑁
)},

but also a well-prepared large dataset in a resource-rich language
Drr = {(𝑰 rr1 , 𝑪

rr
1 ), · · · , (𝑰 rr

𝑀
, 𝑪rr
𝑀
)}, where 𝑁 and 𝑀 are the num-

ber of data points in the resource-poor language’s dataset and the
resource-rich language’s dataset, respectively. We assume 𝑁 < 𝑀 .
The proposed method pre-trains the encoder and the decoder by
using the multilingual dataset and the resource-poor language’s
dataset, respectively.

As for encoder pre-training, the multilingual model that consists
of multilingual encoder (ME) and multilingual decoder (MD) is
trained. Training uses a multilingual dataset made by combining
the resource-poor language’s dataset Drp with the resource-rich
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Figure 2: Outline of the proposed method.

language’s dataset Drr. The optimization of model parameters is
given by

¤𝜽enc, ¤𝜽dec = arg min
𝚯

[
𝑁∑︁
𝑛=1

{
− log 𝑃 (𝑪rp

𝑛 | 𝑰 rp𝑛 ;𝚯)
}

+
𝑀∑︁
𝑚=1

{
− log 𝑃 (𝑪rr

𝑚 | 𝑰 rr𝑚 ;𝚯)
}]
,

(12)

where ¤𝜽enc and ¤𝜽dec are the trained parameters of ME and MD in
encoder pre-training.

As for decoder pre-training, the resource-poor language model
that consists of resource-poor language encoder (RPLE) and resource-
poor language decoder (RPLD) is trained. Training uses the resource-
poor language’s datasetDrp. The optimization of model parameters
is given by

¥𝜽enc, ¥𝜽dec = arg min
𝚯

𝑁∑︁
𝑛=1

{
− log 𝑃 (𝑪rp

𝑛 | 𝑰 rp𝑛 ;𝚯)
}
, (13)

where ¥𝜽enc and ¥𝜽dec are the trained parameters RPLE and RPLD
in decoder pre-training.

3.2 Fine-Tuning
In the fine-tuning phase, the proposed method trains the final recog-
nition model using the pre-trained encoder-decoder parameters.
Thus, parameters of ME ¤𝜽enc pre-trained by encoder pre-training
and RPLD ¥𝜽dec pre-trained by decoder pre-training are used as the
initial values for fine-tuning. Fine-tuning is carried out by using the
resource-poor language’s dataset Drp. The optimization of model
parameters is given by

¤̂𝜽enc, ¥̂𝜽dec = arg min
𝚯

𝑁∑︁
𝑛=1

{
− log 𝑃 (𝑪rp

𝑛 | 𝑰 rp𝑛 ;𝚯)
}
, (14)

where ¤̂𝜽enc and ¥̂𝜽dec are the fine-tuned final parameters.
In the experiments in Section 4, we additionally examined a

training procedure that fine-tuned the parameters of ME ¤𝜽enc with
a randomly initialized decoder, and a training procedure that fine-
tuned the parameters of ME ¤𝜽enc and MD ¤𝜽dec.

4 EXPERIMENT
We conducted experiments to confirm the effectiveness of the pro-
posed method. We selected Japanese as the resource-poor target
language, for which no public large dataset is available. In addition
to the limitation posed by the small available dataset, Japanese
scene text recognition is further complicated by the diversity of
characters. We selected English as the resource-rich language.

4.1 Datasets
We used the Japanese dataset created for the ICDAR2019 robust
reading challenge on multilingual scene text detection and recognition
[22]; it is the only publicly available Japanese scene text dataset,
for the resource-poor language’s dataset. The ICDAR2019 dataset
holds annotated real and synthesized image data created using the
synthesizing method of [9] for end-to-end scene text detection and
recognition in 10 languages. To construct the Japanese scene text
recognition dataset for this experiment, we first selected Japanese
real image data and synthesized image data. Then, we cropped
the images according to the annotation for scene text detection,
and excluded data that contained characters other than standard
Japanese characters. This yielded 9,346 real images and 65,452 syn-
thesized images. Mixing and splitting these images at the ratio of
9 : 1 yielded training data of 67,368 images and test data of 7,430
images. The training data was used as Drp for both pre-training
and fine-tuning. There were 2,332 character classes.

We used MJSynth [11] as the resource-rich language’s (i.e. Eng-
lish) dataset,Drr. The number of training data imageswas 8,027,346.
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Table 1: Measured results in terms of recognition accuracy.

Modeling Training Procedure Encoder Pre-Training Decoder Pre-Training Accuracy (%)
Shi et al. [24] Baseline – – 27.82
Borisyuk et al. [6] Baseline – – 29.73
Shi et al. [25] Baseline – – 30.70
Lee et al. [15] Baseline – – 47.85
Wang et al. [28] Baseline – – 48.05
Liu et al. [16] Baseline – – 54.48
Baek et al. [2] Baseline – – 55.34
Sheng et al. [23] Baseline – – 47.85
Sheng et al. [23] Training w/ ME Multilingual – 59.30
Sheng et al. [23] Training w/ ME+MD Multilingual Multilingual 59.43
Sheng et al. [23] Proposed training w/ ME+RPLD Multilingual Japanese 62.14

Wang et al. [29] Baseline – – 65.22
Wang et al. [29] Training w/ ME Multilingual – 69.58
Wang et al. [29] Training w/ ME+MD Multilingual Multilingual 69.33
Wang et al. [29] Proposed training w/ ME+RPLD Multilingual Japanese 72.57

Figure 3: Example of recognition results improved by pre-
training encoder utilizing multilingual dataset.

4.2 Setups
We tested the following four training procedures to evaluate the
proposed training method. Baseline did not pre-train the recogni-
tion model; training used only the Japanese dataset from scratch.
In Training w/ ME, we pre-trained ME by using the multilingual
dataset made by combining the Japanese dataset and the English
dataset, and fine-tuned ME with a randomly initialized decoder
by using the Japanese dataset. In Training w/ ME+MD, we pre-
trained ME and MD by using the multilingual dataset, and fine-
tuned them by using the Japanese dataset. In Proposed training
w/ ME+RPLD, we pre-trained ME and RPLD by using the multilin-
gual dataset and the Japanese dataset respectively, and fine-tuned
them by using the Japanese dataset.

Two recognition models based on Transformer were evaluated.
The first one is the model proposed by Sheng et al. [23]; VGG16 [26]
up to the 10-th convolution layer was applied as the CNN feature
extractor. The second one is the model proposed by Wang et al.
[29]; ResNet34 [10] was applied as the CNN feature extractor. The
Transformer blocks were composed under the following conditions:
the number of Transformer encoder blocks and Transformer de-
coder blocks were set to 1, the dimensions of the output continuous
representations and the inner outputs in the position-wise feed

forward networks were set to 512, and the number of heads in the
multi-head attentions was set to 4. We also evaluated the models
based on RNNs [2, 6, 15, 16, 24, 25, 28]. For the models based on
RNNs, we evaluated only the baseline training procedure, and the
model structures followed the evaluation by [2].

For all evaluated models, the input image size was 400× 64, and
the input images were scaled to satisfy the resolution. For training,
the optimizer was based on stochastic gradient descent (SGD) with
learning rate of 0.01. The mini-batch size was set to 32 images. Note
that a part of the training data was used for early stopping. As an
evaluation metric, we used the recognition accuracy as determined
by exact matching.

4.3 Results
The recognition accuracy values are shown in Table 1. First, the
recognition models based on Transformer have the same or higher
Japanese character recognition accuracy than the recognitionmodel
based on RNNswith limited training data. Next, for models based on
Transformer, the accuracy obtained by baseline was low compared
to the use of pre-training, and utilizing pre-training improved the
accuracy. In detail, when we utilized training with ME or ME+MD,
the performance improvement was small. On the other hand, our
training proposal utilizing ME+RPLD further improved the recog-
nition accuracy. Examples of characters extracted by the model
of Wang et al. [29] are shown in Figures 3 and 4. Note that the
captions for each image on Figures 3 and 4 are (a) ground truth,
recognition results of (b) baseline, (c) training w/ ME, (d) training
w/ ME+MD, and (e) proposed training w/ ME+RPLD. The results
in Figure 3 show that the proposed training method can prevent
the erroneous recognition of words in tilted or blurred images;
this is mainly the effect of utilizing the multilingual dataset in pre-
training the encoder. The results in Figure 4 show that the proposed
training method can prevent the false recognition of words that do
not exist given relatively long character strings, which is mainly
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Figure 4: Example of recognition results improved by pre-training decoder utilizing Japanese dataset.

Table 2: Measured results of proposed training in terms of
recognition accuracy (%) versus size of English dataset.

Data Size Sheng et al. [23] Wang et al. [29]
0 (Same as baseline) 47.85 65.22
1M 57.90 68.52
2M 59.07 70.03
4M 59.69 71.28
8M 62.14 72.57

due to pre-training the decoder by utilizing the resource-poor lan-
guage’s dataset. These results confirm that the proposed training
method is an effective way of improving recognition accuracy when
the image-to-text paired dataset in the resource-poor language is
limited.

We also evaluated the recognition accuracy while varying the
size of the English dataset in the pre-training phase. We prepared
English datasets of four sizes: 8M as used in the above evaluation,
4M (4,013,673 data), 2M (2,006,837 data), and 1M (1,076,675 data).
The resulting accuracy values are shown in Table 2. They show that
increasing the data size improves the recognition accuracy. On the
other hand, the proposed method is more effective than baseline
even when the size of the English dataset is small.

5 CONCLUSION
This paper proposed a novel trainingmethod for an encoder-decoder
scene text recognition model for resource-poor languages. The key
advance of our method is to utilize a well-prepared large dataset in
a resource-rich language, and pre-train the encoder of the recog-
nition model by using a multilingual dataset to capture image fea-
tures that are not language specific. Our method also pre-trains
the decoder of the recognition model by using the resource-poor
language’s dataset to ensure its suitability for the resource-poor
language. This achieves accurate recognition in the resource-poor
language even though the dataset for the resource-poor language
is limited. Japanese scene text recognition experiments using small

publicly available Japanese dataset confirmed the improvement in
the recognition accuracy offered by the proposed method.
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