
EHAP-ORAM: Efficient Hardware-Assisted
Persistent ORAM System for Non-volatile Memory

Gang Liua, b, Kenli Lia, Zheng Xiaoa, and Rujia Wangb

aCollege of Information Science and Engineering, Hunan University
bComputer Science Department, Illinois Institute of Technology

{liug, lkl, zxiao}@hnu.edu.cn and rwang67@iit.edu

Abstract—Oblivious RAM (ORAM) is a provable secure prim-
itive to prevent access pattern leakage on the memory bus. It
serves as the intermediate layer between the trusted on-chip
components and the untrusted external memory systems to mod-
ulate the original memory access patterns into indistinguishable
memory sequences. By randomly remapping the data blocks
and accessing redundant blocks, ORAM prevents access pattern
leakage through obfuscation. While there is much prior work
focusing on improving ORAM’s performance on the conventional
DRAM-based memory system, when the memory technology
shifts to use non-volatile memory (NVM), new challenges come
up as how to efficiently support crash consistency for ORAM.

In this work, we propose EHAP-ORAM, which studies how to
persist ORAM construction with an NVM based memory system.
We first analyze the design requirements for a persistent ORAM
system and discuss the need to preserve crash consistency and
atomicity for both data and ORAM metadata. Next, we discuss
some of the challenges in the design of a persistent ORAM system
and propose some solutions to those challenges. Then, we propose
the modified on-chip ORAM controller architecture. Based on
the improved hardware architecture of the ORAM controller
on-chip, we propose different persistency protocols to ensure
the crash consistency of the ORAM system and satisfy that the
metadata in PosMap is safe when it is persisted to NVM in trust-
ed/untrusted off-chip. The proposed architecture and persistency
protocol steps minimize the overhead and leakage during the
write-back process. Finally, we compared our persistent ORAM
with the system without crash consistency support, show that
in non-recursive and recursive cases, EHAP-ORAM only incurs
3.36% and 3.65% performance overhead. The results show that
the EHAP-ORAM can support efficient crash consistency with
minimal performance and hardware overhead.

I. INTRODUCTION

Protecting the security and privacy of the data and program
running on a shared system is never easy. There is an increas-
ing need for system designers to consider security and privacy
protection in addition to performance. There are a lot of efforts
from the industry and academia designing secure hardware
to give the system a root-of-trust. For example, TPM [8],
SGX [25], XOM [30], Trustzone [34] and SME [26], process
sensitive data through data encryption and integrity check, or
reserve a protected region that cannot be tampered, which
effectively prevent adversaries from revealing the plaintext or
compromising the data easily. However, the protections are
still mainly using encryption and integrity check, which is far
from enough. Because of the sharing, malicious applications
are able to probe sensitive information from victim applica-

tions through various side channels. For instance, the timing
information, the power usage and the memory access pattern
can be exploited by malicious adversaries to infer sensitive
information. Among them, memory access pattern leakage
refers to that the adversaries can utilize the temporal and
spatial information on the memory address bus to correlate the
program’s control flow graph [57], the searchable encryption
database [22], or even the neural network structure [21].

The cryptographic community proposed Oblivious RAM
(ORAM) [17, 18] to address the memory access pattern
leakage. The ultimate goal of ORAM is to hide the program
access pattern by adding redundant blocks and periodically
reshuffling the data in memory. In this way, the attacker will be
not able to guess whether the program is accessing the same or
a different data, whether the access is a read or a write, whether
we are repeatedly accessing a hot region, etc. The efficiency
of ORAM family has improved significantly in recent years.
Tree-based ORAM, such as Path ORAM [46], has become one
of the mainstream ORAM protocols that people adopt to use
on main memory systems[16, 42], with an access overhead of
log(N) (N is the number of total blocks in the memory).

The computer architecture community has started to opti-
mize ORAM with extensive hardware and software co-design,
mainly focus on performance [40, 50, 56]. Also, most of these
works assume that main memory uses the mature DRAM
technology. As DRAM faces the inevitable scaling challenges,
more and more vendors are investing in emerging non-volatile
memory (NVM) technology. For example, 3dXpoint based
Optane memory [19] has already been released to the public;
future computing systems such as memory-centric computing
architecture [9, 27], these methods prefer to use NVM as the
unified memory backend. Compared to DRAM, NVM pro-
vides natural benefits such as non-volatility, persistency, and
high-density, which makes it to be the future memory system’s
candidate. On the other hand, NVM based memory system still
faces the same security issue: the memory address bus can leak
information through the access pattern. While some prior work
start to address at this issue [6] through trusted components
on the NVM DIMM, such a threat model is very strong, as
the security boundary now include components that are off-
chip. The only provable secure way to defend the memory
system from access pattern leakage is to utilize ORAM, and
implementing ORAM on NVM brings us more challenging

ar
X

iv
:2

01
1.

03
66

9v
5

 [
cs

.A
R

]
 3

1
D

ec
 2

02
2

questions to be answered.
When implementing the ORAM protocol with NVM sys-

tems, it still suffers from crash consistency issues, just like
other secure memory systems with encryption or integrity
check [31, 52]. The specific requirement to address crash con-
sistency is that application data (e.g., documentation, data, and
configuration) must be recoverable even if the system power
fails or the system crashes [24, 33]. Traditional software-based
solutions, such as logging [13, 49] or copy-on-write mecha-
nism (CoW) [14, 48], can handle data recovery well. How-
ever, such approaches cannot work well with NVM-ORAM
systems for two reasons. First, software-based (e.g., logging
or copy-on-write) support for crash consistency mechanisms is
inefficient [31, 37]. Second, it may lead to information leakage
and break ORAM system protection. The analysis of these two
reasons is in Section II-E.

In this paper, we would like to study the crash consistency
problem when we implement ORAM protocols with the NVM
system. By improving the ORAM hardware architecture and
software protocol, we propose an end-to-end EHAP-ORAM
architecture. EHAP-ORAM system can persistently store
ORAM-related data in NVM while solving the crash consis-
tency problem without leaking more information. Specifically,
we first analyze the different components on the ORAM
controller to determine the content that needs synchronous per-
sistency and data consistency (details in Section II). Second,
we analyze persistent atomic access and present different case
studies that show what happens if data or other metadata is
not persisted during a crash, and analyze the challenges of the
problem and the system design goal. Some feasible designs,
in theory, are also presented. (details in Section III). Third, we
minimize the performance overhead due to the persistent write-
back and propose an efficient and secure write-back scheme
(details in Section IV). Finally, we test our scheme with the
system without persistency and show in Section V.

II. BACKGROUND

In this section, we first describe the threat model. Second,
we introduce the basics of ORAM and NVM. Then, we discuss
the problems of traditional software-based persistence meth-
ods. Lastly, we describe how ORAM could be implemented
on NVM based system.

A. Threat Model

We follow the conventional TCB boundary and assume
that the system equips with a secure and tamper-resistance
processor capable of computing without information leakage
[38, 40, 46, 56]. Everything on-chip is considered within the
TCB boundary. The off-chip main memory system is vulnera-
ble to access pattern attacks, such as physically monitoring
the visible signals on the printed circuit boards (including
the motherboard and memory modules). The address bus, the
command bus, and the data bus are separate from commodity
DDR DIMMs in the system. As a result, the memory controller
sends out the address and command in cleartext. Therefore,
the attacker can still infer critical information even when the

data bus is encrypted. By observing the access patterns such
as access frequency, access type (read or write), and also the
repeatability of accessing the same location, the attacker can
obtain some leaked sensitive information in the program [22].

In some system settings, part of the main memory system
can be considered as protected and free from most of security
attacks. For example, with SGX [25], a small region in the
memory called EPC can store pages safely. With cmov-based
operation, the access to EPC region can be considered as
oblivious too[2, 42]. In this work, we discuss implementations
under the two assumptions: 1) memory is fully untrusted;
2) memory has a partially trusted region. The different as-
sumptions will change how ORAM metadata can be persisted
without leaking information. We discuss this issue in detail in
Section IV-D.

B. ORAM Basics

ORAM [17] is a security primitive that can hide the pro-
gram’s access pattern and accordingly eliminate information
leakage. ORAM’s basic idea is to access more blocks than
the actual data we need, and shuffle the address space so
that the access address becomes random. With the ORAM
controller in the secure processor, one memory access from
the program is translated into an ORAM-protected sequence.
ORAM protocol guarantees that any two ORAM access se-
quences are computationally indistinguishable. In other words,
ORAM physical access pattern and the original logical ac-
cess pattern are independent, which hides the actual data
address with the ORAM obfuscation. Since all ORAM access
sequences are indistinguishable, an attacker cannot extract
sensitive information through the access pattern. Tree-based
ORAM schemes, such as Path ORAM [46] and Ring ORAM
[38], have improved the overall access and reshuffle efficiency
greatly through cryptographic innovations. In this work, we
focus on one of the most representative tree-based ORAMs,
Path ORAM [46], which is the building block of many data
oblivious frameworks, such as Obliviate [3], Taostore [41] and
Zerotrace [42].

1) Path ORAM Construction: Logically, Path ORAM reor-
ganizes the external memory into a binary tree (we refer to
as the ORAM tree). Upon a memory request from the LLC, a
full path of data blocks is fetched, as shown in Figure 1. The
node in the ORAM tree is called a bucket and can hold Z data
blocks. The height of the ORAM tree is noted as L. In Figure
1, we show an ORAM tree with 4 levels (L = 3), and the
bucket size equals to 2 (Z = 2). Each block inside the bucket
contains the encrypted data content and a header that tracks
the program address, path id, and initialization vectors(IV)
used with AES counter mode encryption. Dummy blocks are
marked with a special program address ⊥. Following [16],
IV1 is used to encrypt the block’s header, while IV2 is used
to encrypt the data content.

On the trusted side, the ORAM controller converts the
regular memory access pattern into ORAM sequences. ORAM
controller mainly includes a position map (PosMap), a stash,
address translation logic, and encryption/decryption circuit.

path id

ORAM Controller (trusted)

Stash Position Map

From LLC: Req. for addr. a

map(a, path id l)

Addr. Logic

Generate physical address

Memory Controller

DRAM addrs

for path id l

Encryption/Decryption Circuits

(data, label, addr)

Data Encryption/Decryption

Return block to LLC

Level 0

Level 1

Level 2

Level L

 l=6

0 1 2 3 4 5 6 7

ORAM tree: external memory (untrusted)

Block

address

Path

id
DataIV2IV1 Block_a

B=64/128 Bytes

Check Stash Access PosMap Load Path Update Stash Evict Path

Step 1 Step 2 Step 3 Step 4 Step 5

time

Z=2 blocks

Fig. 1. Path ORAM construction and access protocol

The PosMap is a lookup table that stores the path id (leaf label)
for a given logical address. The stash is a small buffer that
can hold a small number of data blocks [40] during the path
accesses. The obliviousness of the access pattern is achieved
by randomly remapping the path id of a data block after each
access.

2) Path ORAM Access Protocol: Next, we discuss the
Path ORAM access protocol. Given a memory request a =
(addr, read/write, data) for data block a, the access steps of
ORAM(a) are as below:

1) Check Stash: Check if the block a is in the stash. If hit,
fetch the data block to the processor if it is a read, or
update the value if it is a write. If it is a miss, proceed
to the next step.

2) Access PosMap: The actual physical memory location
of block a is determined by checking the PosMap with
addr, and a path id l is returned. Then, randomly
generate and update a new path id l′ for the accessed
block a.

3) Load Path: Load all blocks on path l from the ORAM
tree in the memory to the stash, decrypt them and find
the block a. Then, return the block a to the processor if
it’s a read operation, or update the value in the stash if
it’s a write operation.

4) Update Stash: The path id of the block a in the stash
also needs to be updated to l′. In this case, data blocks
in the stash have the most up-to-date value and path id.

5) Evict Path: Evict data in the stash back to memory on
path l. The basic rule of eviction is to fill as many blocks
as possible that can be written to path l. If the real blocks
are not enough, then pad with dummy blocks.

C. Persistent System with NVM

Emerging NVM technologies, such as Phase-Change Mem-
ory (PCM), Spin-Transfer Torque (STT-RAM), and Memristor,
are considered candidates for replacing conventional technolo-
gies such as DRAM and NAND Flash. The Micron and Intel
3dXpoint-based Optane [1] has shown competitive perfor-
mance, density and scalability with conventional technology.
When used as main memory, NVMs may provide persistent
memory, where regular store instructions can be used to make
persistent changes to data structures to keep them safe from
crashes or failures. A great number of research efforts have
sought to optimize recoverable or crash-consistent software
(e.g., databases [4, 5], file systems [11, 43], key-value stores
[51, 53]) for NVMs.

On the other hand, NVM systems still suffer from various
security vulnerabilities. To provide data confidentiality, NVM
can utilize lightweight encryption schemes [47, 54]; to detect
and fix integrity issues, adopting Merkle tree and support
its persistent updates have been recently studied [7, 52, 58].
Access pattern leakage is another degree of vulnerability, and
we can add obfuscation with the help of ORAM[36].

D. ORAM Systems with NVM

While the main memory could be replaced with NVM, the
on-chip cache and buffers are still using volatile memory for
better performance and lower cost. During a power failure,
to ensure the on-chip contents can be flushed back to the
NVM, Intel Asynchronous DRAM Refresh (ADR) scheme
[23] provides the write queues are in the persistency domain.
However, when we have the ORAM controller sit between the
write queue and the LLC, we need to consider how to persist
the stash and PosMap, as they are not part of the persistency
domain yet.

When the stash is volatile, after multiple ORAM accesses,
a small number of data blocks in the stash become non-
persistent. Such data blocks could contain the most up-to-
date values for a given logical address. Consider that a failure
happens during the execution, such content in the stash may
be lost before they are written back to the NVM-based
ORAM tree. The loss of data in stash not only causes a
crash consistency problem but also causes the system to fail
to correctly recover lost data blocks. Similarly, the PosMap
contains mapping information that determines where to locate
a block in the main memory. Each data block is given a path
id, and it is not only associated with the block (in the header),
but also stores in the PosMap. As discussed in section II-B2,
the updates on path id happen on multiple steps. If the PosMap
is volatile, we will not be able to locate the block of interest
in the main memory.

Furthermore, we identify that if the ORAM access needs
to be recoverable, the data buffered in the stash and the
PosMap needs to be persisted synchronously. Otherwise, if
the writebacks to NVM are asynchronous, it will cause data
inconsistencies when we try to recover from a crash. We
discuss the details of the writeback inconsistencies and design
requirements in the next section.

E. Problems with Software-based Crash-consistency Support

Although traditional software-based mechanisms can be
used to support crash consistency, we can know from [37]
that their efficiency is very low.

The logging-based system [13, 49] maintains a backup
copy of the original data in the log, and the log system
redoes log (store new data) or undoes log (store old data).
Logging consumes much more NVM capacity than the original
data, because each log entry is an original tuple of data
and corresponding metadata (e.g., counter value, data address,
etc.), and typically each memory record must be logged
[13, 37, 49]. In addition, access to log recovery failure systems
increases recovery time, reducing the advantage of a fast
recovery system using NVM instead of slow block devices
[37]. Therefore, directly adopting logging-based technology
to support the crash consistency of the ORAM system will
not only bring more serious performance loss but also bring
more memory overhead.

Similarly, a copy-on-write-based (CoW) system [14, 48]
always creates a new copy of the data to be updated. The
disadvantage of CoW is that the copy operation cost is
expensive, and the stall time is longer [44]. Since ORAM reads
and writes multiple blocks along the path, if every accessed
data block is to be copied, it will not only cause memory
capacity overhead but also lead to more serious performance
loss. Also, additional NVM bandwidth is required due to the
copy of redundant unmodified data blocks. [37, 45]. There are
dummy blocks in the ORAM tree, and it is a very serious
performance loss if the accessed dummy blocks are backed
up.

In addition, software-based approaches may cause informa-
tion leakage. If the log is stored without protection, then the
attacker will obtain the related access pattern or data infor-
mation by peeking at the log, which will cause information
leakage.

F. Design Challenges and Scope of This Work

To summarize, it is challenging to implement ORAM on
NVM for three reasons: 1) ORAM is expensive in terms of
memory access overhead; 2) simply replacing the memory
device to NVM cannot provide the ORAM accesses with crash
consistency. 3) A simple software-based approach to support
ORAM crash consistency has serious performance losses and
security problems.

In this work, we focus on enabling persistent ORAM system
with low additional overhead. We believe that to achieve
provable secure access pattern obfuscation, ORAM is required,
and the cost of ORAM protocol can be further optimized
with the cryptographic innovation. On the other hand, ensuring
crash consistency for the ORAM system is a critical problem
to be solved by the computer architecture community when
the memory system shifts to NVM technology.

III. DESIGN REQUIREMENTS FOR CRASH RECOVERABLE
ORAM

In this section, we discuss the design requirements for a
recoverable persistent ORAM system. Simply replacing the
main memory technology to NVM cannot guarantee consistent
recovery. An ideal case would be that all on-chip buffers
are built from NVM to write to the stash or position map
is persistent immediately. However, as most of the on-chip
components are still considered volatile, we identify a need to
properly handle the volatile data in the ORAM controller to
make the overall ORAM system persistent.

A. Consistent Metadata Update

The ORAM accesses not only require updating the data
block, but also the metadata associated with it, including
the header and the position map entry. Here, we define the
consistent metadata update requirement as follows: when there
is a crash happening at any ORAM access step, we can restart
the ORAM access by identifying the target data block location
in the NVM again. In other words, the path id information and
other metadata should not be lost.

Figure 2 demonstrates why consistent metadata update is
desired. In step 2 of an ORAM access, a new path id is
randomly generated for the target block, and the corresponding
entry in the PosMap is updated. If the metadata is not persisted
consistently, any crash happens after step 2 would possibly
cause data inconsistency since the path id is changed. We
discuss the details by several case studies in Section III-C.

B. Atomic ORAM Accesses to NVM

Except for the consistent metadata updates, another design
requirement for persistent ORAM is to preserve the access
atomicity. Here, we define the ORAM access atomicity as
follows: The data in the stash and the metadata in the PosMap
should reach persistency in an atomic way. If one of them is
persisted while the other is not, the continued ORAM access
is then out-of-sync.

The reason to have atomic ORAM access is that the
metadata and the data correspond to the same actual memory
request. On a system failure, if only the content in the stash is
persisted by writing back to the NVM-ORAM tree, the data
content in the NVM-ORAM tree would be overwritten. In
this case, if the PosMap entries are not persisted yet, it is
impossible to locate the new path id where the data is located.
A reverse example is if the metadata in PosMap is persisted,
but the stash data is not, based on the new path id in PosMap,
it is impossible to recover the lost data in the stash. We also
discuss the details of why atomicity is needed in Section III-C.

C. Case Studies on Crash Recoverability

To summarize, to ensure a recoverable ORAM access after
a crash, we need to ensure the following requirements are met:
• Ensure that the accessed data blocks in the NVM-ORAM

tree are not lost during a crash. Data blocks in the stash
that have not been evicted back into the NVM-ORAM
tree can not be lost.

PosMap

block_0 address path id 0

.

.

.
block_a address

block_s address path id p

.

.

.

path id l=6

0 1 2 3 4 5 6 7
NVM-ORAM tree

. . .Stash . . .(b,l) Stash data lost

aa

block_1 address path id 1

path id l’

path id l’=0

Step 1 Step 2 Step 3 Step 4 Step 5

time

Case 1

Step 1 Step 2 Step 3 Step 4 Step 5

time

Case 2
system failure

system failure

time

Case 3

system failure

Step 1 Step 2 Step 3 Step 4 Step 5

Check Stash Access PosMap Load Path Update Stash Evict Path

Check Stash Access PosMap Load Path Update Stash Evict Path

Check Stash Access PosMap Load Path Update Stash Evict Path

Step 3 Step 4 Step 5

d Pathd Pathd Path Update Stash Evict Path

Step 3 Step 4 Step 5

d Path

Fig. 2. Step-by-Step diagram of NVM-based ORAM systems crash

• The address and path id contained in each block evicted
from stash to NVM-ORAM tree should be consistent with
the metadata stored in the updated (persistent) PosMap,
that is, consistent updates.

• The updated path ids of the accessed data in the PosMap,
the data in the stash, should all reach the NVM atomi-
cally. Otherwise, there is a mismatch between the data
persistency and metadata persistency.

Figure 2 shows an example that when the requirements are
not met, during a crash, the NVM-based ORAM system could
result in inconsistent status. We assume that n ORAM accesses
have been performed, so some data blocks remain in the stash,
e.g., block b. At the time of the crash, we are performing the
(n + 1)-th ORAM access. At step 2, the PosMap update is
completed, i.e., the block a is mapped to a new path id ”l′” in
PosMap. Then, on step 3-5, we could observe different types
of inconsistencies due to the path id remapping process.

Case 1: If the crash occurs in step 3 during the ORAM access,
since the path id of block a in PosMap has been updated
(l → l′), and block b has not been written back from the
stash, no matter this metadata update is persisted or not, it
violates the consistency and atomicity requirements.

a) If the PosMap data has not been persisted, then the
metadata in PosMap is restored to the last persistent state. In
the worst case, if the metadata in PosMap is not persisted after
performing n ORAM accesses, it returns to the initial state
when the NVM-based ORAM system starts. The data blocks
distribution in the NVM-ORAM tree has already changed
after n ORAM accesses. If the program continues to perform
ORAM access based on the old metadata in the PosMap, it
will cause access errors.

b) If the metadata in PosMap has been persisted after
the update, then we can always retrieve the most up-to-date
metadata when a crash happens. In this case, we retrieve path
l′ for block a. However, a is never written back to path l′.
Therefore, even with the persisted new path id, we cannot
fetch the data from NVM again.

c) Regardless of whether the metadata in PosMap has been
persisted, the data blocks stored in the volatile stash are lost,
including the dirty ones with new values.

Case 2: If the system crash occurs in step 4, the good news is
that block a is already fetched and path l has been fetched into
the stash so that this particular access may succeed. However,
similar to the case 1, the content in the stash would be all lost.

NVM-ORAM tree: external memory (untrusted)

ORAM Controller (trusted)

 . . .

e

(b,l)(a,l)

(c,l)

(d,l)

(e,l)

(f,l)

a
b

c
d

e
f

path id l=6
path id l=6

RootRoot

e
ffffff

Path Read

 . . .(b,l)(g,l)

(c,l)
(d,l)
(e,l)

(f,l)
Stash Stash

(a,l’)

Evicted

block
Block

path update

Path Write

d

f
d

e

f

(g,l)

ORAM Controller (trusted)

(b)(a)

Invalid

data block

valid

data block

c
d

a
b

Already

read bucket

Fig. 3. Data overwritten by partially path writeback

Case 3: If the system crash occurs in step 5 of ORAM access,
or before the next ORAM access, it may cause inconsistent
data updates. Step 5 is to write data back to the NVM-ORAM
tree, and the operation is a natural data persistency operation.
We discuss the following scenarios that may happen:

a) The stash content is lost, similar to case 1 and 2.
b) During the path eviction process, it is possible that some

data blocks have been written back to the NVM-ORAM tree
while some are not. This will cause non-atomic data write-
backs to the ORAM tree and overwrite some of the real data
blocks.

Figure 3(a) shows the data fetched from the NVM-ORAM
tree into the stash. In the original write back process, the target
block a in the NVM-ORAM tree is overwritten by the write
back process, and the position of other blocks also changes, as
shown in Figure 3(b). Obviously, if the system crashes after
the completion of the writeback and before the next ORAM
access, block a will be lost and unrecoverable. If a system
crash occurs during write back, more data blocks may be lost.
If the system crashes when writing back data block g, the
data in the stash is lost, and the data blocks a, b, and c on the
NVM-ORAM tree have been overwritten by blocks e, d, and
f , respectively. Data blocks a, b, and c are lost and cannot be
recovered, as shown in Figure 3(a).

Through the in-depth case study, we understand the design
requirements for a recoverable persistent ORAM system. We
do not want the stash content to be lost; meanwhile, we would

like the updates on PosMap to be consistent with the contents
in the stash; further, we would like to ensure the atomicity of
data and metadata writebacks.

D. Design Challenges

To this end, we have identified the design requirements
for ORAM with crash consistency built on NVM. Meeting
the requirements above can ensure a consistent data recovery
when the system experiences a crash. In addition, the data
persistency process should come with a low performance
overhead and do not introduce significantly more writebacks to
the NVM system. This section describes the design challenges
when we would like to fulfill the design requirements above.
Challenge 1: How to ensure that the data blocks fetched from
the NVM-ORAM tree to stash are not lost during the system
crash when the on-chip buffers are volatile?

As we discussed ahead, before eviction, the NVM-ORAM
tree still contains persistent data for the current ORAM access.
However, we cannot re-read the block of interest back to the
stash after the crash because the path id has been changed
after each data block is being accessed. A simple solution
is to back up the data block back through writing it to its
original path. Clearly, in this way, the security of ORAM will
be wrecked. If we can utilize the natural persistent eviction
operation to store backup data in the original path and maintain
the random ORAM path id remapping, we can ensure both
crash consistency and security.
Challenge 2: How to control the data and metadata are
persisted atomically?

For each ORAM access, the data in stash and metadata in
PosMap needs to enter the persistence domain at the same
time to ensure the access atomicity. However, merely using
one ADR-based write queue without proper control will not
guarantee that the persistent writebacks follow the ORAM
sequences. As a result, we will need to revisit the control
logic that can enforce the atomic writebacks.
Challenge 3: How to incorporate atomic ORAM access into
the original ORAM protocol?

The atomic ORAM access with persistency requires ad-
ditional writebacks to the main memory, in addition to the
original one-step eviction. As a result, the access pattern to the
memory system is slightly changed. Especially for persisting
the PosMap, directly write the updated entry back to NVM
may still expose which data has been accessed, if the PosMap
in the NVM is not protected.

IV. EHAP-ORAM: THE DESIGN OF CRASH
CONSISTENCY ORAM

In this section, we present EHAP-ORAM, a new crash-
consistent architecture designed for persistent ORAM. The
EHAP-ORAM includes a new ORAM controller architecture
that requires the necessary hardware support to protect the
accessed data blocks from loss and consistency with metadata
updates in PosMap. Further, we incorporate the persistent
atomic writebacks into the ORAM protocol and analyze how

NVM-ORAM tree (untrusted)

1 2 3 4 5 6 7path id

EHAP-ORAM Controller (trusted)

Addr. for

path id l

Level 0

Level 1

Level 2

Level L

l = 6

From LLC: Req. for addr. a

Stash

(a,l’)

hit/return

Position Map

Address Logic

map(a, path l)

Temporary PosMap

start

G
en

erate p
h

y
sical ad

d
r.

Encryption/Decryption Circuits

w
ri

te
B

ac
k
(d

a
ta

,
le

a
v
e
s
,
a
d
d
r
)

Drainer

Battery

Return block to LLC

.

.

.

return

failure?

1 2

3

 l’ = 0

(b,l) (c,l)

(d,l) (e,l)

(f,l)

(a,l)

..
.

u
p
d
ate(a

, L
eaf l’)

5-A

5-C

5-B

4

..
.

end end

(a,l’)

(c,l)

5-C

5-C

D
at

a
B

lo
ck

 W
P

Q

P
o
sM

ap
 W

P
Q

5-A

NVM-PosMap

(b) tree (untrusted)

(a) table (trusted)

1 2

0

0 3

2

2

3

5-A

2

Fig. 4. EHAP-ORAM system architecture.

the crash consistency can be achieved. The hardware and pro-
tocol innovations ensure that the persistency is done correctly
and do not destroy the ORAM obfuscation capability.

A. Architecture Overview

To protect the crash consistency of the NVM-based ORAM
systems, we design the EHAP-ORAM controller from four
aspects.

1) It does not destroy the access sequence of the original
Path ORAM access.

2) The EHAP-ORAM controller does not significantly im-
pact the performance of ORAM access.

3) It can maintain the consistency of the accessed data
blocks and the metadata updates in PosMap.

4) If the system crashes, when restarting or restoring the
system, the lost data blocks and related metadata can be
recovered effectively and correctly.

We show the proposed EHAP-ORAM architecture in Figure
4, similar to [31] and [52]. Besides the basic components of
the existing ORAM controller (i.e, a stash and a PosMap),
four components are added: a Drainer, a Temporary PosMap
and two write pending queues(WPQ). The basic functions of
the newly added components are explained as follows:

The drainer is connected to the encryption/decrypting circuit
and dispenses the data evicted from the stash and temporary
PosMap to the two corresponding WPQs. And drainer is
responsible for issue control ”start” and ”end” signals to
control the queue receiving data and the signals persisted to
the NVM.

The temporary PosMap stores the reassigned path ids of
the accessed target data blocks. Specifically, according to the
access protocol of Path ORAM, we know that each time the
ORAM controller touches a target data block, a new path id is
assigned to it (see step 2 of II-B2). At this time, the address of
the accessed target blocks and the corresponding new path id
will be stored in the temporary PosMap to wait for the data to
be persisted. As long as the temporary PosMap is not merged
with the main PosMap, we do not overwrite the original path
id that has been persisted already.

The two WPQs are considered as persistence domain,
similar to the ADR-based approach. They are both backed with
battery, therefore, during a power failure, the contents can still
be flushed back to the NVM atomically. The data blocks WPQ
is used for storing evicted data blocks from stash. Each time
when the data blocks are evicted from the stash, they then
enter the data blocks WPQ to achieve atomic persistence. The
PosMap WPQ is used to persist recently changed path ids
corresponding to the data blocks evicted from the stash. The
content in PosMap WPQ comes from the temporary PosMap.
Note that the backup battery does not need to be embedded on-
chip, it only needs to support the two WPQs on-chip through
the wire connection.

The size of temporary PosMap and WQPs depends on the
ORAM configurations. First, the temporary PosMap size needs
to match the stash size to avoid overflow. Consider the stash
with a size of C, it may store up to C dirty data blocks that
have been accessed recently. Therefore, the temporary PosMap
should also be able to store C entries. In our experiments, we
follow [40] and set the C = 200. In this case, the additional
storage overhead of the temporary PosMap is C address to
path id mapping entries. Second, the size of the data block
WPQ depends on the height of the ORAM tree. The maximum
number of write-back data blocks from the stash each time
equals to the total number of data blocks on a path. Therefore,
the minimum size of the data block WPQ is equal to Z ∗ (L+
1) blocks. Finally, the size of PosMap WPQ depends on the
number of blocks in data block WPQ that have a changed path
id. Considering the worst case, that is, all blocks in the data
block WPQ have a new path id, then the maximum capacity
of the PosMap WPQ is Z ∗ (L + 1) path ids. On an average
case, only a small number of real data blocks in the stash are
fetched by demand. Therefore, the PosMap WPQ could be a
lot more smaller.

The EHAP-ORAM controller adds the needed hardware
to support persistent ORAM accesses. Next, we discuss how
controllers work with the ORAM protocol and how to achieve
crash consistency.

B. EHAP-ORAM Workflow

We then describe the EHAP-ORAM workflow in this sec-
tion. To provide the ORAM system with crash consistency,
we revisit the basic Path ORAM workflow and carefully
integrate the persistent operations during the ORAM access.
The updated ORAM access protocol still follows the main
workflow without leaking information. The circled numbers

in Figure 4 represent the dataflow corresponding to each step
of the EHAP-ORAM protocol.

1) EHAP-ORAM access protocol: Given a memory request
a = (addr, read/write, data) for data block a, the five access
steps of EHAP-ORAM(a) are as below:

1) Check Stash: This step remains unchanged as Step 1 in
Section II-B. If the block a is not in the stash, proceed
to the next step.

2) Access PosMap and Backup Label: Similarly, we
check PosMap with addr, and l is returned as the target
path id. Then, the data block a is remapped to the new
path id label l′. Instead of overwriting the (a, l′) directly
in the PosMap, EHAP-ORAM stores the new path id l′

in the temporary PosMap.
3) Load Path: This step is unchanged from the original

Step 3 in Section II-B.
4) Update Stash and Backup Data: Since the new label

l′ has been reassigned to the target data block a in step
2, the path id in the header of the data block a fetched
from the NVM-ORAM tree to stash is now updated to
l′. Meanwhile, the original data block (a, l) is copied in
the stash as a backup block (similar to the concept of
shadow block in [55]). In this case, we can make sure
the backup block will be written back to path l during
the eviction. Later on, when block a is persisted on path
l′, this backup data block can be marked as invalid.

5) EHAP-ORAM Eviction: Lastly, the eviction needs
to be done properly to ensure crash consistency. We
describe the details of the persistent evict path operation
in Section IV-B2.

Note that the main function of the backup data block
generated in Step 4 of EHAP-ORAM access is to recover the
data block lost after the crashed system. We analyze how to
recover lost data in Section IV-C.

2) EHAP-ORAM eviction in detail: The EHAP-ORAM
eviction is the main step of writing the data or metadata
from volatile on-chip components back to the persistent NVM
system. Due to the several design requirements we would like
to achieve, the new eviction operation also contains several
sub-steps that closely interact with the new components in the
EHAP-ORAM controller.

• Step 5-A The data blocks that need to be written back
from the stash are identified first. Because EHAP-ORAM
loads the path l in Step 3, the eviction path is also l.
In Figure 4, the yellow and brown blocks are identified
and they will be encrypted. Note that the backup block
(a, l) is also included as an eviction candidate. Mean-
while, if the data block’s path id has been changed, the
corresponding metadata entries in the temporary PosMap
are identified. In this example, the entry (c, l) is identified
and will be encrypted. The block c was previously fetched
and path l is its new path id.

• Step 5-B Once the eviction data blocks and metadata
are ready from encryption, the drainer sends the “start”
signal, and the candidate data blocks and PosMap entries

are loaded into the two corresponding WPQs. Note that
the “start” signal controls both WPQs, as such, the data
and metadata can be load into the persistence domain
atomically.

• Step 5-C When the data and metadata for this eviction
round are all in the WPQ, an “end” signal is sent to
both WPQs, meaning that the ORAM eviction is now
atomic. Then the two WPQs are flushed back to the
NVM-ORAM tree and the PosMap in the NVM. Note
that the storage format of PosMap depend on the threat
model: if the PosMap is kept in a trusted region in the
NVM, then the write back can be done through direct
updates to the table; if the PosMap is not kept in a
trusted NVM region, recursive PosMap is needed to keep
the writebacks secure. Figure 4 shows the two formats
of storing PosMap in memory securely. We discuss the
options to implement the two PosMap WPQ flushing
cases in Section IV-D.

Tracking the dirty PosMap entries and only putting them
into the WPQ can greatly reduce the performance overhead.
Otherwise, for all Z ∗ (L + 1) blocks on the path, we
need to flush Z ∗ (L + 1) PosMap entries as well (refers
to full writeback in our experiments). With our on-demand
writeback scheme, we achieve the same level of persistency
while removing the majority of data writes (see section V-A).

C. Data Recovery Consistency Analysis

In this section, we show how EHAP-ORAM can guarantee
a consistent crash recovery through case studies. We revisit the
three cases in Section II-B and analyze why the prior issues
are addressed.

Case 1: In the original Path ORAM, PosMap has been updated
before step 3 of each ORAM access. As a result, when the
system crashes during step 3, data blocks stored in the volatile
stash are all lost. Therefore, it will cause a crash consistency
problem because the data in the volatile stash is not persisted
in time.

With EHAP-ORAM architecture, since step 2 is enhanced,
the new path ids of the accessed data blocks are not committed
directly into the PosMap but into the temporary PosMap
(volatile). Therefore, if the EHAP-ORAM system crashes in
step 3, the data in the temporary PosMap, and stash will all
be lost at the same time. During the recovery process, the
ORAM controller can re-read this path id before remapping
again with consistent path id in the PosMap. Therefore, when
performing this ORAM access again, the matching PosMap
can still correctly access the data of interest in the original
path from the NVM-ORAM tree.

Case 2: When the system crash occurs at step 4 of the ORAM
access, the scenario is similar to case 1. The difference is that
the ORAM controller has fetched data blocks from a path to
stash, so the data blocks on that path are marked as invalid.
Invalidate data blocks in the NVM-ORAM tree only happen
with some updates on metadata, not the actual data content,
therefore, there is no data loss or mismatch happening. During

the recovery, the ORAM controller only needs to restore the
data that has been marked as invalid to a valid during the
read path. Then, the lost data can be recovered from the data
content region.

Case 3: If the ORAM system crash occurs in step 5 of the
ORAM access or before the next ORAM access, as discussed
before, it may cause inconsistency with partial writebacks
(either data or metadata). As a result, some valid data along
the path are no longer recoverable. Also, lost data in stash and
PosMap scenario is similar as Case 1 and 2.

We create the backup block for accessed block and write
it back to the original path l together with other data blocks
to solve the overwritten problem. At the same time of writing
back, PosMap does not update the path id of the target block
that has not been evicted from stash, so the target block’s
original path id is still stored in PosMap (Section IV-B1 Step
3). If the system crashes at this time, the target blocks that
have not been evicted in the stash are lost, but their backup
blocks can still be found and restored in the NVM-ORAM
tree.

In addition, the added on-chip WPQs can ensure the volatile
data in stash and PosMap enter the persistence domain at the
same time. We do not need to worry about the content in the
stash,and PosMap is gone with a crash.

If the system crashes before the “end” signal is received
by the write pending queue, the original data blocks on the
write-back path still exist and will not be overwritten, so
the data can be recovered. Therefore, with EHAP-ORAM
writeback operation, the data blocks in stash and PosMap can
be consistent, and the data blocks lost after the system crash
can be effectively recovered.

D. Ways to Store and Persist PosMap in Memory

PosMap is the key component in ORAM system, as it stores
all mapping information for each memory request. Phantom
[32] is the first hardware ORAM prototype built on FPGA.
Since the FPGA memory is relatively small, the Phantom
design stores the entire PosMap on the chip. As the capacity
of the ORAM tree increases, Phantom needs to use multiple
FPGAs to store the metadata in PosMap. In either cases, the
PosMap is always on-chip, therefore, storing the contents in
plaintext is acceptable.

However, if the ORAM tree size is large, it is hard to store
the entire PosMap on-chip. For example, a 4GB ORAM tree
with 128bytes and Z = 4 requires a 93MB PosMap size [40].
In order to solve the problem of large PosMap size, recursive
ORAM is proposed [15, 39]. In this way, the PosMap in
untrusted main memory is also stored as a small ORAM tree,
while the on-chip PosMap is a cache for most recently used
PosMap entries. Update the PosMap in the memory requires
a small ORAM tree write path operation.

A more ideal case would be, the PosMap can be stored
in a trusted memory region and any read or write operations
to the PosMap are free from most of security vulnerabilities
[2, 3, 42]. In this case, a cmov-based oblivious update is
desired to further obfuscate the access pattern to the PosMap.

The oblivious PosMap update generates fake addresses for all
entries in the PosMap, but only the updated entries will be
actually written.

In this work, we consider both cases of implementing and
accessing PosMap on NVM main memory. We implement the
recursive ORAM and PosMap accesses following [15]. Also,
we consider the PosMap is kept at a on-chip secure region
(similar to [32]) and cmov-based PosMap updates can ensure
the writebacks are still oblivious.

E. Security Analysis
ORAM is designed to hide the original program’s memory

access pattern, and its security depends on the independence
of the label sequence, randomness, and the same length of
the access sequence [46]. In EHAP-ORAM, we modify the
step 2,4 and 5 of ORAM access for the add-on persistency.
However, we do not modify the random remapping process
and the redundant sequences of ORAM access. The added
components and data block backup steps all happen on the
trusted ORAM controller side. Therefore, the modifications do
not leak any access pattern information, or cause stash/ORAM
tree capacity overflow.
Claim 1: Step 2 does not leak additional information. The
backup label operation happens inside of the ORAM con-
troller, which is inside of the trusted boundary.
Claim 2: Step 4 does not leak additional information or
cause overflow. The backup data block is written back to
the original path each time. Therefore, the stash occupancy
does not change after each ORAM access. When the block
is written back to its new path, the previous copied block is
marked as invalid, so occupied memory space is freed again.
As a result, we do not increase the stash and ORAM tree
overflow probability. A similar use case has been discussed in
[55].
Claim 3: Step 5 does not leak information during the write-
backs. The data blocks written back from WPQ remain the
same as the baseline Path ORAM. As for the security of
PosMap, in this work, we consider two situations to pro-
tect PosMap. When the PosMap is stored in an SGX-like
trusted memory region [25], the CMOV-based PosMap update
approach [2, 42] is adopted to ensure the obliviousness.
On the memory address bus, all entries in the PosMap is
touched, but only the ones that require changes are written
with new values. If no trusted memory region is available, we
store the PosMap recursively [15], and the writing back one
path id updates involves a small PosMap ORAM path write.
Hence, EHAP-ORAM PosMap writeback does not introduce
additional access pattern leakage.

Summarize, EHAP-ORAM architecture and its access pro-
tocol support crash consistency without leaking additional
information on access patterns.

V. EVALUATION

In this section, we first describe the relevant settings for
experimental evaluation. Then, the designs of the experimental
evaluation are described. Finally, the detailed evaluation results
of each experimental design are given.

TABLE I
EXPERIMENTAL SETTING CONFIGURATIONS

(a) Core, on-chip cache
Core type in-order
Core number 1 Core, 1 Thread
Core frequency 3.2 GHz
L1 I/D cache 32KB/32KB, 2-way
L2 cache 1MB shared, 8-way

(b) ORAM controller
Controller clock frequency 3.2 GHz
Data block size 64B
Data ORAM capacity 4GB (L = 23)
Block slots per bucket (Z) 4
Stash size (C) [40] 200 (blocks)
Temporary PosMap size (CtPos) 200 (path ids)

(c) Main Memory (NVM)
Memory type 4GB PCM, 400 MHz [12],

tRCD/tWP /tCWD/tWTR/tRP /tCCD

=48/60/4/3/1/2

A. Methodology

For the simulation of hardware design, we used a cycle-
accurate Gem5 simulator [10] for modeling and simulation.
The detailed memory access modeling of the NVM-ORAM
tree uses NVMain 2.0 [35]. The simulation system consists of
a x86-64 in-order processor running at 3.2GHz. Without losing
generality, we use phase-change memory (PCM) with 4GB
capacity [12, 35]. Table I summarizes the list of processor,
ORAM controller, and main memory configurations. For other
system-related parameters, we use the default values of gem5
and NVMain 2.0.

The memory capacity of the basic NVM-ORAM tree is
4GB [50]. We modify the controller interface of NVMain 2.0,
simulate and test the EHAP-ORAM system proposed in this
work, and compare it with basic ORAM technology [46].

To be able to accurately evaluate the performance of all
aspects of the EHAP-ORAM system, in the experimental test
of this work, the classic SPEC 2006 [20] benchmark suite
was selected as the workloads. We selected 14 workloads from
SPEC 2006 to test the EHAP-ORAM system. The applications
are described as Table II. We use a method similar to that in
[28] to consider 5,000,000 samples per trace in all selected
SPEC simulation programs. Note that in the experiment of
this work, we will not simulate the performance impact of
data encryption.

Based on the hardware architecture of the persistent ORAM
controller, four different persistent ORAM system protocols
are tested and compared with the basic non-recursive/recursive
ORAM system protocols.
• No Persistency (Baseline): We apply the basic ORAM

protocol to an ORAM system with NVM, which has no
application persistency design, i.e., Baseline.

• On-chip with NVM (FullNVM): Although it is theo-
retically feasible to replace NVM with on-chip storage,
it is impractical to manufacture according to the existing
process technology. But, to verify the correctness of our

TABLE II
WORKLOADS AND THEIR MPKI (MEMORY ACCESSES PER 1000

INSTRUCTIONS)

Workload MPKI Workload MPKI
401.bzip2 61.16 464.h264ref 19.74
403.gcc 1.19 471.omnetpp 7.84
429.mcf 4.66 483.xalancbmk 8.99
445.gobmk 29.60 444.namd 8.08
456.hmmer 4.53 453.povray 6.12
458.sjeng 110.99 470.lbm 18.38
462.libquantum 18.27 482.sphinx3 17.51

conjecture, we still do the experiment and simulation on
this design in gem5. In this design, we persist the updated
PosMap metadata to the NVM-PosMap in the trusted
region.

• Full Persistency (FP): In this design, the metadata
in PosMap is stored on the off-chip untrusted NVM.
To reduce the leakage of information and make the
data persisted on the NVM-PosMap more secure, we
build the NVM-PosMap into a tree structure. We per-
sist the metadata in the updated PosMap to the NVM-
ORAM tree in a method similar to [29]. Each time the
ORAM eviction write-back is executed, a path on the
corresponding NVM-PosMap tree will be written with
metadata. Different from recursive ORAM design, except
that the system initialization requires reading metadata
from NVM-Posmap into the on-chip PosMap, the system
only performs write operations when performing ORAM
access.

• On-demand Persistency (EHAP-ORAM): In FP design,
much redundant metadata will be written back to NVM
PosMap to enhance security. Actually, when updated
PosMap metadata is persisted to the NVM-PosMap in
the trusted region, redundant data writes can be reduced.
Specifically, the EHAP-ORAM system performance can
be improved by persisting only with the changed data.
So, in this design, the metadata in PosMap is stored in a
trusted NVM region off-chip.

• Recursive ORAM without Persistency (Rcr-Baseline):
In the same way as the NPr design, we apply the
basic recursive ORAM protocol to an ORAM system
with NVM. Recursive ORAM [15] without a persistency
design serves as the baseline for persistent recursive
ORAM systems.

• Recursive ORAM with On-demand Persistency (Rcr-
EHAP-ORAM): Recursive ORAM can effectively solve
the problem of the size of PosMap, we also add a persis-
tency design to recursive ORAM and conduct simulation
tests on it. Following [40, 56], a 4GB ORAM with a
block size of 64 bytes and Z = 4 has a PosMap of 192
MB. Therefore, when we build the PosMap NVM-ORAM
tree, we need a memory size of 192 ∗ 2 = 384 MB. The
block size of the PosMap ORAM tree is 64 bytes and
each bucket has Z = 4 blocks, the number of tree levels
is 21.

B. Evaluation Results

In this subsection, we evaluate the performance impact of
different designs (see section V-A for details). In different
channel systems, we use the basic ORAM protocol without
non-persistent (NPr) design as the baseline. In this experiment,
we set the data block and PosMap WPQ sizes to 24 ∗ 4 = 96
(blocks), i.e., 96 ·64 bytes = 6144 bytes and 24∗4 = 96 (path
ids), i.e., (96·(32+24)) = 5376 bits = 672 bytes, respectively.
To simplify the discussion, we focus on compare and analyze
different workloads under different system configuration pa-
rameters.

C. System Performance

A. Single-Channel Performance. Figure 5 shows the stan-
dardized access latency under different workloads for basic
ORAM and recursive ORAM with persistency designs in a
single channel system.

Figure 5(a) illustrates the impact of different designs on the
performance of basic ORAM systems when performing differ-
ent workloads. We have the following observations: (1) Full-
NVM, compared with traditional ORAM systems and other
designs, the performance cost of the FullNVM design is the
largest, with an average performance drop of approximately
90.54% (i.e., a 1.9x execution time). The storage modules
in the ORAM system are all replaced by NVM, every read
and write is performed on NVM, which is currently relatively
slow than traditional volatile storage, the performance loss is
naturally high. (2) FP, the performance of the full persistency
design is slightly better than that of FullNVM design. Com-
pared with the baseline, the average performance is reduced
by 73.18%, performance improved by 17.36% over FullNVM.
This is mainly because the traditional non-volatile stash on
the chip side is faster than NVM to read/write. However,

0

0.5

1

1.5

2

2.5

N
o

r
m

a
li

z
e
d

 T
im

e

Benchmarks

Baseline FullNVM FP EHAP

(a) Performance comparison of different designs in single-channel system.

0

0.5

1

1.5

2

2.5

N
o

r
m

a
li

z
e
d

 T
im

e

Benchmarks

Baseline Rcr-Baseline Rcr-EHAP

(b) Performance comparison of EHAP-Recursive ORAM in single-channel
system.

Fig. 5. Performance comparison (Z = 4, channel = 1, core = 1).

0
0.5

1
1.5

2
2.5

N
or

m
al

iz
ed

 R
ea

ds

Benchmarks

Baseline FullNVM FP
EHAP-ORAM Rcr-Baseline Rcr-EHAP-ORAM

(a) Compare the number of reads

0
0.5

1
1.5

2
2.5

N
or

m
al

iz
ed

 W
ri

te
s

Benchmarks

Baseline FullNVM FP
EHAP-ORAM Rcr-Baseline Rcr-EHAP-ORAM

(b) Compare the number of writes

Fig. 6. Comparison of reads and writes of different designs.

0

0.5

1

1.5

2

2.5

3

N
o

r
m

a
li

z
e
d

 T
im

e

Benchmarks

Baseline FullNVM FP EHAP

(a) Performance comparison of EHAP-ORAM in 2-channel system.

0

0.5

1

1.5

2

2.5

3

N
o

r
m

a
li

z
e
d

 T
im

e

Benchmarks

Baseline Rcr-Baseline Rcr-EHAP

(b) Performance comparison of EHAP-Recursive-ORAM in 2-channel system.

0

0.5

1

1.5

2

2.5

3

N
o

r
m

a
li

z
e
d

 T
im

e

Benchmarks

Baseline FullNVM FP EHAP

(c) Performance comparison of EHAP-ORAM in 4-channel system.

0

0.5

1

1.5

2

2.5

3

N
o

r
m

a
li

z
e
d

 T
im

e

Benchmarks

Baseline Rcr-Baseline Rcr-EHAP

(d) Performance comparison of EHAP-Recursive-ORAM in 4-channel system.

Fig. 7. Multi-channel performance comparison.

since the persistency needs to be performed every time an
ORAM access is performed, its performance is worse than the
EHAP-ORAM design. (3) EHAP-ORAM, compared with the
baseline, the performance loss of EHAP-ORAM design is only
slightly reduced, about 3.36%. Compared with FullNVM and
FP, the performance of EHAP-ORAM is improved by 87.18%
and 69.82%, respectively. This is because the EHAP-ORAM
design only persists metadata related to the target block data
that has been updated, reducing unnecessary redundant data
persistency.

Figure 5(b) shows the performance loss of persistent
recursive ORAM compared to basic ORAM and non-
persistent recursive ORAM. Obviously, both the basic recur-
sive ORAM (Rcr-Baseline) and Rcr-EHAP-ORAM have a
high-performance overhead compared to the basic ORAM.
The average performance loss is about 68.93% and 75.10%,
respectively. However, compared with the performance of Rcr-
Baseline, the loss of Rcr-EHAP-ORAM is relatively small,
about 3.65%. This is because recursive ORAM only needs
to prevent the loss of data blocks in stash, so each time an
ORAM access is performed, the corresponding backup data
block of the accessed target block is persisted.

B. Single-Channel NVM read/write traffic. Figure 6

shows the comparison of memory read/write traffic between
an ORAM system without a persistent design and an ORAM
system with a persistent design. From Figure 6(a), we can see
that when recursive ORAM executes ORAM read access, the
number of read accesses increases significantly, the average in-
crease was about 92.12% and 93.25%, respectively. The num-
ber of other designs ORAM read accesses remains basically
unchanged. This is because recursive ORAM also performs
ORAM access every time it accesses PosMap, resulting in a
significant increase in reading traffic accesses. The increase in
the number of ORAM read accesses is one of the factors that
cause the performance of the ORAM system to decrease.

The FullNVM design has the largest persistent write traffic
overhead in Figure 6(b), which increased by about 111.63%.
Since each ORAM access requires the data to be unloaded
from the NVM-ORAM tree onto the chip side of the NVM-
stash, this will directly result in the addition of a large number
of persistent writes. The real blocks in the ORAM tree only
account for 50% of the total capacity of the ORAM tree.
Therefore, each time a data block is unloaded from the NVM-
ORAM tree to the on-chip stash, the number of persistent
writes is about 48 times (average times, cache line size = 64B,
L = 23, Z = 4). Must access NVM-stash when performing

ORAM access, and due to the current limitations of device
engineering materials, the speed of read/write access to NVM
will be slower, resulting in greater performance overhead. This
results in high memory read/write traffic, which negatively
impacts NVM lifetime.

Several other design designs have shown similar memory
read/write traffic. The EHAP-ORAM design has the least
increase in write traffic, with an average of about 4.84%.
Compared with FullNVM and FP, the write traffic of EHAP-
ORAM decreased by 106.79% and 96.07%, respectively. Be-
cause in EHAP-ORAM design, only metadata in PosMap
corresponding to the target block in the path of the NVM-
ORAM tree is persisted every time, and it is persisted in
batches epoch. Compared with the FP design, the EHAP-
ORAM design reduces many redundant persistency operations
of PosMap metadata. Compared with the Rcr-Baseline and the
Rcr-EHAP-ORAM design, the write traffic of the Rcr-EHAP-
ORAM design increases, about 15.54% , which is caused by
the fact that the Rcr-EHAP-ORAM design needs to back up
the accessed target data blocks every time the execution is a
stash eviction.

C. Multi-Channel Performance. This experiment evalu-
ates different designs in a multi-channel system, where the
workload is the same as a single-channel system. Figure
7 shows the comparison of performance improvements for
different channels. From Figure 7(a), Baseline indicates the
performance of basic ORAM without a persistency in a 2-
channel system, a similar baseline is in a 4-channel system.

In Figure 7(a), most of the ORAM performance of the
persistency design in the 2-channel system is better than
the performance of the basic ORAM in the single-channel
systems. The performance improvement of the EHAP-ORAM
design is close to Baseline, which shows the availability of the
design the best. Compared with Baseline, several persistency
designs (FullNVM, FP and EHAP-ORAM) have an average
performance reduction of 94.21%, 78.99%, and 4.66%, respec-
tively.

Similarly, recursive ORAM systems with persistent design,
as shown in Figure 7(b), in a 2-channel system, the per-
formance improvement of the Rcr-EHAP-ORAM design ap-
proaches Rcr-Baseline. Rcr-Baseline and Rcr-EHAP-ORAM
compared to Baseline, the average performance decreased by
74.28% and 82.14%. Rcr-EHAP-ORAM compared to Base-
line, performance is reduced by about 4.51%.

When the number of channels is increased to 4, the per-
formance of each persistency is not significantly improved
compared to the performance of 2-channel, but there is still
an improvement, as shown in Figure 7(c) and 7(d). In the
4-channel system, the performance of FullNVM, FP and
EHAP-ORAM compared to Baseline is decreased by 94.74%,
80.91%, and 4.60%, respectively. The performance of the Rcr-
EHAP-ORAM is only 1.33% lower than that of the Rcr-
Baseline.

However, it is feasible to improve the performance of the
EHAP-ORAM system only by adding channels, but the perfor-
mance improvement is limited. Therefore, in future work, to

better the performance of the EHAP-ORAM system, we will
continue to explore other performance optimization methods.

VI. CONCLUSIONS

In this paper, we introduce a EHAP-ORAM system, a design
designed to solve the previously proposed problem of ORAM
system crash consistency. To the best of our knowledge, this
is the first work to solve the crash consistency problem of the
ORAM system. This requirement ensures that the memory
persistency data and related metadata are recovered in a
consistent state between system failures.

We first analyze the basic ORAM protocol without the
persistency. We find that data loss is easy to be caused if
the system crashes or power failure when performing ORAM
access, and the lost data cannot be effectively recovered, which
eventually leads to the error of ORAM access. To overcome
the problem of crash consistency and effectively recover lost
data, we have proposed several different persistency designs,
and low overhead hardware design is proposed to implement
atomicity in the NVM-ORAM system with a crash consistency
when performing ORAM access. The experimental results
show that the proposed persistency design is not only ap-
plicable to traditional ORAM systems, but also to recursive
ORAM systems. We believe that our work provides holistic
system support for data persistency and security.

REFERENCES

[1] Intel optane technology: Revolutionizing memory and
storage. https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-optane-technology.
html. Accessed: 2020-03-30.

[2] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang,
Insik Shin, and Byoungyoung Lee. Obfuscuro: A com-
modity obfuscation engine on intel sgx. In NDSS, 2019.

[3] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq
Sarfaraz, and Byoungyoung Lee. Obliviate: A data
oblivious filesystem for intel sgx. In NDSS, 2018.

[4] Joy Arulraj and Andrew Pavlo. How to build a non-
volatile memory database management system. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, pages 1753–1758, 2017.

[5] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor.
Let’s talk about storage & recovery methods for non-
volatile memory database systems. In Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, pages 707–722, 2015.

[6] Amro Awad, Yipeng Wang, Deborah Shands, and Yan
Solihin. Obfusmem: A low-overhead access obfuscation
for trusted memories. In Proceedings of the 44th An-
nual International Symposium on Computer Architecture,
pages 107–119, 2017.

[7] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and
Kazi Abu Zubair. Triad-nvm: Persistency for integrity-
protected and encrypted non-volatile memories. In
Proceedings of the 46th International Symposium on
Computer Architecture, pages 104–115, 2019.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html

[8] Sundeep Bajikar. Trusted platform module (tpm) based
security on notebook pcs-white paper. Mobile Platforms
Group Intel Corporation, 1:20, 2002.

[9] Brad Benton. Ccix, gen-z, opencapi: Overview & com-
parison. In 13th ANNUAL WORKSHOP 2017, 2017.

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7, 2011.

[11] Jianxi Chen, Qingsong Wei, Cheng Chen, and Lingkun
Wu. Fsmac: A file system metadata accelerator with non-
volatile memory. In 2013 IEEE 29th Symposium on Mass
Storage Systems and Technologies (MSST), pages 1–11.
IEEE, 2013.

[12] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju
Chung, Sanghoan Chang, Beakhyoung Cho, Jinyoung
Kim, Younghoon Oh, Duckmin Kwon, Jung Sunwoo,
et al. A 20nm 1.8 v 8gb pram with 40mb/s program
bandwidth. In 2012 IEEE International Solid-State
Circuits Conference, pages 46–48. IEEE, 2012.

[13] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M
Grupp, Rajesh K Gupta, Ranjit Jhala, and Steven Swan-
son. Nv-heaps: making persistent objects fast and
safe with next-generation, non-volatile memories. ACM
SIGARCH Computer Architecture News, 39(1):105–118,
2011.

[14] Jeremy Condit, Edmund B Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and
Derrick Coetzee. Better i/o through byte-addressable,
persistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages
133–146, 2009.

[15] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten
Van Dijk, and Srinivas Devadas. Freecursive oram:
[nearly] free recursion and integrity verification for
position-based oblivious ram. In Proceedings of the
Twentieth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 103–116, 2015.

[16] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten
Van Dijk, Emil Stefanov, Dimitrios Serpanos, and Srini-
vas Devadas. A low-latency, low-area hardware oblivious
ram controller. In 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing
Machines, pages 215–222. IEEE, 2015.

[17] Oded Goldreich. Towards a theory of software protection
and simulation by oblivious rams. In Proceedings of
the nineteenth annual ACM symposium on Theory of
computing, pages 182–194, 1987.

[18] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. Journal of the
ACM (JACM), 43(3):431–473, 1996.

[19] Frank T Hady, Annie Foong, Bryan Veal, and Dan
Williams. Platform storage performance with 3d xpoint
technology. Proceedings of the IEEE, 105(9):1822–1833,

2017.
[20] John L Henning. Spec cpu2006 benchmark descriptions.

ACM SIGARCH Computer Architecture News, 34(4):1–
17, 2006.

[21] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei
Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang Liu, Timothy
Sherwood, et al. Deepsniffer: A dnn model extraction
framework based on learning architectural hints. In
Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 385–399, 2020.

[22] Mohammad Saiful Islam, Mehmet Kuzu, and Murat
Kantarcioglu. Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In Ndss,
volume 20, page 12. Citeseer, 2012.

[23] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R Dulloor, et al. Basic
performance measurements of the intel optane dc persis-
tent memory module. arXiv preprint arXiv:1903.05714,
2019.

[24] Yanyan Jiang, Haicheng Chen, Feng Qin, Chang Xu,
Xiaoxing Ma, and Jian Lu. Crash consistency validation
made easy. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 133–143, 2016.

[25] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie
Brickell, and Frank Mckeen. Intel® software guard
extensions: Epid provisioning and attestation services.
White Paper, 1:1–10, 2016.

[26] David Kaplan, Jeremy Powell, and Tom Woller. Amd
memory encryption. White paper, 2016.

[27] Kimberly Keeton. The machine: An architecture for
memory-centric computing. In Workshop on Runtime
and Operating Systems for Supercomputers (ROSS), vol-
ume 10, 2015.

[28] Manu Komalan, Oh Hyung Rock, Matthias Hartmann,
Sushil Sakhare, Christian Tenllado, José Ignacio Gómez,
Gouri Sankar Kar, Arnaud Furnemont, Francky Catthoor,
Sophiane Senni, et al. Main memory organization trade-
offs with dram and stt-mram options based on gem5-
nvmain simulation frameworks. In 2018 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE),
pages 103–108. IEEE, 2018.

[29] Duc V Le, Lizzy Tengana Hurtado, Adil Ahmad,
Mohsen Minaei, Byoungyoung Lee, and Aniket Kate.
A tale of two trees: One writes, and other reads: Op-
timized oblivious accesses to bitcoin and other utxo-
based blockchains. Proceedings on Privacy Enhancing
Technologies, 2020(2):519–536, 2020.

[30] David Lie, Chandramohan Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John Mitchell, and Mark
Horowitz. Architectural support for copy and tamper
resistant software. Acm Sigplan Notices, 35(11):168–177,
2000.

[31] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira

Khan. Crash consistency in encrypted non-volatile main
memory systems. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pages 310–323. IEEE, 2018.

[32] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari,
Elaine Shi, Krste Asanovic, John Kubiatowicz, and Dawn
Song. Phantom: Practical oblivious computation in a
secure processor. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications
security, pages 311–324, 2013.

[33] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. All file systems are not created equal: On
the complexity of crafting crash-consistent applications.
In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pages 433–
448, 2014.

[34] Sandro Pinto and Nuno Santos. Demystifying arm
trustzone: A comprehensive survey. ACM Computing
Surveys (CSUR), 51(6):1–36, 2019.

[35] Matthew Poremba, Tao Zhang, and Yuan Xie. Nvmain
2.0: A user-friendly memory simulator to model (non-)
volatile memory systems. IEEE Computer Architecture
Letters, 14(2):140–143, 2015.

[36] Joydeep Rakshit and Kartik Mohanram. Leo: Low over-
head encryption oram for non-volatile memories. IEEE
Computer Architecture Letters, 17(2):100–104, 2018.

[37] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo
Choi, Yongwei Wu, and Onur Mutiu. Thynvm: En-
abling software-transparent crash consistency in persis-
tent memory systems. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
pages 672–685. IEEE, 2015.

[38] Ling Ren, Christopher W Fletcher, Albert Kwon, Emil
Stefanov, Elaine Shi, Marten Van Dijk, and Srinivas
Devadas. Constants count: Practical improvements to
oblivious ram. In USENIX Security Symposium, pages
415–430, 2015.

[39] Ling Ren, Christopher W Fletcher, Xiangyao Yu, Albert
Kwon, Marten van Dijk, and Srinivas Devadas. Unified
oblivious-ram: Improving recursive oram with locality
and pseudorandomness. IACR Cryptol. ePrint Arch.,
2014:205, 2014.

[40] Ling Ren, Xiangyao Yu, Christopher W Fletcher, Marten
Van Dijk, and Srinivas Devadas. Design space explo-
ration and optimization of path oblivious ram in secure
processors. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture, pages 571–
582, 2013.

[41] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin,
and Stefano Tessaro. Taostore: Overcoming asynchronic-
ity in oblivious data storage. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 198–217. IEEE, 2016.

[42] Sajin Sasy, Sergey Gorbunov, and Christopher W
Fletcher. Zerotrace: Oblivious memory primitives from

intel sgx. IACR Cryptology ePrint Archive, 2017:549,
2017.

[43] Priya Sehgal, Sourav Basu, Kiran Srinivasan, and Kalad-
har Voruganti. An empirical study of file systems on
nvm. In 2015 31st Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–14. IEEE, 2015.

[44] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk
Lee, Rachata Ausavarungnirun, Gennady Pekhimenko,
Yixin Luo, Onur Mutlu, Phillip B Gibbons, Michael A
Kozuch, et al. Rowclone: fast and energy-efficient in-
dram bulk data copy and initialization. In Proceedings
of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 185–197, 2013.

[45] Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase,
Onur Mutlu, Phillip B Gibbons, Michael A Kozuch,
Todd C Mowry, and Trishul Chilimbi. Page overlays:
An enhanced virtual memory framework to enable fine-
grained memory management. ACM SIGARCH Com-
puter Architecture News, 43(3S):79–91, 2015.

[46] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: an extremely simple oblivious ram protocol.
In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 299–310,
2013.

[47] Shivam Swami, Joydeep Rakshit, and Kartik Mohanram.
Secret: Smartly encrypted energy efficient non-volatile
memories. In Proceedings of the 53rd Annual Design
Automation Conference, pages 1–6, 2016.

[48] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, Roy H Campbell, et al. Consistent and durable
data structures for non-volatile byte-addressable memory.
In FAST, volume 11, pages 61–75, 2011.

[49] Haris Volos, Andres Jaan Tack, and Michael M Swift.
Mnemosyne: Lightweight persistent memory. ACM
SIGARCH Computer Architecture News, 39(1):91–104,
2011.

[50] Rujia Wang, Youtao Zhang, and Jun Yang. D-oram:
Path-oram delegation for low execution interference on
cloud servers with untrusted memory. In 2018 IEEE In-
ternational Symposium on High Performance Computer
Architecture (HPCA), pages 416–427. IEEE, 2018.

[51] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei
Ren, Michel Hack, Zili Shao, and Song Jiang. Nvm-
cached: An nvm-based key-value cache. In Proceedings
of the 7th ACM SIGOPS Asia-Pacific Workshop on Sys-
tems, pages 1–7, 2016.

[52] Fan Yang, Youyou Lu, Youmin Chen, Haiyu Mao, and
Jiwu Shu. No compromises: Secure nvm with crash
consistency, write-efficiency and high-performance. In
2019 56th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2019.

[53] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. Nv-tree: Reducing
consistency cost for nvm-based single level systems.
In 13th {USENIX} Conference on File and Storage

Technologies ({FAST} 15), pages 167–181, 2015.
[54] Vinson Young, Prashant J Nair, and Moinuddin K

Qureshi. Deuce: Write-efficient encryption for non-
volatile memories. ACM SIGARCH Computer Architec-
ture News, 43(1):33–44, 2015.

[55] Xian Zhang, Guangyu Sun, Peichen Xie, Chao Zhang,
Yannan Liu, Lingxiao Wei, Qiang Xu, and Chun Jason
Xue. Shadow block: accelerating oram accesses with
data duplication. In 2018 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
pages 961–973. IEEE, 2018.

[56] Xian Zhang, Guangyu Sun, Chao Zhang, Weiqi Zhang,
Yun Liang, Tao Wang, Yiran Chen, and Jia Di. Fork path:
improving efficiency of oram by removing redundant
memory accesses. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
pages 102–114. IEEE, 2015.

[57] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hide:
an infrastructure for efficiently protecting information
leakage on the address bus. ACM SIGOPS Operating
Systems Review, 38(5):72–84, 2004.

[58] Pengfei Zuo, Yu Hua, and Yuan Xie. Supermem: En-
abling application-transparent secure persistent memory
with low overheads. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 479–492, 2019.

	I Introduction
	II Background
	II-A Threat Model
	II-B ORAM Basics
	II-B1 Path ORAM Construction
	II-B2 Path ORAM Access Protocol

	II-C Persistent System with NVM
	II-D ORAM Systems with NVM
	II-E Problems with Software-based Crash-consistency Support
	II-F Design Challenges and Scope of This Work

	III Design Requirements for Crash Recoverable ORAM
	III-A Consistent Metadata Update
	III-B Atomic ORAM Accesses to NVM
	III-C Case Studies on Crash Recoverability
	III-D Design Challenges

	IV EHAP-ORAM: The Design of Crash Consistency ORAM
	IV-A Architecture Overview
	IV-B EHAP-ORAM Workflow
	IV-B1 EHAP-ORAM access protocol
	IV-B2 EHAP-ORAM eviction in detail

	IV-C Data Recovery Consistency Analysis
	IV-D Ways to Store and Persist PosMap in Memory
	IV-E Security Analysis

	V Evaluation
	V-A Methodology
	V-B Evaluation Results
	V-C System Performance

	VI Conclusions

