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ABSTRACT
This study is aimed at finding a suitable method for generating time-
series data such as video clips or avatar motions from text stating
multiple events. This paper addresses the generation of variable-
length time-series data considering the order and variable duration
of events stated in the text. Although the use of the variant of
Mean Squared Error (MSE) is a common means of training, only the
gap between the element of ground-truth (GT) data and generated
data at the same time are considered. Thus, variants of MSE are
unsuitable for the task at hand because the loss may not be small for
the generated and GT data with the same order of events if the time
for each event does not overlap. To solve the problem, we propose
a Dynamic Time Warping-Like method for Variable-Length data
(DTWL-VL), which determines the corresponding elements of the
GT and the generated data, allowing for the time difference between
them, and makes them closer. We compared DTWL-VL, a variant of
MSE, and an existing method for time-series data generation which
considers the time difference between the corresponding part in
the GT and generated data. Since the existing method is aimed at
generating fixed-length data, we extend the method for generating
variable-length time-series data. We conducted experiments using
a dataset prepared for this study. Both DTWL-VL and the existing
methods outperformed the MSE variant. Moreover, although the
existing method outperformed DTWL-VL under certain settings,
DTWL-VL required a smaller training period.
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1 INTRODUCTION
Time-series data, such as video sequences and avatar motions, are
extensively used. Automatic generation of such data from text
will reduce creation costs because text creation does not require
any special technique or equipment. Although existing studies
have addressed this problem [1–3, 5, 9, 14–19, 21, 24, 25], they
have not focused on reflecting the appropriate order and duration
of sequential events. For example, to the best of our knowledge,
no studies have attempted to generate video sequences from text
including multiple sequential actions such as “A man was walking.
He suddenly stopped and picked something up.”When the input text
involves multiple events, the generated time-series data should have
an appropriate order of events to reflect the meaning of the input
text. Furthermore, the duration of each event should be appropriate.
It means that the duration of events in the output data should not
deviate significantly from the distribution of the duration in ground-
truth (GT) data. Moreover, since the length of the time-series data
may be affected by the content of the input text, the generation of
variable-length time-series data is required. It is therefore necessary
to develop a method for the generation of time-series data with the
proper order and natural duration of events, and variable length.

Loss functions like Mean Squared Error (MSE) have been used in
many studies. However, MSE may be unsuitable for generating data
with proper order of events. This is because MSE does not align
elements with different time, and data with the same order of events
are not regarded as similar if the time of events in the two data do
not overlap. Therefore, to generate data with the appropriate order
and natural duration of events, we propose a method that can align
elements of time-series data at different time.

Our contributions are summarized as follows:
• To generate time-series data with proper order and natural
duration of events, we propose DTWL-VL, which consid-
ers the alignment between time-series data, and causes the
duration and value of the corresponding parts to be closer.

• We built a synthetic dataset that consists of a set of text that
states the sequential action of people and corresponding
variable-length time-series data representing the action of
such people at all times.

• In our experiments, we compared DTWL-VL to an existing
method that originally considers the alignment between
time-series data with the same length. We demonstrated that
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incorporating the loss of the inactive part of the data for
generating variable-length data improves the performance
of the existing method. Furthermore, both DTWL-VL and
the existing method outperform a variant of MSE. Although
the existing method outperforms DTWL-VL under certain
settings, DTWL-VL requires a shorter training period.

2 RELATEDWORK
2.1 Generation of time-series data from text
Several studies have addressed time-series data generation from text.
[1, 15, 21, 24, 25] tackled motion generation, and [2, 3, 5, 9, 14, 16–
19] focused on video generation. However, none of these studies
focused on reflecting multiple sequential events in the output or
considering the time difference between the corresponding part of
the GT and generated data. Data alignment has been used in speech
generation [10]. However, the methods of the previous research are
based on the assumption that the alignment between speech and
text is monotonic, that is, skipping or repetition of the text input
does not occur. This is not the case with video or motion generation
because it is not guaranteed that the events are stated in the order
they occur. Moreover, the above studies on the generation of video
and motion did not investigate a variable length output except [21].

2.2 Measure for time-series data similarity
Dynamic Time Warping (DTW)[6] is one of the means to calculate
the similarity between time-series data of different lengths. DTW
determines theminimal alignment cost from all alignments between
the two time-series data. Thus, DTW allows an element in one
data to be aligned with an element in the other data at a different
time. We denote the DTW between the time-series data Ap1 , the
time-series data A from an element with index 1 to p, and Bq1 , the
time-series data B from the element with index 1 to q, as δ (Ap1 ,B

q
1 ).

We call the element of Ap1 with index p, ap , and the element of Bq1
with index q, bq . δ (A

p
1 ,B

q
1 ) is calculated as follows:

δ (A
p
1 ,B

q
1 ) = min


δ (A

p−1
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q
1 ) + d(ap ,bq )

δ (A
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, in which d(a
′

,b
′

) is the distance set between a
′

and b
′

.
Figure 1 presents two examples of alignment.

2.3 Objective for time-series data dissimilarity
Several existing studies have proposed a differentiable function
based on DTW for use as a loss function. Soft-DTW [4] is the soft-
minimum of all alignment costs, whereas DILATE[12] is a combi-
nation of soft-DTW and additional loss for time difference between
aligned elements. These loss functions can be used to generate
time-series data considering time difference of the corresponding
part of the GT and generated data. In these studies, the length of the

Figure 1: Example of alignment: The cost of alignment is
the sum of the distances between aligned elements.The red
and blue paths represent examples of alignments. The align-
ment cost for the red path is d(A1,B1)+d(A1,B2)+d(A2,B3)+
d(A3,B3) + d(A4,B3) + d(A5,B3),

generated data was determined, and the methods were not applied
to the generation of variable-length time-series data.

3 PROPOSED MATCHING LOSS
We propose DTWL-VL to deal with the time difference between the
corresponding parts of GT and generated time-series data and gen-
erate variable-length outputs. Furthermore, we extend the existing
DILATE method to variable-length outputs. We describe the details
of DTWL-VL and DILATE-based methods in Sections 3.1 and 3.2,
respectively. We consider that elements corresponding to the same
event have similar values, and our goal is to generate time-series
data with the appropriate order and duration of events described
in the input text. Both methods require the model to generate not
only the features of the output but also the end possibility for each
time in order to generate variable-length time-series data.

3.1 DTWL-VL
This method consists of two phases. The first phase is aimed at
learning the alignment between the GT and the generated data. In
the second phase, the model makes elements that should be aligned
closer, based on the alignment obtained during the previous phase.

3.1.1 Components of loss for first phase. Let A be the output data
withmaxpos elements and BS1 be the GT data with S elements. The
proposed loss function for the first part is as follows:

minr (AL(r ) + EP(r ) + EG(r )), (3)

where r is an index ofA. The loss corresponds to a certain r with
a minimal value, and we refer to this index as R.

AL(r ) is the loss for the alignment aimed at making the generated
time-series data closer to the GT data. We will describe AL(r ) later.
EP(r ) is the penalty for the end position and

EP(r ) = γ · |r − endpos |, (4)

where γ is a hyperparameter set to 3.2 in this research, and endpos
is the first index with an end possibility of more than 0.5 if any, and
the index with the highest probability otherwise. By including the
penalty, we discourage the model from determining R ignoring the
calculated end position of the generated data, which we expect to
help the model learn the appropriate end position.

EG(r ) makes the end possibility of aR+1 closer to 1. This is for
modifying duration of the part whose end possibility is no more
than 0.5 in the same manner to other events as described below.

EG(r ) = λ · sv(log(pendr+1 )) (5)
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λ is a hyperparameter set to 0.1. This λ is the same to λ in Eqn. 19.
We represent the end possibility of an element at time i as pendi .
We define sд(·) to return a value that is equal to its argument but
detached from its gradient information. Moreover, we define sv(·)
as sv(A) = A − sд(A). The return value of sv(·) is equal to zero.

3.1.2 Details of loss for time-series data alignment. AL(r ) is set to
δλ,match (A

r
1,B

S
1 ), A

r
1 is the output data with r elements, and BS1 is

the GT data with S elements. In addition, δλ,match (A
r
1,B

S
1 ) is the

matching loss between Ar1 and B
S
1 , which is calculated as
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in which d(a
′

,b
′

) is the distance that we set between a
′

and b
′

.
We refer to the use of the value δλ,delA as the “delA procedure,”

δλ,delB as the “delB procedure,” and δλ,match as the “match proce-
dure.” By allowing three means of aligning the elements, we can
align elements with different time like DTW. In addition, we use
δλ,match (A

r
1,B

S
1 ) and the constraint δλ,delB (Ar1,B

S−1
1 ) = ∞ for

treating the part whose end possibility is no more than 0.5 as an
event and modifying its duration.

3.1.3 Costs for alignment procedure. We now describe the costs of
the procedures.

Here, d(ar ,bs ) represents the distance between aligned elements.
We call “delA procedure” and “delB procedure” as “delete procedure”.
For “delete procedure”, the value of the alignment costs is d(ar ,bs ),
as shown in Eqs. 7 and 8. The cost for the “match procedure” is
d(ar ,bs )+ λ |dn | +д(r , s)+mc , as shown in Eqn. 6. We describe the
components of this cost in the following.

λ |dn | is the penalty for the final consecutive “delete procedure”.
dn is the number of “delA procedures” minus the number of “delB
procedures” since the last “match procedure.” Based on the calcula-
tion method, |dn | is the number of consecutive “delA procedures” or
consecutive “delB procedures.” By adding λ |dn |, we expect “match
procedure” will come before “delete procedure” when aligning con-
secutive elements corresponding to the same event, because the
penalty of the last “delete procedure” is not added when determin-
ing the alignment of the previous elements of “match procedure.”

When dn > 0,

д(r , s) = sv{−d(ar−1,bs−1)+dn · (d(ar−1,bs )+d(ar ,bs+1))} (10)

A A BB

i jGenerated data

B

2d(B, i)-d(A, i) +d(A, i) 2d(B, j) +d(B, j)

Ground-truth data

Elements at the border

2 “delA”

Figure 2: The orange letter shows the influence of the "delA
procedure,” as mentioned in Eqn. 10.

B B

i jGenerated data

d(A, i) + d(A, i) d(A, j)-d(B, j) +d(B, j)

Elements at the border

1 “delB” 

A A A A AGround-truth data

Figure 3: The blue letter shows the influence of the "delB
procedure,” as mentioned in Eqn. 11.

BB

i jGenerated data

d(A, i) d(B, j)
Elements at the border

0 delete 
A A A AGround-truth data

Figure 4: No "delete procedure" takes place, and д(r , s) = 0.
Loss is brought about only through a "match procedure.”

and when dn < 0

д(r , s) = sv{−d(ar+1,bs+1)−dn · (d(ar+1,bs )+d(ar ,bs−1))}. (11)

The value of д(r , s) is 0 when dn = 0.
д is set to make the duration of the corresponding parts closer.

Figures 2, 3, and 4 illustrate how д(r , s) operates. In these figures,
we show the loss related to elements in the generated data near the
event border, i and j. The dotted line indicates "match procedure"
alignment adjacent to "delete procedure”. d(·, ·) is the distance func-
tion; for example, d(A, i) denotes the distance between elementA in
the GT data and element i in the generated data. We show the cases
in which the duration of event A is (1) longer in the generated data,
(2) longer in the GT data, and (3) the same in both data. If there
are GT samples in Figures 2, 3, and 4 related to the same text as
the generated data, the summation of the loss is 3d(A, i) + 2d(B, i)
for element i and d(A, j) + 4d(B, j) for element j. In that case, the
border remains at the same position. If there are only GT samples
in Figures 2 and 4, the summation of the loss is d(A, i) + 2d(B, i)
for element i and 4d(B, j) for element j. Then, element i becomes
closer to B than A, and thus the border of the events changes.

We expect the last element of certain event in the generated data
to be aligned with “match procedure” just after “delB procedure” if
in case (2) and the last element has a difference in value from other
elements belonging to the same event because aligning surplus
element in the GT data with the last element increases the cost. We
think the last element rarely has a value sufficiently close to other
elements in the same event in case (2) because the state is unstable.

In addition, we expect the next element of the last element for
certain event in the generated data to be aligned through a “match
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procedure” just after the ”delA procedure” in case (1).

mc = sд


min


d(ar ,bs )
d(ar−1,bs−1)
d(ar+1,bs+1)
d(ar−1,bs )
d(ar ,bs−1)


(12)

Withmc , we expect elements with closer values to be tied to-
gether. Without mc , matching procedure between dissimilar el-
ements may be prioritized because two elements are used at a
distance cost of one pair of elements, whereas the “delete proce-
dure” uses only one element. We ensure thatmc is no larger than
d(ar−1,bs ) or d(ar ,bs−1), because otherwise, consecutive “delA
procedure” and “delB procedure” may result in a smaller cost than
“match procedure.” Although “delA procedure” and “delB procedure”
cannot be consecutive, it is undesirable.

When the first phase ends, we obtain the best alignment between
the generated data at this point and the GT data. This alignment
minimizes δ (Aendpos1 ,BS1 ), and

δ (A
p
1 ,B

q
1 ) = min


δ (A

p−1
1 ,B

q
1 ) + d(ap ,bq ) + λ

δ (A
p−1
1 ,B

q−1
1 ) + d(ap ,bq ) +mc

δ (A
p
1 ,B

q−1
1 ) + d(ap ,bq ) + λ

(13)

Exceptionally, δ (Aendpos−11 ,BS1 ) and δ (A
endpos
1 ,BS−11 ) are set to∞

in order to align the last element of two time-series data with a
"match procedure.” This helps to learn the proper end position.

In the second part, element of the generated data is made closer
to the aligned element of the GT data with "match procedure" or
"delA procedure" in the alignment at the end of the first phase.

3.2 DILATE-VL
DILATE allows for the time difference between the corresponding
elements of GT and generated data. Whereas DTWL-VL uses only
one alignment, DILATE uses all possible alignments for training.

DILATE is only applied to time-series data with a fixed length.
Therefore, we consider extending the method to generate variable-
length time-series data. For this purpose, loss is added such that
the generated output has the same length as the GT data, as in [21].
In this study, the authors indicate that the loss is only computed
for the active part of the motion and does not include the padded
part, since all sequences are padded to have an equal length owing
to the implementation details. We determined the end position to
be the first element whose end possibility is more than 0.5, as in
[22]. We use this method with DILATE and refer to it as DILATE-
VL-active. However, this may result in longer data than the average
length. Consider five GT data with the same text, where the ith
GT data ends at the ith element. When generating time-series data
with the same text and a length of 10, the end possibility becomes
1/5, 1/4, 1/3, 1/2, 1 from the first to the fifth element. To solve this
problem, we propose the addition of loss such that all of the end
possibilities of the elements after the end position will be close to
1. If trained in this manner, the end possibility from the first to
the last element becomes 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1, 1, 1, which will
generate data with an average length. We apply this method with
DILATE and refer to it as a DILATE-VL-pad.

Table 1: Duration of actions

Action Minimum duration Fluctuation range

Run 6 13
Walk 7 21

Standing 5 16
Sitting 6 11
Stand up 10 0
Sit down 10 0

Run while waving 6 13
Walk while waving 7 21

Wave 3 0

4 DATASET
To investigate performance of methods to reflect the proper or-
der and natural duration of events stated in the input text on the
generated time-series data with variable length, a dataset that pro-
vides time-series data including multiple sequential events whose
duration cannot be precisely known, as well as the corresponding
text, is needed. However, there are no datasets that meet our needs.
Thus, we prepared a new synthetic dataset for this study.

We prepared a simple dataset to compare performance of meth-
ods easily. There are two characters in the data. The time-series data
represent the actions of each character at each time as a label. There
were nine types of action labels: run, walk, standing, sitting, stand
up, sit down, run while waving, walk while waving, and wave.

We regard the consecutive number of times a character takes
the same action as a "duration". In this dataset, the duration of each
action is not constant, and the exact duration was not explained
in the text. As a result, the data with the same text may differ.
The duration of each action in the data was set as the summation
of minimum duration and an integer selected from [0,fluctuation
range] with equal probability. The value of "minimum duration"
and "fluctuation range" for each action was set as indicated in Table
1. The text in the dataset have more than 40 words. We provide an
example data in Figure 5.

As the content of the data was directly related to its action, this
dataset could aid in determining whether the model could generate
output with the proper meaning from the text.

We believe that characteristics such as variable duration of ac-
tions and relationship between the order of events and the meaning
of text are common to both this dataset and real time-series data
like video clips and avatar motions. For this, we expect this dataset
to provide a simple task similar to video or motion generation.

5 EXPERIMENTS
We conducted several experiments to compare the performance of
the methods. Moreover, we investigated the relationship between
the output length and training time of DTWL-VL and DILATE.

5.1 Comparison of methods
We carried out experiments to generate variable-length time-series
data from input text using several method of training, and com-
pared their performance based on several evaluation metrics. We
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waving

standing
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Figure 5: An example found in the dataset.The related text is
"jenny was running around . then mike waved . then jenny
stopped , and jenny began running while waving . mike sat
down , and mike stood up . jenny stopped , and jenny began
walking , and mike began running while waving ."

compared the performance of four training method, i.e., a variant
of MSE, DILATE-VL-active, DILATE-VL-pad, and DTWL-VL.

The same model was used for four methods. The model get text
as input and outputs the probability of each action taken by each
character and the probability of being the end position for each
time. In the inference phase, the first position whose end possibility
became more than 0.5 was referred to as the end position.

For the text processing, we used the pretrainedmodel of Glove[20]
from [8]. The model used a bidirectional Long Short-Term Mem-
ory(LSTM) [7] to extract the sequence of features from text and used
LSTM to extract the features from the previous output elements. Fur-
thermore, the model uses a one-layer attention mechanism [23] to
process the information. The model was trained using PyTorch and
Tesla V100. The model was trained using the Adam optimizer[11]
with a learning rate of 0.001, exceptionally a learning rate of 0.0004
for DTWL-VL, and betas = (0.5, 0.999). The dataset is described in
Section 4. We used 8000 data for training, 1000 data for evaluation,
and 1000 data for inference. The model was trained for a maximum
of 250 epochs with early stopping, exceptionally a maximum of 500
epochs with early stopping for DTWL-VL.

We represent the end possibility of an element at time i as pendi ,
the end position of the GT data as pos , and the maximum length of
the generated data asmaxpos . For the variants of MSE and DILATE-
VL-active, the loss for the end possibility Le was

Le = −γ log(pendpos ) −

pos−1∑
i=1

log((1 − pendi )), (14)

and for the DILATE-VL-pad, the loss for the end possibility Le was

Le = −

maxpos∑
i=pos

log(pendi ) −

pos−1∑
i=1

log((1 − pendi )) . (15)

γ is a hyperparameter set to 4 aimed at alleviating imbalance in
number of elements at end position and other elements, as in [13].

For the variant of MSE, DILATE-VL-active, and DILATE-VL-pad,

d(a
′
,b

′
) =

−b
′
· (log(a

′
) − log(b

′
))

numlabel
(16)

was used as distance between elements. Here, " · " means inner
product. For GT data, action probability vector is a one-hot vec-
tor. a

′
,b

′
is the concatenation of action probability vectors of all

characters. numlabel = 9 in the experiments. Using this, the loss of
generated time-series Ls was calculated. For the variants of MSE,

Ls =

∑pos
i=1 d(a

i ,bi )

pos
. (17)

For DILATE-VL-active and DILATE-VL-pad, Ls is calculated as in
the original study. The loss for training is

α · Ls + β · Le (18)

α , β = 2, 0.01 for the variants of MSE and DILATE-VL-active, and
2, 0.0001 for DILATE-VL-pad.

For DTWL-VL, we defined

d(a
′

,b
′

) = κ ·
−b

′

· (log(a
′

) − log(b
′

))

numlabel
+λ · {EndL−sд(EndL)} (19)

EndL = −E log(pend ) − (1 − E) log(1 − pend ) (20)
where κ, λ = 2, 0.1. Here, E was 0 if the index of b

′

was less than
the length of the GT data, and was 1 otherwise. In addition, pend is
the end possibility corresponding to a

′

.
We used “DTW,” “MSE variant,” “length difference,” and “deleted

ratio” as the evaluation metrics. “DTW” was the DTW value be-
tween the generated and GT data. Moreover, “MSE variant” was the
average value of the distance between the elements of the generated
and GT data at the same time. For “DTW” and “MSE variant,” Eqn.
16 was used as the distance between elements. The deleted ratio
is the ratio of deleted elements in the minimal cost alignment for
DTW. Finally, “length difference” was the average of

(|GT data length - generated data length|)/(GT data length). (21)

“DTW” can consider the time difference between corresponding
events and represents the difference of aligned elements, whereas
“MSE variant” cannot consider such difference. Furthermore, “deleted
ratio” indicates the difference in the duration for corresponding
parts based on the alignment by “DTW,” whereas “length difference”
represents the difference in the entire data length. Since the goal
for this task was to generate data with the proper order and natural
duration of events, we considered “DTW” to be a better indicator
than “MSE variant” for the order of events, and “deleted ratio” to
be better than “length difference” for evaluating the duration of
events. In all cases, a small value indicates a better performance.
The experiment was carried out twice under each setting.

In addition, we conducted an experiment to determine the rela-
tionship between the length of the data and the training time for
DILATE and DTWL-VL. We use DILATE because the length of data
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Table 2: Evaluation based on DTW

Method DTW Deleted ratio

Variant of MSE 7075.507 ± 143.097 0.172 ± 0.0280.172 ± 0.0280.172 ± 0.028
DILATE-VL-active 2394.312 ± 16.487 0.246 ± 0.012
DILATE-VL-pad 1668.446 ± 20.7811668.446 ± 20.7811668.446 ± 20.781 0.194 ± 0.000

DTWL-VL 1687.914 ± 10.263 0.204 ± 0.000

Table 3: Evaluation based on variant of MSE

Method MSE variant Length difference

variant of MSE 0.133 ± 0.0120.133 ± 0.0120.133 ± 0.012 0.254 ± 0.066
DILATE-VL-active 0.363 ± 0.066 0.184 ± 0.034
DILATE-VL-pad 0.525 ± 0.011 0.089 ± 0.0010.089 ± 0.0010.089 ± 0.001

DTWL-VL 0.922 ± 0.028 0.156 ± 0.006

Figure 6: DTW and deleted ratio for DILATE-VL-active,
DILATE-VL-pad, and DTWL-VL.

is fixed in this experiment. We only use the first phase of DTWL-VL
for this experiment because it requires more time than the second
phase. We used the code and data from [12] and changed the output
length. We compared the training times for the same number of
epochs. The experiment was conducted once under each setting.

5.2 Results of each method and analysis
The performance of each method is summarized below.

The MSE variant had the worst “DTW” value, indicating that
a variant of MSE is unsuitable for generating time-series data in-
cluding actions with the proper order. DTWL-VL performed better
than DILATE-VL-active. However, DILATE-VL-pad performed bet-
ter than DTWL-VL in that they exhibited no significant difference
in the “DTW” value, but had a significant difference in the “deleted
ratio”. For “deleted ratio” DILATE-VL-pad performed better than
DILATE-VL-active, as per our expectations. In DILATE-VL-active
and DILATE-VL-pad, “deleted ratio” and “DTW” were affected by
one hyperparameter. The two values for each method with various
hyperparameter values are shown in Fig. 6.

As shown in Table 1, the duration of “wave” was short compared
to the minimum duration and fluctuation range of the other actions.
When the probability of “wave” was the highest among all actions
for the corresponding character, we regarded the character as con-
ducting “wave” action at that time. To verify whether the model

Table 4: Number of generated “wave” actions (2133 in GT)

Method “Wave” number

Variant of MSE 0 ± 0.00
DILATE-VL-active 662.5 ± 125.16
DILATE-VL-pad 1715 ± 57.98

DTWL-VL 1870 ± 24.041870 ± 24.041870 ± 24.04

Table 5: Training time in relation to output length

Output length DTWL-VL DILATE

20 614.19 1290.71
50 1131.03 2345.54
100 2306.18 5227.06
150 3437.85 14302.21
200 4851.29 40473.02
250 5580.46 49982.86

could output short events, we counted the number of times “wave”
action was conducted. The results are presented in Table 4. The
variant of MSE could not generate “wave” action, indicating that
methods such as MSE have difficulty in reflecting events with a
short duration, and consequently cannot reflect the order of events
properly. Therefore, we infer that the method lacks the capacity to
reflect short events in video or motion generation tasks.

The results of the training time related to the output length
are presented in Table 5. DTWL-VL required less time, and the
difference in training time increased as the output length increased.

The experiments revealed that, although the DILATE-VL-pad
outperformed DTWL-VL, DTWL-VL required less time for training
and may be suitable for generating long time-series data.

6 CONCLUSIONS
We proposed DTWL-VL for reflecting the correct order of events
stated in an input text and proper duration of such events in the out-
put time-series data. We demonstrated that DTWL-VL and DILATE-
based methods, which can make the generated data and GT data
closer by considering the alignments, are superior to a variant of
MSE for generating data with a proper order of events. Moreover,
the calculation of the end possibility for the padded part of the
sequence results in a better performance when using DILATE for
the generation of variable-length time-series data.

Although DILATE-VL-pad achieved a higher performance than
DTWL-VL, DTWL-VL required less training time, which may be an
advantage when generating long time-series data. We expect that
consideration of alignment between time-series data like DTWL-VL
or DILATE improves fidelity of data for generating motion or video
sequences from text.
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