
Accelerating Attention through
Gradient-Based Learned Runtime Pruning

Zheng Li∗ Soroush Ghodrati∗ Amir Yazdanbakhsh∗†

Hadi Esmaeilzadeh Mingu Kang

University of California, San Diego †Google Research (∗Equal Contribution)

zhengli@ucsd.edu, sghodrati@ucsd.edu, ayazdan@google.com, hadi@ucsd.edu, mingu@ucsd.edu

ABSTRACT

Self-attention is a key enabler of state-of-art accuracy for various
transformer-based Natural Language Processing models. This atten-
tion mechanism calculates a correlation score for each word with
respect to the other words in a sentence. Commonly, only a small
subset of words highly correlates with the word under attention,
which is only determined at runtime. As such, a significant amount
of computation is inconsequential due to low attention scores and
can potentially be pruned. The main challenge is finding the thresh-
old for the scores below which subsequent computation will be
inconsequential. Although such a threshold is discrete, this paper
formulates its search through a soft differentiable regularizer inte-
grated into the loss function of the training. This formulation piggy
backs on the back-propagation training to analytically co-optimize
the threshold and the weights simultaneously, striking a formally
optimal balance between accuracy and computation pruning. To
best utilize this mathematical innovation, we devise a bit-serial
architecture, dubbed LeOPArd, for transformer language models
with bit-level early termination microarchitectural mechanism. We
evaluate our design across 43 back-end tasks for MemN2N, BERT,
ALBERT, GPT-2, and Vision transformer models. Post-layout results
show that, on average, LeOPArd yields 1.9×and 3.9×speedup and
energy reduction, respectively, while keeping the average accuracy
virtually intact (< 0.2% degradation).

CCS CONCEPTS

• Hardware → Application specific integrated circuits.

KEYWORDS

Transformer, Learned Pruning, Gradient-Based Optimization, At-
tention Mechanism, Self-attention, Neural Processing Units, Accel-
erators, Deep Learning

ACM Reference Format:

Zheng Li, Soroush Ghodrati, Amir Yazdanbakhsh, Hadi Esmaeilzadeh, Mingu
Kang. 2022. Accelerating Attention through Gradient-Based Learned Run-
time Pruning. In The 49th Annual International Symposium on Computer

Architecture (ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3470496.3527423

ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527423

1 INTRODUCTION

Natural Language Processing (NLP) defines the frontier for Arti-
ficial Intelligence (AI) as it is even central to the Turing Test [3].
The recent advent of the self-attention mechanism [93] enabled un-
precedented successes in the field of NLP, shifting the focus of deep
learning from convolutional neural networks towards Transformer
models in various domains [10, 19, 23, 40, 42, 43, 53, 58, 69, 94, 107].
The self-attention mechanism calculates a score to measure the
correlation between a word and all the other words in a subtext.
The subtext is the collection of all the words, which is captured by
the attention mechanism. Therefore, it quantifies the context of the
word under attention with respect to its subtext.

Intuitively, a word can bear multiple connotations, of which only
one is expressed in its proximate context. Usually, few keywords de-
fine the context and therefore, a significant amount of computation
will be inconsequential. The attention score for a word determines
highly correlated words; the rest are merely irrelevant. There exists
a threshold that differentiates between the scores of the words that
need to be considered and those that do not define the context and
are thus inconsequential. Because each attention layer identifies a
distinct context of the target sentence, such a threshold needs to be
defined on a per-layer basis to maintain model accuracy. Recent re-
search has leveraged this insight and proposed several techniques
that skip computation if a threshold is not met [34, 35, 92, 96].
Clearly, skipping computation negatively impacts model accuracy,
which is also dependent on the value of the thresholds. There-
fore, establishing the right thresholds is crucial for the efficacy of
the runtime computation pruning methods. However, the litera-
ture [34, 35, 92, 96] has relied on heuristics, statistical sampling, or
human input that do not provide reliable expected accuracy.

In contrast, this paper formulates the problem of finding thresh-
olds for the attention layers as a regularizer that amends the loss
function of the transformer model. Our technique is robust even
though the threshold values are discrete and cannot be directly op-
timized through gradient-based approaches. A key contribution of

this work is to formulate finding the layer-wise pruning thresholds as

a differentiable regularizer. This formulation leverages the gradient-

based back-propagation algorithm to mathematically co-optimize the

threshold values and weight parameters. This approach unblocks
simultaneous co-optimization of the two conflicting objectives of
maximizing the pruning rate of the computations while minimizing
the accuracy loss. In addition, this analytical technique strikes a
formally optimal balance between accuracy and computation prun-
ing. Note that the current Cambrian explosion of deep learning
hinges upon two main algorithmic innovations. First, changing the

902

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3470496.3527423&domain=pdf&date_stamp=2022-06-11

ISCA ’22, June 18–22, 2022, New York, NY, USA Li, Ghodrati, Yazdanbakhsh, et al.

activation function of perceptrons from a non-differentiable step
function to the continuous smooth sigmoid function [75] enabled
back-propagation and multi-layer neural networks and ended the
first AI winter [1]. Second, solving the vanishing gradients prob-
lem [47] has resulted in stable training deep neural networks that
have taken the IT industry by storm. The proposed approach is
analytical and therefore mathematically sound, and does not rely
on limited empirical evidence. The solution also guarantees the
same generality and optimality that are essential for training the
machine learning model itself.

In this paper, we apply these algorithmic innovations to learn
self-attention thresholds in a gradient-based fashion. At runtime,
the attention scores below the learned threshold are replaced by−∞
to void their impact on the attention layer’s outputs. As such, the
preceding computation can be pruned early when the result is below
the threshold. We devise a bit-serial architecture, called LeOPArd1,
to maximize the benefits by terminating computation even before
pruning the following calculation. This design reduces computation
at the finest granularity possible (bit level), hence offering benefits
beyond pruning. Our hardware mechanism for early termination is
exact and does not cause any accuracy degradation. At the bit level,
it can be determined ahead of calculation completions if the partial

result of the dot-product can ever exceed the threshold. Therefore,

another advance of this paper is leveraging arithmetic insights for

early termination in the microarchitecture without approximation.

We evaluate the effectiveness of our gradient-based algorith-
mic innovation and the proposed bit-level arithmetic properties
by designing and implementing the LeOPArd accelerator in hard-
ware. We synthesize and generate layout for a prototype of the
LeOPArd accelerator implementation in a 65 nm process tech-
nology and characterize its speed and energy consumption under
various settings. We evaluate various state-of-the-art transformer
models, including BERT, GPT-2 and Vision-Transformer, and datasets
forming a benchmark suite of 43 language and vision processing
tasks. On average, the designed accelerator offers 1.9× and 3.9×
speedup and energy reduction, respectively, compared to a baseline
design without pruning and bit-level early termination support
under an iso-area setting. LeOPArd’s notable pruning rate can
unlock more benefits, if more chip area budget (15%) is available.
Given this extra area budget, our accelerator’s benefits increase to
2.4×and 4.0×speedup and energy reduction, respectively. To better
understand the sources of these improvements, we also distinguish
between the effects of runtime computation pruning and bit-level
early termination on energy savings. Our study across the target
models shows that, on average, out of the 3.9× energy reduction,
2.1× stems from runtime computation pruning and 1.8× emerges
from bit-level early termination. We also compare LeOPArd to two
state-of-the-art accelerators for self-attention mechanism, 𝐴3 [34]
and SpAtten [96], which support runtime pruning. However, nei-
ther accelerator provides analytical support or guarantee for model
accuracy, only relying on heuristic approximations. The results
from our evaluations suggest that formulating runtime pruning
as a gradient-based optimization can unlock significant benefits,
while guaranteeing inference accuracy.

1LeOPArd: Learning thrEsholds for On-the-fly Pruning Acceleration of tRansformer
moDels.

2 BACKGROUND AND MOTIVATION

2.1 Self-Attention Mechanism

“Self-attention” is amechanism to find the relation between aword to
all the other words in a sentence [20, 93]. To compute this relation,
we first project each word to a vector with 𝑑𝑤 dimensions, so-called
embedding. Given a sentence with 𝑠 words, this projection creates a
matrix X with 𝑠 × 𝑑𝑤 . Then, these word embeddings are multiplied
into query weight matrix (𝑊Q), key weight matrix (𝑊K), and value
weight matrix (𝑊V), each with 𝑑𝑤 × 𝑑 dimensions as follows:

Q𝑠×𝑑 = X ×WQ; K𝑠×𝑑 = X ×WK; V𝑠×𝑑 = X ×WV (1)

Given the query (Q) and key (K) matrices, a self-attention 𝑆𝑐𝑜𝑟𝑒
matrix is calculated as follows:

Score𝑠×𝑠 = Q ×K𝑇 (2)

where each element 𝑠𝑖 𝑗 in the self-attention 𝑆𝑐𝑜𝑟𝑒 matrix indicates
the relation between word𝑖 and word𝑗 in the input sentence. The

𝑆𝑐𝑜𝑟𝑒 values are generally scaled down by (×1/
√
𝑑) before the next

step to enable stable gradients during training [93]. To ensure that
the self-attention 𝑆𝑐𝑜𝑟𝑒s are positive and adding up to one, “softmax”
is applied to each row of Score matrix as follows:

P𝑠×𝑠 = Softmax(Score) (3)

Softmax outputs indicate a probability estimation of the input
words’ relation. The self-attention values are calculated as follows:

Att𝑠×𝑑 = P × V (4)

Generally, each attention layer consists of multiple heads each
with dedicated 𝑊Q, 𝑊K, and 𝑊V weight matrices. Each head
presumably captures different dependencies between the token
embeddings. In this case, the attention values (Equation 4) from
each head are concatenated and projected into an attention matrix
of size 𝑠 × 𝑑𝑤 using a weight matrixW𝑜

(𝑑×ℎ)×𝑑𝑤 as follows:

Multi − Head Att𝑠×𝑑𝑤 = Concat(Att1, Att2, · · ·, Attℎ) ×W𝑜 (5)

where Concat operation concatenates the Att output matrix from
each head to generate a (𝑠 × (𝑑 × ℎ))-matrix.

2.2 Gradient-Based Optimization and
Regularization

Gradient-based optimization. Training neural networks are for-
mulated as an optimization problem of a predefined loss function.
These loss functions are generally non-convex and have a manifold
consisting of different local optima which makes the training of neu-
ral networks challenging. To alleviate the complexity of optimizing
loss functions, it is common to use gradient-based methods [45, 72].
Using these gradient-basedmethods institute defining differentiable
loss functions, such as cross-entropy [62] or Kullback-Leibler diver-
gence [50] which is prevalent in self-attention models [43, 91, 93].

Regularization in loss function. To impose certain constraints on
the model parameters, such as improved generalization [49, 87, 113]
and introducing sparsity [8, 28, 86], it is common to use regularizer
as part of the loss function. However, using gradient-based methods
for training mandates these regularizers to be framed as additional
differentiable terms to the loss. This differentiability constraint for

903

Accelerating Attention through Gradient-based Learned Runtime Pruning ISCA ’22, June 18–22, 2022, New York, NY, USA

employing gradient-based methods introduces a unique challenge
for supporting constraints that are not inherently differentiable.

2.3 Motivation

Analyzing the computations for self-attention layers, it is appar-
ent that the main computation cost is associated to Score (Equa-
tion 2) and attention computations (Equation 4) that necessitates
the multiplications of two matrices with 𝑠 × 𝑑 dimensions, each
with time complexity of O(𝑠2𝑑). These complexities translate to
quadratic raise in computation cost and storage as the number of
input tokens increases. As such, prior work aims to reduce the time
and space complexity of these operations both from the algorith-
mic [9, 19, 20, 97, 110] and hardware perspectives [34, 35, 41, 89, 96].
In this work, we propose an alternative pruning mechanism that
learns the threshold as part of training. Our proposed technique
prunes away unimportant 𝑆𝑐𝑜𝑟𝑒s, hence eliminating the ineffectual
computations of “softmax(·)” in Equation 3 and “×V” in Equation 4.
In addition, to further cut down the computations of 𝑆𝑐𝑜𝑟𝑒s (Equa-
tion 2), we employ a unique early-compute termination without
impacting the model accuracy.

3 ALGORITHMIC OPTIMIZATIONS FOR
SPARSE ATTENTION

The section overviews the algorithmic optimizations for inducing
sparsity in attention layers. We first introduce an online pruning
method that eliminate unimportant attention layer computations
as early as possible, right after 𝑆𝑐𝑜𝑟𝑒 calculations (e.g. Q ×K𝑇), to
increase the realized performance benefits. Particularly, our method
sets the layer-wise pruning thresholds as trainable parameters and
jointly fine-tune themodel parameters and learn the pruning thresh-
olds as part of a light fine-tuning step. Then, our method compares
the 𝑆𝑐𝑜𝑟𝑒 = Q ×K𝑇 values against the learned pruning thresholds
per attention layer and prunes the ones that satisfy the pruning cri-
teria. Note that, in contrast to prior learned weight pruning method
for image classification models [8], the pruning criteria in our work
is content-dependant and is applied adaptively based on the calcu-
lated 𝑆𝑐𝑜𝑟𝑒 values. That means the induced sparsity in attention
layers by our approach varies from one content to another content.
As our results indicate (See Section 5), the adaptive and content-
dependant nature of our pruning method enables high sparsity in
attention computations while yielding virtually no accuracy loss.

3.1 Learned Per-Layer Pruning

Learning per-layer pruning thresholds for attention layers consists
of three main challenges. First, the search space of threshold values
is complex and computationally intractable for exhaustive explo-
ration. For example, BERT-Lmodel has 24 layers creating a total of 24
threshold parameters, each of which can take any continuous value.
Second, simply sweeping the threshold values as a one-time fine-
tuning step could negatively affect the model accuracy [34, 96]. To
mitigate these challenges, we propose to jointly fine-tune the model
parameters and learn the threshold values as a light fine-tuning
step with the joint objective of increasing model sparsity and retain-
ing the baseline model accuracy. However, training the threshold
values with the inherently non-differentiable pruning operation

(a) Ideal Pruning (b) Pruning with Soft Threshold

Figure 1: Pruning operation on attention 𝑆𝑐𝑜𝑟𝑒: (a) ideal magnitude-based
pruning, (b) proposed differentiable pruning operation with soft threshold.

poses a unique challenge for gradient-based learned methods. For
this, we use an approximate differentiable pruning operation and
devise a surrogate regularizer to reinforce sparsity as part of the
model loss function. In the following paragraphs, we expound our
learned pruning method that couples two design principles, namely
“pruning with soft threshold” and “surrogate L0 regularization”.

Pruning with soft threshold. Figure 1a demonstrates an ideal
pruning operation for 𝑆𝑐𝑜𝑟𝑒 values (e.g. 𝑆𝑐𝑜𝑟𝑒 = Q ×K𝑇 , where Q
andK are𝑑-dimension vectors corresponding to a single word). The
𝑆𝑐𝑜𝑟𝑒 values greater than Tℎ remain unchanged and those less than
Tℎ are clipped to a large negative number. As the pruning operation
is followed by a “softmax(·)”, setting the 𝑆𝑐𝑜𝑟𝑒 values below Tℎ to a
large negative number makes the output of the softmax operation
sufficiently close to zero. Hence, the large negative numbers are
pruned out of the following multiplication into V. However, using
this pruning operation as part of a gradient-based training method
is not straightforward due to its discontinuity at 𝑋 = Tℎ.

To circumvent the non-differentiality in the pruning operation,
we propose to replace this operation with an approximate function
that instead uses a soft threshold (shown in Figure 1b) as follows:

SoftThreshold(x) =
{
𝑥 tanh(𝑠 (𝑥 − Tℎ)), 𝑥 ≥ Tℎ

𝑐 tanh(𝑠 (𝑥 − Tℎ)), 𝑥 < Tℎ
(6)

By assigning a reasonably large value to 𝑠 , the shape of 𝑡𝑎𝑛ℎ(·)
around Tℎ becomes sharper and enables the learning gradients
to effectively flow around this region. Supporting the learning
gradients to flow at the vicinity of Tℎ allow the gradient-based
learning algorithm to either push down the model parameters (e.g.
Q and K) below the threshold or lift them above the threshold
according to their contributions to the overall model accuracy.

Outside the vicinity of Tℎ, the 𝑡𝑎𝑛ℎ(·) asymptotically approaches
one and the “SoftThreshold” function simply becomes ≈ 𝑥 and ≈ −𝑐
for values ≥ Tℎ and < Tℎ, respectively, which are close approxi-
mations of the original pruning operation. In our experiments, we
empirically find that setting 𝑐 = 1000 and 𝑠 = 10 yield a good ap-
proximation for pruning and enables robust training.

Differentiable surrogate L0 regularization. Using soft threshold
as the sole force of pruning does not necessarily increase sparsity.
Intuitively, the training methodmay just simply lower the threshold
to be a small value, which translates to lower sparsity to maintain
high model accuracy. Imposing such constraints to gradient-based
methods are generally achieved through adding a regularizer term

904

ISCA ’22, June 18–22, 2022, New York, NY, USA Li, Ghodrati, Yazdanbakhsh, et al.

to the loss function. A common method to explicitly penalize the
number of non-zero model parameters is to use L0 regularizer on
model parameters in the loss function as follows:

L𝑡𝑜𝑡 (𝜃) = 1

𝑁

(𝑁∑
𝑖=1

L
(
𝐴(𝑥𝑖 ; 𝜃), 𝑦𝑖

)) + 𝜆 | |𝜃 | |0 (7a)

| |𝜃 | |0 =
|𝜃 |∑
𝑗=1

[𝜃 𝑗 ≠ 0] (7b)

where L is the model loss function, 𝐴(·) is the model output for
given input 𝑥𝑖 and model parameters 𝜃 , 𝑦𝑖 is the corresponding
labeled data, 𝜆 is the balancing factor for L0 regularizer, and is the
identity operator that counts the number of non-zero parameters.

Similar to “Threshold” function, L0 regularizer suffers from the
same non-differentiability limitation. To mitigate this, Louizos et
al. [59] uses a reparameterization of model parameters to compute
the training gradients. While this reparameterization technique
yields state-of-the-art results for Wide Residual Networks [109]
and small datasets, a recent study [28] shows that this reparame-
terization trick performs inconsistently for large-scale tasks such
as attention models. In this work, we propose a simple alternative
method that uses a differentiable surrogate L0 regularization for
the pruning of 𝑆𝑐𝑜𝑟𝑒 values in attention layers as follows:

| |𝜃 | |0 =
|𝑠𝑐𝑜𝑟𝑒 |∑
𝑗=1

[score𝑗 > −𝑐] (8a)

| |𝜃 | |0 ≈
|𝑠𝑐𝑜𝑟𝑒 |∑
𝑗=1

sigmoid(𝑘 (score𝑗 + 𝑐 − 𝛼)) (8b)

where 𝑘 = 100 and 𝛼 = 1. Using these parameters forces the output
of sigmoid(·) to asymptotically approach one for unpruned 𝑆𝑐𝑜𝑟𝑒
values and zero for the pruned ones, which are already bounded to
− 𝑐 as shown in Equation 6. As such, the proposed differentiable
surrogate L0 regularizer is a close approximation of the original L0
regularizer in Equation 8 (a).

Pruning mechanism. We apply our gradient-based learned prun-
ing as a light fine-tuning step based on the previously proposed
design principles: (1) pruning with soft threshold and (2) differ-
entiable surrogate L0 regularization. We employ the pre-trained
attention models with the proposed modified loss function (e.g.
original loss function and the surrogate L0 regularizer) to jointly
fine-tune the model parameters and learn the per-layer pruning
thresholds. Using the proposed soft threshold mechanism in the
fine-tuning step allows the gradient-based learning method to ad-
just the model parameters smoothly at the vicinity of the Tℎ value.
That is, pushing down the non-important model parameters below
threshold values and lifting up the important model parameters
above it. One of the main benefits of using the proposed differen-
tiable approach is enabling the model parameters to freely switch
between prune and unpruned region. For all the studied attention
models, we initialize the threshold values to zero and run the fine-
tuning for up to five epochs.

Figure 2 demonstrates an example sparsity, threshold values, and
normalized training loss curves for BERT-B model on QNLI task

(a) Sparsity and Pruning Threshold (b) Normalized Training Loss

Figure 2: An example (a) attention layer sparsity and its corresponding prun-
ing threshold values and (b) normalized training loss as fine-tuning epochs
progress for BERT-L model on QNLI task from GLUE benchmark.

from the GLUE benchmark. Figure 2a shows that as fine-tuning
epochs progress, both the sparsity and threshold values increase
owing to the effectiveness of our joint co-training of sparsity and
model parameters. The flexibility afforded by the joint co-training is
further illustrated at the third epoch, where the sparsity continues to
increase despite the corresponding decrease in the threshold value.
Additionally, Figure 2b shows the decreasing trend of normalized
training loss over the course of fine-tuning epochs.

3.2 Bit-Level Early-Compute Termination

The learned pruning offers a unique opportunity to further improve
the LeOPArd performance through bit-serial Q ×K𝑇 computation.
If our system can anticipate that the final result of Q×K𝑇 computa-
tion is below the learned pruning threshold, the ongoing bit-serial
computations can be terminated. However, this early-termination
mechanism poses a key challenge in our design. As we desire to
maintain the baseline model accuracy, the early-termination mech-
anism must not tamper with the computational correctness of at-
tention layers. To address this, we propose to compute and add
a dynamically adjusted conservative margin value to the partial
sum during the bit-serial computations. The role of this margin is
to account for the maximum potential increase in the remaining
Q ×K𝑇 computations. If the addition of the partial sum values and
the margin still falls below the learned pruning threshold value, the
computations are terminated and the corresponding Q×K𝑇 is sim-
ply pruned. In the following paragraph, we illustrate the proposed
early-compute termination with a conservative margin.

Early-compute termination for dot-product operation. Fig-
ure 3 depicts the flow for a Q ×K𝑇 dot-product computation, each
with four elements.K elements are placed in bit-serial format verti-
cally fromMSB→ LSB, whereasQ values are stored in full-precision
fixed-point format. In this example, the threshold value is set to
five. For simplicity, we assume the computation is performed in
sign-magnitude form, 𝑘𝑠 represents the sign-bit for K vector, and
the absolute values of K elements are less than one.

In the first cycle, the elements with concordant signs, (𝑘0, 𝑞0)
and (𝑘1, 𝑞1), are used for margin initialization. The intuition here is
that only the multiplications of elements with concordant signs can
contribute positively to the final dot-product result. Multiplications
of elements with opposing signs are ignored to keep the margin
conservative and eliminate wrongful early compute terminations.

905

Accelerating Attention through Gradient-based Learned Runtime Pruning ISCA ’22, June 18–22, 2022, New York, NY, USA

9
q0 q1 q2 q3

-5 7 -2

ks

k2

k1

k0

k0 k1 k2 k3

0 1 1 0
0 1 1 0
0 1 0 1
1 1 0 0

�

(a) Cycle = 1

ks

k2

k1

k0

k0 k1 k2 k3

0 1 1 0
0 1 1 0
0 1 0 1
1 1 0 0

9
q0 q1 q2 q3

-5 7 -2

�

(b) Cycle = 2

ks

k2

k1

k0

k0 k1 k2 k3

0 1 1 0
0 1 1 0
0 1 0 1
1 1 0 0

9
q0 q1 q2 q3

-5 7 -2

0 1 0 1 �

(c) Cycle = 3

ks

k2

k1

k0

k0 k1 k2 k3

0 1 1 0
0 1 1 0
0 1 0 1
1 1 0 0

9
q0 q1 q2 q3

-5 7 -2

1 1 0 0 �

(d) Cycle = 4
Cycle P = Partial Sum M = Conservative Margin Early Termination? (Tℎ = 5)

1 P1 = 0 M1 = (9 + 5) (2−1 + 2−2 + 2−3) = 12.25 P1 +M1 = 12.25 ≥ 5;�

2 P2 = P1 + (5 − 7)2−1 = −1 M2 = (9 + 5) (2−2 + 2−3) = 5.25 P2 +M2 = 4.25 < 5;�
3 P3 = P2 + (5 − 2)2−2 = −0.25 M3 = (9 + 5) (2−3) = 1.75 P3 +M3 = 1.5 < 5;
4 P4 = P3 + (9 + 5)2−3 = 1.5 M4 = 0 P4 +M4 = 1.5 < 5;

Figure 3: High-level overview of early-compute termination for dot-product

operation Q × K𝑇 . In this example, K is represented in bit-serial format,
whereasQ is in full-precision fixed-point format. In Figure (a-d) each column
illustrate one element ofK vector and each row represents its corresponding
bits (MSB → LSB). K𝑠 indicates the sign bit. For simplicity, K elements are
scaled to be between -1.0 and +1.0. The table shows the partial sum values
after each cycle.

As shown in the table of Figure 3, both the product of 𝑘2 and the 𝑞
vector as well as the margin are updated. The margin is adjusted
to accommodate the largest possible positive contribution to the
final value. In the second cycle, because the sum of P2 andM2 dips
below the threshold, the computation process terminates. That is,
the subsequent cycles (highlighted in gray) are no longer performed.
Note that, with the proposed margin computation, we ensure that
no approximation is introduced in the attention layers. Next section
discusses the hardware realization for this proposal.

4 LEOPARD HARDWARE ARCHITECTURE

We design LeOPArd hardware while considering the following
requirements based on our algorithmic optimizations:

(1) Leveraging the layer threshold values to detect the unpruned
𝑆𝑐𝑜𝑟𝑒s and their corresponding indices in the output matrix.

(2) Using bit-serial processing to early-stop the computation of
pruned 𝑆𝑐𝑜𝑟𝑒s and associated memory access .

(3) Processing the ×V operation for only un-pruned 𝑆𝑐𝑜𝑟𝑒s to min-
imize operations while achieving high compute utilization.

4.1 Overall Architecture

Due to abundant available parallelism inmulti-head attention layers,
we design a tile-based architecture for LeOPArd, where attention
heads are partitioned across the tiles, and the operations in the
tiles are independent of each other on their corresponding heads.
Figure 4 illustrates the high-level microarchitecture of a single
LeOPArd tile. Each tile comprises two major modules to process
the computations of attention layers:

(1) A front-end unit, dubbed Query Key Processing Unit (QK-PU),
that streams in the Q vectors (row by row from the 𝑄 matrix,
where each row corresponds to a word) from the off-chip mem-
ory, reads Ks from a local buffer, and performs vector-matrix
multiplication between a Q vector and a K matrix. This unit
also encompasses a 1-D array of bit-serial dot-product units,
QK-DPUs, each of which equipped with logic to early-stop the

K
ey

 B
uff

er

B
S

-D
P

E

x +

x +

…

ACC

Q-FIFO

M
ar

g
in

 C
al

c.

Thresholding
Module

QK-DPU

…

QK-PU

Index
 Counter

K
ey

 B
uff

er

B
S

-D
P

E

x +

x +

…

ACC

M
ar

g
in

 C
al

c.

QK-DPU

Score-FIFO IDX-FIFO

Softmax
Value Buffer

Value RowX X X…

+ + + Output-FIFO

V-PU

(a
) F

ro
nt

-E
nd

(b
) B

ac
k-

E
nd

Thresholding
Module

Index
 Counter

NQK

Figure 4: Overall microarchitecture of a LeOPArd tile.

computations based on the pruning threshold values and for-
ward the unpruned 𝑆𝑐𝑜𝑟𝑒s and their indices to the second stage.

(2) A back-end unit, dubbed Value Processing Unit (V-PU), that per-
forms softmax operations on the important un-pruned 𝑆𝑐𝑜𝑟𝑒s
to generate probability, and subsequently performs weighted-
summation of the V vectors read from a local buffer to generate
the final output of the attention layer.

The front- and back-end stages are connected to each other through
a set of FIFOs that store the survived 𝑆𝑐𝑜𝑟𝑒s and their corresponding
indices. The front-end unit employs multiple (𝑁QK) QK-DPUs while
sharing the single V-PU in consideration of high pruning rate during
the processing in the front-end stage. If the front-end finished the
computation with currentQ vector, but the back-end is still working
on the previous Q vector, the front-end unit is stalled until the
completion of back-end unit. As the choice of 𝑁QK is a key factor to
maximize the overall throughput and back-end resource utilization,
we explore this design space in Section 5.4, which leads to two
choices of 𝑁QK = 6 and 8 by focusing on area efficiency and higher
utilization, respectively. Before the operation begins, all the K and
Vmatrices are fetched from off-chip memory and stored on on-chip
buffers, while the Q vectors are steamed in. Since the vectors are
re-used by the number of sequence elements (e.g., 512 in BERT),
DRAM costs are amortized.

4.2 Online Pruning Hardware Realization via
Bit-serial Execution

As discussed in Section 3, to realize the pruning of redundant 𝑆𝑐𝑜𝑟𝑒s
during runtime and even earlier termination with bit-level granu-
larity, we design LeOPArd front-end unit (depicted in Figure 4-(a))
as a collection of bit-serial dot-product units (QK-DPU).

906

ISCA ’22, June 18–22, 2022, New York, NY, USA Li, Ghodrati, Yazdanbakhsh, et al.

Overall front-end execution flow. To perform the 𝑆𝑐𝑜𝑟𝑒 compu-
tations, the Q vectors are read sequentially from Q-FIFO and then
broadcasted to each QK-DPU, while each QK-DPU reads a K vector
from its local Key Buffer and performs a vector dot-product opera-
tion. As such, while the Q vector is shared amongst the QK-DPUs,
the K matrix is partitioned along its columns and is distributed
across the Key Buffers. Each QK-DPU performs the dot-product oper-
ations in a bit-serial mode, where the K elements are processed in
bit-sequential manner and the Q elements are processed as a whole
(e.g. 12 bit). Whenever each QK-DPU finishes the processing of all
itsK bits for unpruned 𝑆𝑐𝑜𝑟𝑒s or early terminates the computation
due to not meeting the layer pruning threshold based on the margin
calculation described in Section 3.2, it proceeds with the execution
of nextK vector. If a QK-DPU detects a unpruned 𝑆𝑐𝑜𝑟𝑒 , it stores the
𝑆𝑐𝑜𝑟𝑒 value and its corresponding index on Score-FIFO and IDX-FIFO,
respectively, to be processed by the back-end unit later. Once all
the QK-DPUs finish processing all their K vectors, the QK-PU reads
the next Q vector from Q-FIFO and starts its processing.

Bit-serial dot-product execution. Figure 5-(a) depicts the mi-
croarchitectural details of our Bit-Serial Dot-product Engine (BS-
DPE). The BS-DPE is a collection of Multiply-ACcumulate (MAC)
units and it performs a 12-bit×B-bit dot-product operation per cy-
cle, where the Q vector is kept in a local register and Ks are read
from the Key Buffer B-bit at a time in a sequential mode. We chose
B = 2-bit as opposed to conventional bit-by-bit serial designs as the
number of bits processed per cycle opens a unique trade-off space
for the design of LeOPArd. Increasing the bits leads to better power
efficiency due to less frequent latching of intermediate results, how-
ever it may degrade the performance as it reduces the resolution
of bit-level early termination. As such we perform a design space
exploration (Figure 14 in Section 5.4) and chose 2-bit serial execu-
tion as it strikes the right balance between power efficiency and
performance. The BS-DPE accumulates all the intermediate results
in around 20 bits to keep required precision of the computations.
The output of the last 2-bit×12-bit MAC unit then goes to a shifter
to scale the partial results according to the current K bit position
and is accumulated and stored in a register that holds the (partial)
results of 𝑆𝑐𝑜𝑟𝑒 computations.

Pruning detection via dynamic margin calculation. As dis-
cussed in Section 3.2 and Figure 3, to detect whether a current 𝑆𝑐𝑜𝑟𝑒
needs to be pruned and corresponding computations be terminated,
QK-DPU dynamically calculates a conservative upper-bound mar-

gin (M) and adds it with the current dot-product partial sum (P)
to compare it with the layer threshold (Tℎ). Figure 5-(b) and (c)
show the details of hardware realization for margin calculation
and thresholding logic, respectively. To calculate the margin ac-
cording to Table in Figure 3, the margin calculation module first
detects the Q and K pairs in the dot-product that yield positive
product. To do so, during the processing of K’s MSBs, the sign
bits of Qs and Ks are XORed. Only if the result is positive (XOR
= 0), the absolute values of the corresponding Q are summed up
to calculate the margin (e.g., resulting in (9 + 5) in the Table of
Figure 3). The summation result is stored in a Sum Register. Then,
it is scaled by the fixed number, largest positive value (e.g. 0111...),
which corresponds to (2−1 + 2−2 + 2−3 + ...) in Figure 3, storing
(9 + 5) (2−1 + 2−2 + 2−3 + ...) in the margin register. The margin

K
m

sb

1

K
m

sb
-2

1

…
…

Key Buffer

+

+

2b

2b
24b

+2b

K
m

sb

d

K
m

sb
-2

d

24b

24b

<<

+

12b

12b

12b

Query

XoR

Ksign
1

Qsign
1

Margin Reg

… …

T
hr

 R
eg

<= Early
stop

Bit-serial
Cntr

IDX Cntr
Score IDX

Score

d*12b

(a)

(b)

(c)

(d)

…

0
10

1
0

|Q|

24b

+
XoR

Ksign
2

Qsign
2

0
10

1
0

|Q|

+

XoR

Ksign
d

Qsign
d

0
10

1
0

|Q|

+

18b

18b

0111…

30b

01

-

011000…
<<

+
Sum Reg

18b

Qsign
1

Qsign
2

Qsign
d

Scale

Shift-Reg
<< +

Figure 5: A QK-DPU comprising (a) bit-serial dot-product engine, (b) margin
calculation logic, (c) thresholding module, and (d) score index counter.

needs to be calculated dynamically for each bit position during bit-
serial execution (such asM changing in each row of the Table in
Figure 3). This is enabled by subtracting the shifted version of Sum
Register value from the current margin in the margin register, e.g.,
(9+ 5) (2−1 + 2−2 + 2−3 + ...) − (9+ 5) (2−1) = (9+ 5) (2−2 + 2−3 + ...)
in the second row of the Table in Figure 3. This operation is iterated
every bit position to generate the values in the subsequent rows of
the Table in Figure 3. Note that, the margin calculation is a scalar
computation (mostly shift and subtraction), which is amortized over
the 𝑑 = 64 dimension vector processing, incurring virtually no over-
head. After each cycle of the bit-serial operation, the thresholding
module (Figure 5-(c)) adds the updated partial sum with the current
margin and compares it with the layer threshold Tℎ to determine
the continuation of the dot-product or its termination for pruning
of the current 𝑆𝑐𝑜𝑟𝑒 .

Final score index calculation. The QK-DPU calculates the indices
of the unpruned 𝑆𝑐𝑜𝑟𝑒s using a set of two counters, as shown in
Figure 5-(d). First, Bit-serial Cntr increments with the number of bits
processed by the QK-DPU and gets reset whenever it reaches its
maximum (i.e. 6 (= 12bit/B)) for processing all bits for unpruned
𝑆𝑐𝑜𝑟𝑒s) or the Early stop flag is asserted. Second, the value of IDX Cntr

shows the position of the current 𝑆𝑐𝑜𝑟𝑒 in the vector and increments
whenever the Bit-serial Cntr gets reset, ending the computation of
that 𝑆𝑐𝑜𝑟𝑒 . Finally, if the IDX Cntr increments and the Early stop flag
is low, the QK-DPU pushes the content of this counter to IDX FIFO,
because it means that the corresponding 𝑆𝑐𝑜𝑟𝑒 is not pruned and
will be used for further processing in the V-PU.

4.3 Back-End Value Processing

As shown in Figure 4-(b), the LeOPArd tile’s back-end stage, V-PU,
consumes the unpruned 𝑆𝑐𝑜𝑟𝑒s and executes the Softmax operation,
followed by multiplication with V vectors and finally storing the
results to an Output-FIFO. Whenever the Score-FIFO is not empty,

907

Accelerating Attention through Gradient-based Learned Runtime Pruning ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 1: Microarchitectural configurations of a LeOPArd tile.

Hardware modules Configurations

QK-PU 6 / 8QK-DPU (=𝑁QK), each 64 (=D) tap 12×2 bit-serial
Key Buffer 48KB in total (= 8KB×6 / 6KB×8 banks), 128-bit port per bank
V-PU Single 1-D 64 (=D) way 16×16-bit MAC array

Value Buffer 64KB (= 8KB × 8 banks), 128-bit port per bank

Softmax 24-bit input, 16-bit output, LUT: 1 KB

Score and IDX FIFOs 24-bit × 512 depth for Score, 8-bit × 512 depth for IDX

the V-PU starts the Softmax operation (𝑒𝑥 and accumulation) to
calculate the probabilities. We implemented the Softmax module
of V-PU similarly to the Look-Up-Table (LUT)-based methodology
in 𝐴3 [34]. Whenever the output probability is produced, the V-PU

uses the indices of the unpruned 𝑆𝑐𝑜𝑟𝑒s to read the corresponding
V vector. Finally, the V vector is weighted by the output of the
Softmax module with a 1-D array of MAC units. The elements of V
vector are distributed and the probabilities are shared across the
MAC units, similar to a 1-D systolic array. With such design, the
V-PU consumes the 𝑆𝑐𝑜𝑟𝑒s sequentially to complete the weighted-
sum of V vectors, and accumulates the partial results over multiple
cycles while only accessing the unpruned V vectors. As such, it
rightfully leverages the provided pruning by the front-end stage
and eliminates the inconsequential computations.

5 EVALUATION

5.1 Methodology

Workloads.We evaluate LeOPArd on various NLP and Visionmod-
els: BERT-Base (BERT-B) [43], BERT-Large (BERT-L) [43],MemN2N [91],
ALBERT-XX-Large (ALBERT-XX-L) [53], GPT-2-Large (GPT-2-L) [68],
and ViT-Base (ViT-B) [25]. To evaluate these models, we use five
different datasets: (1) Facebook bAbI, which includes 20 different
tasks [100] for MemN2N, (2) General Language Understanding Eval-
uation (GLUE) with nine different tasks [95] for BERT models, (3)
Stanford Question Answering Dataset (SQUAD) [70] with a single
task for BERT models and ALBERT-XX-L, (4) WikiText-2 [2] for GPT-
2-L, and (5) CIFAR-10 [48] for ViT. The dimension (𝑑) of Q, K, and
V vectors for all the workloads is 64 except MemN2N with bAbI

dataset, which is 20. The sequence length is 50 for MemN2N with
bAbI whereas 512 and 384 for BERT and ALBERT-XX-L models with
GLUE and SQUAD datasets, respectively. Finally, the sequence length
for GPT-2 with WiKiText-2 is 1280.

Fine-tuning details. We use the baseline model checkpoints from
HuggingFace [101] with PyTorch v1.10 [65] and fine-tune the mod-
els on an Nvidia RTX 3090, except for GPT-2-Large, for which we use
an Nvidia A100. For default task-level training, we use the Adam op-
timizer with default parameters and the learning rate of [2, 3] ×𝑒−5
(same as baseline). To obtain the layer-specific threshold values,
we perform an additional pruning-aware fine-tuning step for one
to five more epochs to learn the optimal values while maintaining
the baseline model accuracy. For this step, we use the learning rate
of 1𝑒−2 for Tℎ (5𝑒−6 for the other parameters), as training for the
Tℎ is generally slower and a higher learning rate facilitates conver-
gence. To leverage faster fixed-point execution, we perform a final
post-training quantization step with 12 bits for inputs in QK-PU

hardware block and 16 bits for V-PU block similarly to [96].

Hardware design details. Table 1 lists the microarchitectural pa-
rameters of a single LeOPArd tile for two studied configurations: (1)
A LeOPArd tile with six and (2) eight QK-DPUs that share a single
1-DMAC array in V-PU. The number of QK-DPUs is set such that the
compute utilization for front-end and back-end units is balanced,
while considering the pruning and bit-level early-termination rates
across all the workloads. We synthesised and performed Placement-
and-Route (P&R) for our designs with two tiles. The on-chip mem-
ory sizes forK and V are designed to store up to 512 sequences for
a single head in a layer for both configurations.

Accelerator synthesis and simulations. We use Cadence Genus
19.1 [11] and Cadence Innovus 19.1 [12] to perform logic synthesis,
floorplan, and P&R for the LeOPArd accelerator. We use TSMC
65 nm GP (General Purpose) standard cell library for the synthesis
and layout generation of the digital logic blocks. These digital blocks
are rigorously generated to meet the target frequency of 800MHz in
consideration of all the CMOS corner variations and temperature
conditions from −40◦ to 125◦C. For the SRAM on-chip memory
blocks, we use Memory Compiler with ARM High density 65 nm
GP 6-transistor based single-port SRAM version r0p0 [7].

We also develop a simulator to obtain the total cycle counts and
number of accesses to memories for both LeOPArd and baseline
accelerators. The simulator incorporates the pruning rate and the
bit-level early-termination statistics for each individual workload.
Using these statistics, the simulator evaluates runtime and total
energy consumption of the accelerators.

Comparison to baseline architecture. We compare LeOPArd to
a conventional baseline design without any of our optimizations
(e.g. runtime pruning and bit-level early compute termination). For
a fair comparison, we use the same frequency, bitwidths for Q×K𝑇

and ×V, and on-chip memory capacity for all the designs. The
baseline design employs a single 12×12-bit QK-DPU as opposed to
multiple 12×2-bit-serial ones, while both designs have the same
back-end V-PU. As shown in Table 1, we evaluate LeOPArd un-
der two design configurations. The first design with six QK-DPUs,
dubbed Area-Efficient LeOPArd (AE-LeOPArd), almost perfectly
matches the area of the baseline design (< 0.2% overhead) and pro-
vides an iso-area comparison setting. The second one with eight
QK-DPUs, dubbed Highly-Parallel LeOPArd (HP-LeOPArd), pro-
vides an area 15% larger than baseline and delivers a better balance
in the compute utilization of the front-end and back-end stages.

Comparison with 𝐴3 and SpAtten. We also compare LeOPArd
with two state-of-the-art attention accelerators, 𝐴3 [34] and SpAt-
ten [96], with support for runtime pruning.𝐴3 employs token prun-
ing by comparing the Softmax output (probability) to a relative
threshold, which is set using a user-defined parameter that adjusts
the level of approximation.𝐴3 also employs a sorting mechanism to
make the pruning decision after processing only a small number of
large elements from the sorted K matrix in the order of magnitude.
SpAtten performs cascaded head and token pruning by compar-
ing the Softmax output with a user-defined threshold obtained
empirically. There are no raw performance/energy results for indi-
vidual workloads and simulation infrastructures of the accelerators.
Therefore, we follow the comparison methodology of SpAtten [96],
using throughput (GOPs / s), energy efficiency (GOPs / J), and area

908

ISCA ’22, June 18–22, 2022, New York, NY, USA Li, Ghodrati, Yazdanbakhsh, et al.
Ac

cu
ra

cy
 (%

)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Task-1
Task-2

Task-3
Task-4

Task-5
Task-6

Task-7
Task-8

Task-9
Task-10

Task-11

Task-12

Task-13

Task-14

Task-15

Task-16

Task-17

Task-18

Task-19

Task-20

Average

CIFAR-10

Baseline Accuracy Accuracy with LeOPArd Runtime Pruning

80
.6

6
80

.5
9

Ac
cu

ra
cy

 (%
)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

G-COLA

G-MRPC

G-RTE
G-SST

G-QNLI

G-QQP

G-WNLI

G-MNLI

G-STS
Average

SQUAD

G-COLA

G-MRPC

G-RTE
G-SST

G-QNLI

G-QQP

G-WNLI

G-MNLI

G-STS
Average

SQUAD

ALBERT-XX-L

Baseline Accuracy / Perplexity Accuracy / Perplexity with LeOPArd Runtime Pruning

83
.2

5
82

.9
2

81
.9

5
81

.6
4

(a) MemN2N

(c) BERT-Base (d) BERT-Large

80
.2

0
79

.9
4

83
.5

1
83

.3
0

SQUAD

87
.3

5
87

.2
8

SQUAD

98
.7

3
97

.9
7

0.0

4.0

8.0

12.0

16.0

20.0

WikiText-2
(f) GPT-2-L

17
.5

5
17

.4
8

(e) ALBERT-XX-L

G-Average

SQUAD

G-Average

(b) ViT-B

Average

Pe
rp

le
xi

ty
Figure 6: Accuracy before and after pruning-aware fine-tuning (prefix "G-":
GLUE). We evaluate GPT-2 using perplexity, which favors a lower value.

efficiency (GOPs / s / mm2) metrics to provide the best compar-
isons. Both 𝐴3 and SpAtten are implemented in 40 nm technology.
To provide a fair comparison, we scale HP-LeOPArd from 65 nm
to 40 nm based on both Dennard scaling (indicated with †) and
measurement-based scaling rules [90] (indicated with ‡). We use a
single tile with an area comparable to 𝐴3 and SpAtten. Moreover,
𝐴3 implements the Q × K𝑇 using 9 bits as opposed to 12 bits in
LeOPArd. As such, we scale the QK-PU of HP-LeOPArd from 12
bits to 9 bits to provide a head-to-head comparison with 𝐴3.

5.2 Accuracy and Algorithmic Optimization

Impacts on model accuracy. Figure 6 compares the accuracies
of the LeOPArd gradient-based on-the-fly pruning method and
the baseline models in their vanilla implementation [101], across
various tasks of evaluated workloads. On average, across all the
evaluated tasks, LeOPArd runtime pruning degrades accuracy by
only 0.07% for MemN2N with the bAbi dataset, 0.31% and 0.33% for
BERT-B and BERT-L with the GLUE dataset, and 0.26% and 0.21% for
BERT-B and BERT-L with the SQUAD dataset. For ALBERT-XX-L with
the SQUAD dataset, the LeOPArd runtime pruning leads to only
an 0.07% accuracy loss, whereas the degradation for ViT-B with the
CIFAR-10 dataset is 0.76%.

In the GPT-2-L model, we use perplexity, which is the key metric
for auto regressive language models. Note that perplexity is derived
from themodel loss, and thus lower perplexity is better. As shown in
Figure 6-(f), LeOPArd runtime pruning results in a 0.07 decrease in
perplexity. This is achievable because LeOPArd learns the optimal
threshold values and co-adjusts them with the weight parameters
simultaneously via gradient-based optimization. Figure 6 also illus-
trates that the LeOPArd pruning-aware fine-tuning pass evenly
improves the accuracy for some of the benchmark tasks, with the
maximum of 2.2%. However, this also degrades the accuracy for
other tasks with the maximum of 2.6%. This accuracy fluctuations
are unavoidable due to randomness in deep learning training, but
overall the accuracy degradation, averaged across the evaluated
benchmarks, converges adequately to a near-zero value (≤ 0.2%).
Performing the post-training quantization adds at most only 0.1%,
for both the baseline and our pruning-aware fine-tuned models.

Pr
un

in
g

Ra
te

 (%
)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Task-1
Task-2

Task-3
Task-4

Task-5
Task-6

Task-7
Task-8

Task-9
Task-10

Task-11

Task-12

Task-13

Task-14

Task-15

Task-16

Task-17

Task-18

Task-19

Task-20

Average

CIFAR-10

Pr
un

in
g

Ra
te

 (%
)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

G-COLA

G-MRPC

G-RTE
G-SST

G-QNLI

G-QQP

G-WNLI

G-MNLI

G-STS
Average

SQUAD

G-COLA

G-MRPC

G-RTE
G-SST

G-QNLI

G-QQP

G-WNLI

G-MNLI

G-STS
Average

SQUAD

ALBERT-XX-L

(a) MemN2N

(c) BERT-Base (d) BERT-Large

78
.6 80

.3

75
.5

91
.7

SQUAD

73
.9

74
.1

CIFAR-10

60
.3

G-Average

G-Average

SQUAD

72
.6

SQUAD

(e) ALBERT-XX-L

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

WikiText-2

73
.9

(f) GPT-2-L

Average

(b) ViT-B

Figure 7: Runtime pruning rate with LeOPArd. (prefix "G-": GLUE)

Runtime pruning rate analysis. Figure 7 shows the percentage of
total Q×K𝑇 𝑆𝑐𝑜𝑟𝑒s that are pruned away by our method using the
learned threshold values across various benchmarks. In transformer
software implementations, zeros are padded to maintain regular
vector length despite the varying sequence length in each workload.
The padded zeros are not counted for sparsity contribution in this
paper. On average, LeOPArd prunes 91.7% (max. 97.4%) of 𝑆𝑐𝑜𝑟𝑒s
across all the 20 tasks for the MeMN2N model with the bAbI dataset.
LeOPArd achieves the average pruning rates of 78.6% (max. 93.2%)
and 75.5% (max. 93.0%) for the BERT-B and BERT-L models with the
GLUE dataset, while achieving 73.9% and 74.1% with the SQUAD
dataset, respectively. Moreover, LeOPArd provides a 72.6% pruning
rate for ALBERT-XX-L with the SQUAD dataset, 60.3% for ViT-B with
the CIFAR-10 dataset, and 73.9% for GPT-2-L with the WikiText-2

dataset. As the results suggest, LeOPArd can significantly prune out
the 𝑆𝑐𝑜𝑟𝑒s across various tasks, with greater benefits to MeMN2N

tasks compared to the BERT ones. We conjecture the lower pruning
rates in BERTmodels are due to the higher probability of correlation
between various tokens in the more complex language processing
tasks compared to MemN2N.

As Figure 7 shows, in the case of ALBERT-XX-Lwith SQUAD, we see
more pruning opportunities compared to BERT, presumably because
of its larger model architecture with more redundant computations.
Similar trend is observed for GPT-2-L. With regard to ViT-B, we
see lower pruning compared to NLP tasks, commensurate with
prior studies [14]. This occurs because information is more local in
images compared to texts, and therefore there is less redundancy
in the attention layers for vision tasks.

Bit-level early-compute termination. Figure 8 depicts the pro-
posed bit-level early compute termination feature and its relation
with the achieved runtime pruning rates. The x-axis shows the
number of bits processed sequentially, while the y-axis shows the
cumulative achieved pruning rate averaged over all of the datasets’
tasks. Intuitively, as more bits are processed during 𝑆𝑐𝑜𝑟𝑒 computa-
tions, the dynamic margin becomes smaller and thus the pruning
rate increases. As shown, as the average number of processed bits
increases, the cumulative pruning rate gradually plateaus, indicat-
ing saturation. In this scenario, the higher number of bits are only
required for fully calculating unpruned 𝑆𝑐𝑜𝑟𝑒s. We establish that

909

Accelerating Attention through Gradient-based Learned Runtime Pruning ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 2: LeOPArd performance comparison under different scenarios with prior work [34, 96].

Metric (unit) A3-Base A3-Conserv SpAtten HP-LeOPArd HP-LeOPArd † HP-LeOPArd ‡ HP-LeOPArd †∗ HP-LeOPArd ‡∗

Process (nm) 40 40 40 65 40 40 40 40

Area (mm2) 2.08 2.08 1.55 3.47 1.31 1.31 1.05 1.05

Key Buffer (KB) 20 20 24 48 24 24 24 24

Value Buffer (KB) 20 20 24 64 24 24 24 24

(Q,K)-bits (9, 9) (9, 9) (12, 12) (12, 12) (12, 12) (12, 12) (9, 9) (9, 9)

GOPs / s 259.0 518.0 728.4 574.1 932.8 1084.9 1143.9 1330.3

GOPs / J 2354.5 4709.1 772.9 519.3 2224.8 2028.8 3353.8 3058.4

GOPs / s / mm2 124.5 249.0 470.0 165.5 710.4 826.1 1093.8 1272.1

† Dennard scaling trend applied to map on 40 nm process – ‡ Scaling rule from [90] applied to map on 40 nm process – *scaled to 9 bitQ,K

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Average Number of Processed Bits
1 2 3 4 5 6 7 8 9 10 11 12

MemN2N
BERT-B-GLUE
BERT-L-GLUE
BERT-B-SQUAD
BERT-L-SQUAD
ALBERT-XX-L
GPT-2-L
ViT-BC

um
ul

at
iv

e
Pr

un
in

g
Ra

te

Figure 8: Cumulative pruning ratewith respect to the number of bits processed
during bit-serial early termination. Each line obtained by averaging across all
the pruning rates per task.

the lower redundancy in model parameters of some transformer
models, e.g. BERT-L / ViT-B, hinders higher runtime pruning. Be-
cause lower redundancy generally translates to a higher number of
average bits calculations, it proportionally diminishes the potential
gains from bit-wise early termination. Averaged over pruned 𝑆𝑐𝑜𝑟𝑒s
in bit-serial mode, MemN2N with the bAbi dataset requires 4.5 bits,
while BERT-B and BERT-L require 8.3 and 8.0 bits with the GLUE

dataset. With the SQUAD dataset, the average number of bits in
BERT-B and BERT-L are 7.6 and 9.0 bits, whereas ALBERT-XX-L main-
tains 8.0 bits. The average number of bits in GPT-2-L and ViT attain
7.6 bits and 8.5 bits, respectively. This devised early-termination
mechanism significantly reduces the computations of the Q ×K𝑇 .

5.3 Accelerator Performance Results

Performance and energy comparison to baseline. Figure 9
shows the speedup improvements delivered by LeOPArd compared
to the baseline design, across all the 43 studied tasks. In this com-
parison, we consider the total execution runtime for all attention
layers of the models. On average across all tasks, AE-LeOPArd and
HP-LeOPArd provide 1.9× and 2.4× speedup over the baseline, re-
spectively. These improvements stem from both LeOPArd runtime
pruning that reduces operations on the back-end unit (e.g., Softmax
and ×V) and bit-level early compute termination that saves cycles
on Q ×K𝑇 computations for pruned 𝑆𝑐𝑜𝑟𝑒s. Across the workloads,

LeOPArd delivers higher speedups for MemN2N compared to the
other benchmarks. We attribute these improvements to the higher
pruning rate and consequently more bit-level termination oppor-
tunities in this model’s tasks. Among all the tasks, MemN2N-Task-1

enjoys the maximal speedup (3.8× for AE-LeOPArd and 5.1× for
HP-LeOPArd) while ViT-B gains the minimal improvements (1.1×
for both AE-LeOPArd and HP-LeOPArd). The benefits are more
pronounced for HP-LeOPArd because it deploys more QK-DPUs,
which both improves the performance of the front-end Q-PU unit,
and delivers more inputs (𝑆𝑐𝑜𝑟𝑒s) to the back-end stage. The latter
generally increases the back-end utilization.

Figure 10 compares the energy reduction (including compute and
on-chip memory accesses) achieved by LeOPArd to the baseline.
On average, LeOPArd reduces total energy consumption by a fac-
tor of 3.9× for AE-LeOPArd and 4.0× for HP-LeOPArd, across all
the studied tasks. Similarly to the speedup comparisons, MemN2N

enjoys a greater energy reduction than the other benchmarks due
to the higher pruning rate and therefore faster bit-level compute ter-
minations. Across all tasks, the energy reduction is the greatest for
MemN2N-Task-1 (9.2× for AE-LeOPArd and 9.6× for HP-LeOPArd)
and ViT-B achieves the lowest savings (≈ 2.0× for AE-LeOPArd and
HP-LeOPArd). The impact of LeOPArd on energy exceeds that on
speedup, because runtime pruning and bit-level early termination
reduce computation energy (contributing to both energy savings
and speedup) and memory accesses (only contributing to energy
savings). The energy reductions for both AE-LeOPArd and HP-
LeOPArd are not substantially different. Because the additional
QK-DPUs in HP-LeOPArd increase both power and performance,
total energy consumption remains similar.

Analysis of energy savings breakdown. Figure 11 analyzes the
breakdown of total energy consumption across five microarchitec-
tural components: (1) Q ×K𝑇 computations, (2) K buffer memory
access, (3) Softmax, (4) ×V computations, and (5) value buffer mem-
ory access. We report the average breakdown across all tasks for
each workload. Additionally, Figure 11 illustrates the contribution
of LeOPArd’s two main optimizations: (1) runtime pruning and
(2) early compute termination through bit-serial execution to the
overall energy savings in AE-LeOPArd. We normalize the energy
breakdowns to a baseline, which does not utilize any of the LeOP-
Ard’s optimizations. In the baseline, ×V computations and value
buffer memory accesses proportionally consume the highest energy
due to the lack of runtime pruning; ergo, higher average number of

910

ISCA ’22, June 18–22, 2022, New York, NY, USA Li, Ghodrati, Yazdanbakhsh, et al.

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x
Ta

sk
-1

Ta
sk

-2
Ta

sk
-3

Ta
sk

-4
Ta

sk
-5

Ta
sk

-6
Ta

sk
-7

Ta
sk

-8
Ta

sk
-9

Ta
sk

-1
0

Ta
sk

-1
1

Ta
sk

-1
2

Ta
sk

-1
3

Ta
sk

-1
4

Ta
sk

-1
5

Ta
sk

-1
6

Ta
sk

-1
7

Ta
sk

-1
8

Ta
sk

-1
9

Ta
sk

-2
0

G
M

ea
n-

M
em

N
2N

G
-C

O
LA

G
-M

RP
C

G
-R

TE
G

-S
ST

G
-Q

N
LI

G
-Q

Q
P

G
-W

N
LI

G
-M

N
LI

G
-S

TS
G

M
ea

n-
BE

RT
-B

BE
RT

-B
-S

Q
U

AD
G

-C
O

LA
G

-M
RP

C
G

-R
TE

G
-S

ST
G

-Q
N

LI
G

-Q
Q

P
G

-W
N

LI
G

-M
N

LI
G

-S
TS

G
M

ea
n-

BE
RT

-L
BE

RT
-L

-S
Q

U
AD

AL
BE

RT
-X

X-
L

G
PT

-2
-L

Vi
T-

B
G

M
ea

n

AE-LeOPArd HP-LeOPArd

2.
7x

3.
6x

G
M
ea

n-
M
em

N
2N

1.
5x 1.
8x

G
M
ea

n-
G
-B

E
R
T-
B

BE
RT

-B
-S

Q
U

AD
1.
6x

1.
6x

G
M
ea

n-
G
-B

E
R
T-
L

BE
RT

-L
-S

Q
U

AD

1.
4x 1.
7x

1.
6x

1.
6x

1.
5x

1.
5x 1.
6x

1.
6x

1.
1x

1.
1x

1.
9x 2.

4x

AL
BE

RT
-X

X-
L-

SQ
U

AD
G

PT
-2

-L
Vi

T-
B

G
M
ea

n

MemN2N BERT-Base BERT-Large

Sp
ee

du
p

O
ve

r B
as

el
in

e

Figure 9: Speedup comparison to baseline design for AE-LeOPArd and HP-LeOPArd (prefix "G-": GLUE dataset).

0.0x

2.0x

4.0x

6.0x

8.0x

10.0x

Ta
sk

-1
Ta

sk
-2

Ta
sk

-3
Ta

sk
-4

Ta
sk

-5
Ta

sk
-6

Ta
sk

-7
Ta

sk
-8

Ta
sk

-9
Ta

sk
-1

0
Ta

sk
-1

1
Ta

sk
-1

2
Ta

sk
-1

3
Ta

sk
-1

4
Ta

sk
-1

5
Ta

sk
-1

6
Ta

sk
-1

7
Ta

sk
-1

8
Ta

sk
-1

9
Ta

sk
-2

0
G

M
ea

n-
M

em
N

2N
G

-C
O

LA
G

-M
RP

C
G

-R
TE

G
-S

ST
G

-Q
N

LI
G

-Q
Q

P
G

-W
N

LI
G

-M
N

LI
G

-S
TS

G
-G

M
ea

n-
BE

RT
-B

BE
RT

-B
-S

Q
U

AD
G

-C
O

LA
G

-M
RP

C
G

-R
TE

G
-S

ST
G

-Q
N

LI
G

-Q
Q

P
G

-W
N

LI
G

-M
N

LI
G

-S
TS

G
M

ea
n-

BE
RT

-L
BE

RT
-L

-S
Q

U
AD

AL
BE

RT
-X

X-
L

G
PT

-L
Vi

T-
B

G
M

ea
n

AE-LeOPArd HP-LeOPArd

5.
8x 6.
0x

MemN2N BERT-Base BERT-Large

G
M
ea

n-
M
em

N
2N

G
M
ea

n-
B
E
R
T-
L

G
M
ea

n

2.
9x

3.
0x

2.
7x

2.
7x

3.
9x

4.
0x

2.
8x

2.
7x

G
M
ea

n-
G
-B

E
R
T-
B

BE
RT

-B
-S

Q
U

AD

G
M
ea

n-
G
-B

E
R
T-
L

BE
RT

-L
-S

Q
U

AD
2.
7x

2.
5x

AL
BE

RT
-X

X-
L-

SQ
U

AD
G

PT
-2

-L
Vi

T-
B

G
M
ea

n

2.
7x

2.
6x

2.
8x

2.
9x

2.
1x

2.
0x

En
er

gy
 R

ed
uc

tio
n

O
ve

r B
as

el
in

e

Figure 10: Total energy reduction for AE-LeOPArd and HP-LeOPArd compared to baseline (prefix "G-": GLUE dataset).

bits in Q ×K𝑇 . Recall that the LeOPArd’s back-end unit encloses
Softmax, ×V, and its associated buffer accesses. As the results show,
this unit consumes more than 65% of the total energy in the baseline
design. LeOPArd’s runtime pruning enables skipping computations
and memory accesses for inconsequential 𝑆𝑐𝑜𝑟𝑒s during the back-
end processing, delivering 1.7× (ViT-B) to 2.5× (MemN2N) energy
savings. For these tasks, the bit-serial execution in LeOPArd along
with its early termination brings further energy savings of 1.3× (ViT-
B) to 2.3× (MemN2N) on top of runtime pruning. These additional
benefits arise from avoiding the inconsequential bit computations
in Q ×K and their associated K buffer accesses.

Comparison with 𝐴3 and SpAtten. Table 2 compares the charac-
teristics and performance of HP-LeOPArd and its scaled versions
with 𝐴3 and SpAtten. Compared to SpAtten, HP-LeOPArd† (HP-
LeOPArd‡) delivers 3× (2.6×) improvements in GOPs / J and 1.5×
(1.7 ×) improvements in GOPs / s / mm2, while both designs have
virtually no model accuracy degradation. These benefits are attrib-
uted to the LeOPArd’s higher pruning rate and to the bit-level
early compute termination. For comparison with 𝐴3, we evalu-
ate HP-LeOPArd†∗ (HP-LeOPArd‡∗), which are scaled to 40 nm
and deploy 9-bit arithmetic for Q ×K𝑇 . A3-Conservative deploys
heuristic approximation to minimize accuracy degradation on top

0%

25%

50%

75%

100%

al
) B

ER
T-

B
BE

RT
-B

-S
BE

RT
-B

-S
BE

RT
-B

-S
ne

 B
ER

T-
L

ly
) B

ER
T-

L
al

) B
ER

T-
L

BE
RT

-L
-S

BE
RT

-L
-S

BE
RT

-L
-S

al
) B

ER
T-

L
BE

RT
-L

-S
BE

RT
-L

-S

U
nt

itl
ed

 1
U

nt
itl

ed
 2

U
nt

itl
ed

 3
U

nt
itl

ed
 4

U
nt

itl
ed

 5
U

nt
itl

ed
 6

U
nt

itl
ed

 7
U

nt
itl

ed
 8

U
nt

itl
ed

 9

Q K Compute Key Memory Softmax V Compute Value Memory

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

Baseline

LeO(p

LeOPArd

(pruning +

 bit-serial)

2.
5x

2.
3x

2.
3x

1.
3x

2.
1x

2.
0x

2.
0x

1.
4x

Baseline

LeOPArd -P

LeOPArd

1.
4x

1.
3x

1.
9x

1.
4x 2.

0x

1.
5x

1.
7x

1.
3x

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

N
or

m
al

ize
d

En
er

gy
 B

re
ak

do
w

n

MemN2N BERT-B-G BERT-L-SBERT-B-S BERT-L-G ALBERT GPT-2-L ViT-B

× ×
T

Figure 11: Normalized LeOPArd’s average energy breakdown and the contri-
bution of runtime pruning and bit-level early termination in energy saving
(LeOPArd-P: with only pruning, and LeOPArd: pruning + bit-serial early ter-
mination) across one transformer head.

of A3-Base, which does not use approximation. HP-LeOPArd†∗
(HP-LeOPArd‡∗) achieves 1.4× (1.3×) higher energy efficiency (in
GOPs / J) and 8.8× (10.2×) area efficiency (in GOPs / s / mm2)
than A3-base. HP-LeOPArd†∗ (HP-LeOPArd‡∗) also provides 4.4×
(5.1×) improvements in terms of GOPs / s / mm2 compared to
A3-Conservative. Although A3-Conservative provides 29% and
35% higher energy efficiency compared to HP-LeOPArd†∗ and HP-
LeOPArd‡∗, respectively, this comes at the cost of visible accuracy

911

Accelerating Attention through Gradient-based Learned Runtime Pruning ISCA ’22, June 18–22, 2022, New York, NY, USA

(a)

15%

16%

18%

13%

38%

QxK Logic
Softmax
Value Buffer (64KB)
Key Buffer (48KB)
*V Logic

(b)

Figure 12: AE-LeOPArd: (a) layout (2.3 × 2.8 mm2) and (b) area breakdown.

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

5 10 15 20 25 30 35 40 45

 = 3 = 4 = 5
 = 6 = 8 = 12

Ba
ck

-e
nd

 (V
-P

U
) U

til
iza

tio
n

Task Index

NQK

NQK
NQK

NQK
NQK

NQK

Figure 13: Back-end V-PU utilization over the QK-PU parallelism (𝑁QK).
𝑁𝑄𝐾 = 6 and𝑁𝑄𝐾 = 8 form the favorable configurations in terms of back-end
utilization in AE-LeOPArd and HP-LeOPArd, respectively.

degradation, e.g., 1.0% for MemN2N and 1.3% for BERT-Base with the
SQUAD dataset as reported in [34]. On the other hand, LeOPArd’s
carefully crafted gradient-based training balances pruning rate and
model accuracy, providing accuracy degradation of only 0.06% and
0.26% for the aforementioned models and datasets without manual
configurations for heuristic parameters.

LeOPArd accelerator layout area details. Figure 12(a) shows
the layout of LeOPArd architecture, which occupies 2.3× 2.8 mm2,
including two tiles. The layouts are generated bymeeting the design
rule check in a 65 nm process and targeting 65-75% physical density,
commonly used for the routing convenience and tape-out yield.
Figure 12-(b) reports the area breakdown, where QK-DPU takes the
largest proportion as we employ 𝑁QK QK-DPU in consideration
of the high pruning rate. This leads to 56% area occupied by the
front-end unit, which includes QK-DPU and K buffer. The on-chip
memory for K and V occupies 34% of the layout area.

5.4 Architecture Design Space Exploration

QK-PUparallelismdegree.As discussed in Section 4.1, the number
of QK-DPUs (𝑁QK) within one QK-PU exhibits a trade-off space in
designing the LeOPArd accelerator. To find the number of QK-

DPUs that balances the utilization of front-end and back-end units,
we sweep the 𝑁QK from three to 12 in Figure 13 and report the V-PU

Normalized Energy Breakdown
0% 25% 50% 75% 100%

Compute Memory

1-bit-serial

12-bit-serial

2-bit-serial

4-bit-serial

Figure 14: Design space exploration for the resolution (B) of bit-serial execu-
tion with respect to normalized average QK-DPU energy per 𝑆𝑐𝑜𝑟𝑒 .

utilization across the evaluated tasks. If utilization exceeds 100%
(common when 𝑁QK = 12), the back-end V-PU is over-subscribed
due to the throughput mismatch between V-PU and QK-PU. This
mismatch throttles the back-end V-PU and turns into the system
bottleneck, frequently stalling the front-end. On the other hand,
when 𝑁QK = 3, the V-PU is chronically under-utilized due to a
significant reduction in its number of computations, attributed to
front-end runtime pruning mechanism. As marked by dark green
diamonds,𝑁QK = 8 adequately balances the V-PU utilization and the
number of front-end unit stalls. Thus, we favor this configuration for
HP-LeOPArd. The second best configuration to balance front- and
back-end utilization is 𝑁QK = 6 (marked by light green diamonds).
As such, we choose this configuration for AE-LeOPArd, which
matches the baseline chip area usage.

Bit-serial processing granularity. Figure 14 illustrates the design
space exploration for granularity of the bit-serial execution in QK-

DPU (B). This bit-level granularity creates a trade-off space, where
decreasing the B stores intermediate results at the end of each bit
processing cycle more frequently (escalating the energy). At the
same time, increasing B curtails the performance of early compute
termination due to lower resolution in stopping the computations.
To find the optimal point, we sweep theB for values of 1, 2, 4, and 12
bits and measure the average consumed energy and its breakdown
(Q×K𝑇 logic and key buffer accesses) per one output 𝑆𝑐𝑜𝑟𝑒 . All the
numbers are normalized to 12-bit processing that does not employ
any bit-serial execution. Figure 14 depicts this analysis forMemN2N

tasks (results for other models are similar) and reports the average
across all tasks. As shown, 2-bit-serial execution strikes the right
balance between energy consumption of the bit-serial computations
and the resolution of bit-level early compute termination.

6 RELATEDWORK

In contrast with prior work, LeOPArd explores a distinct design
space for accelerating attention models through gradient-based
learned runtime pruning. This tight integration of pruning and
training enables LeOPArd to reduce the computation cost with
virtually zero accuracy degradation across a range of language and
vision transformer models. Building on these algorithmic insights,
we devise a bit-serial execution strategy that conservatively termi-
nates the computations as early as possible. Below, we cover the
most relevant work and position our paper with respect to it.

912

ISCA ’22, June 18–22, 2022, New York, NY, USA Li, Ghodrati, Yazdanbakhsh, et al.

Hardware-algorithm co-design for attention models. Sev-
eral algorithmic optimizations co-designed with hardware accel-
eration were proposed for efficient execution of attention mod-
els [34, 35, 60, 64, 89, 92, 96, 108].𝐴3 has proposed an approximation

method with a hardware accelerator to prune out the ineffectual
computations in attention. This method searches effective data dur-
ing the 𝑞𝑢𝑒𝑟𝑦×𝑘𝑒𝑦 operation in addition to another approximation
mechanism after score calculation. SpAtten [96] prunes the ineffec-
tual input tokens and heads, in addition to progressive quantization
during computations at runtime, to improve the performance and
memory bandwidth. We provide a head-to-head comparison to
these works in Section 5.3. ELSA [35] aims to address the costly
candidate search process of 𝐴3 and incorporates a user-defined
"confidence-level" parameter to find the optimal thresholds from
training statistics. EdgeBERT [92] leverages entropy-based early
exiting technique to predict the minimal number of transformer
layers that need to be executed, while the rest can be skipped. Other
works aim to address the computational cost of self-attention via
sparse matrix operation [13, 60, 64], quantization [108], and Soft-
max approximation [89]. Moreover, none of these prior designs
explored bit-level early compute termination.

Algorithmic optimizations for transformer acceleration. An-
other line of prior inquiry proposes only algorithmic optimiza-
tions to provide sparsity in computing attention models. Proposals
in [9, 19, 46, 61, 67, 74, 98, 99, 106, 107] offer static sparsity in the
attention layers to reduce its significant computational cost. Other
work [21, 22, 112] provides dynamic sparsity based on the input
samples, yet still requires full computation of the Q×K𝑇 . Our pro-
posal fundamentally differs from this prior seminal work, because
it formulates the problem of pruning threshold finding as a regular-
izer to methodically co-optimize with the weight parameters of the
models, without approximation. Additionally, LeOPArd provides
architectural support to stop the attention computations as early
as possible during runtime.

Early compute-termination in DNNs. Prior work [4, 54, 56,
84] has proposed techniques to early terminate the computations
of convolution layers by leveraging the zero production feature
of ReLU for negative numbers. In contrast, this work focuses on
early termination of a fundamentally different operator, attention
in transformers, and provides unique mechanisms to enable that.
Moreover, the prior works consider zero as a fixed threshold in their
methods, but LeOPArd formulates the thresholds as a regularizer
and finds layer-wise values through gradient descent optimization
to preserve the accuracy of the models.

DNN acceleration. A large swath of work [5, 6, 15–18, 24, 26, 27,
29–33, 36–39, 44, 51, 52, 55, 57, 63, 66, 71, 73, 76–83, 85, 88, 102–
105, 111] is dedicated to accelerating DNNs. Although inspiring,
these designs do not deal with the challenges unique to the attention
mechanisms of transformers, as opposed to this work.

7 CONCLUSION

Transformers through the self-attention mechanism have triggered
an exciting new wave in machine learning, notably in Natural Lan-
guage Processing (NLP). The self-attention mechanism computes
pairwise correlations among all the words in a subtext. This task is
both compute and memory intensive and has become one of the

key challenges in realizing the full potential of attention models.
One opportunity to slash the overheads of the self-attention mech-
anism is to limit the correlation computations to a few high score
words and computationally prune the inconsequential scores at
runtime through a thresholding mechanism. This work exclusively
formulated the threshold finding as a gradient-based optimization
problem. This formulation strikes a formal and analytical balance
between model accuracy and computation reduction. To maximize
the performance gains from thresholding, this paper also devised a
bit-serial architecture to enable an early-termination atop pruning
with no repercussions to model accuracy. These techniques syner-
gistically yield significant benefits both in terms of speedup and
energy savings across various transformer-based models on a range
of NLP and vision tasks. The application of the proposed mathemat-
ical formulation of identifying threshold values and its cohesive
integration into the training loss is broad and can potentially be
adopted across a wide range of compute reduction techniques.

ACKNOWLEDGMENTS

Soroush Ghodrati is partly supported by a Google PhD Fellowship.
This work was in part supported by generous gifts from Google,
Samsung, Qualcomm, Microsoft, Xilinx as well as the National
Science Foundation (NSF) awards CCF#2107598, CNS#1822273, Na-
tional Institute of Health (NIH) award #R01EB028350, Defense Ad-
vanced Research Project Agency (DARPA) under agreement num-
ber #HR0011-18-C-0020, and Semiconductor Research Corporation
(SRC) award #2021-AH-3039. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
not withstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied of Google, Qualcomm,
Microsoft, Xilinx, Samsung, NSF, SRC, NIH, DARPA or the U.S.
Government. We also would like to extend our gratitude towards
Cliff Young, Suvinay Subramanian, Yanqi Zhou, James Laudon, and
Stella Aslibekyan for their invaluable feedback and comments.

REFERENCES
[1] 2021. AI Winter. https://en.wikipedia.org/wiki/AI_winter. Accessed: 2021-11-08.
[2] 2021. The WikiText Long Term Dependency Language Modeling Dataset.

https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-
language-modeling-dataset/. Accessed: 2021-11-08.

[3] 2021. Turing Test. https://en.wikipedia.org/wiki/Turing_test. Accessed: 2021-
11-08.

[4] Vahide Aklaghi, Amir Yazdanbakhsh, Kambiz Samadi, Hadi Esmaeilzadeh, and
Rajesh K. Gupta. 2018. SnaPEA: Predictive Early Activation for Reducing
Computation in Deep Convolutional Neural Networks. In ISCA.

[5] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary, Ro-
man Genov, and Andreas Moshovos. 2017. Bit-Pragmatic Deep Neural Network
Computing. In MICRO.

[6] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-Free Deep
Neural Network Computing. In ISCA.

[7] ARM. 2021. ArtisanMemory Compilers. https://developer.arm.com/ip-products/
physical-ip/embedded-memory. Accessed: 2021-11-08.

[8] Kambiz Azarian, Yash Bhalgat, Jinwon Lee, and Tijmen Blankevoort. 2020.
Learned Threshold Pruning. arXiv preprint arXiv:2003.00075.

[9] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. arXiv preprint arXiv:2004.05150.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-shot Learners. NeurIPS.

913

Accelerating Attention through Gradient-based Learned Runtime Pruning ISCA ’22, June 18–22, 2022, New York, NY, USA

[11] Cadence. 2021. Genus Synthesis Solution. https://www.cadence.com/
en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-
solution.html. Accessed: 2021-11-08.

[12] Cadence. 2021. Innovus Implementation System. https://www.cadence.com/
en_US/home/tools/digital-design-and-signoff/soc-implementation-and-
floorplanning/innovus-implementation-system.html. Accessed: 2021-11-08.

[13] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang.
2021. Chasing Sparsity in Vision Transformers: An End-to-End Exploration.
NeurIPS.

[14] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang.
2021. Chasing Sparsity in Vision Transformers:An End-to-End Exploration.
arXiv:2106.04533

[15] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. DaDianNao: A Machine-
Learning Supercomputer. In MICRO.

[16] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks. In ISCA.

[17] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
JETCAS (2019).

[18] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. Prime: A Novel Processing-in-Memory Architecture
for Neural Network Computation in ReRAM-based Main Memory. In ISCA.

[19] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating
Long Sequences with Sparse Transformers. arXiv preprint arXiv:1904.10509.

[20] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,
Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking Attention with Performers. arXiv preprint
arXiv:2009.14794.

[21] Gonçalo M Correia, Vlad Niculae, and André FT Martins. 2019. Adaptively
sparse transformers. arXiv preprint arXiv:1909.00015 (2019).

[22] Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei Zhang. 2019. Fine-Tune
BERT with Sparse Self-Attention Mechanism. In EMNLP-IJCNLP.

[23] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models Beyond a
Fixed-length Context. arXiv preprint arXiv:1901.02860.

[24] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos,
Mostafa Mahmoud, Sayeh Sharify, Milos Nikolic, Kevin Siu, and Andreas
Moshovos. 2019. Bit-Tactical: A Software/Hardware Approach to Exploiting
Value and Bit Sparsity in Neural Networks. In ASPLOS.

[25] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In
ICLR.

[26] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer,
Dennis Sylvester, David Blaaauw, and Reetuparna Das. 2018. Neural Cache:
Bit-Serial In-Cache Acceleration of Deep Neural Networks. In ISCA.

[27] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
et al. 2018. A Configurable Cloud-Scale DNN Processor for Real-Time AI. In
ISCA.

[28] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The State of Sparsity in Deep
Neural Networks. arXiv preprint arXiv:1902.09574.

[29] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017.
TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory.
In ASPLOS.

[30] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019.
Tangram: Optimized Coarse-Grained Dataflow for Scalable NN Accelerators. In
ASPLOS.

[31] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer, Brahmen-
dra Reddy Yatham, Navateja Alla, Hardik Sharma, Mohammad Alian, Eiman
Ebrahimi, Nam Sung Kim, et al. 2020. Planaria: Dynamic Architecture Fission
for Spatial Multi-Tenant Acceleration of Deep Neural Networks. In MICRO.

[32] Soroush Ghodrati, Hardik Sharma, Sean Kinzer, Amir Yazdanbakhsh, Jongse
Park, Nam Sung Kim, Doug Burger, and Hadi Esmaeilzadeh. 2020. Mixed-Signal
Charge-Domain Acceleration of Deep Neural networks through Interleaved
Bit-Partitioned Arithmetic. In PACT.

[33] Soroush Ghodrati, Hardik Sharma, Cliff Young, Nam Sung Kim, and Hadi Es-
maeilzadeh. 2020. Bit-Parallel Vector Composability for Neural Acceleration. In
DAC.

[34] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong Park,
Yoonho Song, Jung-Hun Park, Sanghee Lee, Kyoung Park, Jae W Lee, et al. 2020.
Aˆ3: Accelerating Attention Mechanisms in Neural Networks with Approxima-
tion. In HPCA.

[35] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun
Jung, and Jae W Lee. 2021. ELSA: Hardware-Software Co-design for Efficient,

Lightweight Self-Attention Mechanism in Neural Networks. In ISCA.
[36] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,

and William J Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In ISCA.

[37] Shehzeen Hussain, Mojan Javaheripi, Paarth Neekhara, Ryan Kastner, and Fari-
naz Koushanfar. 2019. FastWave: Accelerating Autoregressive Convolutional
Neural Networks on FPGA. In ICCAD.

[38] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. In ISCA.

[39] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and Andreas
Moshovos. 2016. Stripes: Bit-serial Deep Neural Network Computing. InMICRO.

[40] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, et al. 2021. Highly Accurate Protein Structure Prediction with
AlphaFold. Nature (2021).

[41] Sheng-Chun Kao, Suvinay Subramanian, Gaurav Agrawal, and Tushar Krishna.
2021. An Optimized Dataflow for Mitigating Attention Performance Bottlenecks.
arXiv preprint arXiv:2107.06419.

[42] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
2020. Transformers are RNNs: Fast AutoRegressive Transformers with Linear
Attention. In ICML.

[43] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT.

[44] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. 2016. Neurocube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory. In ISCA.

[45] Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. arXiv preprint arXiv:1412.6980.

[46] Nikita Kitaev, Łukasz Kaiser, andAnselm Levskaya. 2020. Reformer: The Efficient
Transformer. arXiv preprint arXiv:2001.04451.

[47] John F. Kolen and Stefan C. Kremer. 2001. Gradient Flow in Recurrent Nets: The
Difficulty of Learning LongTerm Dependencies.

[48] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers of Fea-
tures from Tiny Images. Computer Science Department, University of Toronto,
Tech. Rep (2009).

[49] Anders Krogh and John A Hertz. 1992. A Simple Weight Decay can Improve
Generalization. In NIPS.

[50] Solomon Kullback and Richard A Leibler. 1951. On Information and Sufficiency.
The annals of mathematical statistics (1951).

[51] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,
Vivek Sarkar, and Tushar Krishna. 2019. Understanding Reuse, Performance,
and Hardware Cost of DNN Dataflow: A Data-Centric Approach. In MICRO.

[52] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: En-
abling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects. In ASPLOS.

[53] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In ICLR.

[54] Dongwoo Lee, Sungbum Kang, and Kiyoung Choi. 2018. ComPEND: Compu-
tation Pruning through Early Negative Detection for ReLU in a deep neural
network accelerator. In ICS.

[55] Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sangyeob Kim,
and Hoi-Jun Yoo. 2018. UNPU: A 50.6 TOPS/W Unified Deep Neural Network
Accelerator with 1b-to-16b Fully-Variable Weight Bit-Precision. In ISSCC.

[56] Yingyan Lin, Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. 2017. Predic-
tiveNet: An Energy-Efficient Convolutional Neural Network via Zero Prediction.
In ISCAS.

[57] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen,
and Tianshi Chen. 2016. Cambricon: An Instruction Set Architecture for Neural
Networks. In ISCA.

[58] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint
arXiv:1907.11692.

[59] Christos Louizos, Max Welling, and Diederik P Kingma. 2017. Learning Sparse
Neural Networks through 𝐿_0 Regularization. arXiv preprint arXiv:1712.01312.

[60] Liqiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun
Liang. 2021. Sanger: A Co-Design Framework for Enabling Sparse Attention
using Reconfigurable Architecture. In MICRO.

[61] Paul Michel, Omer Levy, and Graham Neubig. 2019. Are Sixteen Heads Really
Better than One? arXiv preprint arXiv:1905.10650.

[62] Kevin P Murphy. 2012. Machine Learning: A Probabilistic Perspective. MIT press.
[63] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-

harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. 2017. SCNN: An Accelerator for Compressed-sparse Con-
volutional Neural Networks. In ISCA.

914

ISCA ’22, June 18–22, 2022, New York, NY, USA Li, Ghodrati, Yazdanbakhsh, et al.

[64] Junki Park, Hyunsung Yoon, Daehyun Ahn, Jungwook Choi, and Jae-Joon Kim.
2020. OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer
neural network accelerator. In MLSys.

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In NeurIPS.

[66] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse
and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.
In HPCA.

[67] Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie
Tang. 2019. Blockwise Self-Attention for Long Document Understanding. arXiv
preprint arXiv:1911.02972.

[68] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language Models are Unsupervised Multitask Learners.
OpenAI blog (2019).

[69] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. arXiv preprint
arXiv:1910.10683.

[70] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQUAD: 100,000+ Questions for Machine Comprehension of Text. arXiv preprint
arXiv:1606.05250.

[71] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang
Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David
Brooks. 2016. Minerva: Enabling Low-Power, Highly-Accurate Deep Neural
Network Accelerators. In ISCA.

[72] Herbert Robbins and Sutton Monro. 1951. A Stochastic Approximation Method.
The annals of mathematical statistics (1951).

[73] Bita Darvish Rouhani, Mohammad Samragh, Mojan Javaheripi, Tara Javidi,
and Farinaz Koushanfar. 2018. DeepFense: Online Accelerated Defense against
Adversarial Deep Learning. In ICCAD.

[74] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. 2021. Effi-
cient Content-based Sparse Attention with Routing Transformers. Transactions
of the Association for Computational Linguistics (2021).

[75] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning Internal Repre-
sentations by Error Propagation. In Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. MIT Press.

[76] Sungju Ryu, Hyungjun Kim, Wooseok Yi, and Jae-Joon Kim. 2019. BitBlade:
Area and Energy-Efficient Precision-Scalable Neural Network Accelerator with
Bitwise Summation. In DAC.

[77] Mohammad Samragh, Mojan Javaheripi, and Farinaz Koushanfar. 2019. En-
coDeep: Realizing Bit-Flexible Encoding for Deep Neural Networks. TECS
(2019).

[78] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars. In ISCA.

[79] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. 2019. Simba: Scaling Deep-Learning Inference with Multi-
Chip-Module-Based Architecture. In MICRO.

[80] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos Nikolic, Kevin
Siu, Dylan Malone Stuart, Zissis Poulos, and Andreas Moshovos. 2019. Laconic
Deep Learning Inference Acceleration. In ISCA.

[81] Sayeh Sharify, Alberto Delmas Lascorz, Kevin Siu, Patrick Judd, and Andreas
Moshovos. 2018. Loom: Exploiting Weight and Activation Precisions to Accel-
erate Convolutional Neural Networks. In DAC.

[82] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kim,
Chenkai Shao, Asit Misra, and Hadi Esmaeilzadeh. 2016. From High-Level Deep
Neural Models to FPGAs. In MICRO.

[83] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas
Chandra, and Hadi Esmaeilzadeh. 2018. Bit Fusion: Bit-Level Dynamically
Composable Architecture for Accelerating Deep Neural Networks. In ISCA.

[84] Gil Shomron, Ron Banner, Moran Shkolnik, and Uri Weiser. 2020. Thanks for
Nothing: Predicting Zero-valued Activations with Lightweight Convolutional
Neural Networks. In ECCV.

[85] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A pipelined
ReRAM-based accelerator for deep learning. In HPCA.

[86] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. 2017. Training
Sparse Neural Networks. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition Workshops.

[87] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. The journal of machine learning research (2014).

[88] Renée St. Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, Hadi
Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. 2014. General-
Purpose Code Acceleration with Limited-Precision Analog Computation. In
ISCA.

[89] Jacob R Stevens, Rangharajan Venkatesan, Steve Dai, Brucek Khailany, and
Anand Raghunathan. 2021. Softermax: Hardware/Software Co-Design of an
Efficient Softmax for Transformers. arXiv preprint arXiv:2103.09301.

[90] Aaron Stillmaker and Bevan Baas. 2017. Scaling Equations for the Accurate
Prediction of CMOS Device Performance from 180 nm to 7 nm. Integration
(2017).

[91] Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus. 2015. End-
To-End Memory Networks. In NIPS.

[92] Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang,
Marco Donato, Victor Sanh, PaulWhatmough, Alexander M Rush, David Brooks,
et al. 2021. EdgeBERT: Sentence-level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference. In MICRO.

[93] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In NeurIPS.

[94] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph Attention Networks. arXiv preprint
arXiv:1710.10903.

[95] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. 2018. GLUE: AMulti-Task Benchmark and Analysis Platform
for Natural Language Understanding. arXiv preprint arXiv:1804.07461.

[96] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. SpAtten: Efficient Sparse
Attention Architecture with Cascade Token and Head Pruning. In HPCA.

[97] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Lin-
former: Self-attention with Linear Complexity. arXiv preprint arXiv:2006.04768.

[98] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019. Structured Pruning of
Large Language Models. arXiv preprint arXiv:1910.04732.

[99] Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan Wang,
Fang Liu, Bin Hu, Yiran Chen, and Hai Li. 2017. Learning Intrinsic Sparse
Structures within Long Short-Term Memory. arXiv preprint arXiv:1709.05027.

[100] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Mer-
riënboer, Armand Joulin, and Tomas Mikolov. 2015. Towards AI-Complete Ques-
tion Answering: A Set of Prerequisite Toy Tasks. arXiv preprint arXiv:1502.05698
(2015).

[101] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. HuggingFace’s Transformers: State-of-the-Art Natural Language
Processing. arXiv preprint arXiv:1910.03771.

[102] Amir Yazdanbakhsh, Michael Brzozowski, Behnam Khaleghi, Soroush Ghodrati,
Kambiz Samadi, Nam Sung Kim, and Hadi Esmaeilzadeh. 2018. FlexiGAN: An
End-to-End Solution for FPGAAcceleration of Generative Adversarial Networks.
In FCCM.

[103] Amir Yazdanbakhsh, Hajar Falahati, Philip J. Wolfe, Kambiz Samadi, Hadi Es-
maeilzadeh, and Nam Sung Kim. 2018. GANAX: A Unified SIMD-MIMD Accel-
eration for Generative Adversarial Network. In ISCA.

[104] Amir Yazdanbakhsh, Jongse Park, Hardik Sharma, Pejman Lotfi-Kamran, and
Hadi Esmaeilzadeh. 2015. Neural Acceleration for GPU Throughput Processors.
In MICRO.

[105] Amir Yazdanbakhsh, Kiran Seshadri, Berkin Akin, James Laudon, and Ravi
Narayanaswami. 2021. An Evaluation of Edge TPU Accelerators for Convolu-
tional Neural Networks. arXiv preprint arXiv:2102.10423.

[106] Deming Ye, Yankai Lin, Yufei Huang, and Maosong Sun. 2021. TR-BERT:
Dynamic Token Reduction for Accelerating BERT Inference. arXiv preprint
arXiv:2105.11618.

[107] Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. 2019. BP-
Transformer: Modelling Long-Range Context via Binary Partitioning. arXiv
preprint arXiv:1911.04070.

[108] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
GOBO: Quantizing Attention-based NLP Models for Low Latency and Energy
Efficient Inference. In MICRO.

[109] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. arXiv
preprint arXiv:1605.07146.

[110] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big Bird: Transformers for Longer Sequences. In NeurIPS.

[111] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An Accelerator for Sparse
Neural Networks. In MICRO.

[112] Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xuancheng Ren, Qi Su, and
Xu Sun. 2019. Explicit Sparse Transformer: Concentrated Attention through
Explicit Selection. arXiv preprint arXiv:1912.11637.

[113] Hui Zou and Trevor Hastie. 2005. Regularization and Variable Selection via the
Elastic Net. Journal of the royal statistical society: series B (statistical methodology)
(2005).

915

