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Abstract

Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provi-
sion of high quality and universally accessible programming education. In order to realise the full
potential of these systems, recent work has proposed a diverse range of techniques for automatically
generating hints to assist students with programming exercises. This paper integrates these appar-
ently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques
can be understood as a series of simpler components with similar properties. Using this insight, it
presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and
Transformation Steps (HINTS) framework, and it surveys recent work in the context of this frame-
work. It discusses important implications of the survey and framework, including the need to further
develop evaluation methods and the importance of considering hint technique components when de-
signing, communicating and evaluating hint systems. Ultimately, this paper is designed to facilitate
future opportunities for the development, extension and comparison of automated programming hint
techniques in order to maximise their educational potential.

1 Introduction

Automated tutoring systems, which provide educational materials and feedback to students without di-
rect teacher involvement, offer promising approaches to delivering scalable and high-quality programming
education. One fundamental aspect of these systems is the provision of hints and guidance to students
working on programming tasks. Specifically, automated hints can help students progress in their learn-
ing by providing instant and relevant feedback to correct their mistakes and help them advance through
exercises. In recent years, numerous techniques for producing programming hints have been developed,
including approaches aimed at scaling up instructor feedback [1, 2, 3], extracting patterns from peer
data [4, 5, 6], identifying particular dynamic or static issues with student programs [7], automatically
generating personalised paths to solutions [8, 9, 10, 11], or combinations of these [12, 13].

While this diversity of approaches offers a great range of potential options for improving feedback,
it also presents a difficult challenge - namely, it is difficult for instructors and researchers to decide
which techniques are most effective for different situations. To address this issue, many studies have
employed a range of different evaluation methods, including user studies and surveys [14, 9, 6, 1, 2],
comparisons with experts [12, 10], analysis using historical data [8, 5, 7, 13, 9, 4, 15, 11, 16, 3] or
other technical evaluations [15]. Researchers have also conducted comparison studies on small subsets of
techniques [17, 12]. However, the time-consuming nature of evaluations, complexity of hint techniques
and the apparently disparate nature of hints produced by these techniques (e.g. for different purposes,
programming languages and students) precludes a comprehensive study of every technique to achieve
unambiguous answers. In addition, this difficulty is exacerbated as more hint techniques and variations
are developed. Overcoming these challenges requires a clearer theoretical perspective to draw these
techniques together into a simple, coherent picture. Such a perspective could motivate more focused
questions for empirical studies to investigate, facilitate the sharing of ideas across hint techniques and
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provide teachers and researchers with insight into the range of available approaches and their relationships
with each other. As such, it would act as an important step towards discovering the most useful techniques
for different situations, in order to maximise the effectiveness of programming hints.

As a step towards addressing these challenges, this paper surveys and develops key theoretical ideas
behind recent work from the last five years (2014-2018) on generating automated hints for programming
exercises. Specifically, it draws together hint techniques into a common framework that is highly generic
and modular, yet simple. In addition, it discusses recurring themes and investigates how these can inform
future work. As such, it acts as a guide for understanding the important developments, challenges and
future directions in the field of automated programming hints, with the ultimate goal of maximising the
potential of automated tutoring systems.

This paper is set out as follows. Section 2 discusses related reviews and surveys, with an emphasis on
how this work contributes to the field. Section 3 defines the scope of this survey. Section 4 presents the
Hint Iteration by Narrow-down and Transformation Steps (HINTS) framework for understanding hint
generation techniques, then Section 5 surveys such techniques in the context of this framework. Finally,
Section 6 concludes with a discussion of key insights and future directions in the field.

2 Related Surveys and Reviews

Previous work on categorising automated programming feedback has generally used one of three criteria
to distinguish between feedback classes:

1. the technique used (i.e. how the feedback is produced). For example, Markov Decision Processes
(MDPs), Bug libraries or test cases could be considered different techniques for producing hints.

2. the nature of the feedback (i.e. the type of information it reveals to students). For example, the
feedback may be directed towards different parts of the program (syntax, layout, output), may be
very specific or general, or may be targeted in different ways (e.g. towards mistakes or towards
next steps to try).

3. the input required (i.e. what data is used to produce the feedback). For example, the feedback
may be produced using model solutions, peer data or test cases as input, and the format of this
data could be different too. For instance, programs could be input as abstract syntax trees (ASTs)
or lines of code.

In [18], a survey of adaptive programming feedback, feedback is categorised based on its nature. Specifi-
cally, it is divided into the classes “yes/no”, “syntax”, “semantic”, “layout” and “quality”, where“yes/no”
feedback reveals whether work is correct, and the other classes reveal information about syntactic, se-
mantic, layout or quality (e.g. efficiency) issues respectively. In contrast, in [19], which reviews static
analysis approaches to producing feedback for Java programs, tools are classified based on the input
used. For example, tools are classified based on the number of files they accept (e.g. “Single File vs.
Multi File Analysis”) and the program representations they require as input (e.g. “Trees vs. Graphs”,
”Source Code vs. Byte Code Analysis”).

In [20] (extended from [21]), all three types are used separately to label programming tools. The
tools are labelled based on the technique used (e.g. “Model Tracing”, “Data Analysis”, “Program
Transformations”), the nature of the feedback (e.g. “Knowledge about Task Constraints”, “Knowledge
about Concepts”, “Knowledge about Mistakes”) and also separately based on their “adaptability” (i.e.
the input required by the system, such as “Solution Templates”, “Model Solutions” or “Test Data”).

Since the purpose of these previous surveys has generally been to compare feedback tools, they focused
on dividing feedback into general categories so these tools could be distinguished. In contrast, while our
work also uses the technique to classify feedback and also makes reference to the input and nature of
the feedback, our focus is not on assigning feedback techniques to categories, but instead on building
one simple and integrated picture of these. Our work considers the individual components that comprise
these techniques, and utilises these to draw out insights about the nature of hint generation. As such, it
conducts a deeper exploration into the nature of programming hints.

Our work is situated more broadly in the area of automated programming tutors. Other reviews
in this area have considered techniques for automated assessment (e.g. [22] and [23]), or approaches to
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tutoring that can be supported by AI techniques [24], such as “example”, “simulation” or “dialogue”-
based approaches. In addition, some work has focused on the general features of programming tutors,
such as the programming languages taught, or primary and supplementary features [25]. While some
of these reviews also reference automated programming feedback, it is generally brief or not the main
focus.

Our work also relates to reviews on automated software repair and debugging. For example, [26]
presents a bibliography of automated software repair techniques and [27] surveys algorithmic debugging
strategies. While our work also reviews some techniques for debugging and repairing programs, the focus
is on producing hints for students in an educational context, where different resources may be available
to the system, such as data from peers or teachers.

3 Scope

The scope of this survey is recent (2014-2018) techniques for generating automated hints for programming
exercises:

1. We consider a programming hint to be any type of feedback that improves a student’s knowledge
of how to complete a programming exercise. For example, it may help them to identify mistakes
in their program, suggest potential ways to proceed, recommend concepts to revise or clarify the
task requirements. However, it does not, for example, include feedback aimed at encouragement
or emotional support.

2. We define automated hints very broadly to be any hints where no human intervention is required
between the time the hint is requested and the time the hint is given. As such, it can still include
hints generated using historical peer data, pre-written teacher hints, or other resources produced by
people, so long as human intervention is not required when the actual hint is produced. However,
it does not include peer-to-peer hints or teacher hints written after the hint is requested.

Note that this paper focuses on methods for generating hints. For this reason, work on hint timing
(e.g. based on student emotion [28, 29]), restricting hint availability (e.g. to prevent hint overuse [30])
or deciding which hint technique to use for a particular student (e.g. using student models) are beyond
the scope of this paper.

Note also that, while the focus of this paper is automated hints and not automated grading, sometimes
papers on automated grading are discussed if the grading technique could also be used to produce hints.
For example, test cases can be used to grade student programs, but can also be used to give hints about
the types of inputs the program is failing on.

4 The HINTS Framework for Generating Programming Hints

A diverse range of approaches to generating automated programming hints have been proposed in recent
years. These approaches are based on a variety of ideas and techniques, including machine learning, the
utilisation of peer or teacher data, debugging techniques and other methods focused on diagnosing errors
or discovering potential improvements in student programs. In addition, these techniques result in hints
in various forms, including hints that highlight errors, direct student actions, recommend additional
materials or provide other forms of support.

In order to understand how this multitude and variety of hint techniques fit together, existing ap-
proaches based on general categories are not sufficient, for the following reasons:

1. categorisation approaches based on the general technique employed are problematic because tech-
niques are so readily combined. For example, even if two approaches were fundamentally different,
it would be possible to integrate the output from both, thereby producing a third approach that fit
neither category. Indeed, difficulties with this type of categorisation have been reported in previous
investigations such as [20], where around 28% of surveyed tools did not suit a particular technique
category.
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2. categorisation approaches based on the nature of hints produced are also problematic, because
hint type does not necessarily correspond to the technique used. For example, a hint to delete a
line of code could be produced by identifying it in a library of common bugs, as a frequent action
taken by peers or as a step towards a model solution - all different techniques. Conversely, even
if a problematic line of code was identified in the same way, the final form of hints could be quite
different: they could explicitly instruct the student to delete the line, recommend reading materials
relevant to it or perhaps identify its rough vicinity in order to focus the student’s attention. As such,
vastly different hint techniques can produce hints of a similar nature, and similar hint techniques
can produce hints of vastly different nature. For these reasons, the final form of hints is also not
ideal for understanding hint generation techniques.

3. categorisation approaches based on the input are also problematic because the same input can be
processed in many different ways to achieve vastly different results. For example, data from peers
could be used to find common paths to a solution or mined to find common buggy patterns.

If these categories are not sufficient, this suggests that hint techniques may be too complex to allow
for easy categorisation when considered in their entirety. However, hint techniques are often comprised of
many smaller steps that are each simpler than the entire technique. This prompts the following question:

Can we develop a simple framework to describe all hint techniques by considering the
smaller steps they are comprised of?

A framework describing how automated hints are produced would be an important step towards
understanding how these techniques relate and differ from each other, finding ways to extend and improve
them, and developing methodologies for evaluating and comparing them. As such, it would act as an
important step towards realising the full potential of automated hint systems.

This section, and the following sections, argue that such a framework is indeed possible. Moreover,
they demonstrate that recent hint approaches are built up from just two simple operations applied itera-
tively. Considering the diversity of techniques, this is both an important result and tool for understanding
fundamental ideas behind automated programming hints.

Before presenting the framework, Section 4.1 introduces three examples of automated hint techniques
and highlights key similarities in the processes that comprise them. This will act as motivation for the
key ideas behind the HINTS (Hint Iteration by Narrow-down and Transformation Steps) framework for
describing automated hint techniques in general, which will be presented in Section 4.2.

4.1 Themes of Hint Generation Techniques

In order to explore several key ideas relevant to hint techniques, we first begin with a discussion of three
examples of such techniques. Though these do not exemplify all approaches, they are illustrative of their
diversity, and the similarities they exhibit will act as a basis for the general framework discussed in the
next section. The examples are as follows:

1. (MB) MistakeBrowser [1]. Using a database of program transformations learned from peer data,
the system searches for a subset of these transformations that correct a student’s program. If
successful, it then presents the student with hints written in advance by teachers for this particular
set (cluster) of transformations.

2. (SFL) Spectrum based fault localisation [7]. Test cases are run against a student’s program,
comparing its output to the expected output on various inputs. After this, parts of the program
(program spectra) that are used when the tests pass and fail are compared, and functions associated
with failed tests are flagged and highlighted to the student as hints.

3. (SC) SourceCheck [10]. An incorrect student program is matched to the closest known solution
based on a distance measure defined by the authors. The edits needed to convert the student’s
program to this solution are then presented as hints.

While these examples all appear to be quite different, they all share an important similarity: they
build up hints in levels of increasing complexity. That is, they begin with simple hints, which are then
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developed into more sophisticated hints through an iterative process. For example, in (SFL) the final
hint (highlighting a particular function) is produced using the results of test cases, which themselves
could act as hints. Indeed, test cases are commonly used in programming tutors [20]. Moreover, these
test case results are produced by comparing the output of the student’s program to the expected output
and, again, these themselves can act as simple hints revealing information about the student’s program
or the task respectively to the student. In this way, the hint technique can be considered a series of
smaller steps, producing increasingly sophisticated hints. The levels of hints for all examples are shown
in Table 1.

Table 1: Hint levels for each hint generation technique. The first column shows the input to the system.
This is then processed to produce a new intermediate hint (second column). Finally, the intermediate
hint is processed to produce another final hint (third column).

Example Input Intermediate Hint Final Hint
MB All teacher hints, all transforma-

tions, student program, correct-
ness test

Transformations that cor-
rect student program

Most relevant
teacher-written
hint

SFL Student program outputs, ex-
pected outputs

Passed/failed tests Problematic func-
tions

SC All solutions, student program Closest solution Edits to solution

Surprisingly, not only can each of these examples be divided into simpler steps, but also these steps
are remarkably similar: in each case, they involve deriving hints by narrowing down a set of hints from an
earlier level. For example, in (MB) the most appropriate teacher hint is derived by narrowing down the
set of all teacher hints. In (SC), the closest solution is derived from the set of all solutions. In all cases,
this narrowing down operation also follows a similar pattern: hints are selected from the earlier set based
on their relevance to the student’s program and/or some quality criterion. For example, in (MB) the
most appropriate transformations are selected from the set of all peer transformations based on whether
(a) they can be applied to the student’s program (relevance to the student’s program) and (b) they are
able to correct the program (quality). In (SFL) the important problematic functions are derived from
the set of all functions based on their associations with passed and failed tests of the student’s program
(i.e. their relevance to the student program). In this way, the steps used to build up hints all follow a
similar process. The steps for all examples are summarised in Table 2.

At this stage, the structural similarities between these three hint techniques may appear to be co-
incidental. However, this is not the case: they are, in fact, characteristic of recent hint techniques and
can provide valuable insights into hint generation. These similarities will act as an essential basis for the
framework describing automated hints presented in the next section.

Note that, in some of the examples shown in Table 2, the hint from an earlier level is not explicitly
a set of hints, but is easily converted to one through simple transformations. For example, in (SFL) the
student program is converted to a set of functions. In (SC) the solution and student program are divided
into a set of smaller parts in order to find differences. In these cases, the transformations are trivial, but
other techniques can involve more sophisticated transformations.

4.2 The HINTS Framework for Hint Generation

In the previous section, three examples of hint generation techniques were presented, with each able to
be divided into a series of steps that produced hints in levels. These steps involved narrowing down
and transforming hints from earlier levels. Here we present the Hint Iteration by Narrow-down and
Transformation Steps (HINTS) framework, which is based on these ideas.

The HINTS framework, shown diagrammatically in Figure 1, is described as follows:

1. The system begins with a pool of data as input, which we call hint data, since it is used to produce
hints. Input hint data can include datasets produced by peers or teachers; features of the help-
seeking student’s program or submission history; or a correctness test, such as test cases, desired
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Table 2: The steps used to derive hints in all three technique examples. Each step involves narrowing
down a set of hints (hint data) from an earlier level. This is achieved by selecting hints from the set that
(a) are relevant to the student’s program and/or (b) satisfy a quality criterion.

Example Hint Data Description
MB All peer transformations Select transformations that (1) can be applied to the

student program (relevance) and (2) can correct the
student program (quality).

All teacher hints Select teacher hints that are attached to the trans-
formations that correct the student program (rele-
vance).

SFL All student program output (To determine incorrect output) select the output
that differs from expected output (quality)
(To determine correct output) select output that
matches the expected output (quality)

Student program Select functions from the student program that are
mostly associated with incorrect output (quality)

SC All solutions Select solution that is closest to the student program
(relevance)

Solution (To discover code to add) select parts of solution that
don’t match the student program (relevance)

Student Program (To discover code to deletea) select parts of the stu-
dent program that don’t match the solution (quality)

aThere are also hints to move code described in the paper, which can considered deletions followed by insertions.

Figure 1: The HINTS framework for describing automated hint generation techniques. A small pool of
hint data is given as input, and new hint data are produced by transforming or narrowing down existing
hint data. Finally, some hint data is selected to be given as hints.

static program features or a model solution. While this input data is usually processed before
being given to students as hints, note that it could potentially be used as a hint without further
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processing. For example, expected input/output from test cases could be given to students to help
them understand the task requirements, and an entire dataset of teacher-written hints could be
given to increase their awareness of common errors.

2. Hint data from the pool can be processed to produce new hint data. This is achieved by applying
one of two steps:

(a) a narrow-down step. This involves taking a set of hint data and selecting a subset of this data
based on a relevance criterion and/or a quality criterion. The relevance criterion stipulates
that the subset of data should be relevant to some feature of the student’s program. The
quality criterion, in contrast, stipulates that hints should be of high enough quality (based on
some measure). For example, in (MB) from Section 4.1, the set of all peer transformations
was narrowed down to a subset based on the following criteria: a) (relevance) that the trans-
formations could be applied to (i.e. were relevant to) the student’s program and b) (quality)
that they were able to produce a correct solution. As another example, consider a system that
takes a large set of peer program states and narrows these down to only the most popular
reachable state from the current student’s program. Then, the relevance criterion would be
that the state is reachable from the current student’s state and the quality criterion would be
that the next state is popular.

(b) a transformation step, which involves changing the way hint data is represented. This could
include dividing the hint data into parts, representing it with a different data structure or
converting it to a standard form. For example, a model solution to a programming task
could be divided into a set of functions, represented with a different data structure, such as an
abstract syntax tree (AST) [4], or converted to a canonical (standard) form through semantics-
preserving transformations [9]. In addition, a set of student submissions could be divided into
groups based on their output [5], or represented as a graph with nodes for programs and edges
for transitions between them.

3. Once new hint data is produced, it can be added to the pool of available hint data, and the
proceeding two steps can be applied iteratively to produce increasingly complex hints.

4. One or more sets of hint data from the final pool can be selected and offered to students as hints.

5 An Example-Guided Survey of Hint Methods

In the previous section, the HINTS framework was presented to describe automated programming hint
techniques. This section now reviews recent work in the context of this framework, showing how hint
techniques fit into the framework, and also how they relate to each other.

In order to build a coherent overall picture of hint techniques, this review progresses through a series
of stages, guided by example hint techniques from recent work. In each stage, an example that is different
from anything discussed so far is presented and related to the framework. Then, other work extending
upon or relevant to this example is introduced and discussed. Finally, all techniques introduced in the
stage are related to previously discussed techniques, and the process is repeated. In general, Section 5.1
discusses ideas on how a hint system can select next-steps from a pool of existing steps. Section 5.2 then
extends upon this by discussing how next-steps can be automatically generated using a goal. Following
this, Section 5.3 investigates the uses of program features, including how direct and indirect comparisons
can be used to produce hints, and how features can be attached to pre-written teacher feedback. Finally,
Section 5.4 discusses ideas for automatically repairing programs in order to produce hints. In the next
section (Section 6), insights gained through this review will be presented, including a single, coherent
picture of all of these ideas.

It is important to note that these sections do not represent a general categorisation of hint techniques.
Ideas from the different sections are related and can overlap. The intended purpose is to introduce new
ideas and integrate these into a bigger picture as the survey progresses.
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5.1 Selecting Next Steps from Peer or Teacher Program States

A number of hint systems utilise existing data, such as peer actions or teacher solutions, to produce hints
for help-seeking students. This survey begins by considering a subset of such systems, which convert
existing data into program states, then select from these the most appropriate next state for the current
student. While the selected next state may be given directly to students as hints, note that some systems,
such as ITAP [11], involve additional steps before or after the next state is selected, and these further
steps will be discussed in later sections.

5.1.1 Example - Hint Factory.

Originally presented in the context of a logic tutor [31] and later adapted to the domain of programming
[5, 32, 13], the Hint Factory is a technique that uses peer data and a Markov Decision Process (MDP)
to produce next-step hints for students. To produce hints, program submissions made by peers are
transformed into a state space where each state represents a particular class of programs, and edges
connecting the states represent how students transition between them (thereby indicating paths to various
solutions). A student’s submission is then matched to a state in this state space, and the MDP is used
to determine the best next state for that student. Figure 2 shows the general steps involved in the Hint
Factory approach, and how these fit into the HINTS framework.

Figure 2: A visualisation of the Hint Factory technique, using the HINTS framework (the colours corre-
spond to the colours in Figure 1). Input: a student’s program and peer data (i.e. programs submitted
by peers). Output hint: the best next state for the student’s program. Processes:

1. The student’s program is transformed into some general state.

2. Similarly to (1), peer programs are transformed into states. (Note that, for efficiency purposes,
this step is usually done before a student requests a hint, but could also be done after. In this
paper, we focus on the automated process rather than the timing).

3. The peer states are transformed into a state space.

4. The set of all states in the state space are narrowed down to the best next one for the current
student. This best state is chosen using a relevance criterion - the next step must be reachable
from the student’s current state in the network - and also a quality criterion - it must be the best
next step from that position as determined by a Markov Decision Process (MDP).
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5.1.2 Discussion

One key decision when producing a hint system such as this is how to select the best next state. In
the Hint Factory approach, an MDP was used, but other options have also been explored in recent
work. These include finding the most common next-state of peers in a similar position [16] (“Code-
based” technique), using a scoring function that accounts for popularity, correctness and distance from
the student’s current state [33], finding the path with the shortest expected time to a solution [12]
(“Poisson Path”), finding the most likely path an average student would take from the current state
[12](“Independent Probable Path”) or using a custom distance measure to select the closest state [10]
(SourceCheck, solution matching step). With respect to the HINTS framework, each of these selection
techniques could replace the MDP in Figure 2 as the quality criterion. Note that the selected next state
can be a combination of existing states, rather than a directly existing one, as in the Continuous Hint
Factory [34], where the weighted sum of peer edits is used to select the best next state.

While there is currently no definitive evidence to suggest which of the these techniques are most
effective at producing hints, some comparison studies have been conducted. In [12], the authors’ suggested
“Poisson Path” and “Independent Probable Path” techniques most closely matched next-steps chosen
by human experts. However, the programming exercises tested were simple and there was variation in
technique performance across exercises. In addition, agreement or disagreement with experts does not
necessarily imply high or low quality hints. These types of techniques were also compared in [17].

Another key decision when producing a hint system such as this is how to represent student programs
as states. In recent work, many variations have been presented. These include representing programs as
ASTs [16], based on their output [5, 32] (“worldstates”), based on a standardised syntactic form, known
as a canonical form [5] (“codestates”) or based on their components [13] 1 (“root paths”). Programs
may also be represented by the inputs they were tested on by students [16] (input hints), or as points
in a continuous space [34]. Such representations often govern the nature of the hint given to students
(e.g. if output is used, the the hints would suggest the next output to aim for. If input is used, the
hints might suggest the next input to try testing the program on). Each of these representation steps
are considered to be transformations under HINTS, and would replace steps 1 and 2 in Figure 2.

Since there can be large variations in the programs written by students, using general states to
represent these programs can help to reduce the size of the state space, and increase the probability of a
match being found. However, the more general the states become, the less information there is available
in the next-step. For example, in [5], the “worldstates” were more general than the “codestates” (there
was less variation in the output than the syntax), so the state space was smaller. However, knowing the
next “worldstate” would only give a student information on how the output should change, and not the
syntax. While work such as this has provided insight into the relationship between state type and hint
availability, it is still unclear how the balance between next step availability and next step information
content impacts on the quality of hints. In any case, when deciding upon a representation, these factors
should be considered.

5.2 Generating Next Steps Towards a Goal

In the previous section, the discussed techniques involved narrowing down a set of existing program
states to just the most appropriate ones for the current student. Here, the discussion is extended to
systems that produce their own next states, as opposed to selecting them, by working towards some
goal program. Note that there are other approaches to producing next steps that do not involve a goal
program, but these will be discussed in later sections.

5.2.1 Example - Program Strategies in AskElle.

In [9], the authors present a Haskell programming tutor, AskElle, which produces automated hints by
using model solutions to a programming exercise. In particular, it converts sets of model solutions
written by teachers into steps leading to these solutions, called programming strategies. This is achieved
through the use of a strategy language defined by the authors, which specifies how parts of a solution
may be built up from others. The generated steps are in the form of a context free grammar, and can

1Note that in this case each component of a student’s program is used to represent it in a different state space, so
multiple next steps can be generated on each of the parts.
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be used to parse a student’s program to find potential next steps. Note that the student programs are
normalised (converted to a standard form) to increase the chance of matching the program to a step.
Once potential next steps are found, teacher annotations associated with those steps are also given as
hints, and any functions appearing in these annotations are automatically linked to external web pages
with further information. Figure 3 shows how this hint method fits into the HINTS framework.

Note that, in this example, three different types of hints are produced - next steps, relevant teacher
annotations and relevant web links - as shown in Figure 3. These have all been included for completeness,
but the next steps component is focus of this section. The ideas behind the remaining components will
be discussed later in Section 5.3.

Also note that AskElle employs a second separate technique for generating hints, property-based
testing, which will also be discussed in Section 5.3.

Figure 3: A visualisation of how the program strategy hint technique in AskElle [9] fits into the HINTS
framework. Input: a student’s program, model solutions written by teachers, a set of annotations
written by teachers to act as feedback and a set of possible links to documentation (whether explicit or
implicit). Output hints: possible next steps a student can take, with relevant teacher annotations and
links to documentation. Processes:

1. A student’s program is transformed into a standardised form using transformations that affect
syntax but not output.

2. Model solutions are transformed into a series of steps called program strategies using a strategy
language.

3. The program strategies are narrowed down to just the next steps relevant to the current student’s
normalised program.

4. Teacher annotations are narrowed down to just the ones relevant to the selected next steps

5. the set of all possible web links are narrowed down based on a relevance criterion - that they link
to documentation about prelude functions appearing in the selected teacher annotations.
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5.2.2 Discussion

Notice firstly that AskElle produces its own steps from model solutions, instead of using existing steps.
Similar approaches to this that use model solutions include [8], which also uses program strategies, and
AutoTeach [14], where a solution is automatically converted into steps of increasing detail, called hint
levels. The process for generating hints in [8] fits into HINTS in the same way as the strategy technique
in AskElle, but the details of the individual steps are different, since the hints are generated for different
programming languages, and the web link step is omitted. AutoTeach, on the other hand, is quite
different, because the student program is not used in the hint generation process at all. Instead, the
steps towards the solution are given incrementally to students as they request more hints. In addition
to this, the details of how model solutions are converted into steps are different - solution steps are
generated using customisable visibility rules defined by the authors instead of a strategy language, and
there is only one path to one solution. In all of these systems, however, the result is a series of steps that
can lead from a blank submission to correct programs.

While AskElle, AutoTeach and [8] generate the set of hint steps in advance, another option is to
wait until the student’s program is known, then find the direct edits between that program and a goal
program. This is done in the “edit inference” step of SourceCheck [10], where the edits include deletion,
movement, reordering and insertion of code to direct students to a solution. Note that this example was
discussed previously to motivate the framework, so a description of how it fits into the framework can
be seen in Table 2 in Section 4.1. A similar process is also involved in the hint generation process of
ITAP [11] and [35] where, after the closest solution has been found, edits between this solution and the
student’s are generated and then, in the case of ITAP, further processed to produce next-steps.

One advantage of pre-computing steps to a solution is that these steps can be more easily attached to
teacher-authored hints, since they are known in advance. Indeed, this is the case in all three of AskElle,
AutoTeach and [8]. However, a disadvantage is that it can be more difficult to deal with mistakes -
if a student makes a mistake, they may no longer be on a path to a solution, meaning a next-step
hint cannot be produced using that solution. It is possible to adapt the technique by including buggy
solutions, so that the system can recognise mistakes if a student is on a path to these [36], but this means
the teacher must anticipate the types of mistakes students will make. Edit based approaches can still
produce next-steps if there are mistakes by simply identifying parts of the solution not in the student’s
program.

One advantage of these techniques over the ones in the previous section is that they do not require
existing steps. However, this also makes them sensitive to the input model solutions. In particular, if
a student’s attempt is completely different from any known model solutions, then hints may either be
unavailable or of low quality. For example, in the worst case, an edit-based approach might instruct a
student to delete everything then re-write the solution. The program strategies approach might not be
able to match a student program to a step towards a known solution, leaving no next-step hint. As such,
these approaches are most effective when the model solutions are reflective of the different strategies
students can take to solve a problem.

It is interesting to note that, when model solutions are not sufficiently close to the student’s program,
teachers using these systems must consider a trade-off between hint quality and hint availability. By
setting restrictions on when hints can be produced (e.g. only when the model solution is close enough or
only when the hint increases the number of tests passed, as in ITAP), teachers can increase the average
relevance or usefulness of hints, but this will also reduce their availability. Conversely, if restrictions
are removed, hint availability can be increased, but at the cost of quality. For example, if a student’s
program cannot be matched on a path to a solution using the program strategies approach, they can still
be given a worked example to some solution - just perhaps not the one they were aiming for. Since the
purpose of a hint system is to produce hints, high hint availability is clearly desirable. However, some
recent research has suggested that poor quality hints can discourage students from seeking further help
[37], so the balance between hint availability and quality in these systems is an important consideration
that requires further investigation.

Note that the step generation techniques discussed in this section can be used in combination with the
step selection techniques discussed in the previous section. Specifically, after a set of steps is automatically
generated, an appropriate next step can be selected from these, as in AskElle. In addition, after an
appropriate next step is selected, the difference between this state and the student’s current state may
be too large, so the automated generation techniques can use this as a goal to automatically generate
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smaller steps. A good example of how these ideas can be combined is ITAP. Here the nearest solution is
first selected. This solution is then changed slightly to better match the student, using an idea discussed
later in Section 5.4. Finally, smaller “micro” edits are generated towards the solution.

5.3 Comparing Program Features

So far, we have explored two important hint technique ideas - the selection of next steps from past data,
and the generation of next steps using a goal. We now turn to another important idea in hint generation -
the utilisation of program features, such as output or structure, to produce hints. Specifically, we discuss
how features of a student program can be compared to expected features to produce hints based on
dissimilarity, or to assign pre-written teacher feedback to the student. Note that these are frequently
paired with ideas from other sections to produce complex and interesting hint techniques.

5.3.1 Example - Codewebs Engine

In [38], the authors present a technique for extracting patterns, called code phrases, from large numbers
of peer programs. They then show how these patterns can be used to identify bugs and scale-up teacher
feedback to provide hints to new students. Specifically, they show how particular patterns can be
attached to teacher feedback, or automatically identified as buggy by considering their relative frequency
in incorrect peer programs. When these patterns are then identified in a new student’s program, the
teacher feedback or a bug warning can then be automatically offered to the student. A visualisation of
how this technique fits into HINTS is given in Figure 4.

5.3.2 Discussion

Notice in this example that program features, in the form of code phrases, were used to generate hints.
Program features can include anything directly derivable from the program, such as its output, inter-
mediate states or syntactic patterns. They can also be different representations of the program, such as
its AST, dependence graph or canonical (standardised) form. In addition, they can be more abstract
features, such as which next step is best for the program, or which transformations correct it.

When discussing how program features can be used to generate hints, it is useful to consider one of
the simplest approaches first. Specifically, a list of expected features can be compared to a list of actual
features of a student’s program, and the differences can then be highlighted as hints. This is the idea
behind the very widely used feedback approach for programming [21], test cases, where the student’s
output is compared to the expected output to find differences. Further examples are given in Table 3.

Table 3: Examples of how features of a student program can be directly compared to a set of expected
features in order to produce hints

Feature Comparison Example(s)

Concepts In [16], the “concepts” present in a student’s program (e.g. if statements, for
loops) are compared to expected concepts (i.e. the concepts frequently present
in correct peer submissions). Any expected concepts missing from the student’s
program are then given as concept hints.

Properties In the property-based testing technique in [39, 9] (AskElle) the properties of
a student’s program are compared to the properties it is expected to satisfy.
Information about any unsatisfied properties is then given as hints.

Syntax In [10] (SourceCheck) and [11] (ITAP) the syntax of a student’s program is
compared to the expected syntax (model solution). The differences are then
used to produce hints in the form of syntactic edits. Interestingly, since these
techniques can also be viewed as guiding a student towards a goal (see Sec. 5.2),
they are good examples of how hint techniques can be viewed from different
perspectives, and how different hint ideas can relate.
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Figure 4: A visualisation of how the hint techniques in Codewebs [38] fits into the HINTS framework.
Input: peer data, a student’s program and teacher feedback to be triggered by particular program pieces
(code phrases). Output hints: locations of potential bugs in student programs and relevant teacher
feedback for the student’s program. Processes:

1. Peer programs are transformed into a set of buggy and non-buggy code phrases. This is done by
transforming all peer programs into ASTs and then, using a technique for discovering probabilistic
equivalence classes presented by the authors, collecting similar subtrees together. Specific code
phrases are then identified as buggy or not based on their association with incorrect or correct peer
programs.

2. Similarly to the peer programs, a student’s program is transformed into a set of code phrases.

3. The student code phrases are narrowed-down to specific buggy phrases based on a quality criterion
- that they have been identified as buggy in the peer data.

4. Teacher feedback is narrowed down to just the feedback relevant to the student code phrases.

Extending upon the idea of comparing features to a set of correct features, sometimes features are
only expected under certain conditions. This is a key idea behind constraint-based tutoring systems
[40], which check student programs against a set of constraints. These constraints involve a satisfaction
condition (i.e. the expected features) and a relevance condition (i.e. the condition under which these
features are expected). In [15], patterns are matched against student programs using constraints and
dependence graphs to produce hints.

Note that the comparison between features can vary in directness. For instance, in the Codewebs
example, every potentially buggy pattern in a student’s program is not reported directly to the student.
Instead, the AST structure is considered so buggy patterns closer to the leaves take precedence over
their ancestors. Similarly, in [7] (spectrum-based fault localisation) and [41], the student’s output and
execution trace is compared to the expected output and execution trace (respectively), and the differences
are used to infer which parts of the program contain bugs. As such, the incorrect output and intermediate
values are not directly reported, but rather the program parts associated with them.

Notice that the Codewebs example also introduces a second approach to generating hints from fea-
tures. Namely, teacher feedback can be attached to particular features (e.g. code phrases), then au-
tomatically scaled-up to any students whose programs have these features. This is in contrast to the
previously discussed techniques, where the features of a student’s program were compared to expected
features, either directly or indirectly. Some further examples of using features to scale-up teacher hints
are given in Table 4 along with the Codewebs example.

If these teacher hint examples were represented diagrammatically under HINTS, then all examples
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Table 4: Examples of how teacher feedback can be attached to particular features of a student program
in order to produce relevant hints.

Feature Teacher Hint Example(s)

Output ViDA [2], CSF2 [3] - teacher hints are written for various incorrect outputs,
or sets of output, on different test cases. When the output of a student’s
program matches one of these known cases, the corresponding hint is given to
the student.

Corrections MistakeBrowser [1] - teacher feedback is attached to clusters of peer programs
which are corrected by the same transformations (see Sec. 5.4 for details of
how these are found). When a new student’s program can also be corrected by
one of these transformations, the teacher feedback for that cluster is given.

Strategy [42] - teacher feedback is written for different algorithmic strategies. These
strategies are identified based on the intermediate values of some expressions
in the program. When a student submits an incorrect program following a
particular strategy, the teacher feedback associated with that strategy is given.

Patterns Codewebs [38] - teacher feedback is written to address particular bugs in peer
data. Then, when these bugs are identified in a new student’s program through
patterns (code phrases), the same teacher feedback can be given to the new
student. [43] also suggests scaling-up teacher feedback using patterns from
Codewebs.

would include Step 4 of Codewebs (see Figure 4), where teacher feedback is narrowed down to relevant
teacher feedback based on some feature of the student’s program. They would also either include a
transformation step similar to Step 2 of Codewebs to represent the student program in terms of its
features, or a series of steps to produce those features. For example, MistakeBrowser finds features
(i.e. corrections) by first repairing the student program, using steps described in the next section. Note
that the process of writing teacher hints for particular features is itself not automated. However, these
techniques can still be considered automated by our definition in Section 3 if the teacher hints are
available, pre-written, as input. As such, this manual aspect is treated as an input through the HINTS
framework, rather than an automated step.

Just as the comparison-based ideas could be indirect, note that techniques for scaling-up teacher
feedback can also be indirect. For example, in [44], teacher hints are used as supervised labels to train
a classifier to predict correct hints from program features. This classifier can then be used to propagate
hints to new programs. As such, hints are not directly generated from the program features, but instead
from a model trained on the features.

While this section discusses techniques for producing hints by comparing features or attaching them
to teacher hints, note that there are many other uses of program features. In fact, almost every hint
technique uses program features in some way. For example, in Section 5.1, where the techniques involved
selecting next steps, program features were often used to produce program states. The techniques
discussed in the next section will also make use of program features. As such, even though this section
discusses two specific applications of program feature extraction, the set of possibilities is not limited to
these applications.

5.4 Automatically Repairing Programs

In the previous sections, many interesting ideas for producing hints were discussed. These included
selecting next steps, generating next steps using a goal, and also utilising the program features to
produce hints. This section builds on these by considering another important idea. In particular, it
considers techniques for automatically repairing student programs in order to to produce feedback.
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5.4.1 Example - SYNFIX

In [45], the authors present a method for automatically correcting syntactic errors in student programs
using machine learning and peer data. Specifically, the peer data is used to train a recurrent neural
network (RNN) to predict correct sequences of program pieces (tokens). When a new student requires
help, the RNN can then be used to find new or alternative tokens to insert near the error location in
order to correct the program. Corrections found in this way can then be used to produce hints for the
student.

Figure 5: A visualisation of how the program strategy hint technique in SYNFIX [45] fits into the HINTS
framework. Input: peer data and a student’s program. Output hint: token corrections to fix syntax
errors in the student’s program Processes:

1. Peer programs are transformed into sequences of tokens, such as “if”, “==”, “exp” etc.

2. Similarly, a student’s program is transformed into a sequence of tokens

3. An RNN is trained on the sequences of correct peer tokens to learn correct patterns. As such, the
correct peer tokens are transformed into a model for correct token sequences.

4. Peer tokens are narrowed down to a series of replacement tokens based on a quality criterion - that
they are predicted by the RNN - and a relevance criterion - that they follow on from other parts
of the student program near the syntax error location.

5. The sequence of replacement tokens (which can be thought of as a set of subsequences) is
narrowed down to a single subsequence based on a quality criterion - that it corrects the student
program.

5.4.2 Discussion

In this example, first notice that there are two important steps. Firstly, the student programs are
represented by their features (i.e. as sequences of tokens), similarly to the techniques in the previous
section. Secondly, a model (RNN) is built using machine learning to represent how these features should
be correctly combined (i.e. by learning correct token sequences). Similar techniques using machine
learning are summarised in Table 5 along with this one.

It is interesting to note that these examples are highly related to the feature comparison techniques
discussed in the previous section. Recall that the previous techniques involved comparing the features of
a student’s program to the expected features, either directly or indirectly. These examples are similar,
but the comparison is even more indirect, because the expected features are now abstracted to a model
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Table 5: Examples of hint techniques that involve the use of machine learning to produce a model to
represent correct program features

Paper(s) Model of Correct Features Correction Technique

RLAssist [46] Here, the program features are sequences
of actions that correct the program. The
model is an agent trained through rein-
forcement learning to learn correct se-
quences of actions. The learning process
can be sped up by giving the agent exam-
ples of correct action sequences (“expert
demos”).

The agent is used to produce
actions that will correct the
student’s program.

[4] The model is a set of rules for predict-
ing correct and incorrect programs using
AST patterns. In [4], these rules are ob-
tained by training a rule learner on cor-
rect and incorrect peer programs. In [47],
they are produced through argument-
based machine learning (ABML). Note
that, in the case of [47], the model would
be treated as input under HINTS since
ABML is not automated)

The rules are used to iden-
tify buggy AST patterns in
the student’s program, or
good patterns to include in
the program

SYNFIX [45] An RNN, which is trained on sequences
of correct peer tokens.

The RNN is used to find
tokens that will correct the
student’s program near the
error location.

first. For example, in SYNFIX, the sequences of tokens in a student’s program are not directly compared
to a list of expected token sequences, but they are input into a model which outputs expected token
sequences.

As an alternative to the machine learning techniques discussed so far, which build a model to correct
programs, another option is to perform a search for possible corrections. This involves first defining
some search space of possible program features (e.g. expressions or edits), and also some method for
testing correctness (e.g. test cases). Then, starting with the student’s current program, a search can be
automatically performed over the search space to find edits that will satisfy the correctness test. Some
examples of this are given in Table 6. Note that these search techniques relate to program synthesis -
the task of automatically creating a program that satisfies some criteria. The difference between the
techniques from an educational context, compared to other areas, though, is that resources produced by
teachers or peers can be utilised to correct programs.

It is interesting to note a relationship between the two methods of correcting student programs
discussed in this section, and the two methods of generating steps towards a goal discussed in Section
5.2. Recall in Section 5.2 that steps could either be generated in advance before the student’s program
was seen, or they could be produced “on the fly” by finding edits between the student’s program and the
goal. Here, again, there is a choice between producing a model of correct features in advance, or waiting
until the student’s program is known in order to perform a search. In some sense, the techniques are
quite similar in nature, but in this section the goal is to pass all the test cases or successfully compile
the program, and in Section 5.2, the goal was to reach a model solution.

Once these techniques have been used to find corrections, there are many possible uses for these
corrections when producing hints. For example, in MistakeBrowser [1], the corrections are used to scale-
up teacher hints. In [48] and [6], the locations of the corrections are suggested to students as places
to focus on. An interesting exploration of many different possible uses can be found in [49] where, for
example, the authors suggest running the corrected code, then highlighting differences in the behaviour
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Table 6: Examples of hint techniques that involve a search to automatically correct student programs

Paper Search Space Search Technique

[48] The search space is defined by a
domain specific language (DSL),
which defines the possible ex-
pressions. This is created by
mining peer data for expres-
sions that are used more than 10
times.

The search begins at the student’s
program, which is slowly modified
in steps. In each step, the current
best program is modified to satisfy
more input/output examples using
the DSL. When all input/output ex-
amples are satisfied, the search is
complete.

[6] The search space consists of a set
of rewrite rules learnt from past
student data. Probabilities are
assigned to each of these re-write
rules based on their prevalence in
the peer data

The search involves applying rewrite
rules or combinations of them in
order of increasing probability on
the new student’s program, until
a correct solution is found or the
system times out. In this way,
more common solutions are explic-
itly favoured, and shorter solutions
are implicitly favoured.

MistakeBrowser [1] The search space consists of sets
of transformations learned from
peer program attempts.

The search involves trying different
transformations until the program is
corrected.

ITAP [11] (Note that this is a single part
of a longer process). The search
space comes from the closest
known solution to a student’s
program. Specifically, the pow-
erset (all possible subsets) of ed-
its between this solution and the
student’s program is computed,
and this forms the search space.

The search involves applying each of
the subsets of edits to the student
program, until the closest solution
is found.

of this (i.e. the intermediate states) and the student’s program.
Since all of these techniques aim to correct student programs, one important consideration when

comparing these techniques is how many programs they are able to correct. It is difficult to directly
compare these techniques in this regard, because they have been evaluated on different types of programs
and serve different purposes (e.g. some correct syntax errors, and others logic errors). In addition, the
types of evaluations performed on them have been different. For example, some authors evaluated how
often the discovered corrections were later used by students. However, keeping in mind that the contexts
were different, of the techniques that were evaluated for the percentage of programs they could correct,
the results varied greatly from around 27% to 87%. These figures are shown in Table 7. Note that, since
less changes must be made to programs that are almost complete, one would expect these techniques to
be most effective when a student’s program is almost correct.

6 Insights From Surveying Hint Techniques under the HINTS
Framework

In the previous section, recent work on automated hints was surveyed in the context of HINTS. This
section now presents some key insights resulting from this survey. In particular, it discusses how all of
the previously introduced ideas can be integrated together into a single, coherent picture. In addition,
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Table 7: Reported percentage of programs able to be corrected through automatic repair techniques

Paper Correction % (to
the nearest %)

Context - Types of Corrections Being
Made

MisktakeBrowser [1] 87% of students Logic errors in simple programs. (e.g. ”Repeated
(720 students): takes as parameters a unary func-
tion f and a number n, and returns the nth appli-
cation of f. For example, repeated(square,2)(5)
returns square(square(5)), which evaluates to
625.”)

[48] 65% of attempts Logic errors in programs written for a game,
called “Code-Hunt”

SYNFIX [45] 32% of programs,
with partial correc-
tions for an addi-
tional 6%

Syntax errors in programs from an online intro-
ductory programming course

RLAssist [46] 27% of programs,
40% of error mes-
sages

Syntax errors in programs from an introductory
programming course

it argues that the smaller components that comprise hint techniques should be considered when design-
ing, communicating and evaluating hint systems. It explicitly demonstrates how viewing techniques in
terms of their components can lead to important insights on connections between the field of automated
programming hints and other areas, such as data-driven evaluation. Moreover, it explores how the sim-
ilarities between hint techniques can offer insight into the nature of hint generation. Finally, it argues
that the multitude of possible hints techniques producible from smaller steps is immense, and that this
necessitates further work on evaluation methods.

6.1 It is Possible to Fit Together Hint Techniques into a Coherent Picture
Using their Components

After having reviewed some key ideas from hint generation techniques in Sections 5.1 - 5.4, it is now
possible to combine these ideas together into a single, coherent picture. This can be done by considering
all of these techniques in the context of the HINTS framework - as a series of simpler steps - and then
depicting similar steps together. By doing this, it is possible to gain insight into the current state of the
field, including the relationships between existing techniques and the potential for future development.
We show this general picture in Figure 6, with each of the steps described below.

1. model solutions → steps. Model solutions can be transformed into steps in the form of program
strategies (AskElle [9], [8]) or hint levels (AutoTeach [14]). (See Sec. 5.2).

2. peer data → general features. Peer programs can be represented by their features for various
purposes. For example, in order to form states in a state space, they can be represented by their
AST form [16], output [5, 32], canonical form [5],components [13], point in space [34] or inputs
they were tested on [16] (See Sec. 5.1). Also see Sec. 5.3 for further discussion of features.

3. student program → student features. This is similar to (2), except the step is applied to the
help-seeking student’s program instead of peer programs.

4. general features → steps. Program states can be collected together into a state space, as in
[12, 16, 32, 13, 33, 34]. Note that if a technique involves steps (2) and (4), they can be treated as
a single transformation step, depending on where the emphasis is being placed. (See Sec. 5.1).

5. steps → next steps. A set of potential next-steps can be narrowed down to just the ones relevant
to the current student’s program state. This can involve various quality criteria based on MDPs
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[5, 32, 13] and other approaches [16, 33, 12, 10, 34] (See Sec. 5.1). These can also come from
program strategies [9, 8] (See Sec. 5.2).

6. model solutions → general features. Model solutions can be divided into pieces to form a set
of features (i.e. parts of programs).

7. general features → model for correct features. A model can be built on the general features
to learn which features are correct/ incorrect using, for example, reinforcement learning [46], rules
[4] or an RNN [45]. (See Sec. 5.4).

8. general features → missing correct features. A set of general expected features can be
compared to features of the student’s program. Expected features not in the student’s program
can be identified as missing correct features. For example, these include edits to a solution in
[10, 11, 35] that involve adding code. (See Sec. 5.2). It could also include missing concepts [16] or
properties [39, 9] (See Sec. 5.3). The set of features can also be searched until some correctness
test is passed as in [48, 6, 1, 11], or a model of correct features can be used to narrow them down
as in [46, 4, 45, 47]

9. student features → incorrect features. Similarly to (8), student features can be compared to
expected features, and the features in the student’s program that are not expected can be identified
as incorrect, either directly or indirectly. For example, edits for deleting code in [10, 11, 35]. (See
Sec. 5.2). These can also be based on buggy patterns [38], constraints [15], output [7] or execution
traces [41]. (See Sec. 5.3)

10. teacher hints → model for correct hints. Teacher hints attached to particular program features
can be transformed into a model to predict correct hints, as in [44]. (See Sec. 5.3)

11. teacher hints → relevant teacher hints. Teacher feedback can be narrowed down to just the
feedback relevant to the student’s features. These can include output [2, 3], edits that correct the
program [1] or strategy [42] (See Sec. 5.3).

12. external resources → relevant external resources. External resources, such as web links [9],
can be narrowed-down to just those relevant to the student’s features (See Sec. 5.3).

13. student features cycle. Any next steps, missing correct features, etc. can be treated as features
of the student program, which can be used to build more hints.

6.2 During the Design, Communication and Evaluation of Hint Systems, the
Smaller Components that Comprise Hint Techniques Should be Consid-
ered

The fact that hint techniques are comprised of many smaller steps suggests that these steps should play
a key role in the design, communication and evaluation of hint systems. In recent work, there have been
many interesting techniques and ideas presented about automated hint generation. However, without
considering these techniques as a series of smaller processes that can be modified and re-purposed, we
can miss opportunities to integrate them and utilise them in new work. As such, when communicating
and designing new techniques, we should consider the different steps comprising these techniques, the
possible variations on these steps and whether these steps could be used in different contexts for different
purposes. In addition, when evaluating hint systems, we should not only consider the effectiveness of
entire techniques, but also evaluate the individual components and how choices of these affect the overall
quality of hint systems.

6.3 The Connection Between Hint Generation Techniques and Data-Driven
Hint Evaluation Techniques Should Be Investigated Further

Recently, along with the development of hint generation techniques, there has been much interest in
hint evaluation techniques. In particular, there has been a focus on data-driven evaluation methods,
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Figure 6: A general diagram summarising the main ideas of the surveyed papers and the relationships
between them in the context of the HINTS framework. The leftmost blue box indicates types of hint
data that can be given as input. The rightmost blue box gives examples of hints that can be produced
from the indicated hint data. Green arrows denote transformation steps according to HINTS. Orange
arrows indicate narrow-down steps, with any sources of quality or relevance criteria marked by gold or
purple arrows respectively. Example techniques using each transformation and narrow-down step are
given in the main text of this section, along with the sections in which they are discussed.

which utilise historical student data to evaluate hint systems. Since evaluation methods serve a different
purpose from hint generation techniques, one would expect these two kinds of techniques to be quite
different. However, by considering hint techniques in the context of our framework, as a series of simpler
components, it is possible to observe some interesting relationships between hint techniques and data-
driven evaluation methods.

In order to see these relationships, first consider the narrow-down step of the HINTS framework.
Recall that this step involves narrowing down a set of hint data to just the most appropriate subset for
the current student, using relevance or quality criteria. As such, any hint technique with a narrow-down
step is, in some sense, performing an evaluation of the hint data to decide what to select. For example,
the SourceCheck [10] hint technique (discussed previously) involves a narrow down step where all peer
solutions are narrowed down to just the closest one. In order to do this, each of the potential solutions
must be “evaluated” for their quality, by checking their distance from the current student’s program. By
considering hint techniques in the context of HINTS, we can thus begin to notice a link between hint
techniques and the general idea of evaluation.

Now consider an actual data-driven evaluation method, presented in [11] to evaluate ITAP (which
was introduced previously). This technique involves computing the number of edits needed to correct a
student’s program (i.e. its distance from the student’s program). In essence, just as in SourceCheck, the
solution is being evaluated based on how close it is to the student’s program. While these techniques
are not exactly the same, since the distance measure is different, this indicates there is an important
relationship between this evaluation technique and the narrow-down step of SourceCheck.

We can observe another example of the correspondence between hint generation techniques and hint
evaluation techniques by considering MistakeBrowser from [1], and a different evaluation method for
ITAP in [11]. In MistakeBrowser, the hint system narrows down a large set of transformations to just
a small number by “evaluating” whether or not they are able to correct a student’s program. Similarly,
in [11], in addition to path length, there is an evaluation to check whether a series of hints (in the form
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of edits, which can be thought of as transformations) would actually lead students to a solution. As
such, in both cases, transformations are evaluated based on whether they correct the student’s program,
suggesting an important link between these techniques.

Note that it is not only narrow-down steps that seem to correspond to evaluation techniques, but
also transformation steps. Recall that these steps involve changing the representation of the data in
order to produce hints. For example, in [5], which uses the HintFactory approach (see Sec 5.1), programs
are transformed into states (i.e. worldstates) based on their output, which are then transformed into a
state-space. This relates to the evaluation method presented in [50], where peer programs are clustered
and transformed into a state-space so that teachers can visualise how students complete an exercise. Two
additional examples are described in Table 8, along with a summary of the examples already discussed.

Table 8: Links between steps in hint generation and data-driven evaluation techniques

Evaluation Technique Related Transformation or Narrow
Down Step in a Hint Technique

check the number of edits between the stu-
dent’s program and the solution (i.e. the dis-
tance) (ITAP [11])

narrow down the set of all solutions by check-
ing their distance from the student’s program
and choosing the closest one (SourceCheck
[10])

check how many chains of hints (transforma-
tions) actually lead to a solution (ITAP [11])

narrow down sets of transformations to just
the ones that lead to a solution [1]

transform student programs into a standard-
ised form and create an state space so teachers
can visualise how students complete an exer-
cise [50]

transform student programs into a standard-
ised form and create an state space so the next
state can be selected [5]

transform student programs into code-phrases
then organise them so teachers can understand
the data (e.g. they can “count the number of
students who submitted the same or a similar
class of solutions”) (Codewebs [38])

transform student programs into code-phrases
then organise them so automated hints can be
given to students based on the code-phrases
(Codewebs [38])

use a templating language to express model so-
lutions in many different forms to account for
different programming strategies when evalu-
ating student solutions against experts.[51]

use a templating language (“strategy lan-
guage”) to express paths to model solutions
in many different forms to account for differ-
ent programming strategies when guiding stu-
dents to a solutions (AskElle [9])

The link between transformation steps and data-driven evaluation techniques is perhaps not so sur-
prising, considering that these evaluation techniques must convey information about the hint system to
a teacher in an understandable way. This will often involve techniques for automatically representing
large volumes of data in a coherent way, or transforming them into more accessible forms. Since this is
also often the purpose of transformation steps in hint techniques, this suggests a correspondence between
them.

While a full survey of evaluation methods is beyond this scope of this paper, there is clearly an
important link between hint generation and data-driven evaluation methods, which would be a worthwhile
avenue for further investigation. Perhaps there is not only potential to connect different hint techniques,
but also to use their steps to improve evaluation methods, or to use the steps of evaluation methods to
extend hint techniques.

6.4 The Design of Hint Techniques Can Provide Insight into the Nature of
Hint Generation

It is clear from the HINTS framework that all automated hint techniques exhibit remarkable similarities
in structure and in the processes used to construct them. In particular, they may all be described by
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two simple operations applied iteratively: narrowing down and transforming hints from previous levels.
Considering their diversity and sophistication, this is surprising, and prompts the question of why this
is the case.

One potential reason could be that the initial inputs to these systems are already highly complex, so a
simple system could still leverage these to produce intelligent feedback. Indeed, hints or tests pre-written
by teachers and work produced by other students contain vast amounts of information, and a system
that narrowed this down could produce high quality hints. This could explain why even the simplest
automated hint techniques can produce highly sophisticated hints.

Another potential reason for why hint techniques share such similar operations could be that these
operations reflect the nature of programming hints. Programming hints often involve highlighting mis-
takes to students, so we would expect the system to have some way of narrowing down the student’s
program to just the mistakes. In addition, programming hints often involve suggesting new ways to
proceed, so we would expect the system to have some knowledge about a goal, then to narrow this down
to the parts the student has not yet succeeded in. In addition, programming hints can related to many
different aspects of a student’s program, such as output, style, structure, syntactic patterns or run-time,
so we would also expect the system to need transformations to give feedback on these different aspects.
As such, perhaps a reason why hint techniques involve transformation and narrow-down steps could be
that these steps reflect the nature of programming hints. Perhaps this insight can help to shape the way
we think and communicate about hint techniques, and motivate further work. For example, it would be
interesting in future to investigate whether the HINTS framework could be extended to cover techniques
from other domains, such as physics, logic or mathematics, where some hints could be of a similar nature.

6.5 The Multitude of Possible Hint Techniques from Components Necessi-
tates Further Work on Evaluation Methods

From the survey of hint techniques presented in Section 5, it is clear that there are many different
approaches to generating hints. Specifically, there are many different interchangeable and stackable
components that comprise hint techniques, and different combinations of these can result in a vast
number of possible hint approaches. This suggests a need to develop scalable and versatile evaluation
methods that can cope with such a multitude of potential techniques.

Even now, with a relatively small number of techniques compared to the possible number in future,
these techniques are so numerous that it is difficult to decide which are most effective for different
scenarios (e.g. different programming languages, learners or courses). This is exacerbated by the fact
that evaluation methods are often applied inconsistently [20]. Considering the potential for far more hint
techniques in future, it is thus of great importance that we continue to develop and extend evaluation
methods to ensure the full potential of automated hint techniques.

7 Conclusion

In this paper, we have surveyed and developed key theoretical ideas behind recent work from 2014-
2018 on generating automated hints for programming exercises. Specifically, we have presented a novel
framework, the HINTS framework, for describing techniques for hint generation, and surveyed these
techniques in the context of this framework. We have shown that, by considering hint techniques as a
series of smaller steps, it is possible to draw recent work together into a single coherent picture. We
have argued that this perspective on hint techniques has implications for how we design, communicate
and evaluate hint systems, and can provide useful insights into the nature of hint generation. Finally,
we have identified a potential relationship between hint generation and evaluation techniques that could
be utilised to improve both, and have argued that the piece-wise nature of hint techniques necessitates
the further development of evaluation methods. By bringing more clarity to the area of automated
programming hint generation, this work acts as an important step towards realising the full potential of
automated programming tutors, with the ultimate goal of maximising educational outcomes.
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