
12

Securing Interruptible Enclaved Execution on Small
Microprocessors

MATTEO BUSI, Dept. of Computer Science, Università di Pisa, Italy

JOB NOORMAN and JO VAN BULCK, imec-DistriNet, Dept. of Computer Science, KU Leuven,

Belgium

LETTERIO GALLETTA, IMT School for Advanced Studies Lucca, Italy

PIERPAOLO DEGANO, Dept. of Computer Science, Università di Pisa and IMT School for Advanced

Studies Lucca, Italy

JAN TOBIAS MÜHLBERG and FRANK PIESSENS, imec-DistriNet, Dept. of Computer Science,

KU Leuven, Belgium

Computer systems often provide hardware support for isolation mechanisms such as privilege levels, virtual
memory, or enclaved execution. Over the past years, several successful software-based side-channel attacks
have been developed that break, or at least significantly weaken, the isolation that these mechanisms offer.
Extending a processor with new architectural or micro-architectural features brings a risk of introducing new
software-based side-channel attacks.

This article studies the problem of extending a processor with new features without weakening the secu-
rity of the isolation mechanisms that the processor offers. Our solution is heavily based on techniques from
research on programming languages. More specifically, we propose to use the programming language con-
cept of full abstraction as a general formal criterion for the security of a processor extension. We instantiate
the proposed criterion to the concrete case of extending a microprocessor that supports enclaved execution
with secure interruptibility. This is a very relevant instantiation, as several recent papers have shown that
interruptibility of enclaves leads to a variety of software-based side-channel attacks. We propose a design
for interruptible enclaves and prove that it satisfies our security criterion. We also implement the design on
an open-source enclave-enabled microprocessor and evaluate the cost of our design in terms of performance
and hardware size.

Matteo Busi has been partially supported by the research grant on Incremental type systems for secure compilation from the
Department of Computer Science of the University of Pisa. Jo Van Bulck is supported by a grant of the Research Foundation
– Flanders (FWO). Letterio Galletta has been partially supported by EU Horizon 2020 project No. 830892 SPARTA and by
MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart Systems). Pierpaolo Degano
has been partially supported by the MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy

Smart Systems). This research is partially funded by the Research Fund KU Leuven, by the Agency for Innovation and
Entrepreneurship (Flanders), and by a gift from Intel Corporation.
Authors’ addresses: M. Busi, Dept. of Computer Science, Università di Pisa, Pisa, Italy; email: matteo.busi@di.unipi.it; J.
Noorman, J. Van Bulck, J. T. Mühlberg, and F. Piessens, imec-DistriNet, Dept. of Computer Science, KU Leuven, Leuven,
Belgium; emails: {job.noorman, jo.vanbulck, jantobias.muehlberg, frank.piessens}@kuleuven.be; L. Galletta, IMT School for
Advanced Studies Lucca, Lucca, Italy; email: letterio.galletta@imtlucca.it; P. Degano, Dept. of Computer Science, Università
di Pisa and IMT School for Advanced Studies Lucca, Lucca, Italy; email: pierpaolo.degano@unipi.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0164-0925/2021/08-ART12 $15.00
https://doi.org/10.1145/3470534

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3470534
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3470534&domain=pdf&date_stamp=2021-09-03

12:2 M. Busi et al.

CCS Concepts: • Security and privacy→ Formal methods and theory of security; Embedded systems

security;

Additional Key Words and Phrases: Language-based security, enclaves, full abstraction, secure compilation

ACM Reference format:

Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano, Jan Tobias Mühlberg, and Frank
Piessens. 2021. Securing Interruptible Enclaved Execution on Small Microprocessors. ACM Trans. Program.

Lang. Syst. 43, 3, Article 12 (August 2021), 77 pages.
https://doi.org/10.1145/3470534

1 INTRODUCTION

Many computing platforms run programs coming from a number of different stakeholders that
do not necessarily trust each other. Hence, these platforms provide mechanisms to prevent code
from one stakeholder interfering with code from other stakeholders in undesirable ways. These
isolation mechanisms are intended to confine the interactions between two isolated programs to
a well-defined communication interface. Examples of such isolation mechanisms include process
isolation, virtual machine monitors, or enclaved execution [41].

However, security researchers have shown that many of these isolation mechanisms can be
attacked by means of software-exploitable side channels. Such side channels have been shown to
violate integrity of victim programs [33, 43, 54], as well as their confidentiality on both high-end
processors [9, 23, 34, 38] and on small microprocessors [56]. In fact, over the past two years, many
major isolation mechanisms have been successfully attacked: Meltdown [38] has broken user/ker-
nel isolation, Spectre [34] has broken process isolation and software defined isolation, and Fore-
shadow [9] has broken enclaved execution on Intel processors.

The class of software-exploitable side-channel attacks is complex and varied. These attacks often
exploit, or at least rely on, specific hardware features or hardware implementation details. Hence,
for complex state-of-the-art processors there is a wide potential attack surface that should be ex-
plored (see for instance Reference [14] for an overview of just the attacks that rely on transient
execution). Moreover, the potential attack vectors vary with the attacker model that a specific
isolation mechanism considers. For instance, enclaved execution is designed to protect enclaved
code from malicious operating system software, whereas process isolation assumes that the oper-
ating system is trusted and not under control of the attacker. As a consequence, protection against
software-exploitable side-channel attacks is much harder for enclaved execution [60].

Hence, no silver-bullet solutions against this class of attacks should be expected, and counter-
measures will likely be as varied as the attacks. They will depend on attacker model, performance
versus security tradeoffs, and on the specific processor feature that is being exploited.

The objective of this article is to study how to design and prove secure such countermea-
sures. In particular, we rigorously study the resistance of enclaved execution on small micro-
processors [35, 45] against interrupt-based attacks [11, 29, 56]. This specific instantiation is
important and challenging. First, interrupt-based attacks are very powerful against enclaved ex-
ecution: Fine-grained interrupts have been a key ingredient in many attacks against enclaved
execution [9, 15, 36, 56]. Second, to the best of our knowledge, all existing implementations of
interruptible enclaved execution are vulnerable to software-exploitable side channels, including
implementations that specifically aim for secure interruptibility [18, 35]. For our study, we rely on
programming language techniques developed in the field of secure compilation [48].

We base our study on the existing open-source Sancus platform [44, 45], a small microproces-
sor with predictable timing of individual instructions, that supports non-interruptible enclaved

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

https://doi.org/10.1145/3470534

Securing Interruptible Enclaved Execution on Small Microprocessors 12:3

execution. We illustrate that achieving security is non-trivial through a variety of attacks enabled
by supporting interruptibility of enclaves. Next, we provide a formal model of the existing Sancus,
called hereafter SancusH, and we then extend it with interrupts, dubbed SancusL. We prove that
this extension does not break isolation properties by instantiating full abstraction [1]. Full abstrac-
tion is a good fit for this study, as Sancus is fully deterministic, including deterministic timing.
Moreover, the attacks we consider rely on distinguishing code paths of programs when they have
different execution time, which is closely related to distinguishing different programs.

Roughly, we show that what the attacker can learn from (or do to) an enclave is exactly the same
before and after adding the support for interrupts. In other words, adding interruptibility does not
open new avenues of attack. Finally, we implement the secure interrupt handling mechanism as an
extension to Sancus, and we show that the cost of the mechanism is low, in terms of both hardware
complexity and performance.

In summary, the novel contributions of this article are:
• We propose a specific design for extending Sancus, an existing enclaved execution system,

with interrupts.
• We propose to use full abstraction [1] as a formal criterion of what it means to maintain

the security of isolation mechanisms under processor extensions. Also, we instantiate it for
proving that the mechanism of enclaved execution, extended to support interrupts, complies
with our security definition.
• We specialize the proof technique called backtranslation [47] to encode the attack logic

within the I/O device to construct an attacker at SancusH given one at SancusL. The novelty
of our backtranslation consists in using the unlimited state space of the (attacker-controlled)
I/O device to work around the 64 KB memory limit of the processor.
• We implement our countermeasures on the open source Sancus processor and evaluate cost

in terms of hardware size and performance impact.1

The article is structured as follows: In Section 2, we provide background information on enclaved
execution and interrupt-based attacks. Section 3 provides an informal overview of our approach.
Section 4 introduces our formalization, and Section 5 presents the semantics of Sancus without
and with interrupts. The proof that enclaved executions are resistant to interrupt-based attacks
is in Section 6; some auxiliary definitions and proofs are presented in full detail in the Appendix.
Section 7 shows how our full abstraction result implies some other security notions when tailored
to our setting. In Section 8, we describe and evaluate our implementation. Sections 9 and 10 discuss
limitations, and the connection to related work. Finally, Section 11 offers our conclusions and plans
for future work.

This is an extended version of the paper cited in Reference [13]. Here, we include all the results
of the conference paper and additionally include (1) a detailed outline of our formal model and full
abstraction proof, (2) additional results that make explicit how our full abstraction result relates
to the preservation of (variants of) non-interference and other security properties, and (3) a more
detailed discussion of the lessons that can be learned for other, more complex, enclaved execution
systems, and the challenges that remain there.

2 BACKGROUND

2.1 Enclaved Execution

Enclaved execution is a security mechanism that enables secure remote computation [17]. It sup-
ports the creation of enclaves that are initialized with a software module and that have the

1 Our implementation is available online at https://github.com/sancus-pma/sancus-core/tree/nemesis.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

https://github.com/sancus-pma/sancus-core/tree/nemesis

12:4 M. Busi et al.

following security properties: First, the software module in the enclave is isolated from all other
software on the same platform, including system software such as the operating system. Second,
the correct initialization of an enclave can be remotely attested: A remote party can get crypto-
graphic assurance that an enclave was properly initialized with a specific software module (char-
acterized by a cryptographic hash of the binary module). These security properties are guaranteed
while relying on a small trusted computing base, for instance trusting only the hardware [41, 45],
or possibly also a small hypervisor [21, 40].

The remote attestation aspect is important for the secure initialization of enclaves and for setting
up secure communication channels with them. However, it does not play an important role for
the interrupt-driven attacks that we study in this article, and hence, we will focus here on the
isolation aspect of enclaves only. Other papers describe in detail how remote attestation and secure
communication work on large [17] or small systems [35, 45].

The isolation guarantees offered to an enclaved software module are the following: The module
consists of two contiguous memory sections: a code section, initialized with the machine code of the
module, and a data section. The data section is initialized to zero, and the loading of confidential
data happens through a secure channel, after attesting the correct initialization of the module.
For instance, confidential data can be restored from cryptographically sealed storage or can be
obtained from a remote trusted party.

The enclaved execution platform guarantees that: (1) the code and data sections of an enclave
are only accessible while executing code from the code section, and (2) the code section can only
be entered through one or more designated entry points.

These isolation guarantees are simple, but they offer the useful property that data of a module

can only be manipulated by code of the same module, i.e., an encapsulation property similar to what
programming languages offer through classes and objects. Actually, untrusted code may reside in
the same address space of the enclave, but outside its code and data sections. Untrusted code can
only interact with the enclave by jumping to an entry point. The enclave can return control (and
computation results) to the untrusted code by jumping back out.

2.2 Interrupt-based Attacks

Enclaved execution is designed to be resistant against a very strong attacker that controls all
other software on the platform, including privileged system software. Isolating enclaves is well-
understood at the architectural level, including even successful formal verification efforts [21, 46].
As a matter of fact, researchers have shown that it is challenging to protect enclaves against side
channels. Particularly, a recent line of work on controlled-channel attacks [11, 12, 36, 42, 56, 60]
has demonstrated a new class of powerful, low-noise side channels that leverage the adversary’s
increased control over the untrusted operating system.

A specific consequence of this strong model is that the attacker also controls the scheduling and
handling of interrupts: The attacker can precisely schedule interrupts to arrive during enclaved
execution and can choose the code to handle them. This power has been exploited for instance
to single-step through an enclave [11] or to mount a new class of ingenious interrupt latency at-
tacks [29, 56] that derive individual enclaved instruction timings from the time it takes to dispatch
to the untrusted operating system’s interrupt handler. We provide concrete examples of interrupt-
based attacks in the next section, after detailing our model of enclaved execution.

While advanced CPU features such as virtual memory [9, 12, 42, 60], branch prediction [15,
36], or caching [53] are known to leak information on high-end processors, pure interrupt-based
attacks such as interrupt latency measurements are the only known controlled-channel attack
against low-end enclaved execution platforms lacking these advanced features. Moreover, they

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:5

have been shown to be very powerful: E.g., Van Bulck et al. [56] have shown how to efficiently
extract enclave secrets like passwords or PINs from embedded enclaves.

Some enclaved execution designs avoid the problem of interrupt-based attacks by completely
disabling interrupts during enclave execution [45, 46]. This has the important downside that sys-
tem software can no longer guarantee availability: If an enclaved module goes into an infinite loop,
then the system cannot progress. All designs that do support interruptibility of enclaves [18, 35]
are vulnerable to these attacks.

3 OVERVIEW OF OUR APPROACH

We set out to design an interruptible enclaved execution system that is provably resistant against
interrupt-based attacks. This section discusses our approach informally; later sections discuss a
formalization with security proofs and report on implementation and experimental evaluation.

We base our design on Sancus [45], an existing open-source enclaved execution system. We first
describe our Sancus model and discuss how naively extending Sancus with interrupts leads to the
attacks mentioned in Section 2.2. In other words, we show how extending Sancus with interrupts
breaks some of the isolation guarantees provided by the original architecture.

Then, we propose a formal security criterion that defines what it means for interruptibility to
preserve the isolation properties, and we illustrate that definition with examples.

Finally, we propose a design for an interrupt handling mechanism that is resistant against the
considered attacks and that satisfies our security definition. Crucial to our design is the assumption
that the timing of individual instructions is predictable, which is typical of “small” microprocessors,
like Sancus (whose memory has only 64 KB). Our approach of ensuring that the same attacks are
possible before and after an architecture extension is tailored here on a specific architecture and
on a specific class of attacks, however, we expect it to be applicable in other settings too, as briefly
discussed in Section 9.3.

3.1 Sancus Model

Processor. Sancus is based on the TI MSP430 16-bit microprocessor [30], with a classic von Neu-
mann architecture where code and data share the same address space. We formalize the subset
of instructions summarized in Table 1 that is rich enough to model all the attacks on Sancus we
care about (see also Section 9). We have a subset of memory-to-register and register-to-memory
transfer instructions; a comparison instruction; an unconditional and a conditional jump; and basic
arithmetic instructions.

Memory. Sancus has a byte-addressable memory of at most 64 KB, where a finite number of
enclaves can be defined. The bound on the number of enclaves is a parameter set at processor
synthesis time. In our model, we assume that there is a single enclave, made of a code section,
initialized with the machine code of the module, and a data section. A data section is securely
provisioned with data by relying on remote attestation and secure communication, not modeled
here, as they play no role in the interrupt-based attacks of interest in this article. Instead, our model
allows direct initialization of the data section with confidential enclave data. All the other memory
is unprotected memory that is under full control of the attacker.

Enclaves have a single entry point: The enclave can only be entered by jumping to the first
address of the code section. Multiple logical entry points can easily be implemented on top of
this single physical entry point. Control-flow can leave the enclave by jumping to any address
in unprotected memory. Obviously, a compiler can implement higher-level abstractions such as
enclave function calls and returns, or out-calls from the enclave to functions in the untrusted
code [45].

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:6 M. Busi et al.

Table 1. Summary of the Assembly Language Considered

Instr. i Meaning Cycles Size in words

RETI Returns from interrupt. 5 1

NOP No-operation. 1 1

HLT Halt. 1 1

NOT r r← ¬r. (Emulated in MSP430) 2 2

IN r Reads word from the device and puts it in r. 2 1

OUT r Writes word in register r to the device. 2 1

AND r1 r2 r2 ← r1 & r2. 1 1

JMP &r Sets pc to the value in r. 2 1

JZ &r Sets pc to the value in r if bit 0 in sr is set. 2 1

MOV r1 r2 r2 ← r1. 1 1

MOV @r1 r2 Loads in r2 the word starting in location pointed to by r1. 2 1

MOV r1 0(r2) Stores the value of r1 starting at location pointed to by r2. 4 2

MOV #w r2 r2 ← w . 2 2

ADD r1 r2 r2 ← r1 + r2. 1 1

SUB r1 r2 r2 ← r1 − r2. 1 1

CMP r1 r2 Zero bit in sr set if r2 − r1 is zero. 1 1

Sancus enforces memory access control based on program counter (pc). If the pc points to un-
protected memory, then the processor cannot access any memory location within the enclave—the
only way to interact with the enclave is to jump to the entry point. If the pc is within the code sec-
tion of the enclave, then the processor can only access the enclave data section for reading/writing
and the enclave code section for execution. This access control is faithfully rendered in our model;
see Section 4.8 for the full definition of the relevant mechanism.

I/O devices. Sancus uses memory-mapped I/O to interact with peripherals. One important ex-
ample of a peripheral for the attacks we study is a cycle-accurate timer, which allows software to
measure time in terms of the number of CPU cycles. In our model, we include a single very general
I/O device that behaves as a state machine running synchronously to CPU execution. In particular,
it is trivial to instantiate this general I/O device to a cycle-accurate timer.

Instead of modeling memory-mapped I/O, we introduce the two special instructions INand OUT
that allow writing/reading a word to/from the device (see Table 1). Actually, these instructions
are short-hands, which are easy to macro-expand, at the price of dealing with special cases in the
execution semantics for any memory operation. For instance, software could read the current cycle
timer value from a timer peripheral by using the IN instruction.

The I/O devices can request to interrupt the processor with single-cycle accuracy. The original
Sancus disables interrupts during enclaved execution. One of the key objectives of this article is
to propose a Sancus extension that does handle such interrupts without weakening security.

3.2 Security Definitions

Attacker model. An attacker controls the entire execution environment, a.k.a. the context of an
enclave: He controls (1) the whole unprotected memory (including code interacting with the en-
clave as well as data in unprotected memory) and (2) the connected device. This is the standard
attacker model for enclaved execution. In particular, it implies that the attacker has complete con-
trol over the Interrupt Service Routines, i.e., pieces of code that the CPU invokes when an interrupt
is raised.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:7

Contextual equivalence formalizes isolation. Informally, our security objective is extending the
Sancus processor without weakening the isolation it provides to enclaves. What isolation achieves
is that attackers cannot see “inside” an enclave, so making it possible to “hide” enclave data or im-
plementation details from the attacker. We precisely formalize this concept of isolation by using
the notion of contextual equivalence or contextual indistinguishability, as done by Abadi [1]. Con-
textual equivalence (as opposed to alternatives based on for instance non-interference) also covers
confidentiality of the code in the enclave, which some enclaved execution systems guarantee [25].
Two enclaved modules M1 and M2 are contextually equivalent if there exists no context that tells
them apart. We discuss this in the following example:

Example 3.1 (Start-to-end Timing). The following enclave compares a user-provided password in
the register R15 with a secret in-enclave password at address pwd_adrs and stores the user-provided
value in the register R14 into the enclave location at store_adrs if the user password was correct.

1 enclave_entry :
2 /* Load addresses for comparison */
3 MOV #store_adrs , r10 ; 2 cycles
4 MOV #access_ok , r11 ; 2 cycles
5 MOV #endif , r12 ; 2 cycles
6 MOV #pwd_adrs , r13 ; 2 cycles
7 /* Compare user vs. enclave password */
8 MOV @r13 , r13 ; 2 cycles
9 CMP r13 , r15 ; 1 cycle

10 JZ &r11 ; 2 cycles
11 access_fail: /* Password fail: return */
12 JMP &r12 ; 2 cycles
13 access_ok: /* Password ok: store user val */
14 MOV r14 , 0(r10) ; 4 cycles
15 endif: /* Clear secret enclave password */
16 SUB r13 , r13 ; 1 cycle
17 enclave_exit:

In the absence of a timer device, this enclave successfully hides the in-enclave password. If we
take enclaves M1 and M2 to be two instances of the above only differing in the value of the secret
password, then M1 and M2 are indistinguishable for any context that does not have access to a
cycle-accurate timer: All such a context can do is calling the entry point, but the context gets no
indication whether the user-provided password was correct. This formalizes that enclave isolation
successfully “hides” the password.

However, with the help of a cycle-accurate timer, the attacker can distinguish M1 and M2 as
follows: The attacker can create a context that measures the start-to-end execution time of an
enclave call; the context reads the timer right before jumping to the enclave. On enclave exit, the
context reads the timer again to compute the total time spent in the enclave.

To reason about execution time, we represent enclaved executions as an ordered array of in-
dividual instruction timings. (Table 1 conveniently specifies how many cycles it takes to exe-
cute each instruction.) Hence the two possible control-flow paths of the above program are: ok
= [2,2,2,2,2,1,2,4,1] for the access_ok branch or fail = [2,2,2,2,2,1,2,2,1] for the
access_fail branch. Since sum(ok) = 18 and sum(fail) = 16, the context can distinguish
the two control-flow paths and hence can distinguish M1 and M2 (and by launching a brute-force
attack [24], can also extract the secret password).

This example illustrates how contextual equivalence formalizes isolation. It also shows that the
original Sancus already has some side-channel vulnerabilities under our attacker model. Since we
assume the attacker can use any I/O device, he can use a timer device and mount the start-to-end
timing attack we discussed.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:8 M. Busi et al.

It is important to note that it is not our objective in this article to close these existing side-channel
vulnerabilities in Sancus. Our objective is to make sure that adding interrupts does not introduce
additional side channels, i.e., that this does not weaken the isolation properties of Sancus.

For existing side channels, like the start-to-end timing side channel, countermeasures can be
applied by the enclave programmer or by a security-aware compiler [7]. For instance, the pro-
grammer can balance out the various secret-dependent control-flow paths as in Example 3.2.

Example 3.2 (Interrupt latency). Consider the program of Example 3.1, balanced in terms of
overall execution time by adding two NOP instructions at lines 13–14 below. The two possible
control-flow paths are: ok = [2,2,2,2,2,1,2,4,1] vs. fail = [2,2,2,2,2,1,2,1,1,2,1].
Since sum(ok) is equal to sum(fail), the start-to-end timing attack is mitigated.

1 enclave_entry:
2 /* Load addresses for comparison */
3 MOV #store_adrs , r10 ; 2 cycles
4 MOV #access_ok , r11 ; 2 cycles
5 MOV #endif , r12 ; 2 cycles
6 MOV #pwd_adrs , r13 ; 2 cycles
7 /* Compare user vs. enclave password */
8 MOV @r13 , r13 ; 2 cycles
9 CMP r13 , r15 ; 1 cycle

10 JZ &r11 ; 2 cycles
11 access_fail:
12 /* Password fail: constant time return */
13 NOP ; 1 cycle
14 NOP ; 1 cycle
15 JMP &r12 ; 2 cycles
16 access_ok: /* Password ok: store user val */
17 MOV r14 , 0(r10) ; 4 cycles
18 endif: /* Clear secret enclave password */
19 SUB r13 , r13 ; 1 cycle
20 enclave_exit:

Interrupts can weaken isolation. We now show that a straightforward implementation of inter-
rupts in the Sancus processor would significantly weaken isolation. Consider an implementation
of interrupts similar to TI MSP430. The processor checks for the presence of pending interrupts
after the completion of each instruction. Hence, if an interrupt arrives while the processor is ex-
ecuting a multi-cycle instruction, then it will only be handled once that instruction is completed.
If there is an interrupt, then the processor saves some essential state (like where to resume after
the interrupt is handled) and then sets the program counter to the interrupt service routine. The
interrupt service routine performs any actions required to handle the interrupt and then uses the
RETI instruction to resume execution at the instruction following the interrupted instruction.

The program in Example 3.2 is secure on Sancus without interrupts. However, it is not secure
against a malicious context that can schedule interrupts to be handled while the enclave executes.
To see why, consider the following attack: The attacker schedules an interrupt to arrive within the
first cycle after the conditional jump at line 10 (call this clock cycle t0), and the attacker measures
when control flow arrives in the interrupt service routine (clock cycle t1). The attacker can then
compute the interrupt latency t1−t0. If the jump was taken, then the instruction being interrupted
is the 4-cycle MOVat line 18, otherwise it is the 1-cycle NOP at line 13. Now, since the attacker’s inter-
rupt service routine will only be called after completion of the current instruction, the adversary
observes an interrupt latency difference of three cycles, depending on the secret branch condition
inside the enclave. Researchers have shown how interrupt latency can be practically measured to
precisely reconstruct individual enclave instruction timings on both high-end and low-end enclave
processors [56].

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:9

Fig. 1. Interrupt latency traces corresponding to the conditional control-flow paths in Example 3.2. When
interrupting after the seventh instruction, the adversary observes a distinct latency difference for the 4-cycle
MOV instruction vs. the 1-cycle NOP instruction.

Using this attack technique, illustrated in Figure 1, an attacker can again distinguish two in-
stances of the module with a different password, and hence the addition of interrupts has weakened

isolation.
A strawman solution to fix the above timing leakage is to modify the implementation of interrupt

handling in the processor to always dispatch interrupt service routines in constant time T, i.e.,
regardless of the execution time of the interrupted instruction. We show in the two examples
below that this is, however, a necessary but not sufficient condition.

Example 3.3 (Resume-to-end Timing). Consider the program from Example 3.2 executed on a
processor that always dispatches interrupts in constant time T. The attacker schedules an interrupt
to arrive in the first cycle after the JZ instruction, yielding constant interrupt latency T. Next, the
context resumes the enclave and measures the time it takes to let the enclave run to completion
without further interrupts. While interrupt latency timing differences are properly masked, the
time to complete enclave execution after resume from the interrupt is 1 cycle for the ok path and
4 cycles for the fail path (cf. Figure 1). Hence, like in Example 3.2, the compiler’s or developer’s
effort to equalize both branches is undermined.

Example 3.4 (Interrupt-counting Attack). An alternative way to attack the program from
Example 3.2 even when interrupt latency is constant, is to count how often the enclave execu-
tion can be interrupted, e.g., by scheduling a new interrupt 1 cycle after resuming from the previ-
ous one. Since interrupts are handled on instruction boundaries, this allows the attacker to count
the number of instructions executed in the enclave, and hence to distinguish the two possible
control-flow paths (cf. Figure 1). Such interrupt counting attacks [42] have been shown to be
dangerous even on enclaved execution systems like Intel SGX, where timing measurements are
noisy.

Defining the security of an extension. The examples above show how a new processor feature
(like interrupts) can weaken an existing isolation mechanism (like enclaved execution), and this is
exactly what we want to avoid. Here, we propose and implement a defense against these attacks
and formally prove that it is indeed secure. Our security definition should now be clear: Given
an original system (like Sancus), and an extension of that system (like interruptible Sancus), that
extension is secure if and only if it does not change the contextual equivalence of enclaves. En-
claves that are contextually equivalent in the original system must be contextually equivalent in
the extended system and vice versa (we shall formalize this as a full abstraction property later
on).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:10 M. Busi et al.

Fig. 2. The secure padding scheme.

3.3 Secure Interruptible Sancus

Designing an interrupt handling mechanism that is secure according to our definition above is
quite subtle. We illustrate some of the subtleties. In particular, we provide an intuition on how an
appropriate use of time padding can handle the various attacks discussed above. We also discuss
how other design aspects are crucial for achieving security. In this section, we just provide intuition
and examples. The ultimate argument that our design is secure is our proof, discussed later.

Padding. We already discussed that it is insufficient for security to naively pad interrupt latency
to make it constant, while we need a padding approach that handles all kinds of attacks.

Our padding scheme (see Figure 2) is as follows: Suppose the attacker schedules the interrupt
to arrive at ta , during the execution of instruction I in the enclave. Let Δt1 be the time needed to
complete the execution of I . To make sure the attacker cannot learn anything from the interrupt
latency, we introduce padding for Δtp1 cycles where Δtp1 is computed by the interrupt handling
logic such that Δt1 +Δtp1 is a constant valueT . This valueT should be chosen as small as possible
to avoid wasting unnecessary time, but must be larger than or equal to the maximal instruction
cycle time MAX_TIME (to make sure that no negative padding is required, even when an interrupt
arrives right at the start of an instruction with the maximal cycle time). This first padding ensures
that an attacker always measures a constant interrupt latency.

But this alone is not enough, as an attacker can now measure resume-to-end time as in Ex-
ample 3.3. Thus, we provide a second kind of padding. On return from an interrupt, the interrupt
handling logic will pad again for Δtp2 cycles, ensuring that Δtp1 +Δtp2 is again the constant valueT
(i.e., Δtp2 = Δt1). This makes sure that the resume-to-end time measured by the attacker does not
depend on the instruction being interrupted.

This description of our padding scheme is still incomplete: It is also important to specify what
happens if a new interrupt arrives while the interrupt handling logic is still performing padding
because of a previous interrupt. This is important to counter attacks like that of Example 3.4.

Intuitively, the property we get is that (1) an attacker can schedule an interrupt at any time ta
during enclave execution; (2) that interrupt will always be handled with a constant latency T ; (3)
the resume-to-end time is always exactly the time the enclave still would have needed to complete
execution from point ta if it had not been interrupted. Interrupt counting attacks become useless,
as the number of times an execution path can be interrupted does no longer depend on the number
of instructions in that path.

This double padding scheme is a main ingredient of our secure interrupt handling mechanism,
but many other aspects of the design are important for security. We briefly discuss a number of
other issues that came up during the security proof, leading to the refinement of the implementa-
tion of Sancus.

Saving execution state on interrupt. When an enclaved execution is interrupted, the processor
state (contents of the registers) is saved (to allow resuming the execution once the interrupt is

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:11

handled) and is cleared (to avoid leaking confidential register contents to the context). A straight-
forward implementation would be to store the processor state on a stack in the enclave accessi-
ble memory. However, the proof of our security theorem showed that this solution is not secure:
consider two enclaved modules that monitor the content of the memory area where processor
state is saved and behave differently on observing a change in the content of this memory area.
These modules are contextually equivalent in the absence of interrupts (as the contents of this
memory area will never change), but become distinguishable in the presence of interrupts. Hence,
our design saves processor state in a storage area inaccessible to software.

No access to unprotected memory from within an enclave. Most designs of enclaved execution al-
low an enclave to access unprotected memory (even if this has already been criticized for security
reasons [52]). However, for a single core processor, interruptibility significantly weakens contex-
tual equivalence for enclaves that can access unprotected memory. Consider an enclave M1 that
always returns a constant 0 and an enclave M2 that reads twice from the same unprotected address
and returns the difference of the values read. On a single-core processor without interrupts,M2 will
also always return 0, and hence is indistinguishable from M1. But an interrupt scheduled to occur
between the two reads from M2 can change the value returned by the second read, and hence M1

and M2 become distinguishable. Hence, our design forbids enclaves to access unprotected memory.
For similar reasons, our design forbids an interrupt handler to reenter the enclave while it has

been interrupted and forbids the enclave to directly interact with I/O devices.
Finally, we prevent the interrupt enable bit in the status register from being changed by the

software in the enclave, as such changes are unobservable in the original Sancus and they would
be observable once interruptibility is added.

While the security proof is a significant amount of effort, an important benefit of this formal-
ization is that it forced us to consider all these cases and to think about secure ways of handling
them. We made our design choices to keep the model simple and the proof manageable, although
some of them may seem restrictive. Section 9 discusses the practical impact of these choices and
possible ways of relaxing some limitations.

4 THE FORMAL MODEL OF THE ARCHITECTURE

Here, we set up the formal model of the architecture that runs both the original, uninterruptible
Sancus (SancusH, Sancus-High) and the secure interruptible Sancus (SancusL, Sancus-Low).2 The
next section will define the semantics of of SancusH and SancusL, and then we will formally show
that the two versions of Sancus actually provide the same security guarantees, i.e., the isolation
mechanism is not broken by adding our carefully designed interruptible enclaved execution.

4.1 Memory and Memory Layout

Recall from Section 3.1 that MSP430 has a 16-bit architecture, thus, we model its memory as a
(finite) function mapping 216 locations to bytes b. Given a memoryM, we denote the operation of
retrieving the byte associated with the location l asM(l). On top of that, we define read and write
operations on words (i.e., pairs of bytes) and we writew = b1b0 to denote that the most significant
byte of a word w is b1 and its least significant byte is b0.

2The high and low terminology is inherited from the field of secure compilation of high source languages to low target
ones. Also, for readability, we hereafter highlight in blue, sans-serif font elements of SancusH, in red, bold font elements
of SancusL, and in black those that are in common.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:12 M. Busi et al.

The read operation is standard: It retrieves two consecutive bytes from a given memory location
l (in a little-endian fashion, as in MSP430):

M[l] � b1b0 ifM(l) = b0 ∧M(l + 1) = b1.

We define the write operation as follows:

(M[l �→ b1b0])(l
′) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b0 if l ′ = l ,

b1 if l ′ = l + 1,

M(l ′) o.w.

Writing b0b1 in location l inM means to build an updated memory mapping l to b0, l + 1 to b1 and
unchanged otherwise.

Note that reads and writes in l = 0xFFFF are undefined (l + 1 would overflow hence it is un-
defined). The memory access control explicitly forbids these accesses (see below). Also, the write
operation deals with unaligned memory accesses (cf. case l ′ = l + 1). We faithfully model these
aspects to prove that they do not lead to potential attacks.

Since modeling the memory as a function gives no clues on how the enclave is organized, we
assume a fixed memory layout L � 〈ts, te, ds, de, isr〉. It describes how the enclave and the in-

terrupt service routine (ISR) are placed in non-fragmented portions of memory and is used to
check memory accesses during the execution of each instruction (see below). To reflect the mem-
ory segmentation of the real Sancus, we have two protected memory sections, containing the code
and the data of the enclave. The protected code section is denoted by [ts, te), while [ds, de) is the
protected data section, and they are placed in non-overlapping memory sections. The first address
of the protected code section is the single entry point of the enclave. The last component of the
tupleL, isr , is the address of the ISR. Finally, we reserve the location 0xFFFE to store the address of
the first instruction to be executed when the CPU starts or when an exception happens, reflecting
the behavior of MSP430. Thus, 0xFFFE must be outside the enclave sections and different from isr .
Note that memory operations enforce no memory access control w.r.t. L, since these checks are
performed during the execution of each instruction (see below).

Summing up, a memory layout is defined as

L � 〈ts, te, ds, de, isr〉, where

• [ts, te) and [ds, de) are the protected code and data sections, respectively, with [ts, te) ∩
[ds, de) = ∅;
• isr � [ts, te) ∪ [ds,de) is the entry point for the ISR;
• isr � 0xFFFE, and 0xFFFE � [ts, te) ∪ [ds, de). The address 0xFFFE is the one from which the

CPU starts executing on boot, or on an exception.

4.2 Register Files

SancusH, just like the original Sancus, has 16 16-bit registers 3 of which R0, R1, R2 are used for
dedicated functions, whereas the others are for general use. (R3 is a constant generator in the real
MSP430 machine, but we ignore that use in our formalization.) More precisely, R0 (hereafter de-
noted as pc) is the program counter and points to the next instruction to be executed. Instruction
accesses are performed by word and the pc is aligned to even addresses. The register R1 (sp here-
after) is the stack pointer and it is used, as usual, by the CPU to store the pointer to the activation
record of the current procedure. Also the stack pointer is aligned to even addresses. The register
R2 (sr hereafter) is the status register and contains different pieces of information encoded as flags.
The most important here is the fourth bit, called GIE, set to 1 when interrupts are enabled. Other
bits are set, e.g., when an operation produces a carry or when the result of an operation is zero.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:13

Formally, our register file R is a function that maps each register r to a word. The read operation
is standard:

R[r] � w if R(r) = w .

The write operation requires instead accommodating the hardware itself and our security
requirements:

R[r �→ w] � λ[r′].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w&0xFFFE if r′ = r ∧ (r = pc ∨ r = sp),

(w&0xFFF7) | (R[sr]&0x8) if r′ = r = sr ∧ R[pc] mode PM,

w if r′ = r ∧ (r � pc ∧ r � sp) ∧

(r � sr ∨ R[pc] mode UM),

R[r′] o.w.

In the definition above & and | denote the standard and and or bitwise operators, and we use the
relationR[pc] mode m, form ∈ {PM, UM} that is defined in Section 4.7. It indicates that the execution
is carried on in protected or in unprotected mode. Note that word alignment is enforced, because
the least-significant bit of the program counter and of the stack pointer are always masked to 0
(as it happens in MSP430). Also, the GIE bit of the status register is always masked to its previous
value when in protected mode, i.e., it cannot be changed when the CPU is running in protected code
(resulting from the bitwise or between w&0xFFF7—masking the GIE bit of w—and R[sr]&0x8—
masking everything except the value of the GIE bit of the status register).

Finally, it is convenient defining the following special register files:

R0 � {pc �→ 0, sp �→ 0, sr �→ 0, R3 �→ 0, . . . , R15 �→ 0},

Rinit
M
� {pc �→ M[0xFFFE], sp �→ 0, sr �→ 0x8, R3 �→ 0, . . . , R15 �→ 0},

where

• pc is set toM[0xFFFE] as it does in the MSP430;
• sp is set to 0 and we expect untrusted code to set it up in a setup phase, if any;
• sr is set to 0x8, i.e., register is clear except for the GIE flag.

Register fileR0 is used when we jump out from the enclave to zero the processor state;RM denotes
the initial file register of the CPU when it starts executing.

4.3 I/O Devices

Recall from the previous section that the attacker can raise an interrupt and observe the effects
it has on the execution of the enclave. This kind of attack usually requires a software component
and a hardware one. The software component is settled in the unprotected memory and is detailed
below. The hardware component is a physical device that interacts with the processor through
synchronous I/O operations. Additionally, the progress of I/O devices is tied to that of the CPU,
making them cycle-accurate and allowing to model the full power of the attacker considered in
the real Sancus (e.g., to use a cycle-accurate timer). In our case, it is a Sancus I/O device, and we
model it as a (simplified) deterministic I/O automaton [39], as follows:

D � 〈Δ,δinit,
a
�D〉, where

• a ∈ A, with A a signature that includes the following actions (below w is a word):
— ϵ , a silent, internal action;
— rd(w), an output action (i.e., read request from the CPU);

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:14 M. Busi et al.

— wr(w), an input action (i.e., write request from the CPU);
— int? an output action telling that an interrupt was raised in the last state;
• Δ � ∅ is the finite set of internal states of the device;
• δinit ∈ Δ is the single initial state;

• δ
a
�D δ ′ ⊆ Δ×A×Δ is the transition function that takes one step in the device while doing

action a ∈ A, starting in state δ and ending in state δ ′. (We write a for a string of actions

and we omit ϵ when unnecessary.) The transition function is such that ∀δ either δ
ϵ
�D δ ′

or δ
int?
�D δ ′′ (i.e., one and only one of the two transitions must be possible), also at most

one rd(w) action must be possible starting from a given state.

4.4 Software Modules, Contexts, and Whole Programs

A module contains both protected code and protected data.

Definition 4.1. A software module is a memory MM containing both protected code and pro-
tected data sections.

Intuitively, the context is the part of the whole program that can be manipulated by an attacker,
i.e., the software component and the physical device:

Definition 4.2. A context C is a pair 〈MC ,D〉, whereD is a device andMC defines the contents
of all memory locations outside the protected sections of the layout.

Filling in a context hole with a software module yields a whole program.

Definition 4.3. Given a contextC = 〈MC ,D〉 and a software moduleMM such that dom (MC) ∩

dom (MM) = ∅, a whole program is

C[MM] � 〈MC �MM ,D〉.

4.5 Instruction Set

The instruction set Inst is the same for both SancusL and SancusH and is (almost) that of the
MSP430. An overview of the instruction set is in Table 1. For each instruction i the table includes its
operands, an intuitive meaning of its semantics, its duration, and the number of words it occupies
in memory. The durations are used to define the function cycles(i) and implicitly determine a value
MAX_TIME, greater than or equal to the duration of longest instruction. Here, we choose MAX_TIME =

6 to maintain the compatibility with MSP430 (whose longest instruction takes 6 cycles). Since
instructions are stored in either the unprotected or in the protected code section of the memory
M, for getting them, we use the meta-function decode(M, l) that decodes the contents of the cell(s)
starting at location l , returning an instruction in the table if any and ⊥ otherwise.

4.6 Configurations

Given an I/O deviceD, the internal state of the entire system is described by configurations of the
form:

c � 〈δ , t , ta ,M,R, pcold ,B〉 ∈ C, where

• δ is the current state of the I/O device;
• t is the current clock cycle, i.e., a natural number denoting the time elapsed since the CPU

started its execution;
• ta is the arrival time (clock cycle) of the last pending interrupt, set to ⊥ if there are none;
• M is the current memory;
• R is the current content of the registers;

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:15

• pcold is the value of the program counter before executing the current instruction;
• B is the backup that can assume the following values:

— ⊥, indicating that the CPU is either handling no interrupt or it is handling one originated
in unprotected mode;

— 〈R, pcold , tpad〉, indicating that the interrupt handler is managing an interrupt raised in
protected mode. The triple includes the register fileR, the program counter pcold at the time
the interrupt was originated, and the value tpad , which indicates the remaining padding
time that must be applied before returning into protected mode;

— 〈⊥,⊥, tpad〉, indicating that the CPU is currently padding the resumption from an interrupt.

The initial states of the CPU are represented by the initial configurations from which the com-
putation starts. The initial configuration for a whole program C[MM] = 〈M,D〉 is:

INITC[MM] � 〈δinit, 0,⊥,M,R
init
MC
, 0xFFFE,⊥〉 where

• the state of the I/O device D is δinit;
• the initial value of the clock is 0 and no interrupt has arrived yet;
• the memory is initialized to the whole program memoryMC �MM ;
• all the registers are initialized to 0, their initial value, except that pc is set to 0xFFFE (the

address from which the CPU gets the initial program counter), and that sr is set to 0x8 (the
register is clear except for the GIE flag);
• the “old” program counter is also initialized to 0xFFFE;
• the backup is set to ⊥, as no interrupt has been raised yet.

Dually, HALT is the only configuration denoting termination. More precisely, we feel free to
use this distinguished and opaque configuration for representing termination.

Also, we define exception handling configurations, that model what happens on soft reset of the
machine (e.g., on a memory access violation, or a halt in protected mode). On such a soft reset,
control returns to the attacker by jumping to the address stored in location 0xFFFE:

EXC〈δ,t,ta,M,R,pcold,B〉
� 〈δ , t ,⊥,M,R0[pc �→ M[0xFFFE]], 0xFFFE,⊥〉.

4.6.1 I/O Device Wrapper. Since the class of interrupt-based attacks requires a cycle-accurate
timer, it is convenient to synchronize the CPU and the device time by forcing the device to take
as many steps as the number of cycles consumed for each instruction by the CPU. The following
“wrapper” around the device D models this synchronization:

D δ , t , ta �
k
D δ ′, t ′, t ′a .

Intuitively, assume the device be in state δ , the clock time be t and the last interrupt be raised at
time ta . Then, after k cycles the new clock time will be t ′ = t + k , the last interrupt was raised at
time t ′a , and the new state will be δ ′; when no interrupt has to be handled, ta = t ′a = ⊥. Formally:

a ∈ {ϵ, int?}
k−1∧
i=0

δi
a
�D δi+1 t ′a =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t + j if ∃0 ≤ j < k . δ j

int?
�D δ j+1∧

∀j ′ < j . δ j′
ϵ
�D δ j′+1,

ta o.w.

D δ0, t , ta �
k
D δk , (t + k), t

′
a

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:16 M. Busi et al.

Table 2. Definition of MACL(f , rght, t) Function, Where f and t Are Locations

t

Entry Point Prot. code Prot. Data Other

f
Entry Point/Prot. code r-x r-x rw- –x
Other –x — — rwx

4.7 CPU Mode

We now specify when the CPU is running in protected or in unprotected mode. Actually, the mode
m ∈ {PM, UM} is determined by the value of the program counter, which can be in either code section:

pc ∈ [L.ts,L.te)

pc mode PM

pc � [L.ts,L.te) ∪ [L.ds,L.de)

pc mode UM
.

Also, we lift the definition to configurations as follows:

R[pc] mode m

〈δ , t , ta ,M,R, pcold ,B〉 mode m HALT mode UM
.

Note in passing that no mode is defined when the program counter points within the data section,
because the memory access control introduced below prevents the program counter to assume
values therein.

4.8 Memory Access Control

We formalize the memory access control (MAC) mechanism of Sancus using the predicate
MACL(f , rght, t) in Table 2. Roughly, this predicate holds whenever the address that the CPU
is trying to read is within the same memory partition as the program counter of the last com-
pleted instruction (pcold); in other words, whenever from the location f (usually pcold) we have
the rights rght on location t , reflecting the mechanism provided by Sancus. Note that when f
is within unprotected code, MACL(f , rght, t) grants it no rights on a location t in the protected
memory.

Building on the above, we define the following relation:

i,R, pcold ,B mac OK,

which holds whenever the instruction i can be executed in a CPU configuration in which the
previous program counter is pcold , the registers are R, and the backup is B. We check that (1)
when transitioning from pcold to R[pc], the CPU has execution rights to execute instruction i , i.e.,
MACL(pcold , x,R[pc] + j) for j ∈ {0, ..., size(i) − 1}; (2) if i is an I/O instruction, then it can be
executed in current CPU mode; and (3) if i is a memory operation (i.e., either MOV r1 0(r2) or
MOV @r1 r2) from R[pc], then we have the appropriate rights to perform it. The predicate MAC
is the minimal relation satisfying the inference rules in Figure 3. Note that (i) for each word that
is accessed in memory, we also check that the first location is not the last byte of the memory
(except for the program counter, for which the decode function would fail, since it would try to
access undefined memory); (ii) word accesses must be checked once for each byte of the word;
and (iii) checks on pc guarantee that a memory violation does not happen while decoding. We
briefly comment on the rule for i ∈ {IN r, OUT r}, the others being self-explanatory. The pre-
conditions say that (i) the current value of the program counter is in unprotected mode; (ii) that
the instructions pointed to by pcold and R[pc] are executable, according to MACL ; and (iii) that
the same holds for pcold and R[pc] + 1, i.e., the next instruction.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:17

Fig. 3. The rules defining the memory access control.

5 THE SEMANTICS OF SancusH AND SancusL AND THEIR INTERRUPT LOGIC

As anticipated, we proceed to formally define the semantics of SancusH and SancusL. The two
share most of their structure and just differ in the way they deal with interrupts, because SancusH

has none of them and so the handler is trivial, while SancusL has an appropriate interrupt logic,
based on the mitigation intuitively introduced in Section 3. Each version of Sancus is endowed
with two transitions systems: The main one specifies the operational semantics of instructions,
while the other is auxiliary and describes the relevant interrupt logic. Therefore, we will factorize
as much as possible the inference rules shared by the main transition systems and only indicate
the differences using the mentioned code: blue, sans-serif font for SancusH and in red, bold font
elements for SancusL.

More precisely, assume hereafter as given a context C = 〈MC ,D〉, where MC defines the con-
tents of the memory locations of the unprotected section and D is an I/O device, and let c, c ′ ∈ C
be two configurations. Then, the main transition system of SancusH has the transitions on the left
and its auxiliary one the transitions on the right:

D c → c ′ D c ↪→I c
′,

while the main and the auxiliary transition systems of SancusL have the transitions on the left and
on the right, respectively:

D c → c ′ D c ↪→I c
′.

5.1 The Operational Semantics of SancusH

We first present the auxiliary transition system implementing the logic that decides what happens
when an interrupt arrives, and then we formalize how the instructions are executed in SancusH.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:18 M. Busi et al.

5.1.1 Interrupts in SancusH. Interrupts in SancusH are always ignored, thus the configuration
is left unchanged, and we have the following trivial rule:

INT

D 〈δ , t , ta ,M,R, pcold ,B〉 ↪→I 〈δ , t , ta ,M,R, pcold ,B〉 .

5.1.2 Main Transition System. The transitions of the main transition system describe how the
SancusH configurations evolve during the execution. Figure 4 shows selected inference rules of
the transition system, on which we briefly comment below; the other rules can be found in the
Appendix.

The rule (CPU-HLT-UM) is the only one that halts the CPU and only applies when an HLT instruc-
tion is executed in unprotected mode. Dually, the rule (CPU-HLT-PM) deals with the case in which an
HLT instruction is to be executed in protected mode. In such a case, the exception handling config-
uration is reached, allowing for a cleanup and a graceful termination. The rule (CPU-Violation-PM)

takes care of the violations in protected mode: The transition in the conclusion of the rule leads
to the exception handling configuration if there is a non-empty backup (first premise) and if the in-
struction i does not pass the memory-access control relation (second premise). The rule (CPU-MovL)

is for when the current instruction i loads in r2 the word in memory at the position pointed to
by r1. Its first premise checks that the CPU is not currently padding interrupt resumption time
(more details on that later on—it can be safely ignored for now); the second one if the instruction
can be executed; the third one increments the program counter by 2 and loads in r2 the value
M[r1]; the fourth premise registers in the device that i requires cycles(i) cycles to complete; and
the last one executes the interrupt logic to check whether an interrupt needs to be handled or
not (see below). Rules dealing with jumps are quite standard. Upon a JZ &r instruction (jump if

zero), the CPU checks the content of the Z (zero) bit of the status register. If R[sr].Z is 0, then
the rule (CPU-Jz0) is triggered and R[pc] is left unchanged, otherwise the rule (CPU-Jz1) applies and
the content of the register r is copied into pc, so performing the jump. Another interesting rule
is (CPU-In), which deals with the case in which the instruction reads a word from the device and
puts the result in r. Its third premise holds when the device sends the word w to the CPU; the
others are similar to those of (CPU-MovL). Dually, the rule (CPU-Out) deals with outputs to the de-
vice. Note that the CPU is forced to halt when the I/O device is not ready for a read or a write
(rules (CPU-NoIn) and (CPU-NoOut)). As a matter of fact, this can only happen in unprotected mode,
since the MAC relation forbids I/O operations inside enclaves. Note also that the current time of
the CPU is always incremented by the time needed to complete the current instruction.

5.2 The Operational Semantics of SancusL

In SancusL interrupts can be raised and must be properly handled securely both in protected and
unprotected mode, and for that we define a non-trivial auxiliary transition system. Although the
rules of the main transition system are largely the same of SancusH, the new auxiliary transitions
affect the behavior of the instruction for returning from interrupts.

5.2.1 Interrupts in SancusL. The inference rules in Figure 5 formalize the mitigation outlined in
Section 3 as a defense against interrupt-based attacks, regardless of the CPU being in unprotected
or protected mode. To intuitively clarify how our rules realize the secure padding schema, we refer
again to Figure 2. We still denote the time when the interrupt is raised with ta . Instead, the intervals
Δt1 (in the rules t − ta) and Δtp1 (in the rules k = MAX_TIME− (t − ta)) represent the time to complete
the current instruction and the padding before the ISR starts, respectively. The interval Δtp2 (in the
rules tpad) completes the padding, making sure that mitigation always amounts to MAX_TIME (recall

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:19

Fig. 4. Some rules of the main transition system for SancusH.

from Section 4.5 that the longest instruction takes 6 cycles). Note also that MSP430 takes 6 cycles
to set up the call to the interrupt handler (which is not displayed in Figure 2).

All the semantic rules have a premise checking the mode in which the last instruction was
executed (pcold mode UM or pcold mode PM).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:20 M. Busi et al.

The rules (INT-UM-NP) and (INT-PM-NP) take care of when the GIE bit of the status register is
set to 0, i.e., interrupts are disabled, or there is none (ta = ⊥). In this case the configurations are
simply left untouched.

When instead GIE = 1 and an interrupt is on (ta � ⊥), either rule (INT-UM-P) or (INT-PM-P)

handles it. When in unprotected mode, a premise of (INT-UM-P) concerns registers: The program
counter gets the entry point of the handler; the status register gets 0; and the top of the stack is
moved four positions ahead to allocate the activation record of the interrupt handler.

Accordingly, the new memoryM′ updates the locations pointed by the relevant elements of the
stack with the current program counter and the contents of the status register. The last premise
reflects that setting up this interrupt handling takes 6 cycles.

The rule (INT-PM-P) is for protected mode and it is more interesting. Besides assigning the en-
try point of the handler to the program counter, it computes the padding time for mitigation of
interrupt-based timing attacks and saves the backup in B′. The padding k is then used, causing
interrupt handling to take 6 + k steps. Such a padding implements the first part of the mitigation
(see Section 3.3) and is computed to make the dispatching time of interrupts constant. Note that
the padding never gets negative. When an interrupt arrives in protected mode two cases may arise:
Either GIE = 1, and the padding is non-negative because the interrupt is handled at the end of the
current instruction; or GIE = 0, and no padding is needed because the interrupt is handled as soon
as GIE becomes 1, which is only possible in unprotected mode. The backup stores part of the CPU
configuration (R and pcold) and tpad = t − ta . The value of tpad will then be used as further padding
before returning, so fully implementing the mitigation (cf. Section 3.3). Recall that the register file
R0 is {pc �→ 0, sp �→ 0, sr �→ 0, R3 �→ 0, . . . , R15 �→ 0}.

It might be worthy to briefly describe what happens upon “corner cases”:

• Whenever an interrupt has to be handled in protected mode, but the current instruc-
tion drives the CPU in unprotected mode, the padding mechanism is applied as in the
rule (CPU-Reti) including the padding after the RETI. Indeed, if partial padding (respec-
tively, no padding at all) was applied, then the duration of the padding (respectively, of the
last instruction) would be leaked to the attacker (cf. Figure 5).
• Interrupts are ignored when arising during the time spent in padding and before invoking the

interrupt service routine. This is because the padding duration and the instruction duration
would be leaked otherwise. To avoid that, the rule (INT-PM-P) ignores any interrupts raised
during the cycles needed for the interrupt logic and for the padding. A viable alternative
would require to buffer interrupts and handle them later on.
• Interrupts happening during the execution of the interrupt service routine are simply

“chained” and handled as soon as the current routine completes (see rule (CPU-Reti-Chain)).
• Finally, interrupts raised during the padding time and after the interrupt service routine are

handled as any other interrupt happening in protected mode (see rule (CPU-Reti-Pad)).

5.2.2 Main Transition System. The rules of the main transition system of SancusL are exactly
the same used for the semantics of SancusH, except for the blue arrows turned into red, notably
those for the interrupt logic: The red arrow ↪→I replaces the blue arrow ↪→I in the premises.

Figure 6 shows the rules dealing with the cases that may happen when the interrupt handler
returns and the processor gives the control back to the code that was executing before the interrupt
was raised. The first rule (CPU-Reti), deals with the actual return from an interrupt. In this case the
processor restores the status register and sets the program counter to the instruction following the
interrupted one. The previous values of these registers are stored in the current activation record
on the stack (i.e., R′ = R[pc �→ M[R[sp] + 2], sr �→ M[R[sp]]]). Instead, rule (CPU-Reti-Chain)

applies if an interrupt arrived while returning from handling an interrupt raised in protected mode

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:21

Fig. 5. The transition system for handling interrupts in SancusL.

(third and fifth premises). In this case the CPU directly jumps to the handler of the new interrupt
with no further padding. Finally, we discuss the rules (CPU-Reti-PrePad) and (CPU-Reti-Pad). Their
combination deals with the case in which the CPU is returning from handling an interrupt raised
in protected mode, and no new interrupt arrived afterwards (or the GIE bit is off, cf. the fourth
premise of rule (CPU-Reti-PrePad)). First, the rule (CPU-Reti-PrePad) restores registers and pcold

from the backup B, so enabling the application of the rule (CPU-Reti-Pad) (note that no other rule
is applicable because of the contents of B). Then, through the rule (CPU-Reti-Pad) the remaining
padding (recorded in the backup) is applied to prevent resume-to-end timing attacks (note that
this last padding is interruptible, as witnessed by the last premise). This last padding is applied
even though the configuration reached through rule (CPU-Reti-PrePad) is in unprotected mode
(i.e., when the interrupted instruction was a jump out of protected mode). Otherwise, the attacker
may discover the value of the padding applied before the interrupt service routine. Actually, we
model the mechanism of restoring registers, pcold , and of applying the remaining padding with two
rules instead of just one for technical reasons.

5.3 A Progress Property

As a sanity check, we prove the following progress theorem showing that both SancusH and
SancusL get stuck only if the CPU reaches the distinguished configuration HALT. Its proof is
in the Appendix:

Theorem 5.1 (Progress). For all C = 〈MC ,D〉,MM and configuration c

D INITC[MM] →
∗ c � =⇒ c = HALT and D INITC[MM] →

∗ c � =⇒ c = HALT.

6 THE SECURITY THEOREM

In this section, we establish that SancusL enjoys the following security property: What an attacker
can learn from an enclave is exactly the same before and after adding the support for interrupts.
Technically, we show that the semantics of SancusL is fully abstract w.r.t. the semantics of SancusH;
in other words all the attacks that can be carried out in SancusL can also be carried out in SancusH

and vice versa.
Before stating the full abstraction theorem, we introduce some further notations, which also

help in the main steps of its proof; additional, minor lemmata and definitions for completing the
proofs are in the Appendix. Recall from Section 4.4 that C[MM] is a whole program, whereMM

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:22 M. Busi et al.

Fig. 6. Some rules from the operational semantics of SancusL.

is the software module and C = 〈MC ,D〉 represents the context (MC contains the unprotected
program and data and D is the I/O device).

We first define the notion of convergence of whole programs.

Definition 6.1. LetC = 〈MC ,D〉 be a context, andMM be a software module. A whole program
C[MM] converges in SancusH (written C[MM]⇓

H) iff

D INITC[MM] →
∗ HALT.

Similarly, the same whole program converges in SancusL (written C[MM]⇓
L) iff

D INITC[MM] →
∗ HALT.

The following definition introduces the notion of contextual equivalence of two software mod-
ules. Roughly, the notion of contextual equivalence formalizes the intuitive notion of indistin-

guishability: Two modules are contextually equivalent if they behave in the same way when they
interact with an arbitrary, attacker-controlled context. Due to the quantification over all contexts,
it suffices to consider just terminating and non-terminating executions as distinguishable, since
any other distinction can be reduced to it.

Definition 6.2. Two software modules MM and MM ′ are contextually equivalent in SancusH,
writtenMM �

H MM ′ , iff

∀C .
(
C[MM]⇓

H ⇐⇒ C[MM ′]⇓
H
)
.

Similarly,MM andMM ′ are contextually equivalent in SancusL, writtenMM �
L MM ′ , iff

∀C .
(
C[MM]⇓

L ⇐⇒ C[MM ′]⇓
L
)
.

Finally, we state and prove the main theorem establishing the security of our mitigation:

Theorem 6.3 (Full abstraction). ∀MM ,MM ′ . (MM �
H MM ′ ⇐⇒ MM �

L MM ′).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:23

Fig. 7. An illustration of the proof strategy of preservation of behaviors.

Proof. Here, we only present the “surface” of the proof by stating the main properties, whose
proofs often require many other auxiliary definitions and properties that are detailed in the Appen-
dix. Actually, the proof that our mitigation guarantees absence of interrupt-based attacks is rather
long and has the following steps: We first establish reflection of behaviors: MM �

H MM ′ ⇐

MM �
L MM ′ (Lemma 6.6 in Section 6.1). Then, the other implication, i.e., preservation of behav-

iors, is proved by Lemma 6.15 in Section 6.2 following the strategy summarized in Figure 7. We
rely on the well-known notion of traces, i.e., the sequences of actions performed by a moduleMM

plugged in a context that can be observed by an attacker. In particular, we focus on the invoca-
tions ofMM and on the returns from it. In both cases our traces also carry information about the
contents of the registers and for returns also the flow of time. We then say that two modulesMM

andM′M are trace equivalent, in symbolsMM
T
= M′M , if they exhibit the same traces (see Def-

inition 6.7). Proving preservation is then done in two steps, the composition of which gives (iii)
in Figure 7. First Lemma 6.14 establishes (ii) in Figure 7: Two modules equivalent in SancusH are
trace equivalent. The proof technique that we adopt specializes backtranslation of Reference [47],
applied to the contrapositive of (ii). Roughly, we construct a context in SancusH distinguishing
two modules when they are not trace equivalent. Then Lemma 6.12 establishes (i) in Figure 7: Two
modules that are trace equivalent are also equivalent in SancusL. The proof of this lemma is rather
technical: Essentially, it consists in showing that neither the context affects the behavior of the
module, nor the module affects that of the context.

Summing up:

• Case⇐. Reflection of behaviors follows from Lemma 6.6 in Section 6.1.
• Case⇒. Preservation of behaviors follows from Lemma 6.15 in Section 6.2. �

6.1 Reflection of Behaviors

Recall that SancusL differs from SancusH only because of its interrupt handling mechanism. Conse-
quently, to prove the reflection of behaviors, i.e., that for allMM ,MM ′ , we have thatMM �

L MM ′

impliesMM �
H MM ′ it suffices to inhibit interrupts in SancusL. For establishing that, we intro-

duce the notion of interrupt-less context C� I for a context C . Intuitively, C� I behaves as C but never
raises any interrupt. When a module is plugged in an interrupt-less context, it terminates according
to the low-level semantics if and only if it does in the high-level semantics. Technically, to obtain
the interrupt-less version of a context C it suffices to remove from the device the transitions that
may raise an interrupt.

Definition 6.4. LetD = 〈Δ,δinit,
a
�D〉 be an I/O device. Given a contextC = 〈MC ,D〉, we define

its corresponding interrupt-less context as C� I = 〈MC ,
a
�D� I 〉 where:

• D� I = 〈Δ,δinit,
a
�D� I 〉, and

•
a
�D� I �

a
�D ∪ {(δ , ϵ,δ

′) | (δ , int?,δ ′) ∈
a
�D } \ {(δ , int?,δ ′) | (δ , int?,δ ′) ∈

a
�D }.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:24 M. Busi et al.

Note that D� I is actually a device, due to the constraints on its transition function.
The behavior of interrupt-less contexts in SancusL directly correspond to the behavior of their

standard counterparts in SancusH, as stated below.

Lemma 6.5. For any moduleMM , context C , and corresponding interrupt-less context C� I :

C� I [MM]⇓
L ⇐⇒ C[MM]⇓

H.

Reflection now follows, because whole programs in SancusH behave just like a subset of whole
programs in SancusL.

Lemma 6.6 (Reflection). ∀MM ,MM ′ . (MM �
L MM ′ =⇒ MM �

H MM ′).

6.2 Preservation of Behaviors

Here, we prove the preservation of behaviors, i.e., the chain of implications (ii) and then (i), result-
ing in (iii) in Figure 7. More precisely, we perform the following steps:

In Section 6.2.1, we first define two notions of traces: the fine-grained and coarse-grained traces.
The first is an auxiliary notion that directly derives from the semantics of SancusL and facilitates
the proofs. Intuitively, it takes into account all the actions performed by the system. The second
kind of traces only records the actions that attackers can observe and are easily derived from the
fine-grained ones. Also, we call trace equivalent two modules with the same set of coarse-grained
traces. Using the fine-grained traces, we state and prove the key yet rather technical Property 6.1
ensuring that our mitigation reflects the intuition described in Figure 2. This property also helps
in showing that, roughly speaking, the observed actions of the enclave are not influenced by those
of the context (Lemma 6.10), as well as in proving the correctness of the backtranslation algorithm
(Property A.22). For proving both facts, we use the timing information recorded in the coarse-
grained traces that result from assembling those in the fine-grained traces.

Then, we prove in Section 6.2.2 that trace equivalence implies contextual equivalence at SancusL

(the implication (i) of Figure 7). For that Lemma 6.11 is crucial, since it ensures that two trace
equivalent modules still produce the same traces when plugged in a given context.

Next, in Section 6.2.3, we prove that contextual equivalence implies trace equivalence at SancusH

(the implication (ii) of Figure 7). This is achieved by defining a backtranslation [47] that given an
attacker (a context that differentiates two modules) at SancusL returns an attacker at SancusH.

Finally, Section 6.2.4 immediately concludes our proof of item (iii) in Figure 7.

6.2.1 Fine-grained and Coarse-grained Traces. We consider the fine-grained and the coarse-
grained traces. The first traces record the relevant actions performed by the processors including
those concerned with interrupt handling. The coarsed-grained, instead, record what the attacker
is able to observe, i.e., the jumps in and out of an enclave.

The fine-grained observables are defined as follows:

α � ξ | τ (k) | reti?(k) | handle!(k) | • | jmpIn?(R) | jmpOut!(k ;R).

Above, k ∈ N indicates that the observed action takes k cycles. Intuitively, ξ denotes unobservable
actions performed by the context; τ (k) indicates an internal action; handle!(k) and reti?(k) denote
when the processor starts executing the interrupt service routine from protected mode and when it
returns from it, respectively. Then, the observable • indicates that termination occurred; jmpIn?(R)
and jmpOut!(k ;R) record when the CPU enters and exits from protected mode, respectively, where
R is the contents of the register file when the action ends.

The relation
α
===⇒ in Figure 8 extracts observables from the execution of a whole program. Note

that each transition D c → c ′ has a corresponding transition D c
α
===⇒ c ′ for some α , possibly

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:25

Fig. 8. The relation
α
====⇒ for fine-grained observables.

the silent ξ . The transitive and reflexive closure of
α
===⇒ is

α
===⇒∗, where α is a trace, i.e., a sequence

of actions (ϵ is the empty trace).
Note that in any trace α , only the observables τ (k), reti?(k) or handle!(k) may occur between

a jmpIn?(R) and a jmpOut!(k ;R). When an interrupt has to be handled, the observed trace starts
with handle!(·), followed by a sequence of ξ and then a reti?(k), provided that a RETI is executed
(k always has value cycles(RETI)). If the interrupted instruction was a jump from protected to
unprotected mode, then the reti?(·) is followed by a jmpOut!(·; ·) (cf. rules (Obs-Handle), (Obs-
Internal-UM), (Obs-Reti), and (Obs-JmpOut-PostPoned)); otherwise, a τ (·)—or a handle!(·) if
an interrupt has to be handled.

Actually, an attacker (i.e., the context) cannot observe all α ’s, but only the following coarse-
grained observables, where jmpIn?(R) and jmpOut!(Δt ;R) represent invoking a module and re-
turning from it.

β � • | jmpIn?(R) | jmpOut!(Δt ;R).

In Figure 9, we define the relation
β
===⇒⇒, under the assumption that both the existentially quan-

tified configuration c and the configuration c ′ are reachable from the same initial configura-
tion. Essentially, we remove the observables for interrupts and silent actions from the fine-grain
traces, making them not visible any longer. More in detail, all the actions in between a jmpIn?(·)
and the immediately following jmpOut!(k ;R) (or a •) are dropped; similarly for the fine-grained

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:26 M. Busi et al.

Fig. 9. The relation
β
====⇒⇒ for coarse-grained observables.

observables in between a jmpOut!(k ;R) (or the very first observable from the initial configura-
tion) and the next jmpIn?(·). In addition, the parameter k is replaced by Δt in the observable
jmpOut!(Δt ;R) to model that an attacker can only measure the end-to-end time of a piece of code
running in protected mode. The value Δt is computed by accumulating the values time(α (i)) that
are the number of cycles associated with the observable α (i).

Then, we take its reflexive and transitive closure
β
===⇒⇒∗ (where traces β are strings of β ’s), and

we use it to eventually define when two modules are trace equivalent:

Definition 6.7. Two modules are (coarse-grained) trace equivalent, writtenMM
T
=MM ′ , iff

Tr(MM) = Tr(MM ′),

where Tr(MM) � {β | ∃C = 〈MC ,D〉.D INITC[MM]
β
===⇒⇒∗ c ′}.

Notation. Hereafter, let x ∈ {1, 2}; let c, c1, c2, . . . , possibly dashed, be configurations; and let

c(n)x = 〈δ
(n)
x , t

(n)
x , t

(n)
ax
,M

(n)
x ,R

(n)
x , pcold

(n)
x ,B

(n)
x 〉 be the configuration reached after n execution steps

from the initial configuration c(0)x . We will index the elements of a trace and the components of a

context Cx in a similar way. Finally, let c(i)x be the configuration right before the action of index i
in a given (fine- or coarse-grained) trace.

To prove a crucial property of our mitigation, it is convenient to introduce the notion of complete

interrupt segments of a fine-grained trace, which are those starting with a handle!(·) action and
ending with a reti?(·) action (see Definition A.1 in the Appendix). Also, let |Iα | be the number of
the complete interrupt segments in a given trace α .

The property below characterizes how our mitigation affects the execution time of a module.
Intuitively, it ensures that handling each interrupt contributes to the time spent in protected mode
with a constant number of cycles equal to 11 + MAX_TIME. This is crucial to guarantee a constant
delay before and after interrupt handling, otherwise an attacker would be able to observe different
timings as it happens in Examples 3.1 and 3.3. In its statement γ (c) is the time taken by the current
protected-mode instruction in the given configuration to be executed (cf. Figure 2). Also, recall
from Figure 9 that time(α (i)) indicates the number of cycles associated with the observable α (i).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:27

Note that when the observables are reti?(k) and handle!(k), the value k takes care of MAX_TIME, as
dictated by the interrupt logic of SancusL in Figure 5.

Property 6.1. If c(0) mode PM andD c(0)
α
===⇒∗ c(n+1), with α = α (0) · · ·α (n−1) ·jmpOut!(k (n);R′),

then k (n) +
∑n−1

i=0 time(α (i)) =
∑n

i=0 γ (c
(i)) + (11 + MAX_TIME) · |Iα |, where

γ (c) �

{
cycles(decode(M,R[pc])) if c mode PM ∧ B = ⊥

0 o.w.

Proof. By definition of the interrupt logic and the operational semantics of SancusL, for each
interrupt handled in protected mode, we perform a 0 ≤ k ≤ MAX_TIME padding before invoking the
interrupt service routine and an additional padding of (MAX_TIME − k) cycles after its execution, i.e.,
the padding time introduced for each complete interrupt segment amounts to MAX_TIME. Also, since
the interrupt logic always requires 6 cycles to jump to the interrupt service routine and 5 cycles
are required upon RETI it easily follows that:

k (n) +
n−1∑
i=0

time(α (i)) =
n∑

i=0

γ (c(i)) + (11 + MAX_TIME) · |Iα |. �

6.2.2 Trace Equivalence Implies Contextual Equivalence at SancusL. Here, we prove the impli-

cation (i) of Figure 7, i.e., that MM
T
= MM ′ =⇒ MM �

L MM ′ . We rely on the following
proposition to ensure that a terminating program generates a coarse-grained trace ending with •
and vice versa.

Proposition 6.8. C[MM]⇓
L iff ∃β . D INITC[MM]

β ·•
=====⇒⇒∗ HALT.

Proof. The only-if part holds trivially. For the other direction, the definition of C[MM]⇓
L im-

plies that D INITC[MM] →
∗ HALT and the definitions of fine- and coarse-grained traces (Fig-

ures 8 and 9) guarantee that the last observed action is •, as requested. �

Consider two whole programs that share the same context. The lemma below states that if they
perform the same sequence of actions reaching a unprotected configuration, then their next action,
if any, will be the same (its proof relies on Property A.19). Intuitively, this is because the context is
deterministic and because our mitigation makes the context behavior independent of the module.
Recall that coarse-grained traces record timing information, and therefore this lemma and the next
one also express timing independence between contexts and modules.

Lemma 6.9. Let C = 〈MC ,D〉. If D INITC[MM]
β
===⇒⇒∗ c1

β
===⇒⇒ c ′1, D INITC[MM′]

β
===⇒⇒∗ c2,

c1 mode UM and c2 mode UM, then there exists c ′2 such that D c2
β
===⇒⇒ c ′2.

The following lemma shows the vice versa: The isolation mechanism offered by the enclave
guarantees that the behavior of the module is not influenced by the context:

Lemma 6.10. LetC = 〈MC ,D〉. IfMM
T
=MM ′ ,D INITC[MM]

β
===⇒⇒∗ c ′′1

jmpIn?(R1)
===========⇒⇒ c1

β
===⇒⇒ c ′1

and D INITC[MM′]
β
===⇒⇒∗ c ′′2

jmpIn?(R2)
===========⇒⇒ c2, then there exists c ′2 such that D c2

β
===⇒⇒ c ′2.

The two lemmata above imply that two whole programs obtained by plugging two trace equivalent
modules in the same context C produce the same traces:

Lemma 6.11. Given a contextC = 〈MC ,D〉 and two modulesMM andMM ′ . IfMM
T
=MM ′ and

D INITC[MM]
β
===⇒⇒∗ c1, then there exists a c2 such that D INITC[MM′]

β
===⇒⇒∗ c2.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:28 M. Busi et al.

Proof. We show this by induction on the length n of β .

• Case n = 0. Since β = ε , by definition of
·
===⇒⇒∗, we have c1 = INITC[MM] = c1. Again, by

definition of
·
===⇒⇒∗, we choose c2 = INITC[MM′] and get the thesis.

• Case n = n′ + 1. The induction hypothesis (IHP) is then:

D INITC[MM]
β
′

====⇒⇒∗ c ′1 ⇒ D INITC[MM′]
β
′

====⇒⇒∗ c ′2,

and we must show that

D INITC[MM]
β
′

====⇒⇒∗ c ′1
β
===⇒⇒ c1 ⇒ D INITC[MM′]

β
′

====⇒⇒∗ c ′2
β
===⇒⇒ c2.

By cases on the CPU mode in c ′1 and c ′2:
— R′1[pc] mode UM and R′2[pc] mode UM: Follows by (IHP) and Lemma 6.9;
— R′1[pc] mode PM and R′2[pc] mode PM: Follows by (IHP) and Lemma 6.10;
— R′1[pc] mode m and R′2[pc] mode m′ and m � m′: It never happens, as observed in Proposi-

tion A.6. �

Finally, we conclude with the proof that if two modules are trace equivalent, then they are
contextually equivalent in SancusL (arrow (i) in Figure 7):

Lemma 6.12. IfMM
T
=MM ′ , thenMM �

L MM ′ .

Proof. Expanding the definition of �L, the statement becomes:

MM
T
=MM ′ ⇒ (∀C = 〈MC ,D〉.C[MM]⇓

L ⇐⇒ C[MM ′]⇓
L).

We split the double implication and we show the two cases independently.

• Case ⇒. By Proposition 6.8 there exists β such that D INITC[MM]
β ·•
=====⇒⇒∗ HALT. Since

MM
T
=MM ′ , we know by Lemma 6.11 that D INITC[MM′]

β ·•
=====⇒⇒∗ HALT. Thus, again by

Proposition 6.8, we have C[MM ′]⇓
L;

• Case⇐. Symmetric to the previous one. �

6.2.3 Contextual Equivalence at SancusH Implies Trace Equivalence. Here, we prove by contra-

position thatMM �
H MM ′ =⇒ MM

T
=MM ′ , i.e., implication (ii) of Figure 7.

We first define those traces, if any, that distinguish a given a pair of modules, i.e., one converges
while the other does not. Given a context in SancusL that keeps two modules apart through two
such traces, we define two algorithms: the first builds a memory and the other a device. Once
put together, they implement a backtranslation [47] and return a context differentiating the two
modules in SancusH. Because of the strong limitations of MSP430 (e.g., it only has 64 KB of memory)
building such a context in unprotected memory only is infeasible. Since the attacker model we
assumed has the strong power of controlling everything except the enclave, it is also assumed
to control the I/O device that has unlimited memory. Therefore, the backtranslation takes full
advantage of such a strength to build a distinguishing context. Of course, this also implies that
only isolation properties proved on SancusH under this attacker model with unbounded device
memory are guaranteed to be preserved in SancusL.

We start from two distinguishing traces that consist of a common prefix followed by two further
traces starting with two different observables. We then make sure that there always exist such
traces for two modules that are kept apart in SancusL.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:29

Definition 6.13 (Distinguishing Traces). LetMM andMM ′ be two modules, and let β = βs ·β ·βe ∈

Tr(MM) and β
′
= βs · β

′ · β
′

e ∈ Tr(MM ′). We say that β and β
′

are distinguishing traces forMM

andMM ′ iff there exist a context CL = 〈MCL ,DL〉 such that

• DL INITCL [MM]

β
===⇒⇒∗ c and DL INITCL [MM′]

β
′

====⇒⇒∗ c ′, for some c, c ′;

• β � Tr(MM ′), β
′
� Tr(MM) and β � β ′.

Property 6.2. IfMM andMM ′ are two modules such thatMM �L MM ′ , then there always exist

β and β
′

that are distinguishing traces forMM andMM ′ .

First algorithm: memory initialization. Intuitively, given two modules and two distinguishing

traces β = βs · β · βe and β
′
= βs · β

′ · β
′

e for them, the Algorithm 1 builds the memory of
the wanted distinguishing context. Actually, this memory only contains the code that cooperates
with the I/O device built in Algorithm 2 to mimic the target context and to differentiate the two
modules at hand. Intuitively, the generated code communicates the state of the CPU to the I/O
device, enabling it to drive the context execution and thus the behavior of the processor.

Assume as given an assembler function encode that returns the encoding of any assembly in-
struction as one or two words—according to the size specified in Table 1. Also, assume that the
unprotected memory is large enough to contain the code of the context we are building (there is
no lack of generality, since the space required for this code is bounded by a constant (≤25 words)
plus the number of different addresses to which the protected code jumps—kept anyway in the
unprotected memory). Suppose also to have the five constants A_HALT, A_LOOP, A_JIN, A_EP and
A_RDIFF representing addresses in the unprotected memory: They are assumed different from (i)
each other, (ii) 0xFFFE, and (iii) any address R[pc] such that jmpOut!(Δt ;R) occurs in either input
distinguishing traces. Finally, assume for simplicity that the modules never jump to 0xFFFE.3

First, the algorithm initializes the memoryMC by filling it with the code in Figure 10. It consists
of five parts. The first two are for convergence (line 1) and divergence (line 3). The next part (lines 5
to 20) inputs the registers values from the device and then jumps into the enclave. Line 25 specifies
that the first instruction to be executed is at the address specified by A_EP. Finally, the code in
lines 22 and 23 interacts with the device to get the next instruction to execute.

Then, the algorithm inspects β and β ′ and generates a piece of code that orchestrates the interac-
tions between the distinguishing context and the I/O device. Roughly, the generated code operates
as follows: it (i) writes to the I/O device the different content of the register that distinguishes the
traces; and (ii) reads from the I/O device a new value for the program counter (either A_HALT or
A_LOOP), which causes the context to either diverge or terminate.

If they are both jmpOut!(·; ·) and at least one register has different values in the observables,
then two cases arise:

• If one of the registers differentiating β and β ′ is r � pc, then we store inMC the instructions
to ask the device a new program counter (that will depend on the value of r), starting at the
address A_RDIFF (line 7). Note that in this case joutd and joutd ′ are left undefined;
• Otherwise, the register differentiating β = jmpOut!(Δt ;R) and β ′ = jmpOut!(Δt ;R′) is pc.

In this case, we store inMC the instructions to ask the device a new program counter at the
address R[pc] and R′[pc] for the first and second module, respectively (lines 15–19). Also,
we record the differentiating values of the program counter in joutd and joutd ′, to be used
by Algorithm 2.

3Slightly changing Algorithm 1 suffices to remove this limitation: Upon the jump into protected mode right before jumping
to 0xFFFE, the context writes the right code to deal with it in 0xFFFE and, afterwards, restores the old content of that address.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:30 M. Busi et al.

Finally, the algorithm adds the code to deal with jumps out from the protected module to unpro-
tected code for any jmpOut!(Δt ;R) in βs · β or βs · β

′ such that R[pc] � joutd and R[pc] � joutd ′.
Since the code cannot track timing directly, we delegate the device to deal with the case when
the observables differ on timings, i.e., when β = jmpOut!(Δt ;R) and β ′ = jmpOut!(Δt ′;R) with
Δt � Δt ′ (see Algorithm 2). Eventually, the algorithm returns the memory built and the values of
joutd and joutd ′ (if any), used by Algorithm 2 to build the distinguishing device.

ALGORITHM 1: Builds the memory of the distinguishing context.

1: procedure BuildMem(β = βs · β · βe , β
′
= βs · β

′ · β
′

e)

2: � β and β
′

are distinguishing traces w. common prefix βs

3: joutd = joutd ′ = ⊥

4: MC = filled as described in Figure 10
5: if β = jmpOut!(Δt ;R) ∧ β ′ = jmpOut!(Δt ;R′) ∧ (∃r.R[r] � R′[r]) then

6: if r � pc then

7: MC =MC [A_RDIFF �→ encode(OUT r), A_RDIFF + 1 �→ encode(IN pc)]
8: else

9: joutd = R[pc]
10: joutd ′ = R′[pc]
11: MC =MC [joutd �→ encode(OUT pc), joutd + 1 �→ encode(IN pc)]
12: MC =MC [joutd ′ �→ encode(OUT pc), joutd ′ + 1 �→ encode(IN pc)]
13: end if

14: end if

15: for jmpOut!(Δt ;R) ∈ βs · β, βs · β
′ do

16: if R[pc] � joutd ∧ R[pc] � joutd ′ then

17: MC =MC [R[pc] �→ encode(IN pc)]
18: end if

19: end for

20: return (MC , joutd, joutd ′)

21: end procedure

Second algorithm: device construction. This second algorithm iteratively builds a device that co-
operates with the memory of the context given by Algorithm 1 to distinguishMM fromMM ′ .4

The algorithm is in the Appendix, and here we only briefly comment on it, for space reasons.
Let joutd and joutd ′ be the addresses returned by Algorithm 1 (if any) and that represent the

differentiating values of the program counter; let β = βs · β · βe and β
′
= βs · β

′ · β
′

e (β � β ′) be
two distinguishing traces forMM andMM ′ underCL ; finally, let term (respectively, term′) denote
whetherMM (respectively,MM ′) converges in a context with no interrupts after the last jump
into protected mode. The algorithm starts with an empty device and iterates over the observables
βi in βs :

• Case βi = jmpIn?(R).
In this case either this is the first observable or βi−1 = jmpOut!(·; ·). According to Algorithm 1,
in both cases, we reach the instruction IN pc (either at address A_EP or those of jumps out of
protected mode), waiting for the next program counter. The algorithm appends the behavior

4The interactions between the module and the I/O device need not be preserved, because the module runs in protected
mode and therefore it cannot access the I/O device in the first place.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:31

Fig. 10. Initial content of unprotected memory, as used by Algorithm 1.

described in Figure 11(a) to the device built so far. Intuitively, the device ignores possible
write operations and outputs the special address A_JIN. Then, it starts sending the values of
the registers in R to simulate in SancusH what happens in SancusL and to match the code
requests.
• Case βi = jmpOut!(Δt ;R).

The device is simply updated with an ϵ-loop on the last added state δL and ignores write
operations (to deal with R[pc] = joutd or R[pc] = joutd ′). Figure 11(b) pictorially represents
this case.

Then, as soon as β and β ′ show up, the algorithm sets up the device to differentiate the modules:

• Case β = jmpOut!(Δt ;R) ∧ β ′ = jmpOut!(Δt ′;R′) ∧ (∃r.R[r] � R′[r]).
In this case the differentiation is due to a register, and two further sub-cases may arise. If the
register is pc, then the device gets the differentiating value from the context (executing code
at joutd and joutd ′ by construction); based on that value, it outputs either A_HALT or A_LOOP
(see Figure 12(a)). For any other register than pc, the context waits for the next program
counter and replies with the address A_RDIFF. This address points to the code that sends
the differentiating register value and, based on that, the device replies with either A_HALT or
A_LOOP (see Figure 12(b)).
• Case β = jmpOut!(Δt ;R) ∧ β ′ = jmpOut!(Δt ′;R) ∧ Δt � Δt ′.

Since different timings in SancusL correspond to different timings in SancusH

(see Property A.22), we program the device to either reply with A_HALT or with A_LOOP,
depending on the time value (Figure 12(c)).
• Case β = • ∧ β ′ = jmpOut!(Δt ;R).

In this case • may occur during an interrupt service routine. Two sub-cases may arise, de-
pending on whether the first moduleMM terminates or not when executed in a context with
no interrupts after the last jump into protected mode. Note that the value of term differenti-
ates the two sub-cases. When term holds,MM causes a transition to an exception handling
configuration from which there is a jump to A_EP, and the device instructs the code to jump

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:32 M. Busi et al.

Fig. 11. A graphical representation of the algorithm building the I/O device for βi and β ′i being in the longest
common prefix. Here, δL denotes the final state of the I/O device being updated, while the final state of the
updated device is depicted as a solid, black circle.

to A_HALT. Instead, the second module jumps to another location different from the distin-
guished address A_EP, thus a jump to A_LOOP occurs (Figure 12(d)). When term does not hold,
MM diverges and the second module makes the CPU jump to a location in unprotected code
and the CPU is instructed to jump to A_HALT (Figure 12(e)).
• Case β = jmpOut!(Δt ;R) ∧ β ′ = ε .

Analogous to the above, with term′ replacing term.
• Otherwise. No other cases may arise (see Property A.21).

At the end, the algorithm returns a device built as just summarized.

The correctness of the two algorithms is established by the Properties A.21 and A.22 in the
Appendix. The first states that, under the stated conditions, BuildDevice always produces an
actual I/O device. The second property guarantees that the context built by joining together the
results of the two algorithms is indeed a distinguishing one.

We finally prove that if two modules are contextually equivalent in SancusH, then they are trace
equivalent (implication (ii) in Figure 7).

Lemma 6.14. IfMM �
H MM ′ thenMM

T
=MM ′ .

Proof. We prove the contrapositive: MM

T
� MM ′ then MM �H MM ′ . By Property 6.2,

since
T
�, there exists a pair of distinguishing traces for MM and MM ′ . Algorithm 1 and 2

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:33

Fig. 12. A graphical representation of the algorithm building the I/O device for βi and β ′i being the distin-
guishing observables. Here, δL denotes the final state of the I/O device being updated, while the final state
of the updated device is depicted as a solid, black circle.

witness the existence of a context CH that is an actual context and is guaranteed to differentiate
MM fromMM ′ , i.e.,CH [MM]⇓

H andCH [MM ′]�⇓
H (or vice versa). Thus, by definition of contextu-

ally equivalent modules in SancusH, we getMM �H MM ′ , as requested. �

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:34 M. Busi et al.

6.2.4 Preservation of Behaviors. The last step of this long proof consists in stating and proving
the lemma that guarantees preservation of behaviors, i.e., the implication (iii) in Figure 7:

Lemma 6.15 (Preservation).

∀MM ,MM ′ . (MM �
H MM ′ ⇒ MM �

L MM ′).

Proof. Just compose the implications (i) and (ii) of Figure 7 (i.e., Lemmata 6.14 and 6.12,
respectively). �

7 PRESERVATION OF HYPERPROPERTIES

This section shows that our full abstraction result allows us to easily derive the preservation of
some notions of non-interference and hypersafety when passing from SancusH to SancusL. Since
we are dealing with enclaves, the standard notions will be adapted to our framework.

From now onwards, we will use the following equivalence relation to express configurations
that are equivalent from an attacker’s point of view. According to this relation, two configurations
are equivalent if they cannot be distinguished by code running in unprotected mode (e.g., the
contents of unprotected memory). In its definition, we use the auxiliary equivalence of memories
that holds when their public portions coincide.

Definition 7.1. Let c and c ′ be two configurations, and let M
U
= M′ iff ∀l � [ts, te) ∪

[ds, de).M[l] =M′[l].

Then, we define c
L
= c ′ iff (c = c ′ = HALT) ∨ (c .δ = c ′.δ ∧ c .t = c ′.t ∧ c .ta = c ′.ta ∧

c .M
U
= c ′.M ∧ c .R = c ′.R).

7.1 Take One: Termination-insensitive, Time-sensitive Non-interference

We now tailor the notion of termination-insensitive, time-sensitive non-interference (inspired
by Reference [32]) to fit our framework. Roughly, two modules are non-interferent if and only
if no context can distinguish them by examining the content of their public memories right before
they terminate. Formally:

Definition 7.2. Two modules MM and MM ′ are termination-insensitive, time-sensitive non-
interferent (ISNI) in SancusH (writtenMM ≈ISMM ′) iff for all contexts C = 〈MC ,D〉

D INITC[MM] →
∗ c → HALT ∧ D INITC[MM′] →

∗ c ′ → HALT =⇒ c
L
= c ′.

Similarly, we define ISNI in SancusL,MM ≈ISMM ′ .

Commonly, termination-insensitive non-interference is a property of a single program, to which
our definition actually reduces when considering initial configurations as programs whose public
input is a context and secret input is a module. Indeed, this is a good model of what happens
in reality: Contexts are controlled by the attackers, whereas modules are securely deployed (i.e.,
we model the situation where both code and data are confidentially deployed, as can be done in
Sancus 2.0 [45] and in Soteria [25]). Note in passing that our definition and results still hold if
the code is made public before being loaded in the enclave (see also the discussion at the end of
Section 7.2).

In the following, we clarify the relation between non-interference as defined in Definition 7.2
and our instance of full abstraction established in Theorem 6.3. Note that contextual equivalence
requires equiconvergence, and thus it is termination sensitive. On the contrary, ISNI is termination
insensitive by definition and can relate modules that are not contextually equivalent. Therefore,
preservation of termination-insensitive non-interference cannot be directly derived from full ab-
straction. As a matter of fact, requiring equiconvergence transforms Definition 7.2 in Definition 7.5

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:35

that introduces the more demanding notion of termination-sensitive non-interference, which is

preserved (see below). Nevertheless, we can establish a couple of interesting properties. First, we
relate contextual equivalence with non-interference in SancusL:

Lemma 7.3. IfMM �
L MM ′ , thenMM ≈ISMM ′ .

From that it easily follows that non-interference in SancusL is guaranteed when two modules
are contextual equivalent in SancusH:

Theorem 7.4. IfMM �
H MM ′ , thenMM ≈ISMM ′ .

7.2 Take Two: Termination- and Time-sensitive Non-interference

In this section, we consider a notion of non-interference inspired from Reference [19] that distin-
guishes terminating modules from non-terminating ones. In the standard notion the program is
public and the memory is split in a public and a secret segment: An attacker cannot discover any
secret data by running the code with different public data. In our framework, however, also the
code is protected, being hosted in the enclave. We first adapt the standard definition to our case,
where the entire module is protected, and at the end of this section, we discuss how to recover the
classic notion, where the code is public and some data secret.

Definition 7.5 (SSNI). Two modules MM and MM ′ are termination- and time-sensitive non-
interferent (SSNI) in SancusH (written MM ≈SS MM ′) iff for all contexts C = 〈MC ,D〉, and
configurations c both implications hold:

• D INITC[MM] →
∗ c → HALT =⇒ ∃c ′. (D INITC[MM′] →

∗ c ′ → HALT ∧ c
L
= c ′),

• D INITC[MM′] →
∗ c → HALT =⇒ ∃c ′. (D INITC[MM] →

∗ c ′ → HALT ∧ c
L
= c ′).

Similarly, we define SSNI in SancusL,MM ≈SSMM ′ .

The following theorem is easily established:

Theorem 7.6.

(1) IfMM �
L MM ′, thenMM ≈SSMM ′ and (2) ifMM ≈SSMM ′, thenMM �

H MM ′ .

Thus, due to Theorem 6.3, the preservation of SSNI holds:

Corollary 7.7. MM ≈SSMM ′ =⇒ MM ≈SSMM ′ .

To recover the standard notion of termination- and time-sensitive non-interference, we only
consider the code part of a module. In this way, we model the fact that the code needs not to be
kept confidential, even though it is part of the enclave.

Recall the notion of layout L = 〈ts, te, ds, de, isr〉, which is fixed in our model, and letMP and
MD be two modules. ByMP � MD , denote the module resulting from the composition of the
code ofMP (called module program) and the data ofMD (called module data). Formally:

Definition 7.8. Given two modulesMP andMD , let

MP �MD � λl .

{
MP (l) if l ∈ [ts, te),

MD (l) if l ∈ [ds,de),

since the standard notion of termination- and time-sensitive non-interference only predicates
on single programs. To recover it, we first tailor our SSNI to consider a single module program:

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:36 M. Busi et al.

Definition 7.9 (Unary SSNI). A module program MP is termination- and time-sensitive non-
interferent (USSNI) in SancusH (written HUSSNI MP) iff for all module dataMD ,MD′ , for all con-
texts C = 〈MC ,D〉, and for all configurations c:

D INITC[MP �MD] →
∗ c → HALT =⇒ ∃c ′. (D INITC[MP �MD′] →

∗ c ′ → HALT ∧ c
L
= c ′).

Similarly, we define USSNI in SancusL, L
USSNI

MP .

The following theorem then relates USSNI with our contextual equivalence, both in SancusH

and SancusL:

Theorem 7.10. LetMP be a module program, then

(1) if ∀MD ,MD′ . (MP �MD) �
L (MP �MD′), then L

USSNI
MP ; and

(2) if HUSSNI MP , then ∀MD ,MD′ . (MP �MD) �
H (MP �MD′).

Finally, the preservation of USSNI easily follows by Theorem 6.3:

Corollary 7.11. If HUSSNI MP , then L
USSNI

MP .

As a final remark, note that both Corollary 7.7 and 7.11 hold under the hypothesis that SancusH

and SancusL are fully abstract.

7.3 Take Three: Stepwise Termination- and Time-sensitive Non-interference

Since the attacker in our model is able to interrupt execution at every CPU cycle, one might wonder
about the preservation of a stronger, stepwise notion of non-interference.

For that, we start from SSNI and introduce stepwise termination- and time-sensitive non-

interference. It stipulates that two modules are non-interferent whenever their public memories
are kept equivalent while stepping between successive unprotected configurations. For that, we
first need the following definition:

Definition 7.12. D c �
k
c ′ iff

D c → c1 → · · · → cn → c ′ ∧ c, c ′ mode UM ∧ ∀1 ≤ i ≤ n. ci mode PM ∧ k =

{
0 n = 0

2 o.w.

Also, let D c1 �t
K
ct , where K =

∑t
i=1 ki , is the shorthand for D c1 �k1

· · ·�
kt

ct .

Similarly, we define D c �
k
c ′ and D c �t

K
c ′.

Intuitively, k counts the interactions between the context and the module (k = 0 if there are
none and k = 2 if there is one entry and one exit), whereas the arrows�

k
and�

k
ignore all the

steps taken in protected mode and just take into account the actions of the context.
We can now define the new notion of stepwise termination- and time-sensitive non-interference:

Definition 7.13. Two modulesMM andMM ′ are stepwise termination- and time-sensitive non-
interferent (SSSNI) in SancusH (written MM ≈SSS MM ′) iff for all contexts C = 〈MC ,D〉 both
implications hold

• D INITC[MM] �
t
K
c =⇒ ∃c ′. D INITC[MM′] �

t
K
c ′ ∧ c

L
= c ′,

• D INITC[MM′] �
t
K
c ′ =⇒ ∃c . D INITC[MM] �

t
K
c ∧ c

L
= c ′.

Similarly, we define SSSNI in SancusL,MM ≈SSSMM ′ .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:37

Since the arrows�t
K

and�t
K

are in a clear relation with
β
===⇒⇒ (see Property A.24), we can prove

the following results, leading to the preservation of SSSNI :

Lemma 7.14.

(1) ifMM �
L MM ′, thenMM ≈SSSMM ′ and (2) ifMM ≈SSSMM ′, thenMM �

H MM ′

Thus, due to Theorem 6.3, the preservation of SSSNI holds:

Corollary 7.15. IfMM ≈SSSMM ′ , thenMM ≈SSSMM ′ .

We note in passing that the same considerations made at the end of Section 7.2 suffice to show
that our contextual-equivalence coincides with this notion of non-interference when the code and
some data are deemed public.

7.4 Take Five: Hypersafety5

In this section, we briefly sketch how to reduce our notion of full abstraction to the preservation
of a much wider family of security properties than just non-interference, building on the work of
Patrignani and Garg [50].

We first recall some notation. A compiler is seen in Reference [50] as a mapping �·� from
source to target programs. Our compiler is actually the identity function, since any moduleMM

in SancusH is mapped into the same moduleMM in SancusL. Also, Patrignani and Garg [50] give
the following notion of trace equivalence, which we call whole program trace equivalence:

Definition 7.16 (Definition 19 [50]). We say that

MM
W T
= MM ′ ⇐⇒ ∀C .WTr(C[MM]) = WTr(C[MM ′]),

where WTr(C[MM]) � {β | ∃c .D INITC[MM]
β
===⇒⇒∗ c}.

Contrary to our notion of Definition 6.7, their definition of trace equivalence requires the pro-
grams to produce the same set of traces under a fixed context (i.e., it is defined on whole programs).

Crucially, the following theorem links the notion of whole program trace equivalence with ours:

Theorem 7.17. The following relations are equivalent:

(1)MM
W T
= MM ′, (2)MM

T
=MM ′, (3)MM �

L MM ′, (4)MM �
H MM ′ .

As a consequence of Theorem 7.17, our coarse-grained traces (Figure 9) are thus a fully abstract
trace semantics for both SancusH and SancusL, according Definition 20 of Reference [50]:

Corollary 7.18.

(1) ∀MM ,MM ′ .MM �
H MM ′ ⇐⇒ MM

W T
= MM ′ ;

(2) ∀MM ,MM ′ .MM �
L MM ′ ⇐⇒ MM

W T
= MM ′ .

Due to this corollary, both Assumption 1 (i.e., trace semantics of SancusH is fully abstract) and
Assumption 2 (i.e., trace semantics of SancusL is fully abstract) from Reference [50] hold. Recall
that the compiler from SancusH to SancusL implicitly used throughout the article is an identity
compiler (mapping a module in itself). By the assumption above, it also follows that SancusH and
SancusL share the same set of fully abstract traces. Our identity compiler is therefore trivially cor-

rect, and it also is a fail-safe-behavior compiler—roughly, a compiler producing target programs that

5Not four as a homage to Dave Brubeck and his Quartet.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:38 M. Busi et al.

always halt after an invalid input (Definition 16 of Reference [50]). We finally conclude that all the
safety hyperproperties that hold for whole programs in SancusH also hold in SancusL (Theorems
10 and 6 of Reference [50]).

Note that the above is just a sketch of how one could prove the preservation of hypersafety
following the approach of Reference [50]. Indeed, a more formal and complete treatment of hy-
perproperty preservation would require traces to be the ground truth concerning what an attacker
might observe. This might call for a complete reworking of the notion of traces in our setting,
which are now a mere tool, beneficial to the proof. The same considerations hold for other princi-
ples of secure compilation based on (robust) hyperproperty preservation, such as those in Refer-
ences [2, 3]; see also Section 9.1.

8 IMPLEMENTATION AND EVALUATION

We provide a full implementation6 of our approach based on the Sancus [45] architecture that,
in turn, is based on the openMSP430, an open source implementation of the TI MSP430 ISA. Our
implementation has two parts. First, we adapted the execution unit’s state machine to add padding
cycles whenever an interrupt happens in protected mode and when we return from such interrupts.
Second, we added a protected storage area corresponding to B.

Cycle padding. To implement cycle padding, we added three counters to the processor’s frontend.
The first, Creti_nxt, tracks the number of cycles to be padded on the next RETI. Whenever an
interrupt request (IRQ) occurs, this counter is initialized to zero and is subsequently incremented
every cycle until the current instruction completes. Thus, at the end of an instruction, this counter
holds t − ta , which corresponds to tpad in B (cf. the (INT-PM-P) rule of SancusL).

The second counter, Cirq, holds the number of cycles that needs to be padded when an IRQ
occurs. It is initialized to MAX_TIME−Creti_next (MAX_TIME is 6 in our case) when the instruction, during
which an IRQ occurred, finishes execution. That is, it holds the value k from the rule (INT-PM-P) of
SancusL after the instruction finishes. From this point on, the counter is decremented every cycle
and the execution unit’s state machine is kept in a wait state until the counter reaches zero. Only
then it is allowed to progress and start handling the IRQ.

Last, the third counter, Creti, holds the number of cycles that needs to be padded for the current
RETI instruction. Whenever a RETI is executed while handling an IRQ from protected mode, this
counter is initialized with the value of Creti_nxt. Then, after restoring the processor state from B
this counter is decremented every cycle until it reaches zero. After these padding cycles, the next
instruction is fetched, from R[pc] restored from B, and executed. Note that these padding cycles
behave as any tpad-cycle instruction from the perspective of the padding logic. That is, they can
be interrupted and, hence, padded as well. This is the reason why we need two counters to hold
padding information for RETI: Creti is used to pad the current RETI instruction and Creti_nxt is
used—concurrently, if an IRQ occurs—to count tpad for the next RETI.

Saving and restoring the processor state. Whenever an IRQ in protected mode occurs, the proces-
sor’s register state needs to be saved in a location inaccessible from software. Our current imple-
mentation uses a shadow register file to this end. We duplicate all registers R0, . . . , R15 (except R3,
the constant generator, which does not store state). On an IRQ, all registers are first copied to the
shadow register file and then cleared. When a subsequent RETI is executed, registers are restored
from their copies. For the other values in B, pcold is handled the same as registers, and tpad is saved
from Creti_nxt and restored to Creti. Besides the values in B, we add a single bit to indicate if we
are currently handling an IRQ from protected mode, allowing us to test if B � ⊥.

6 Our implementation is available online at https://github.com/sancus-pma/sancus-core/tree/nemesis.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

https://github.com/sancus-pma/sancus-core/tree/nemesis

Securing Interruptible Enclaved Execution on Small Microprocessors 12:39

The current implementation saves and restores the processor state in a single cycle at the cost
of approximately doubling the size of the register file. If this increase in area is unacceptable, then
the state could be stored in the protected memory area. Directly implementing this in hardware
would increase the number of cycles needed to save and restore a state to one cycle per register.
Of course, one should make sure that this memory area is inaccessible from software by adapting
the memory access control logic of the processor accordingly.

Evaluation. To evaluate the impact on the performance of our implementation, we only need to
quantify the overhead on handling interrupts and returning from them, as an uninterrupted flow
of instructions is not impacted by our design.

When an IRQ occurs, as well as when the subsequent RETI is executed, there is a maximum of
MAX_TIME padding cycles executed. This variable part of the overhead is thus bounded by MAX_TIME

cycles for both cases. The fixed part—saving and restoring the processor’s state—turns out to be 0
in our current implementation: Since the fetch unit’s state machine needs at least one extra cycle
to do a jump in both cases, copying the state is done during this cycle and causes no extra overhead.
Of course, if the register state is stored in memory, as described above, then the fixed overhead
grows accordingly.

To evaluate the impact on hardware cost, we consider the scenario where the Sancus processor
is synthesized on an FPGA, and we count the number of FPGA resources required for this syn-
thesis. More specifically, we count the number of registers required (a measure for the amount of
hardware state, i.e., flip-flops) and the number of lookup-tables (LUTs) required (a measure for
the amount of hardware combinational logic).

We synthesized our implementation on a Xilinx XC6SLX25 Spartan-6 FPGA with a speed grade
of −2 using Xilinx ISE Design Suite optimizing for area. The baseline is an unaltered Sancus 2.0
core configured with support for a single protected module and 64-bit keys for remote attestation.
The unaltered core could be synthesized using 1,239 registers and 2,712 LUTs. Adding support for
saving and restoring the processor state increases the area to 1,488 registers and 2,849 LUTs and the
implementation of cycle padding further increases it to 1,499 registers and 2,854 LUTs. It is clear
that the largest part of the overhead comes from saving the processor state, which is necessary
for any implementation of secure interrupts and can be optimized as discussed in Section 8. The
implementation of cycle padding, however, does not have a significant impact on the processor’s
area.

9 DISCUSSION

9.1 On the Use of Full Abstraction as a Security Objective

The security guarantee that our approach offers is quite strong: An attack is possible in SancusH

if and only if it is possible at SancusL. Since isolation is defined in term of contextual equivalence,
full abstraction fits nicely in our setting, in that it ensures preservation and reflection of contextual
equivalence.

The if -part, namely, preservation, guarantees that extending SancusH with interrupts opens no
new vulnerabilities. Reflection, i.e., the only if -part, is needed, because otherwise two enclaves
that are distinguishable in SancusH become indistinguishable in SancusL. Although this mainly
concerns functionality and not security, a problem emerges: Adding interrupts is not fully “back-
wards compatible.” Indeed, reflection rules out mechanisms that while closing the interrupt side
channels also close other channels. We believe the situation is very similar for other extensions:
Adding caches, pipelining, and so on, should not strengthen existing isolation mechanisms either.

Actually, full abstraction enables us to take the security guarantees of SancusH as the specifica-
tion of the isolation required after an extension is added.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:40 M. Busi et al.

A property alternative to full abstraction would be to require (a non-interactive version of)
robust preservation of timing-sensitive non-interference [3]. This can also guarantee resistance
against the example attacks in Section 3. However, this property offers a strictly weaker guaran-
tee: Our full abstraction result implies that timing-sensitive non-interference properties of SancusH

programs are preserved in SancusL, provided that non-interference takes as secret the whole en-
clave, i.e., its memory, code, and initial state (see also the discussion in Section 7 about the role of
full abstraction in preservation of non-interference).

In addition, full abstraction implies that isolation properties that rely on code confidentiality
are preserved, and this matters for enclave systems that guarantee code confidentiality, like the
Soteria system [25]. An advantage, however, might be that robust preservation of timing-sensitive
non-interference might be easier to prove.

In case full abstraction is considered too strong as a security criterion, it is possible to selectively
weaken it by modifying SancusH. For instance, to specify that code confidentiality is not important,
one can modify SancusH to allow contexts to read the code of an enclave (see also the discussion
at the end of Section 7.2).

9.2 The Impact of Our Simplifications

The model and implementation we discussed in this article make several simplifying assumptions.
A first important observation that we want to make is that some of them are straightforward to
remove. For instance, supporting more MSP430 instructions would not affect the strong security
guarantees offered by our approach, and only requires straightforward, yet tedious, technical work.

However, there are also other assumptions that are more essential, and removing these would
require additional research. Here, we discuss the impact of these assumptions on the applicability
of our results to real systems.

First, we scoped our work to only consider “small” microprocessors. We discuss the impact of
this simplification in Section 9.3.

Second, our model made some simplifying assumptions about the enclave-based isolation mech-
anism. We did not model support for cryptographic operations and for attestation. This means that
we assume that loading and initializing an enclave can be done as securely in SancusL as it can
be done in SancusH. Our choice separates concerns, and it is independent of the security criterion
adopted. Modelling both memory access control and cryptography would only increase the com-
plexity of the model, as two security mechanisms rather than one would be in order. Also, their
interactions should be considered to prevent, e.g., leaks of cryptographic keys unveiling secrets
protected by memory access control and vice versa. Also, we assumed the simple setting where
only a single enclave is supported. We believe these simplifications are acceptable, as they reduce
the complexity of the model significantly, and as none of the known interrupt-driven attacks rely
on these features. It is also important to emphasize that these are model-limitations and that an
implementation can easily support attestation and multiple enclaves. However, for implementa-
tions that do this, our current proof does not rule out the presence of attacks that rely on these
features. A more fundamental limitation of the model is that it forbids reentering an enclave that
has been interrupted, via mac . Allowing reentrancy essentially causes the same complications as
allowing multi-threaded enclaves, and these are substantial complications that also lead to new
kinds of attacks [59]. We leave investigation of these issues to future work.

Third, our model and implementation make other simplifications that we believe to be non-
essential and that could be removed with additional work but without providing important new
insights. For instance, we assumed that enclaves have no read/write access to untrusted memory.
A straightforward alternative is to allow these accesses, but to also make them observable to the
untrusted context in SancusH. Essentially, this alternative forces the enclave developer to be aware

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:41

of the fact that accessing untrusted memory is an interaction with the attacker. A better alternative
(putting less security responsibility with the enclave developer) is to rely on a trusted runtime that
can access unprotected memory to copy in/out parameters and results and then turn off access to
unprotected memory before calling enclaved code. This is very similar to how Supervisor Mode
Access Prevention prevents the kernel from the security risks of accessing user memory. Our model
could easily be extended to deal with such a trusted runtime by considering memory copied in/out
as a large CPU register. It is important to emphasize, however, that the implementation of such
trusted enclave runtime environments has been shown to be error-prone [10]. A further alternative
is considering the secure compartmentalizing compilation proposed by Juglaret et al. [31], who also
use full abstraction to prove security.

Another non-essential limitation is the fact that we do not support nested interrupts or inter-
rupt priority. It is straightforward to extend our model with the possibility of multiple pending
interrupts and a policy to select which of these pending interrupts to handle. One only has to take
care that the interrupt arrival time used to compute padding is the arrival time of the interrupt
that will be handled first.

In summary, to provide hard mathematical security guarantees, one often abstracts from some
details, and provable security only provides assurance to the extent that the assumptions made
are valid and the simplifications non-essential. The discussion above shows that this is the case
for a relevant class of attacks and systems, and hence that our countermeasure for these attacks is
well-designed. Since there is no 100% security, attacks remain possible for more complex systems
(e.g., including caches and speculation) or for more powerful attackers (e.g., with physical access
to the system).

9.3 Extending to More Complex Processors

Both our formal models, as well as the design and security proof of our interrupt padding counter-
measure, focus very much on enclaved execution on small microprocessors like the Sancus system.
An interesting question is to what extent the insights of our countermeasure design can be applied
to more complex enclaved execution platforms like Intel SGX. While the designs of Intel SGX and
Sancus are similar at a very high level, there are also major differences. The two most important
differences that are not captured by our model are:

(1) The execution time of instructions on a high-end processor is not deterministic. The use
of caches, and the use of processor optimization techniques such as pipelining, speculative
execution, micro-coding, and so forth implies that the execution time of instructions can vary
widely, both in terms of wall-clock time and in the number of processor cycles (or at least,
modelling the processor with sufficient detail to make execution time deterministic would
make the model very complex, as it would need to model state of the cache, the pipeline, the
branch predictor, and so forth).

(2) These high-end processor optimizations also typically imply that attackers have many more
ways to observe side effects of enclaved execution. In our model, the only thing a context
(attacker) learns about enclaved execution is timing, either end-to-end timing of an enclave
call or resume, or interrupt latency time. On higher-end enclaved execution systems, like
Intel SGX, enclaved execution has other side effects visible to attackers, such as the occur-
rence of page faults or contention for other shared micro-architectural resources [60]. Such
side effects could even be caused by transient enclaved execution, i.e., by instructions that
are executed speculatively but never committed [14].

The first aspect, the fact that execution times are non-deterministic, is to some extent a disad-
vantage for the attacker. Since interrupt latency attacks rely on measuring execution times, the fact

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:42 M. Busi et al.

that these measurements become non-deterministic will make it harder for the attacker to draw
conclusions. However, even on high-end Intel x86 processors, it has been shown [56] that averag-
ing interrupt latency measurements over multiple runs still leak significant information about the
instruction being executed and about the micro-architectural state of the processor at the point of
the interrupt. So it is just a matter for the attacker to improve his measurement techniques, and
some form of padding on handling of (and resuming from) interrupts would still be useful. On the
one hand, the non-deterministic nature of instruction execution time makes it hard to choose a
good value for MAX_TIME. Especially since the worst-case execution time on a complex processor can
be quite high, choosing MAX_TIME to be higher than any possible instruction may be prohibitively
expensive.7 On the other hand, it might be fine to choose MAX_TIME to be smaller than the actual
worst-case longest instruction execution time. In this case, one can think of the choice of MAX_TIME

as a tradeoff between performance and security against the leakage through interrupt latency. The
higher MAX_TIME, the less an attacker can learn from a specific interrupt latency measurement: Only
in the (presumably very few) cases where interrupt latency exceeds MAX_TIME the attacker does learn
something. However, in cases where the attacker can influence the execution time of instructions
(for instance, by flushing caches), the precise security gains are hard to estimate.

Alternatively, one could consider adding random padding to interrupt handling and resume,
together with measures to make it impossible for the attacker to execute the same measurement
many times (thus making it impossible to do statistical analysis).

Our current formal model and proof obviously do not apply to these more complex settings, and
it is unclear whether the strong guarantees that full abstraction provides are compatible with the
pragmatic or heuristic solutions suggested above.

The second aspect, the existence of other side effects visible to attackers of the enclaved execu-
tion, is even trickier. For instance, by spying on page table accesses [12, 42, 60] or via cache-based
side channels [23], an attacker can reliably observe enclave memory accesses at some granularity.
This is an important disadvantage for the defender, as it is less obvious that a padding counter-
measure would provide a substantial benefit in the presence of such observable side effects. For
instance, if the attacker can distinguish padding from regular instructions by observing side ef-
fects, then the countermeasure becomes useless. Making such a distinction could for instance be
done by monitoring accesses to code memory: If the processor is just padding, then no instruction
load needs to happen. So an implementation of our countermeasure on a complex processor would
have to make sure that padding is not distinguishable from instruction execution through any kind
of side effect that instructions might have, which we consider to be a significant challenge. From a
security point of view, the ideal scenario would be to remove all the possible side effects through
which enclaved executions leak information. However, just like the end-to-end timing side chan-
nel, closing other side channels completely will likely be too expensive, if not entirely impossible.
So instead, the question is whether we can accept some bounded side-channel leakage, i.e., leave
it up to the software developer to deal with the remaining channels (for instance, by means of
orthogonal defenses or by using some form of constant-time programming, like we did for the
end-to-end timing channel), but at the same time guarantee that the power to precisely schedule
and handle interrupts does not increase the power of these attacks. For instance, we might accept
the fact that memory accesses leak at the granularity of pages, while at the same time making sure
that the precision or bandwidth of that channel does not get amplified for interrupt adversaries, as
has been shown repeatedly in the case of Intel SGX [11, 42]. It is again an open question for future

7To give an idea of the complexity involved, consider that on modern Intel x86 processors with hardware virtualization
extensions, a single address translation can in itself already require up to 20 memory accesses, which in the worst-case
would all miss the cache hierarchy and have to be served from slow DRAM memory [17].

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:43

work whether this could be formulated usefully as a full abstraction theorem, where we model the
side channels that we accept in the high model, similarly to how we modeled end-to-end timing
attacks in the high model in this article.

10 RELATED WORK

Our work is motivated by the recent wave of software-based side-channel attacks and controlled-
channel attacks that rely on architectural or micro-architectural processor features. The area is too
large to survey here, but good recent surveys include Ge et al. [23] for timing attacks, Gruss’ PhD
thesis [26] for software-based micro-architectural attacks before Spectre/Meltdown, Canella et
al. [14] for transient execution based attacks, and Van Bulck’s PhD thesis [55] for Intel SGX attacks.
The attacks most relevant to this article are the pure interrupt-based attacks. Van Bulck et al. [56]
were the first to show how just measuring interrupt latency can be a powerful attack vector against
both high-end enclaved execution systems like Intel SGX and against low-end systems like the
Sancus system that we based our work on. Independently, He et al. [29] developed a similar attack
for Intel SGX.

There is an extensive body of work on defenses against software-based side-channel attacks.
The four surveys mentioned above [14, 23, 26, 55] also survey defenses, including both software-
based defenses like the constant-time programming model and hardware-based defenses such as
cache-partitioning. To the best of our knowledge, our work proposes the first defense specifi-
cally designed and proved to protect against pure interrupt-based side-channel attacks. De Clercq
et al. [18] have proposed a design for secure interruptibility of enclaved execution, but they have
not considered side channels—their main concern is to make sure that there are no direct leaks of,
e.g., register contents on interrupts. Most closely related to ours is the work on SecVerilog [62]
that also aims for formal assurances. To guarantee timing-sensitive non-interference properties,
SecVerilog uses a security-typed hardware description language. However, this approach has not
yet been applied to the issue of interrupt-based attacks. Similarly, Zagieboylo et al. [61] describe
an ISA with information-flow labels and use it to guarantee timing-insensitive information flow
at the architectural level.

An alternative approach to interruptible secure remote computation is pursued by VRASED [46].
In contrast to enclaved execution, their design only relies on memory access control for the at-
testation key, not for the software modules being attested. They prove that a carefully designed
hardware/software co-design can securely do remote attestation.

Our security criterion is directly influenced by a long line of work that considers full abstraction

as a criterion for secure compilation. The idea was first coined by Abadi [1] and has been applied in
many settings, including compilation to JavaScript [22], various intermediate compiler passes [5, 6],
and compilation to platforms that support enclaved execution [4, 47, 49]. But none of these works
consider timing-sensitivity or interrupts: They study compilations higher up the software stack
than what we consider in this article. Patrignani et al. [48] have provided a good survey of this
entire line of work on secure compilation.

Still higher up in the computational stack, Tomé Cortiñas et al. [16] extended the MAC li-
brary [58]—a Haskell information-flow control library—with asynchronous exceptions. Akin to in-
terrupts in our setting, asynchronous exceptions can be raised at any time and may break security
properties of the running code. To ensure that this never happens, they introduced a variant of
non-interference and proved that it is satisfied by their extension of the MAC library.

Other authors applied secure compilation techniques to prove security against side-channel
attacks. For instance, Barthe et al. [7] proved that a suitably modified version of the CompCert
compiler [37] preserves the constant-time policy. For that, they identified the passes of CompCert
that did not preserve constant-time and modified them accordingly; afterwards, they proved them

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:44 M. Busi et al.

to be constant-time preserving using variants of the proof techniques proposed in Reference [8].
Very recently, Patrignani and Guarnieri [51] proved secure a couple of mitigations against Spectre
v1 [34] by specializing hyperproperty preservation principles of Reference [3] to preserve specu-

lative non-interference [28].
One could consider the addition of speculation and out-of-order execution as a new processor

feature, similar to how our work considers extending a processor with the feature of interrupts.
It would be reasonable to investigate under what conditions this new feature does not introduce
new information leaks. To apply our approach to this problem seems to require a relatively precise
model of how these features work. Existing work on dealing with speculative leaks using program-
ming language techniques instead works with more abstract models of speculation. For example,
Spectector [28] is a symbolic execution tool that analyzes x86_64 assembly programs and detects
the presence of possible speculative leaks or proves their absence. Guanciale et al. [27] present a
formal model capturing out-of-order execution and speculation in single core processors. Using
this model, they discover three new (possible) vulnerabilities and assess the security of existing
countermeasures. Vassena et al. [57] define a static type system that labels each expression of their
language as either transient or stable (i.e., that may include transient values or not, respectively).
Crucially, their type system rejects programs that possibly contain speculative leaks. Also, they
introduce the protect construct that ensures that assignments containing it are performed only
once their right-hand side is stable. Furthermore, the same paper proposes an algorithm that au-
tomatically synthesizes the minimal number of protects to be inserted in given program to fix all
the potential speculative leaks.

11 CONCLUSIONS AND FUTURE WORK

We have proposed an approach to formally assure that extending a microprocessor with a new
feature does not weaken the isolation mechanisms that the processor offers. More precisely, we
advocate full abstraction as a formal criterion of what it means to maintain the security of isolation
mechanisms under processor extensions. We have applied our approach to an IoT-scale micropro-
cessor: First, we have designed an extension of Sancus with interruptible enclaves (SancusL) and
then we have proved it fully abstract with respect to the original Sancus without them (SancusH).
Remarkably, the full abstraction proof relies on the strong power of our attacker that controls the
unprotected memory, which is limited to 64 KB, and the I/O device, which instead has unlimited
memory. Indeed, the backtranslation encodes the attack logic within the I/O device that then drives
a fixed piece of code in unprotected memory, namely, the software component of the attacker.

To further assess our full abstraction-based security criterion, we have compared its guarantees
with those of some notions of non-interference preservation presented in the literature: We have
proved that they are implied by our full abstraction theorem. We have also outlined how to prove
that our results preserve hyperproperties, thus ensuring that modules executed in interruptible
Sancus enjoy the same hyperproperties as they would when executed by the uninterruptible one.

Despite this successful case study, some limitations of the approach remain. A first challenging
issue to be addressed in the future concerns the formal treatment of the extensions discussed in
Section 9.3. As a matter of fact, our model and full abstraction result seem to be a good starting
point, although they currently apply only to “small” microprocessors for which we can define a
cycle-accurate operational semantics. While this obviously makes it possible to rigorously reason
about timing-based side channels, scaling our approach to larger processors is, however, not trivial.
Indeed, to handle larger processors, we need models that can abstract away many details of the
processor implementation, yet keep enough details to model micro-architectural attacks of interest.
A promising example of model with such features was proposed by Disselkoen et al. [20], which
could replace our cycle-accurate model.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:45

In our proposal, the security criterion is binary: An extension is either secure or it is not. There-
fore, low bandwidth side channels are not kept apart from high-bandwidth side channels. An impor-
tant challenge for future work is to introduce some kind of measure on the weakening of security
to allow security policies that consider some bounded amount of leakage acceptable.

APPENDICES

A ADDITIONAL DEFINITIONS AND RESULTS

A.1 The Device of Section 4.6.1 Is Deterministic

Property A.1. If D δ , t , ta �
k
D
δ ′, t ′, t ′a and D δ , t , ta �

k
D
δ ′′, t ′′, t ′′a , then δ ′ = δ ′′, t ′ = t ′′

and t ′a = t ′′a .

Proof. Trivial. �

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:46 M. Busi et al.

A.2 Complete Operational Semantics Rules of SancusH (Section 5.1)

Fig. 13. Rules of the main transition system for SancusH including interrupt logic (part I).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:47

Fig. 14. Rules of the main transition system for SancusH including interrupt logic (part II).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:48 M. Busi et al.

Fig. 15. Rules of the main transition system for SancusH including interrupt logic (part III).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:49

A.3 Complete Operational Semantics Rules of SancusL (Section 5.2)

Fig. 16. Rules of the main transition system for SancusL including interrupt logic (part I).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:50 M. Busi et al.

Fig. 17. Rules of the main transition system for SancusL including interrupt logic (part II).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:51

Fig. 18. Rules of the main transition system for SancusL including interrupt logic (part III).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:52 M. Busi et al.

A.4 Proof of Progress of Section 5.3

Theorem 5.1 (Progress). For all C = 〈MC ,D〉,MM and configuration c

D INITC[MM] →
∗ c � =⇒ c = HALT and D INITC[MM] →

∗ c � =⇒ c = HALT.

Proof. Since no conclusion of the SancusH and SancusL semantic rules has HALT as starting
configuration, this distinguished configuration is trivially stuck.

Also, HALT is the only stuck configuration, because any configuration c =

〈δ , t , ta ,M,R, pcold ,B〉 � HALT can progress. We show this for SancusH; for SancusL just
substitute→ for→.

If B � 〈⊥,⊥, tpad〉, then the following three cases arise:

(1) If decode(M,R[pc]) = ⊥, then (CPU-Decode-Fail) applies.
(2) If decode(M,R[pc]) � ⊥ ∧ i,R, pcold ,B �mac OK, then (CPU-Violation-PM) applies.
(3) If the device is not willing to synchronize with the CPU, then either rule (CPU-NoIN) or

rule (CPU-NoOUT) applies.
(4) Otherwise, there is a rule for each i = decode(M,R[pc]) leading to a target configuration.

Indeed, all the cases that may arise are covered by the premises that:
• check well-formedness of i and non-violation of MAC; and
• are all mutually exclusive (e.g., B � ⊥ in (CPU-Reti-Chain) and (CPU-Reti-PrePad) is dealt with

in rule (CPU-Reti) or the requirements of the values of R[sr.GIE] and t ′a in (CPU-Reti-Chain)

appear negated in (CPU-Reti-PrePad)); and
• require the existence of values either built explicitly (e.g., the value of sr.N in (CPU-And))

or through relations that are always defined (e.g., through the transition system for inter-
rupts).

Otherwise, B = 〈⊥,⊥, tpad〉 and the rule (CPU-Reti-Pad) applies. �

A.5 Proofs and Additional Definition for Section 6.1

Lemma 6.5. For any moduleMM , context C , and corresponding interrupt-less context C� I :

C� I [MM]⇓
L ⇐⇒ C[MM]⇓

H.

Proof. By definition of D · �k
D
·, the value ta in the CPU configuration (that signals the

presence of an unhandled interrupt) is changed only when an interrupt has been raised since the
last time it was checked.

Since any int? action has been substituted with an ϵ , ta is never changed from its initial ⊥ value.
Since the only difference in behavior between the two levels is in the interrupt logic, and since

the ISR inC� I is never invoked (thus, it does not affect the program behavior), D · ↪→I · behaves
exactly as D · ↪→I ·. So, C� I [MM]⇓

L implies C[MM]⇓
H and vice versa. �

Lemma 6.6 (Reflection). ∀MM ,MM ′ . (MM �
L MM ′ =⇒ MM �

H MM ′).

Proof. We can expand the hypothesis using the definition of �L and �H as follows:

(∀C .C[MM]⇓
L ⇐⇒ C[MM ′]⇓

L) =⇒ (∀C ′.C ′[MM]⇓
H ⇐⇒ C ′[MM ′]⇓

H).

For any C ′, we can build the corresponding interrupt-less context C ′
� I
.

Since interrupt-less contexts are a (strict) subset of all the contexts, by hypothesis:

C ′� I [MM]⇓
L ⇐⇒ C ′� I [MM ′]⇓

L.

But from Lemma 6.5 it follows that

C ′[MM]⇓
H ⇐⇒ C ′[MM ′]⇓

H. �

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:53

Definition A.1 (Complete Interrupt Segments). Let α = α0 · · · αn be a fine-grained trace. The set
Iα of complete interrupt segments of α is defined as follows:

Iα � {(i, j) | αi = handle!(k) ∧ α j = reti?(k ′) ∧ i < j ∧ ∀i < l < j . αl = ξ }.

A.6 Preliminary Definitions and Proofs for Lemmata 6.9 and 6.10

Roughly, we define two configurations be P-equivalent (U-equivalent, respectively) if they can-
not be kept apart by looking at those parts that can be inspected when the CPU is operating in
protected (unprotected, respectively) mode.

Definition A.2. We say that two configurations are P-equivalent (written c
P
≈ c ′) iff

(c = c ′ = HALT)

∨ (c = 〈δ , t , ta ,M,R, pcold ,B〉 ∧ c ′ = 〈δ ′, t ′, t ′a ,M
′,R′, pc′old ,B

′〉 ∧ M
P
=M′ ∧

pcold mode m ∧ pc′old mode m ∧ R
PM
�m R

′ ∧ B �� B′),

where

• M
P
=M′ iff ∀l ∈ [ts, te) ∪ [ds, de).M[l] =M′[l],

• R
PM
�m R

′ iff (m = PM =⇒ R = R′),
• B �� B′ iff (B = ⊥ ⇐⇒ B′ = ⊥).

Definition A.3. We say that two configurations are U -equivalent (written c
U
≈ c ′) iff

(c = c ′ = HALT) ∨,

(c = 〈δ , t , ta ,M,R, pcold ,B〉 ∧ c ′ = 〈δ ′, t ′, t ′a ,M
′,R′, pc′old ,B

′〉 ∧ M
U
=M′ ∧

c mode m ∧ c ′ mode m ∧ δ = δ ′ ∧ t = t ′ ∧ ta = t ′a ∧ R
UM
�m R

′ ∧ B �� B′),

where

• M
U
=M′ iff ∀l � [ts, te) ∪ [ds, de).M[l] =M′[l],

• R
UM
�m R

′ iff (m = UM =⇒ R = R′) ∧ R[sr.GIE] = R′[sr.GIE],
• B �� B′ iff (B = ⊥ ⇐⇒ B′ = ⊥).

The following property easily follows from the above definitions:

Property A.2. Both
P
≈ and

U
≈ are equivalence relations.

Proof. Trivial. �

A.6.1 Properties of Definition A.2. The first property says that if a configuration can take a step,
then also another P-equivalent configuration can.

Property A.3. If c1
P
≈ c2, c1 mode PM, D′ c1 → c ′1, then decode(M1,R1[pc]) =

decode(M2,R2[pc]) and D′ c2 → c ′2.

Proof. Since c1
P
≈ c2 and c1 mode PM, it also holds that c2 mode PM. Also, the instruction

decode(M1,R1[pc]) is decoded in bothM1 andM2 at the same protected address, hence
decode(M1,R1[pc]) = decode(M2,R2[pc]), and D′ c2 → c ′2. �

Property A.4. If c1
P
≈ c2, c1 mode PM, D c1 → c ′1, D′ c2 → c ′2 and B′1 �� B

′
2, then c ′1

P
≈ c ′2.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:54 M. Busi et al.

Proof. Since c1
P
≈ c2, c1 mode PM and D c1 → c ′1, by Property A.3, i = decode(M1,R1[pc]) =

decode(M2,R2[pc]) and D′ c2 → c ′2.
Since B′1 �� B

′
2, we have two cases:

(1) Case B′1 = B
′
2 = ⊥. In this case, we know that no interrupt handling started during the step,

and by exhaustive cases on i , we can show c ′1
P
≈ c ′2:

• Case i ∈ {HLT, IN r, OUT r}. In both cases, we have c ′1 = EXCc1

P
≈ EXCc2 = c

′
2.

• Otherwise. The relevant values in c ′1 and c ′2 just depend on values that coincide also in c1

and c2. Hence, by determinism of the rules, we get c ′1
P
≈ c ′2.

(2) Case B′1 � ⊥ and B′2 � ⊥. In this case an interrupt was handled, but the same instruction

was indeed executed in protected mode, henceM′1
P
= M′2. Also, R′1

PM
�UM R

′
2 holds trivially,

B′1 �� B
′
2 by hypothesis, and pc′

old 1
mode UM and pc′

old 2
mode UM. Thus, c ′1

P
≈ c ′2. �

Some sequences of fine-grained traces preserve P-equivalence.

Property A.5. If c1
P
≈ c2, D c1

�1︷︸︸︷
ξ · · · ξ
========⇒∗ c ′1

jmpIn?(R)
==========⇒ c ′′1 , D′ c2

�2︷︸︸︷
ξ · · · ξ
========⇒∗ c ′2

jmpIn?(R)
==========⇒ c ′′2 ,

then c ′′1
P
≈ c ′′2 .

Proof. We show by Noetherian induction over (�1, �2) thatM′1
P
= M′2. For that, we use well-

founded relation (�1, �2) ≺ (�′1, �
′
2) iff �1 < �

′
1 ∧ �2 < �

′
2.

• Case (0, 0). Trivial.
• Case (0, �2), with �2 > 0. (and symmetrically (�1, 0), with �1 > 0) We have to show that

D c1
ε
===⇒∗ c ′1 ∧ D

′ c2

�2︷︸︸︷
ξ · · · ξ
========⇒∗ c ′2 ⇒M

′
1

P
=M′2,

since from c1 there is no step, c1 = c ′1. Moreover, a sequence of ξ was observed starting
from c2, and since both configurations are in unprotected mode and no violation occurred

(see Table 2) the protected memory is unchanged. Thus, by transitivity of
P
=, we haveM′1 =

M1
P
=M2

P
=M′2.

• Case (�1, �2) = (�
′
1 + 1, �′2 + 1). If

D c1

�′
1︷︸︸︷

ξ · · · ξ
========⇒∗ c ′′′1 ∧ D

′ c2

�′
2︷︸︸︷

ξ · · · ξ
========⇒∗ c ′′′2 ⇒M

′′′
1

P
=M′′′2 (IHP),

then

D c1

�′
1︷︸︸︷

ξ · · · ξ
========⇒∗ c ′′′1

ξ
===⇒ c ′1 ∧ D

′ c2

�′
2︷︸︸︷

ξ · · · ξ
========⇒∗ c ′′′2

ξ
===⇒ c ′2 ⇒M

′
1

P
=M′2.

By (IHP), we know thatM′′′1
P
=M′′′2 . Indeed, since we observed ξ it means that pcold

′
1 mode

m ∧ pcold
′
2 mode m. Moreover (see Figure 8), since ξ was observed starting from c ′′′1 and from

c ′′′2 and, since both configurations are in unprotected mode, protected memory is unchanged.

Thus,M′1
P
=M′′′1

P
=M′′′2

P
=M′2.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:55

Since the instruction generating α = jmpIn?(R) was executed in unprotected mode, we have

thatM′′1
P
=M′′2 . Also R′′1 = R

PM
�PM R = R

′′
2 , pc′

old
′′
1
mode UM, pc′

old
′′
2
mode UM and B′′1 �� B

′′
2 . �

Property A.6. If c1
P
≈ c2, D c1

handle!(k1)
===========⇒∗ c ′1

�1︷︸︸︷
ξ · · · ξ
========⇒∗ c ′′1

reti?(k′1)
=========⇒ c ′′′1 ,

D′ c2
handle!(k2)
===========⇒∗ c ′2

�2︷︸︸︷
ξ · · · ξ
========⇒∗ c ′′2

reti?(k′2)
=========⇒ c ′′′2 , then c ′′′1

P
≈ c ′′′2 .

Proof. Since upon observation of handle!(kx) the protected memory cannot be modified, we

know thatM′1
P
=M′2.

We show by Noetherian induction over (�1, �2) thatM′′1
P
=M′′2 . For that, we use well-founded

relation (�1, �2) ≺ (�′1, �
′
2) iff �1 < �

′
1 ∧ �2 < �

′
2.

• Case (0, 0). Trivial.
• Case (0, �2), with �2 > 0 (and symmetrically (�1, 0), with �1 > 0). We have to show that

D c ′1
ε
===⇒∗ c ′′1 ∧ D

′ c ′2

�2︷︸︸︷
ξ · · · ξ
========⇒∗ c ′′2 ⇒M

′′
1

P
=M′′2 ,

since from c ′1 there is no step, c ′′1 = c
′
1. Moreover, a sequence of ξ was observed starting from

c ′2, and, since both configurations are in unprotected mode and no violation occurred (see

Table 2), the protected memory is unchanged. Thus, by transitivity of
P
=, we have M′′1 =

M′1
P
=M′2

P
=M′′2 .

• Case (�1, �2) = (�
′
1 + 1, �′2 + 1). If

D c ′1

�′
1︷︸︸︷

ξ · · · ξ
========⇒∗ civ

1 ∧ D
′ c ′2

�′
2︷︸︸︷

ξ · · · ξ
========⇒∗ civ

2 ⇒M
iv
1

P
=Miv

2 (IHP),

then

D c ′1

�′
1︷︸︸︷

ξ · · · ξ
========⇒∗ civ

1
ξ
===⇒ c ′′1 ∧ D

′ c ′2

�′
2︷︸︸︷

ξ · · · ξ
========⇒∗ civ

2
ξ
===⇒ c ′′2 ⇒M

′′
1

P
=M′′2 .

By (IHP), we know thatMiv
1

P
=Miv

2 . Indeed, since we observed ξ it means that pcold
′′
1 mode

UM ∧ mode UMpcold
′′
2 . Moreover (see Figure 8), since ξ was observed starting from civ

1 and
from civ

2 and since both configurations are in unprotected mode, no violation occurred and

by Table 2 protected memory is unchanged. Thus, by transitivity of
P
=, we haveM′′1

P
=Miv

1
P
=

Miv
2

P
=M′′2 .

Thus, we have thatM′′′1
P
= M′′′2 , since α = reti?(·) does not modify protected memory. Also

R′′′1

PM
�UM R

′′′
2 , B′′′1 �� B

′′′
2 , pc′

old 1
mode UM and pc′

old 2
mode UM, by definition of α = reti?(·). �

Property A.7. If c1
P
≈ c2, c1 mode PM, D c1

α1
====⇒ c ′1, D′ c2

α2
====⇒ c ′2, α1,α2 � handle!(·), then

α1 = α2 and c ′1
P
≈ c ′2.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:56 M. Busi et al.

Proof. By definition of fine-grained traces, we know that the transition leading to the observa-
tion of α1 happens upon the execution of an instruction that must also be executed starting from

c2 (by Property A.3) and that c ′1
P
≈ c ′2 (by Property A.4). Also, since c1 mode PM, we know that

α1 ∈ {τ (k1), jmpOut!(k1;R1)}. Thus, in both cases and, since by hypothesis α2 � handle!(·), it
must be that α2 = α1. �

Property A.8. If c1
P
≈ c2, D c1

τ (k
(0)
1) ·· · τ (k

(n1−1)

1)·α1
===================⇒∗ c ′1, D′ c2

τ (k
(0)
2) ·· · τ (k

(n2−1)

2)·α2
===================⇒∗ c ′2, and

α1,α2 � handle!(·), then τ (k (0)1) · · · τ (k
(n1−1)
1) · α1 = τ (k

(0)
2) · · · τ (k

(n2−1)
2) · α2 and c ′1

P
≈ c ′2.

Proof. Corollary of Property A.7. �

P-equivalence is preserved by complete interrupt segments (recall Definition A.1). Indeed, from
now onwards, denote

αx ∈ {ε} ∪

{α (0)x · · ·α
(nx−1)
x | nx ≥ 1 ∧ α (nx−1)

x = reti?(k (nx−1)
x) ∧

∀i . 0 ≤ i ≤ nx − 1. α (i)x � {•, jmpIn?(R(i)x), jmpOut!(k (i)x ;R(i)x)}}.

Property A.9. Let D and D′ be two devices.

If c(0)1

P
≈ c(0)2 , D c1

jmpIn?(R)
==========⇒ c(0)1

α 1
====⇒∗ c(n1)

1 and D′ c2
jmpIn?(R)
==========⇒ c(0)2

α 2
====⇒∗ c(n2)

2 , then c(n1)
1

P
≈

c(n2)
2 .

Proof.
We first show by induction on |Iα 1 | (see Definition A.1) that

D c(0)1
α 1
====⇒∗ c(n1)

1 ∧ D′ c(0)2
α 2
====⇒∗ c(n2)

1 ⇒ c(n1)
1

P
≈ c(n2)

2

assuming w.l.o.g. that |Iα 2 | ≤ |Iα 1 |.

• Case |Iα 1 | = 0. Trivial.
• Case |Iα 1 | = |Iα ′1 | + 1. If

D c(0)1

α ′1
====⇒∗ c

(n′1)

1 ∧ D′ c(0)2

α ′2
====⇒∗ c

(n′2)

2 ⇒ c
(n′1)

1

P
≈ c
(n′2)

2 (IHP),

then

D c(0)1
α 1
====⇒∗ c(n1)

1 ∧ D′ c(0)2
α 2
====⇒∗ c(n2)

2 ⇒ c(n1)
1

P
≈ c(n2)

2 .

Now let (i1, j1) be the new interrupt segment of α1 that we split it as follows:

α1 = α ′1 · τ (k
(n′1)

1) · · · τ (k
(i1−1)
1) · handle!(k (i1)

1) · · · reti?(k (j1)
1).

The following two exhaustive cases may arise:
(1) Case |Iα 1 | = |Iα 2 |. For some (i2, j2), we then have:

α2 = α ′2 · τ (k
(n′2)

2) · · · τ (k
(i2−1)
2) · handle!(k (i2)

2) · · · reti?(k (j2)
2).

By Properties A.8 and A.6, we know that c(n1)
1

P
≈ c(n2)

2 , being reached through α (j1)
1 and α (j2)

2 .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:57

(2) Case |Iα 2 | < |Iα 1 |. In this case, we have

α2 = α ′2 · τ (k
(n′2)

2) · · · τ (k
(n2−2)
2) · τ (k (n2−1)

2),

with c�1
P
≈ c�2 for n′2 ≤ � ≤ n2 − 2 = i1 − 1, where the last equality holds, because the

module is executing from configurations that are P-equivalent. As soon as the interrupt
arrives, the same instruction is executed (Property A.3) that causes the same changes in
the registers, the old program counter, and the protected memory. In turn, the first two
are stored in the backup before handling the interrupt. They are then restored by the RETI,

observed as α (j1)
1 , while the protected memory is left untouched. Consequently, we have

that c(n1)
1

P
≈ c(n2)

2 , which are the configurations reached through α (j1)
1 and τ (k (n2)−1

2). �

Finally, we can show that P-equivalence is preserved by coarse-grained traces:

Property A.10. If D INITC[MM]
jmpIn?(R)
==========⇒⇒ c1 and D′ INITC ′[MM]

jmpIn?(R)
==========⇒⇒ c2, then

c1
P
≈ c2.

Proof. By definition of coarse-grained traces, we have that in both premises jmpIn?(R) is pre-
ceded by a sequence of ξ actions (possibly in different numbers). Since neither ξ actions nor
jmpIn?(R) ever change the protected memory (by definition of memory access control) and since

the jmpIn?(R) sets the registers to the values in R, it follows that c1
P
≈ c2. �

The following definition gives an equality up to timings among coarse-grained traces:

Definition A.4. Let β = β0 . . . βn and β
′
= β ′0 . . . β

′
n′ be two coarse-grained traces. We say that β

is equal up to timings to β
′

(written β ≈ β
′
) iff

n = n′ ∧ (∀i ∈ {0, . . . ,n}. βi = β ′i ∨ (βi = jmpOut!(Δt ;R) ∧ β ′i = jmpOut!(Δt ′;R))).

Finally, the property below shows that the traces that are equal up to timings preserve the P-
equivalence:

Property A.11. If c1
P
≈ c2, D c1

β
===⇒⇒∗ c ′1, D′ c2

β
′

====⇒⇒∗ c ′2 and β ≈ β
′
, then c ′1

P
≈ c ′2.

Proof. The thesis easily follows from Property A.5 and Property A.9. �

A.6.2 Properties of Definition A.3. Also for U-equivalent configurations it holds that when one
takes a step, also the other does.

Property A.12. If c1
U
≈ c2, c1 mode UM, then decode(M1,R1[pc]) = decode(M2,R2[pc]).

Proof. Since c1
U
≈ c2 and c1 mode UM, it also holds that c2 mode UM. Also, the instruction

decode(M1,R1[pc]) is decoded in both M1 and M2 at the same unprotected address, hence
decode(M1,R1[pc]) = decode(M2,R2[pc]). �

Next, we prove that
U
≈ is preserved by unprotected-mode steps of the SancusL operational se-

mantics:

Property A.13. If c1
U
≈ c2, c1 mode UM and D c1 → c ′1, then D c2 → c ′2 ∧ c ′1

U
≈ c ′2.

Proof. Since c1
U
≈ c2, c1 mode UM andD c1 → c ′1, by Property A.12, i = decode(M1,R1[pc]) =

decode(M2,R2[pc]).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:58 M. Busi et al.

To show that c ′1
U
≈ c ′2, we consider the following exhaustive cases:

• Case i = ⊥. Since c1
U
≈ c2, we get c2 mode UM and by definition of · · → ·, we get c ′1 = EXCc1

and c ′2 = EXCc2 . However, by definition of EXC·, we have that M′1
U
= M′2, c ′1 mode UM,

c ′2 mode UM, δ ′1 = δ1 = δ2 = δ ′2, t ′1 = t1 = t2 = t ′2, t ′a1
= ta1 = ta2 = t ′a2

, R′1
UM
�m R

′
2, and

⊥ = B′1 �� B
′
2 = ⊥, i.e., c ′1

U
≈ c ′2.

• Case i = HLT. Trivial, since c ′1 = HALT = c ′2.
• Case i � ⊥. We have the following exhaustive sub-cases, depending on c ′1:

— Case c ′1 = EXCc1 . In this case a violation occurred, i.e., i,R1, pcold 1,B1 �mac OK. However,
the same violation also occurs for c2, since the only parts that may keep c1 apart from c2

are pcold and B, and thus c ′1
U
≈ c ′2 because:

∗ pcold 2 � pcold 1, cannot cause a failure, since unprotected code is executable from any-
where;
∗ B1 = 〈R1, pcold 1, tpad1

〉 � 〈R2, pcold 2, tpad2
〉 = B2, cannot cause a failure, since the ad-

ditional conditions on the configuration imposed by the memory access control only
concern values that are the same in both configurations.

— Case c ′1 � EXCc1 and i = RETI. If B1 = ⊥, then B1 = B2 = B
′
1 = B

′
2 = ⊥, hence

rule (CPU-Reti) applies and we get c ′1
U
≈ c ′2, sinceR′1 = R

′
2 andD ·�·D · is a deterministic

relation (Property A.1). If B1 � ⊥, then it must also be that B2 � ⊥ by U -equivalence, so
either rule (CPU-Reti-Chain) or rule (CPU-Reti-PrePad) applies. In the first case, we get

c ′1
U
≈ c ′2, because c1

U
≈ c2 and by determinism of D ·�·D · and D · ↪→I ·. In the second

case, we get c ′1
U
≈ c ′2, since 〈⊥,⊥, t ′

pad1
〉 = B′1 �� B

′
2 = 〈⊥,⊥, t

′
pad2
〉 and R′1

UM
�PM R

′
2 holds,

since we restored the register files from backups in which the interrupts were enabled
(otherwise, the CPU would not have handled the interrupt it is returning from).

— Case c ′1 � EXCc1 and i � {⊥, HLT, RETI}. All the other rules depend on both (i) parts of

the configurations that are equal due to c1
U
≈ c2, and on (ii) D · �5

D
· and D · ↪→I ·,

which are deterministic and have the same inputs (since c1
U
≈ c2). Hence, c ′1

U
≈ c ′2, as

requested.

�

The above property carries on fine-grained traces, provided that the computation is carried on
in unprotected mode:

Property A.14. If c1
U
≈ c2, c1 mode UM, D c1

α
===⇒ c ′1, then D c2

α
===⇒ c ′2 and c ′1

U
≈ c ′2.

Proof. By Properties A.12 and A.13, c ′1
U
≈ c ′2 and i = decode(M1,R1[pc]) = decode(M2,R2[pc]).

Thus, since the same i is executed underU -equivalent configurations and since c ′1
U
≈ c ′2, we have

that D c2
α
===⇒ c ′2. �

Property A.15. If c1
U
≈ c2, c1 mode UM,D c1

ξ · · ·ξ ·α
========⇒∗ c ′1 and α ∈ {ξ , •, jmpIn?(R), reti?(k)},

then D c2
ξ · · ·ξ ·α
========⇒∗ c ′2 and c ′1

U
≈ c ′2.

Proof. The proof goes by induction on the length n of ξ · · · ξ .

• Case n = 0. Property A.14 applies.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:59

• Casen′ = n+1. By induction hypothesis for some c ′′′1 , c ′′′2 , c ′′1 , and c ′′2 , we haveD c1

n′︷︸︸︷
ξ · · ·ξ
========⇒

c ′′′1
α
===⇒ c ′′1 , D c2

n′︷︸︸︷
ξ · · ·ξ
========⇒ c ′′′2

α
===⇒ c ′′2 , and c ′′1

U
≈ c ′′2 . Thus, if D c ′′′1

ξ
===⇒ civ

1 (i.e., we

observe a further ξ starting from c1), then by Property A.14, we get D c ′′′2

ξ
===⇒ civ

2 and

civ
1

U
≈ civ

2 . Finally, by Property A.14 applies on civ
1 and civ

2 , we get the thesis. �

Now, we move our attention to handle!(·).

Property A.16. If c(0)1

U
≈ c(0)2 , D c(0)1

τ (k
(0)
1) ·· · τ (k

(n1−1)

1)·handle!(k
(n1)

1)
============================⇒∗ c(n1+1)

1 and

D c(0)2

τ (k
(0)
2) ·· · τ (k

(n2−1)

2)·handle!(k
(n2)

2)
============================⇒∗ c(n2+1)

2 , then c(n1+1)
1

U
≈ c(n2+1)

2 .

Proof. • By definition of fine-grained semantics, handle!(k (nx)
x) only happens when an

interrupt is handled with c(nx)
x in protected mode.

• By definition of D · ↪→I ·, R
(n1+1)
1 = R

(n2+1)
2 = R0[pc �→ isr].

• Since unprotected memory cannot be changed by protected mode actions without causing a
violation (that would cause the observation of a jmpOut!(·; ·)) and is not changed upon RETI
when it happens in a configuration with backup different from ⊥ (cf. rules (CPU-Reti-*)),

M
(n1+1)
1

U
=M

(n2+1)
2 .

• Since we observe handle!(k (nx)
x) it must be that GIE = 1 and it had to be such also in c(0)x

(because by definition the operations on registers cannot modified this flag in protected
mode). Hence, t i

ax
= ⊥ for 0 ≤ i ≤ nx . Let t int

a1
and t int

a2
be the arrival times of the interrupt that

originated the observations handle!(k (n1)
1) and handle!(k (n2)

2), respectively. By definition of

D ·�·D ·, t
int
a1

and t int
a2

are the first absolute times after t (n1)
1 and t (n2)

2 in which an interrupt

was raised and, since D is deterministic and t (i)ax
= ⊥ for 0 ≤ i ≤ nx , it must be that

t int
a1
= t int

a2
= t int (recall that c(0)1

U
≈ c(0)2 and that IN or OUT instructions are forbidden in

protected mode).

Assume now that the instruction during which the interrupt occurred ended at time t f
x . Then,

we can write t (nx+1) as:

t (nx+1) = t (nx) + k (nx)
x = t (nx) + t int − t (nx) + t

f
x − t

int︸���������������������︷︷���������������������︸
Duration of the instruction

+ MAX_TIME − t
f
x + t

int︸������������������︷︷������������������︸
Mitigation from (INT-PM-P)

+6

=��t (nx) + t int −��t (nx) + ��t
f
x −��t

int + MAX_TIME − ��t
f
x +��t

int + 6

= t int + MAX_TIME + 6,

and therefore t (n1+1) = t (n2+1).

• Since t (n1+1) = t (n2+1), c(0)1

U
≈ c(0)2 and no interaction with D via IN or OUT can occur in

protected mode, the deterministic device D performed the same number of steps in both

computations, and then t (n1+1)
a1

= t (n2+1)
a2

and δ (n1+1)
1 = δ (n2+1)

2 .

Hence, c(n1+1)
1

U
≈ c(n2+1)

2 , as requested. �

The following properties show that the combination of U -equivalence and trace equivalence
induces some useful properties of modules and sequences of complete interrupt segments. Before

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:60 M. Busi et al.

doing that, we define the (a,n)-interrupt-limited version of a contextC as the context that behaves
as C but such that (i) the transition relation of its device results from unrolling at most n steps of
its transition relation and (ii) its device never raises interrupts after observing the sequence of
actions a:

Definition A.5. Let D = 〈Δ,δinit,
a
�D〉 be an I/O device. Let a be a string over the signature A

of I/O devices and denote � as the function that associates to each string over A a unique natural
number (e.g., its position in a suitable lexicographic order). Given a context C = 〈MC ,D〉, we
define its corresponding (a,n)-interrupt-limited context as C≤a,n = 〈MC ,D≤a,n〉 where D≤a,n =

〈img(
a
�D ≤a,n) ∪ dom(

a
�D ≤a,n), 0,

a
�D ≤a,n〉 and

a
�D ≤a,n �

(
{(p,a,p ′) | ∀a′.p = �(a′) ∧ p ′ = �(a′ · a) ∧ δinit

a′

�∗D δ
a
�D δ ′ ∧ |a′ · a | ≤ n} \

{(p, int?,p ′) | ∀a′.p = �(a · a′) ∧ p ′ = �(a · a′ · int?)}
)
∪

{(p, ϵ,p ′) | ∀a′.p = �(a · a′) ∧ p ′ = �(a · a′ · int?) ∧ δinit
a ·a′

�∗ D δ
int?
�D δ ′ ∧ |a · a′ · int?| ≤ n}.

(Note that any (a,n)-interrupt-limited context is actually a device, due to the constraint on its
transition function.)

Now, let

αx ∈ {ε} ∪ {α
(0)
x · · ·α

(nx−1)
x | nx ≥ 1 ∧ α (nx−1)

x = reti?(k (nx−1)
x) ∧

∀i . 0 ≤ i ≤ nx − 1. α (i)x � {•, jmpIn?(R(i)x), jmpOut!(k (i)x ;R(i)x)}}.

Property A.17. If

• MM
T
=MM ′

• D INITC[MM]
β ·jmpIn?(R)
============⇒⇒∗ c(0)1

• D INITC[MM′]
β ·jmpIn?(R)
============⇒⇒∗ c(0)2

• c(0)1

U
≈ c(0)2

• for somem1 ≥ 0, D c(0)1

α 1 ·τ (k
(n1)

1)·· ·τ (k
(n1+m1−1)

1)·jmpOut!(k
(n1+m1)

1 ;R′)
=====================================⇒∗ c(n1+m1+1)

1

• for somem2 ≥ 0, D c(0)2

α 2 ·τ (k
(n2)

2)·· ·τ (k
(n2+m2−1)

2)·jmpOut!(k
(n2+m2)

2 ;R′)
======================================⇒∗ c(n2+m2+1)

2 ,

then
∑n1+m1

i=0 γ (c(i)1) =
∑n2+m2

i=0 γ (c(i)2).

Proof. We show this property by contraposition, by showing that
∑n1+m1

i=0 γ (c(i)1) �∑n2+m2
i=0 γ (c(i)2) thenMM

T
�MM ′ . For that it suffices to show that

∃C ′.D′ INITC ′[MM]
β ·jmpIn?(R)
============⇒⇒∗ c(0)3

jmpOut!(Δt 3;R
(n3+m3)
3)

===================⇒⇒ c(n3+m3+1)
3

(i.e., D c(0)3

α 3 ·τ (k
(n3)

3)·· ·τ (k
(n3+m3−1)

3)·jmpOut!(k
(n3+m3)

3 ;R
(n3+m3)

3)
==⇒∗ c(n3+m3+1)

3)
such that

∀C ′′.D′′ INITC ′′[MM′]
β ·jmpIn?(R)
============⇒⇒∗ c(0)4

jmpOut!(Δt 4;R
(n4+m4+1)
4)

=====================⇒⇒ c(n4+m4+1)
4 with Δt3 � Δt4

(i.e., D c(0)4

α 4 ·τ (k
(n4)

4)·· ·τ (k
(n4+m4−1)

4)·jmpOut!(k
(n4+m4)

4 ;R
(n4+m4)

4)
==⇒∗ c(n4+m4+1)

4).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:61

Assume w.l.o.g. that
∑n1+m1

i=0 γ (c(i)1) <
∑n2+m2

i=0 γ (c(i)2). Noting that the first observable of β ·

jmpIn?(R)must be a jmpIn?(·), by Properties A.10 and A.11, we have that c(0)1

P
≈ c(0)3 and, similarly,

c(0)2

P
≈ c(0)4 . Thus, as a consequence of Properties A.3, A.9, and A.8,

∑n1+m1
i=0 γ (c(i)1) =

∑n3+m3
i=0 γ (c(i)3)

and
∑n2+m2

i=0 γ (c(i)2) =
∑n4+m4

i=0 γ (c(i)4).

Let n ∈ N be greater than the number of steps over the relation
·
�D in the computation

D INITC[MM] →
∗ c(n1+m1+1)

1 and let a be the sequence of actions over
·
�D in the computa-

tion D INITC[MM] →
∗ c(0)1 . Choosing C ′ = C≤a,n , we get Δt3 =

∑n1+m1
i=0 γ (c(i)1) =

∑n3+m3
i=0 γ (c(i)3).

Any other context C ′′ that allows to observe the same β · jmpIn?(R) from INITC ′′[MM′] raises 0
or more interrupts “after” c0

4, hence taking additional S ≥ 0 cycles on top of those required for

the instructions to be executed. Thus, MM

T
� MM ′ , since

∑n1+m1
i=0 γ (c(i)1) <

∑n2+m2
i=0 γ (c(i)2) and∑n1+m1

i=0 γ (c(i)1) = Δt3 < Δt4 =
∑n2+m2

i=0 γ (c(i)2) + S . �

Property A.18. If

• D INITC[MM]
β ·jmpIn?(R)
============⇒⇒∗ c(0)1

• D INITC[MM′]
β
′
·jmpIn?(R)

============⇒⇒∗ c(0)2

• c(0)1

U
≈ c(0)2

• D c(0)1

α 1 ·τ (k
(n1)

1)·· ·τ (k
(n1+m1−1)

1)·α1
========================⇒∗ c(n1+m1+1)

1 for some m1 ≥ 0 and α1 ∈

{jmpOut!(k (n1+m1)
1 ;R′), handle!(k (n1+m1)

1)}

• D c(0)2

α 2 ·τ (k
(n2)

2)·· ·τ (k
(n2+m2−1)

2)·α2
========================⇒∗ c(n2+m2+1)

2 for some m2 ≥ 0 and α2 ∈

{jmpOut!(k (n2+m2)
2 ;R′), handle!(k (n2+m2)

2)} ,

then

(1) |Iα 1 | = |Iα 2 |

(2) c(n1)
1

U
≈ c(n2)

2 .

Proof. Assume w.l.o.g. that
∑n1+m1

i=0 γ (c(i)1) ≤
∑n2+m2

i=0 γ (c(i)2), and we prove by induction on |Iα 1 |

that

D c(0)1
α 1
====⇒∗ c(n1)

1 ∧ D c(0)2
α 2
====⇒∗ c(n2)

1 imply c(n1)
1

U
≈ c(n2)

2 ∧ |Iα 1 | = |Iα 2 |.

• Case |Iα 1 | = 0. Since no complete interrupt segment was observed, it means that α1 cannot

end with a reti?(·), so it must be α1 = ε . Moreover, since c(0)1

U
≈ c(0)2 and the value of the GIE

bit cannot be changed in protected mode, we know that:

— Case R
(0)
1 [sr.GIE] = R

(0)
2 [sr.GIE] = 0. Then no handle!(·) can be observed in α2, hence it

must be that α2 = ε and the two theses easily follow.

— Case R
(0)
1 [sr.GIE] = R

(0)
2 [sr.GIE] = 1. Then it means that no interrupt was raised by the

device in the computation starting with c(0)1 and the same must happen in c(0)2 because of

U -equivalence and
∑n1+m1

i=0 γ (c(i)1) ≤
∑n2+m2

i=0 γ (c(i)2). Hence, it must be that α2 = ε and the
two theses easily follow.

• Case |Iα 1 | = |Iα ′1 | + 1. If

D c(0)1

α ′1
====⇒∗ c

(n′1)

1 ∧ D c(0)2

α ′2
====⇒∗ c

(n′2)

2 imply c
(n′1)

1

U
≈ c
(n′2)

2 ∧ |Iα ′1 | = |Iα
′
2
| (IHP),

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:62 M. Busi et al.

then

D c(0)1
α 1
====⇒∗ c(n1)

1 ∧ D c(0)2
α 2
====⇒∗ c(n2)

2 imply c(n1)
1

U
≈ c(n2)

2 ∧ |Iα 1 | = |Iα 2 |.

Now let (i1, j1) be the new interrupt segment of α1, which we split as follows:

α1 = α ′1 · τ (k
(n′1)

1) · · · τ (k
(i1−1)
1) · handle!(k (i1)

1) · · · reti?(k (j1)
1).

Since by (IHP) c
(n′1)

1

U
≈ c

(n′2)

2 and D is deterministic and no successfully I/O ever hap-
pens in protected mode, the first new interrupt (i.e., the one leading to the observation of

handle!(k (i1)
1)) is raised at the same cycle in both computations. Call c(i2)

2 the configuration
at the beginning of the step of computation in which such interrupt was raised (the choice
of indexes will be clear below). From this configuration, only three cases for the fine-grained
action might be observed:

— Case τ (·) and jmpOut!(·; ·). Never happens, since B(i2+1)
2 � ⊥.

— Case handle!(k (i2)
2). Property A.16 ensures that c(i2+1)

2

U
≈ c(i1+1)

1 , and Property A.15 that

at some index j2 a reti?(k (j2)
2) is observed in α2, i.e., a new interrupt segment (i2, j2) is

observed. Thus, |Iα 2 | = |Iα ′2 | + 1 = |Iα ′1 | + 1 = |Iα 1 | (where the second equality holds
by (IHP)). Finally, by definition of α2, we have that n1 = j1 + 1 and n2 = j2 + 2, hence

c(n1)
1

U
≈ c(n2)

2 . �

The following property states that U -equivalent unprotected-mode configurations perform the
same single coarse-grained action:

Property A.19. If c1
U
≈ c2, c1 mode UM and D c1

β
===⇒⇒ c ′1, then D c2

β
===⇒⇒ c ′2 and c ′1

U
≈ c ′2.

Proof. Since c1 mode UM, the segment of fine-grained trace that originated β (see Figure 9) is in
the form:

D c1
ξ · · ·ξ ·α
========⇒∗ c ′1

with either α = • or α = jmpIn?(R).
Property A.15 guarantees that:

D c2
ξ · · ·ξ ·α
========⇒∗ c ′2 ∧ c

′
1

U
≈ c ′2.

Thus, D c2
β
===⇒⇒ c ′2 and c ′1

U
≈ c ′2. �

Finally, we can show that U -equivalence is preserved by coarse-grained traces:

Property A.20. If c1
U
≈ c2, c1 mode UM, D c1

β
===⇒⇒∗ c ′1, D c2

β
===⇒⇒∗ c ′2, c ′1 mode UM and

c ′2 mode UM, then c ′1
U
≈ c ′2.

Proof. We show the property by induction on n, the length of β :

• Case n = 0. By definition of
ε
===⇒⇒∗, we know that it must be c ′1 = c1 and c ′2 = c

′
2 and the thesis

easily follows.
• Case n = n′ + 1. The only case in which a coarse-grained trace can be extended by just

one action, while remaining in unprotected mode, is when the action is •. In this case, the
hypothesis easily follows from the definition of • and U -equivalence.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:63

• Case n = n′ + 2. If

D c1
β
===⇒⇒∗ c ′′1 ∧ D c2

β
===⇒⇒∗ c ′′2 ∧ R

′′
1 [pc] mode UM ∧ R

′′
2 [pc] mode UM imply c ′′1

U
≈ c ′′2 ,

then

D c1
β
===⇒⇒∗ c ′′1

β β ′

=====⇒⇒ c ′1 ∧ D c2
β
===⇒⇒∗ c ′′2

β β ′

=====⇒⇒ c ′2 ∧ R
′
1[pc] mode UM ∧ R

′
2[pc] mode UM

imply c ′1
U
≈ c ′2.

By cases on ββ ′:

— Case ββ ′ = jmpIn?(R) •. Directly follows from definition of • and
U
≈.

— Case ββ ′ = jmpIn?(R) jmpOut!(Δt ;R′). By definition they are originated by

D c ′′1
ξ · · ·ξ ·jmpIn?(R)
==============⇒∗ c(0)1

α
(0)
1 · · · α

(n1−1)

1
=============⇒∗ c(n1)

1

jmpOut!(k
(n1)

1 ;R′)
===============⇒ c ′1,

D c ′′2
ξ · · ·ξ ·jmpIn?(R)
==============⇒∗ c(0)2

α
(0)
2 · · · α

(n2−1)

2
=============⇒∗ c(n2)

2

jmpOut!(k
(n2)

2 ;R′)
===============⇒ c ′2.

By (IHP) and by Property A.15, we can conclude that c(0)1

U
≈ c(0)2 .

Let c(Mx)
x be the configuration generated by the last reti?(·) in α (0)x · · · α (nx−1)

x . By Prop-
erty A.18 the number of completely handled interrupts is the same in the two traces and

c(M1)
1

U
≈ c(M2)

2 . Also:

∗ By definition of jmpOut!(k (n1)
1 ;R′) and jmpOut!(k (n2)

2 ;R′), we trivially get R′1 = R
′
2 = R

′.
∗ Since unprotected memory cannot be changed in protected mode (see Table 2) and

c(M1)
1

U
≈ c(M2)

2 ,M′1
U
=M′2.

∗ Let αx = α (0)x · · · α (nx−1)
x · jmpOut!(k (nx)

x ;R′). By definition of β = jmpOut!(Δt ;R′):

t ′1 = t (0)1 + Δt +
∑

(i1, j1)∈ |Iα 1 |

(
t (j1)
1 − t (i1+1)

1

)
,

t ′2 = t (0)2 + Δt +
∑

(i2, j2)∈ |Iα 2 |

(
t (j2)
2 − t (i2+1)

2

)
.

But t (0)1 = t (0)2 , since c(0)1

U
≈ c(0)2 . Also, each operand in (t (j1)

1 − t (i1+1)
1) equals the corre-

sponding (t (j2)
2 − t (i2+1)

2), because for each (pth element) (i1, j1) ∈ Iα 1 and corresponding

(i2, j2) ∈ Iα 2 , Property A.16 guarantees that t (i1+1)
1 = t (i2+1)

2 and Property A.15 guarantees

that t (j1)
1 = t (j2)

2 .
∗ Finally, since no interaction withD via INor OUToccurs in protected mode and since the

same deterministic device performed the same number of steps (starting from c(0)1

U
≈ c(0)2),

it follows that t ′a1
= t ′a2

and δ ′1 = δ ′2. �

A.7 Proofs of Lemmata 6.9 and 6.10 of Section 6.2.2

Proposition A.6. Let C = 〈MC ,D〉. If D INITC[MM]
β
===⇒⇒∗ c1 and D INITC[MM′]

β
===⇒⇒∗ c2,

then c1 mode m and c2 mode m.

Proof. Let β be the last observable of β . By definition c1 and c2 are such that, for some c ′1 and
c ′2:

D c ′1
α
===⇒ c1, D c ′2

α
===⇒ c2,

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:64 M. Busi et al.

with α equal to •, jmpIn?(·) or jmpOut!(·; ·) (depending on the value of β). In either case, since c ′1
and c ′1 are the configuration right after α and by definition of fine-grained traces, we have c1 mode m
and c2 mode m. �

Proposition A.7. For any context C = 〈MC ,D〉 and module MM , if D

INITC[MM]
β0 · · · βn

=========⇒⇒∗ c with n ≥ 0, then the observables occurring

(i) in even positions (β0, β2, . . .) are either • or jmpIn?(R) (for some R),

(ii) in odd positions (β1, β3, . . .) are either • or jmpOut!(Δt ;R) (for some Δt and R).

Proof. Both easily follow from Figures 8 and 9. �

First, we show that, due to the mitigation, the behavior of the context does not depend on the
behavior of the module:

Lemma 6.9. Let C = 〈MC ,D〉. If D INITC[MM]
β
===⇒⇒∗ c1

β
===⇒⇒ c ′1, D INITC[MM′]

β
===⇒⇒∗ c2,

c1 mode UM and c2 mode UM, then there exists c ′2 such that D c2
β
===⇒⇒ c ′2.

Proof. First, observe that INITC[MM]
U
≈ INITC[MM′], because

INITC[MM] = 〈δinit, 0,⊥,MC �MM ,R
init
MC
, 0xFFFE,⊥〉,

INITC[MM′] = 〈δinit, 0,⊥,MC �MM ′,R
init
MC
, 0xFFFE,⊥〉.

Since INITC[MM] mode UM, INITC[MM]
U
≈ INITC[MM′], D INITC[MM]

β
===⇒⇒∗ c1,

D INITC[MM′]
β
===⇒⇒∗ c2, c1 mode UM and c2 mode UM, by Property A.20, we have c1

U
≈ c2. Finally,

since D c1
β
===⇒⇒ c ′1 and by Property A.19, we get D c2

β
===⇒⇒ c ′2. �

Then the following lemma shows that the isolation mechanism offered by the enclave guaran-
tees that the behavior of the module is not influenced by the one of the context:

Lemma 6.10. LetC = 〈MC ,D〉. IfMM
T
=MM ′ ,D INITC[MM]

β
===⇒⇒∗ c ′′1

jmpIn?(R1)
===========⇒⇒ c1

β
===⇒⇒ c ′1

and D INITC[MM′]
β
===⇒⇒∗ c ′′2

jmpIn?(R2)
===========⇒⇒ c2, then there exists c ′2 such that D c2

β
===⇒⇒ c ′2.

Proof. Noting that c1 mode PM and that the last observable of β is a jmpIn?(·), by definition of
coarse-grained traces (see Figure 9), we have the following fine-grained traces starting from c ′′1 :

D c ′′1
ξ · · · ξ ·jmpIn?(R1)
================⇒∗ c1

α 1
====⇒∗ c(n1)

1

τ (k
(n1)

1) ·· · τ (k
(n1+m1−1)

1)·α ′1
=======================⇒∗ c ′1

with α ′1 ∈ {jmpOut!(k1;R′1), handle!(k1) · ξ · · · ξ · •}.
Similarly for c2, it must be:

D c ′′2
ξ · · · ξ ·jmpIn?(R2)
================⇒∗ c2

α 2
====⇒∗ c(n2)

2

τ (k
(n2)

2) ·· · τ (k
(n2+m2−1)

1)·α ′2
=======================⇒∗ c ′2,

with α ′2 ∈ {jmpOut!(k2;R′2), handle!(k2) · ξ · · · ξ · •}.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:65

We have now two cases:

• Case β = jmpOut!(Δt ;R).MM
T
= MM ′ implies the existence of a context C ′ = 〈MC ′,D

′〉

that allow us to observe D′ INITC ′[MM′]
β
===⇒⇒ c3

β
===⇒⇒ c ′3, i.e.,

D′ c3
α 3
====⇒∗ c(n3)

3

τ (k
(n3)

3) ·· · τ (k
(n3+m3−1)

3)·α ′3
=======================⇒ c ′3

with α ′3 ∈ {jmpOut!(k3;R′3), handle!(k3) · ξ · · · ξ · •}.

By Properties A.10 and A.11, we have that c2
P
≈ c3, and by Property A.9, we conclude that

c(n3)
3

P
≈ c(n2)

2 .
Property A.8 guarantees that

τ
(
k (n2)

2

)
· · · τ

(
k (n2+m2−1)

2

)
· α ′2 = τ

(
k (n3)

3

)
· · · τ

(
k (n3+m3−1)

3

)
· α ′3.

Since α ′2 = α ′3 = jmpOut!(k3;R1), we know that D c(n2)
2

jmpOut!(Δt ′;R1)
==============⇒⇒ c ′2.

By Property 6.1, we have

Δt =
n1+m1∑

i=0

γ
(
c(i)1

)
+ (11 + MAX_TIME) · |Iα 1 |,

Δt ′ =
n2+m2∑

i=0

γ
(
c(i)2

)
+ (11 + MAX_TIME) · |Iα 2 |.

Since by Properties A.17 and A.18 we have
∑n1+m1

i=0 γ (c(i)1) =
∑n2+m2

i=0 γ (c(i)2) and |Iα 1 | = |Iα 2 |,
we get Δt = Δt ′, as requested.
• Case β = •. It must be that α ′1 = handle!(k1) · ξ · · · ξ · • and α ′2 = handle!(k2) · ξ · · · ξ · •. If

this was not the case (i.e., if α ′2 = jmpOut!(k2;R′2)), then c2 could be swapped with c1 (and c1

with c2) in the statement of this Lemma and the previous case would apply. Thus, the thesis
follows. �

A.8 Proof of Property 6.2 and Algorithm 2 of Section 6.2.3

From now onwards, we simply write β = ε (respectively, β ′ = ε) if β (respectively, β
′
) is shorter

than β
′

(respectively, β).

Property 6.2. IfMM andMM ′ are two modules such thatMM �L MM ′ , then there always exist

β and β
′

that are distinguishing traces forMM andMM ′ .

Proof. From the contrapositive of Lemma 6.12, we know thatMM

T
�MM ′ , i.e., there exist β ∈

Tr(MM) and β
′
∈ Tr(MM ′) such that β � Tr(MM ′) and β ∈ Tr(MM). Also, sinceMM �L MM ′ , we

have that there exists a context CL such that CL[MM]⇓
L and CL[MM ′]�⇓

L (or vice versa)—assume
w.l.o.g. CL[MM]⇓

L and CL[MM ′]�⇓
L.

Thus, by Proposition 6.8:

DL INITCL [MM]

β
′′

====⇒⇒∗ HALT,

DL INITCL [MM′]

β
′′′

=====⇒⇒∗ c � HALT,

for some β
′′

(ending in •), c , and for all β
′′′

that can be observed.

Indeed, we can always write that β
′′
= βs · β · βe and β

′′′
= βs · β

′ · β
′

e where:

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:66 M. Busi et al.

• βs is the longest (possibly empty) common prefix of the two traces,
• β and β ′ � • are the first different observables—one of the two may be ε or, by Proposition 6.8,

it may be β = •,

• βe and β
′

e are the (possibly empty) remainders of the two traces.

Thus, since β
′′

and β
′′′

are also observed under the same context CL , they are distinguishing
traces. �

The first two parameters of BuildDevice—joutd and joutd ′—are differentiating jmpOut!(·; ·) ad-

dresses (if any), as returned by the BuildMem (Algorithm 1). Parameters β and β
′

are distinguish-
ing traces for MM and MM ′ generated under the context CL (cf. Definition 6.13). Finally, term

(respectively, term′) denotes whether MM (respectively, MM ′) converges in a context with no
interrupts after the last jump into protected mode.

The first two lines define the initial set of states, which will be a finite subset of N in the end,
and the initial empty transition function.

Line 7 defines δL that records the last state that was added to the I/O device. At the beginning
it is initialized to 0.

The algorithm then proceeds by iterating over all the observables in βs (all the steps below also
update Δ and δL , but we omit to state it explicitly):

• Case βi = β ′i = jmpIn?(R). In this case, we know that either this is the first observable or
previous one was a jmpOut!(·; ·). Since the memory is obtained following Algorithm 1, we
know that in both cases, we reach the instruction IN pc (either at address A_EP or those of
jumps out of protected mode), waiting for the next program counter (sometimes before that
we perform a write, which shall be ignored). Thus, the device ignores any write operation
and replies with A_JIN (line 12). Then it starts to send the values of the registers in R to
simulate in SancusH what happens in SancusL and to match the requests from the code. To
help the intuition, Figure 11(a) depicts how the transition function looks after the update
(the solid black state denotes the new value of δL).
• Case βi = β ′i = jmpOut!(Δt ;R). The device is simply updated with a loop on δL with action ϵ

and ignores any write operation (to deal with R[pc] = joutd or R[pc] = joutd ′). Figure 11(b)
pictorially represents this case.

Then, when βs ends, the algorithm analyzes β and β ′ and sets up the device to differentiate the
two modules:

• Case β = jmpOut!(Δt ;R) ∧ β ′ = jmpOut!(Δt ′;R′) ∧ (∃r.R[r] � R′[r]). In this case the dif-
ferentiation is due to a register, and two further sub-cases may arise, depending on whether
it is pc. If the register is pc, then the device waits for the differentiating value for the con-
text (that is executing code at joutd and joutd ′ by construction) and based on that value, it
replies with either A_HALT (line 37) or A_LOOP (line 38). Instead, if the differentiation register
is not pc, then the code of the context is waiting for the next program counter and the con-
text replies with A_RDIFF. From this address, we find the code that sends the differentiating
register and, based on that value, the device replies with either A_HALT (line 29) or A_LOOP
(line 30). Figures 12(a) and 12(b) may help the intuition.
• Case β = jmpOut!(Δt ;R) ∧ β ′ = jmpOut!(Δt ′;R) ∧ Δt � Δt ′. This case is probably the

most interesting, since differentiation happens in SancusL due to timings. However, differ-
ent timings in SancusL correspond to different timings in SancusH (as observed in proof of
Property A.22), and the device is programmed to reply with either A_HALT (line 50) or A_LOOP
(line 51), depending on the time value. Figure 12(c) intuitively depicts this situation.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:67

ALGORITHM 2: Builds the device of the distinguishing context

1: procedure BuildDevice(joutd, joutd ′, β = β0 · · · βn−1 · β · βe , β
′
= β0 · · · βn−1 · β

′ ·

β
′

e , term, term′,CL)
2: � joutd, joutd ′ are differentiating jmpOut!(·; ·) addresses, if any

3: � β and β
′

are distinguishing traces generated by the context CL

4: � term (respectively, term′) denotes whether MM (respectively, MM ′) converges in a
context with no interrupts after the last jump into protected mode

5: Δ = {0}
6:

·
�D = ∅

7: δL = 0 � This variable keeps track of the last added device state.
8: for i ∈ 0..n − 1 do

9: if βi = jmpIn?(R) then

10: Δ = Δ ∪ {δL + 1, . . . ,δL + 17}
11:

·
�D =

·
�D ∪ {(δL,wr (w),δL) | w ∈ Word}

12:
·
�D =

·
�D ∪ {(δL, rd(A_JIN),δL + 1)}

13:
·
�D =

·
�D ∪ {(δL + 1, rd(R[sp]),δL + 2)}

14:
·
�D =

·
�D ∪ {(δL + 2, rd(R[sr]),δL + 3)}

15:
·
�D =

·
�D ∪ {(δL + i, rd(R[i]),δL + i + 1) | 3 ≤ i ≤ 15}

16:
·
�D =

·
�D ∪ {(δL + 16, rd(R[pc]),δL + 17)}

17:
·
�D =

·
�D ∪ {(δL + i, ϵ,δL + i) | 0 ≤ i ≤ 16}

18: δL = δL + 17
19: else if βi = jmpOut!(Δt ;R) then

20:
·
�D =

·
�D ∪{(δL, ϵ,δL)} ∪ {(δL,wr (w),δL) | w ∈ Word}

21: end if

22: end for

23: if β = jmpOut!(Δt ;R) ∧ β ′ = jmpOut!(Δt ′;R′) ∧ (∃r.R[r] � R′[r]) then

24: if r � pc then

25: Δ = Δ ∪ {δL + 1, . . . ,δL + 4}
26:

·
�D =

·
�D ∪ {(δL, rd(A_RDIFF),δL + 1)}

27:
·
�D =

·
�D ∪ {(δL + 1,wr (R[pc]),δL + 2)}

28:
·
�D =

·
�D ∪ {(δL + 1,wr (R′[pc]),δL + 3)}

29:
·
�D =

·
�D ∪ {(δL + 2, rd(A_HALT),δL + 4)}

30:
·
�D =

·
�D ∪ {(δL + 3, rd(A_LOOP),δL + 4)}

31:
·
�D =

·
�D ∪ {(δL + i, ϵ,δL + i) | 0 ≤ i ≤ 3}

32: δL = δL + 4
33: else

34: Δ = Δ ∪ {δL + 1, . . . ,δL + 3}
35:

·
�D =

·
�D ∪ {(δL,wr (joutd),δL + 1)}

36:
·
�D =

·
�D ∪ {(δL,wr (joutd ′),δL + 2)}

37:
·
�D =

·
�D ∪ {(δL + 1, rd(A_HALT),δL + 3)}

38:
·
�D =

·
�D ∪ {(δL + 2, rd(A_LOOP),δL + 3)}

39:
·
�D =

·
�D ∪ {(δL + i, ϵ,δL + i) | 0 ≤ i ≤ 2}

40: δL = δL + 3
41: end if

42: continues ...

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:68 M. Busi et al.

43: ... continued
44: else if β = jmpOut!(Δt ;R) ∧ β ′ = jmpOut!(Δt ′;R) ∧ Δt � Δt ′ then

45: � Let DL INITC[MM]

β
s

====⇒⇒∗ c1 and DL
� I c1

jmpOut!(Δt� I ;R)
==============⇒⇒ c ′1.

46: � Let DL INITC[MM′]

β
s

====⇒⇒∗ c2 and DL
� I c2

jmpOut!(Δt ′� I ;R)
==============⇒⇒ c ′2.

47: t = t ′1 − t1
48: t ′ = t ′2 − t2
49: Δ = Δ ∪ {δL + 1, . . . ,δL +max(t , t ′) + 1}
50:

·
�D =

·
�D ∪ {(δL +min(t , t ′), rd(A_HALT),δL +max(t , t ′) + 1)}

51:
·
�D =

·
�D ∪ {(δL +max(t , t ′), rd(A_LOOP),δL +max(t , t ′) + 1))}

52:
·
�D =

·
�D ∪ {(δL + k, ϵ,δL + k + 1) | 0 ≤ k ≤ max(i, i ′)}

53: δL = δL +max(t , t ′) + 1
54: else if β = • ∧ β ′ = jmpOut!(Δt ;R) then

55: if term then

56: Δ = Δ ∪ {δL + 1, . . . ,δL + 2}
57:

·
�D =

·
�D ∪ {(δL,wr (A_EP),δL + 1)}

58:
·
�D =

·
�D ∪ {(δL + 1, rd(A_HALT),δL + 2)}

59:
·
�D =

·
�D ∪ {(δL, rd(A_LOOP),δL + 2)}

60:
·
�D =

·
�D ∪ {(δL,wr (w),δL) | w ∈ Word \ {A_EP}}

61:
·
�D =

·
�D ∪ {(δL + i, ϵ,δL + i) | 0 ≤ i ≤ 1}

62: δL = δL + 2
63: else

64: Δ = Δ ∪ {δL + 1}
65:

·
�D =

·
�D ∪ {(δL, rd(A_HALT),δL + 1)}

66:
·
�D =

·
�D ∪ {(δL,wr (w),δL) | w ∈ Word}

67:
·
�D =

·
�D ∪ {(δL, ϵ,δL)}

68: δL = δL + 2
69: end if

70: else if β = jmpOut!(Δt ;R) ∧ β ′ = ε then

71: � As the previous case, with term′ in place of term.
72: else

73: return ⊥

74: end if

75: D = 〈Δ, 0,
·
�D〉

76: return D

77: end procedure

• Case β = • ∧ β ′ = jmpOut!(Δt ;R). In this case • may occur during an interrupt service
routine. We then have two sub-cases, depending on whether the first module terminates
when executed in a context with no interrupts after the last jump into protected mode or
not (i.e., encoded by the value of term). When term holds, the first module makes the CPU go
through an exception handling configuration that jumps to A_EP and the device instructs the
code to jump to A_HALT (line 58), while for the second module the CPU jumps to any other
location (A_EP is chosen to be different from any other jump-out address!) and is instructed
to jump to A_LOOP (line 59). When term does not hold, the first module diverges, while for

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:69

the second module the CPU jumps to a location in unprotected code and it is instructed to
jump to A_HALT (line 65). Figures 12(d) and 12(e) may help the intuition.
• Case β = jmpOut!(Δt ;R) ∧ β ′ = ε . Analogous to the previous case.
• Otherwise. No other cases may arise, as noted in Property A.21.

Finally, the algorithm returns a device with the set of states Δ, the initial state 0, and the transi-
tion function built as just explained.

Property A.21. LetMM

T
� MM ′ , β, β

′
be distinguishing traces ofMM andMM ′ originated by

some context CL and let term and term′ be any pair of Booleans, then

D = BuildDevice(β, β
′
, joutd, joutd ′, term, term′,CL) � ⊥ and D is an I/O device.

Proof. We first show that BuildDevice never returns ⊥ when β and β
′

are distinguishing

traces. For that, let β = βs · β · βe and β
′
= βs · β

′ · β
′

e , and note that the only cases for which ⊥ is
returned are the following:

• Case β = β ′ = •. Since β � β ′ by hypothesis, this case never happens.
• Case β = jmpOut!(Δt ;R) and β ′ = jmpIn?(R′) (or vice versa). This case never happens due

to Proposition A.7.
• Case {•, jmpIn?(R)} � β � β ′ ∈ {•, jmpIn?(R′)}. Roughly, this means that the same context

performed two different actions upon observation of the same trace (βs). Formally, we know
by hypothesis that for the context CL = 〈MC ,D

L〉

DL INITCL [MM]

β
s

====⇒⇒∗ c1,

DL INITCL [MM′]

β
s

====⇒⇒∗ c2,

with c1 mode UM and c2 mode UM. Property A.20 guarantees that c1
U
≈ c2, thus by Property A.19

the same observable must originate from both c1 and c2, but that is against the hypothesis
that β � β ′.

Finally, it is easy to see thatD returned by BuildDevice is an actual device. Indeed, its set of states
Δ is finite (the algorithm always terminates in a finite number of steps and each step adds a finite
number of states); its initial state 0 belongs to Δ; no int? transitions are ever added and a single
rd(w) transition outgoes from any given state: Thus, the transition relation respects the definition
of I/O devices. �

The following property states that the context built by joining together the results of the two
algorithms above is a distinguishing one:

Property A.22. LetMM

T
�MM ′ ; let CL = 〈MC ,D

L〉; let

DL INITCL [MM]

β
s

====⇒⇒∗ c ′1
β
===⇒⇒ c1,

DL INITCL [MM′]

β
s

====⇒⇒∗ c ′2
β ′

====⇒⇒ c2

be such that β = βs · β · βe and β
′
= βs · β

′ · βe distinguishing traces ofMM andMM ′ ; and let

term ⇐⇒ DL
� I c

′
1 →

∗ HALT,

term′ ⇐⇒ DL
� I c

′
2 →

∗ HALT.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:70 M. Busi et al.

If (MC , joutd, joutd ′) = BuildMem(β, β
′
),D = BuildDevice(β , β

′
, joutd, joutd ′, term, term′) and

CH = 〈MC ,D〉, then CH [MM]⇓
H and CH [MM ′]�⇓

H (or vice versa).

Proof. Assume w.l.o.g. that CL[MM]⇓
L and CL[MM ′]�⇓

L. By Lemma 6.5,

CH [MM]⇓
H ⇐⇒ CH

� I [MM]⇓
L and CH [MM ′]⇓

H ⇐⇒ CH
� I [MM ′]⇓

L.

It suffices thus proving that CH
� I distinguishesMM andMM ′ , i.e., CH

� I [MM]⇓
L and CH

� I [MM ′]�⇓
L

or vice versa.
We show by induction on the length 2n + 1 of βs that if

DL INITCL [MM]

β
s

====⇒⇒∗ c ′1,

DL INITCL [MM′]

β
s

====⇒⇒∗ c ′2,

then ∃β ′s s.t.

DH
� I INITCH

� I [MM]

β
′

s

====⇒⇒∗ c3 and

DH
� I INITCH

� I [MM′]

β
′

s

====⇒⇒∗ c4 with β
′

s ≈ βs (see Definition A.4).

Note that the length of βs must be odd as a consequence of Properties A.20 and A.19 and no •

appears in it, since otherwise it would mean that β = β
′
.

• Casen = 0. Then, βs is jmpIn?(R). Thus, Algorithm 1 guarantees that the current instruction
is IN pc (at address A_EP) and its execution leads to address A_JIN (by Algorithm 2) and the
same jmpIn?(R) is observed starting from both INITCH

� I [MM] and INITCH
� I [MM′]

and also

β
′

s ≈ βs .
• Case n = n′ + 1. If

DL INITCL [MM]

β
′′

s

====⇒⇒∗ c ′′1 ∧ D
L INITCL [MM′]

β
′′

s

====⇒⇒∗ c ′′′2

⇓

DH
� I INITCH

� I [MM]

β
′′′

s

=====⇒⇒∗ c ′3 ∧ D
H
� I INITCH

� I [MM′]

β
′′′

s

=====⇒⇒∗ c ′4 ∧ β
′′′

s ≈ β
′′

s (IHP)

then

DL INITCL [MM]

β
′′

s

====⇒⇒∗ c ′′1
β
′′

====⇒⇒∗ c ′1 ∧ D
L INITCL [MM′]

β
′′

====⇒⇒∗ c ′′2
β
′′

====⇒⇒∗ c ′2

⇓

DH
� I INITCH

� I [MM]

β
′′′

s

=====⇒⇒∗ c ′3
β
′′′

=====⇒⇒∗ c3 ∧ D
H
� I INITCH

� I [MM′]

β
′′′

s

=====⇒⇒∗ c ′4
β
′′′

=====⇒⇒∗ c4 ∧ β
′′′

s · β
′′′

≈ β
′′

s · β
′′
.

Note that it must be that β
′′
= jmpOut!(Δt ;R) · jmpIn?(R′) by Proposition A.7 and because

we never observe • in the common prefix. By (IHP) and Property A.11, we have c ′′1
P
≈ c ′3 and

c ′′2
P
≈ c ′4. Thus, by Properties A.9 and A.8, it must be that jmpOut!(Δt ′;R) is observed when

starting in c ′3 and jmpOut!(Δt ′′;R) is observed when starting in c ′4 (for some Δt ′ and Δt ′′).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:71

By definition of coarse-grained traces, each of the computations above is generated by fine-
grained trace in the form (we write _ to denote a generic configuration):

DL _
jmpIn?(R′′)
===========⇒ c ′′1 = c

(0)
1

α
(0)
1
=====⇒ · · ·

α
(n1−1)

1
=======⇒ c(n1)

1

jmpOut!(k
(n1)

1 ;R)
==============⇒ c(n1)+1 ξ · · ·ξ jmpIn?(R′)

==============⇒∗ c ′1

DL _
jmpIn?(R′′)
===========⇒ c ′′2 = c

(0)
2

α
(0)
2
=====⇒ · · ·

α
(n2−1)

2
=======⇒ c(n2)

2

jmpOut!(k
(n2)

2 ;R)
==============⇒ c(n2)+1 ξ · · ·ξ jmpIn?(R′)

==============⇒∗ c ′2

DH
� I _

jmpIn?(R′′)
===========⇒ c ′3 = c

(0)
3

α
(0)
3
=====⇒ · · ·

α
(n3−1)

3
=======⇒ c(n3)

3

jmpOut!(k
(n3)

3 ;R)
==============⇒ c(n3+1)

3

DH
� I _

jmpIn?(R′′)
===========⇒ c ′4 = c

(0)
4

α
(0)
4
=====⇒ · · ·

α
(n4−1)

4
=======⇒ c(n4)

4

jmpOut!(k
(n4)

4 ;R)
==============⇒ c(n4+1)

4 .

Thus, due to Property 6.1 and by hypothesis, it holds that Δt =
∑n1

i=0 γ (c
(i)
1)+ (11+ MAX_TIME) ·

|I
α
(0)
1 · · ·α

(n1)
1
| =

∑n2
i=0 γ (c

(i)
2) + (11 + MAX_TIME) · |I

α
(0)
2 · · ·α

(n2)
2
|. Also, since by (IHP) and Proper-

ties A.20 and A.19 it follows that c(0)1 = c
′′
1

U
≈ c ′′2 = c

(0)
2 , we know |I

α
(0)
1 · · ·α

(n1)
1
| = |I

α
(0)
2 · · ·α

(n2)
2
| (by

Property A.18) and thus
∑n1

i=0 γ (c
(i)
1) =

∑n2
i=0 γ (c

(i)
2). Moreover, by (IHP) and Property A.11,

we get c(0)1 = c ′′1
P
≈ c ′3 = c(0)3 and c(0)2 = c ′′2

P
≈ c ′4 = c(0)4 . Now, as a consequence of Prop-

erties A.3, A.9, and A.8, we know that Δt ′ =
∑n3

i=0 γ (c
(i)
3) =

∑n1
i=0 γ (c

(i)
1) =

∑n2
i=0 γ (c

(i)
2) =∑n3

i=0 γ (c
(i)
3) = Δt ′′. By (IHP) and since the first observable after c ′3 and c ′4 is the same, by

Property A.20 it follows c(n3+1)
3

U
≈ c(n4+1)

4 . Thus, due to Property A.19, we get that the same

coarse-grained observable jmpIn?(R′′′) is observed after c(n3+1)
3 and c(n4+1)

4 . Finally, R′′′ is
equal to R′, since after any jmpOut!(·; ·) a IN pc instruction is executed and its execution
leads to address A_JIN (by Algorithm 2) that performs jmpIn?(R), and the thesis follows.

Since we proved that

DH
� I INITCH

� I [MM]

β
′

s

====⇒⇒∗ c3 and

DH
� I INITCH

� I [MM′]

β
′

s

====⇒⇒∗ c4,

we also have that c3
U
≈ c4 by Properties A.20 and A.19.

Let DH
� I c3

β 3
====⇒⇒∗ c ′′3 and DH

� I c4
β 4
====⇒⇒∗ c ′′4 , with β3 and β4 either empty or made of a

single observable (either • or jmpOut!(·; ·), since no difference can be observed upon jmpIn?(·) as
observed above). By exhaustive cases on β and β ′, we have:

• Case β = • and β ′ = jmpOut!(Δt ′′′;R′′). Note that, since term ⇐⇒ DL
� I c

′
1 →

∗ HALT

and c ′1
P
≈ c3 (by Properties A.10 and A.11), we get term ⇐⇒ DH

� I c3 →
∗ HALT by

Property A.8 and since neither DL
� I nor DH

� I raise any interrupt. Thus, by definition of DL

(cf. Algorithm 2) the context CH distinguishes the two modules.
• Case β = jmpOut!(Δt ′′′;R′′) and β ′ = ε . Similar to the previous case (with term′ in place of

term).

• Case β = jmpOut!(Δt ′′′;R′′) and β ′ = jmpOut!(Δt ′′′;R′′′) with R′′ � R′′′. Since c ′1
P
≈ c3

and c ′2
P
≈ c4, it must be that β3 = jmpOut!(Δtv ;R′′) and β4 = jmpOut!(Δtvi ;R′′). Thus, by

Algorithms 1 and 2, CH distinguishes the two modules.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:72 M. Busi et al.

• Case β = jmpOut!(Δt ′′′;R′′) and β ′ = jmpOut!(Δt iv ;R′′). In this case it holds that β3 =

jmpOut!(Δtv ;R′′) and β4 = jmpOut!(Δtvi ;R′′) with the same timings of the instructions

(by Property 6.1). Since c3
U
≈ c4, the two times must differ one from the other, otherwise, by

the counterpositive of Property A.17, we would get MM
T
= MM ′ . Again, by definition of

Algorithms 1 and 2, one computation converges and one diverges, hence CH distinguishes
the two modules. �

A.9 Proofs and Additional Definitions of Section 7

Property A.23. Let c and c ′ be configurations such that c, c ′ mode UM. If c
U
≈ c ′, then c

L
= c ′.

Proof. Since c, c ′ mode UM, the property follows directly from Definitions A.3 and 7.1. �

Lemma 7.3. IfMM �
L MM ′ , thenMM ≈ISMM ′ .

Proof. Assuming contextual equivalence in SancusL and that:

D INITC[MM] →
∗ c → HALT ∧ D INITC[MM′] →

∗ c ′ → HALT,

our goal is to prove that c
L
= c ′. From contextual equivalence, it follows that MM

T
= MM ′ . By

Lemma 6.11, we also know that for some c ′′:

D INITC[MM]
β
===⇒⇒∗ c ∧ D INITC[MM′]

β
===⇒⇒∗ c ′′.

Proposition A.6 and Property A.20 guarantee that c
U
≈ c ′′. Then, since c → HALT, it must be

c ′′ → HALT. For that and by determinism of the operational semantics of SancusL, we have that

c ′ = c ′′ and c
U
≈ c ′, which by Property A.23 implies c

L
= c ′. �

Theorem 7.4. IfMM �
H MM ′ , thenMM ≈ISMM ′ .

Proof. SinceMM �
H MM ′ , by Theorem 6.3, we also have thatMM �

L MM ′ and Lemma 7.3
concludes the proof. �

Theorem 7.6.

(1) IfMM �
L MM ′, thenMM ≈SSMM ′ and (2) ifMM ≈SSMM ′, thenMM �

H MM ′ .

Proof.

(1) Lemma 7.3 guarantees that MM ≈IS MM ′ . We now set out to show that MM ≈SS MM ′

is implied by MM ≈IS MM ′ in our setting. Indeed, by definition of SSNI, we can assume
(w.l.o.g.) that D INITC[MM] →

∗ c → HALT, i.e., C[MM]⇓
L. By hypothesis, it also follows

that C[MM ′]⇓
L. For that and by definition of ISNI, it then followsMM ≈SSMM ′ .

(2) By definition of SSNI, it follows that for anyC ifC[MM]⇓
H, thenC[MM ′]⇓

H and vice versa,
i.e.,C[MM]⇓

H ⇐⇒ C[MM ′]⇓
H, which coincides with the definition ofMM �

H MM ′ . �

Theorem 7.10. LetMP be a module program, then

(1) if ∀MD ,MD′ . (MP �MD) �
L (MP �MD′), then L

USSNI
MP ; and

(2) if HUSSNI MP , then ∀MD ,MD′ . (MP �MD) �
H (MP �MD′).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

Securing Interruptible Enclaved Execution on Small Microprocessors 12:73

Proof.

(1) From the hypothesis and by definition of �L, for any c:

D INITC[MP �MD] →
∗ c → HALT⇒ ∃c ′. D INITC[MP �MD′] →

∗ c ′ → HALT

and vice versa.
Now let ĉ and ĉ ′ be a pair of configurations respecting the implication above. Note that both
ĉ mode UM and ĉ ′ mode UM hold, since unprotected mode configurations are the only ones
from which HALT is reachable in a single step. For the thesis to hold, it suffices to show

that ĉ
L
= ĉ ′. Since INITC[MP �MD] mode UM, INITC[MP �MD]

U
≈ INITC[MP �MD′], repeated

applications of Property A.19 guarantee that

D INITC[MP �MD]
β
===⇒⇒∗ ĉ → HALT ∧ D INITC[MP �MD′]

β
===⇒⇒∗ ĉ ′ → HALT.

By Property A.20 it holds that ĉ
U
≈ ĉ ′, thus easily ĉ

L
= ĉ ′ because of Property A.23.

(2) By definition of USSNI it follows that for anyC ifC[MP �MD]⇓
H, thenC[MP �MD′]⇓

H

and vice versa by symmetry, i.e., C[MM]⇓
H ⇐⇒ C[MM ′]⇓

H, which coincides with the
definition ofMM �

H MM ′ . �

Property A.24.

(1) If D c
β
===⇒⇒∗ c ′, then ∃!t ,K . D c �t

K
c ′ ∧ β ∝ K .

(2) If D c �t
K
c ′, then ∃β . D c β

===⇒⇒∗ c ′ ∧ β ∝ K .

where

β ∝ K iff |β | =

{
K β � β

′
· •

K + 1 o.w.

Proof.

(1) By determinism, there is a single computation χ from c to c ′ generating β . From uniqueness
of χ and by Definition 7.12, one gets existence and uniqueness of t and K .

(2) Directly follows from Definition 7.12 and Figure 9. �

Lemma 7.14.

(1) ifMM �
L MM ′, thenMM ≈SSSMM ′ and (2) ifMM ≈SSSMM ′, thenMM �

H MM ′

Proof.

(1) Assuming contextual equivalence in SancusL and that:

D INITC[MM] �
t
K c,

our goal is to prove that c
L
= c ′. From contextual equivalence it follows thatMM

T
=MM ′ . By

Lemma 6.11, we also know that for some c ′′:

D INITC[MM]
β
===⇒⇒∗ c =⇒ D INITC[MM]

β
===⇒⇒∗ c ′′.

Proposition A.6 and Property A.20 guarantee that c
U
≈ c ′′. By Property A.24.(1) there exist

unique t and K such that
D INITC[MM] �

t
K c

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

12:74 M. Busi et al.

and
D INITC[MM′] �

t
K c ′′,

thus by determinism of operational semantics of SancusL, we have that c ′′ = c ′ and c
U
≈ c ′,

which by Property A.23 implies c
L
= c ′.

(2) Suppose that C[MM]⇓
H and C[MM ′]�⇓

H. But then they cannot be MM ≈SSS MM ′ (since
HALT is in relation just with itself), which contradicts the hypothesis. �

Theorem 7.17. The following relations are equivalent:

(1)MM
W T
= MM ′, (2)MM

T
=MM ′, (3)MM �

L MM ′, (4)MM �
H MM ′ .

Proof. We only prove (1) ⇐⇒ (2); the other equivalences follow from Theorem 6.3.

• (1) ⇐ (2). SinceMM
T
=MM ′ , by Lemma 6.11, we know that:

D INITC[MM]
β
===⇒⇒∗ c ⇐⇒ D INITC[MM′]

β
===⇒⇒∗ c ′.

Thus, ∀C .WTr(C[MM]) = WTr(C[MM ′]), as requested.
• (1) ⇒ (2). Easy. �

ACKNOWLEDGMENTS

The authors warmly thank the anonymous referees for their extremely careful comments and
helpful suggestions.

REFERENCES

[1] Martín Abadi. 1999. Protection in programming-language translations. In Secure Internet Programming, Security Issues

for Mobile and Distributed Objects (Lecture Notes in Computer Science, Vol. 1603), Jan Vitek and Christian Damsgaard
Jensen (Eds.). Springer, 19–34.

[2] Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Deepak Garg, Catalin Hritcu, Marco Patrignani, Éric
Tanter, and Jérémy Thibault. 2020. Trace-relating compiler correctness and secure compilation. In Proceedings of the

29th European Symposium on Programming: Programming Languages and Systems, Held as Part of the European Joint

Conferences on Theory and Practice of Software. Springer, 1–28. DOI: https://doi.org/10.1007/978-3-030-44914-8_1
[3] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Patrignani, and Jérémy Thibault. 2019. Journey

beyond full abstraction: Exploring robust property preservation for secure compilation. In Proceedings of the 32nd

IEEE Computer Security Foundations Symposium. IEEE, 256–271.
[4] Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. 2012. Secure compilation to modern processors. In

Proceedings of the 25th IEEE Computer Security Foundations Symposium. IEEE Computer Society, 171–185.
[5] Amal Ahmed and Matthias Blume. 2008. Typed closure conversion preserves observational equivalence. In Proceedings

of the 13th ACM SIGPLAN International Conference on Functional programming. Association for Computing Machinery,
157–168.

[6] Amal Ahmed and Matthias Blume. 2011. An equivalence-preserving CPS translation via multi-language semantics. In
Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming. Association for Computing
Machinery, 431–444.

[7] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu.
2020. Formal verification of a constant-time preserving C compiler. Proc. ACM Prog. Lang. 4, POPL (2020), 7:1–7:30.
DOI: https://doi.org/10.1145/3371075

[8] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure compilation of side-channel countermeasures:
The case of cryptographic “constant-time.” In Proceedings of the 31st IEEE Computer Security Foundations Symposium.
IEEE, 328–343.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.
Wenisch, Yuval Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution. In Proceedings of the 27th USENIX Security Symposium. USENIX Association, 991–
1008. Retrieved from https://www.usenix.org/conference/usenixsecurity18/presentation/bulck.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

https://doi.org/10.1007/978-3-030-44914-8_1
https://doi.org/10.1145/3371075
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

Securing Interruptible Enclaved Execution on Small Microprocessors 12:75

[10] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia, and Frank Piessens. 2019. A tale of
two worlds: Assessing the vulnerability of enclave shielding runtimes. In Proceedings of the ACM SIGSAC Conference

on Computer and Communications Security. Association for Computing Machinery, 1741–1758. DOI: https://doi.org/
10.1145/3319535.3363206

[11] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A practical attack framework for precise enclave
execution control. In Proceedings of the 2nd Workshop on System Software for Trusted Execution. ACM, 4:1–4:6. DOI:
https://doi.org/10.1145/3152701.3152706

[12] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. 2017. Telling your secrets with-
out page faults: Stealthy page table-based attacks on enclaved execution. In Proceedings of the 26th USENIX Security

Symposium. USENIX Association, 1041–1056. Retrieved from https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/van-bulck.

[13] Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano, Jan Tobias Mühlberg, and Frank Piessens.
2020. Provably secure isolation for interruptible enclaved execution on small microprocessors. In Proceedings of the

33rd IEEE Computer Security Foundations Symposium. IEEE, 262–276.
[14] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,

Dmitry Evtyushkin, and Daniel Gruss. 2019. A systematic evaluation of transient execution attacks and defenses.
In Proceedings of the 28th USENIX Security Symposium. USENIX Association, 249–266. Retrieved from https://www.
usenix.org/conference/usenixsecurity19/presentation/canella.

[15] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H. Lai. 2019. SgxPectre attacks:
Stealing Intel secrets from SGX enclaves via speculative execution. In Proceedings of the IEEE European Symposium on

Security and Privacy. IEEE, 142–157.
[16] Carlos Tomé Cortiñas, Marco Vassena, and Alejandro Russo. 2020. Securing asynchronous exceptions. In Proceedings

of the 33rd IEEE Computer Security Foundations Symposium. IEEE, 214–229. DOI: https://doi.org/10.1109/CSF49147.2020.
00023

[17] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. IACR Cryptology ePrint Archive 2016 (2016), 86. Re-
trieved from http://eprint.iacr.org/2016/086.

[18] Ruan de Clercq, Frank Piessens, Dries Schellekens, and Ingrid Verbauwhede. 2014. Secure interrupts on low-end
microcontrollers. In Proceedings of the IEEE 25th International Conference on Application-specific Systems, Architectures

and Processors. IEEE Computer Society, 147–152. DOI: https://doi.org/10.1109/ASAP.2014.6868649
[19] Dominique Devriese and Frank Piessens. 2010. Noninterference through secure multi-execution. In Proceedings of the

31st IEEE Symposium on Security and Privacy. IEEE Computer Society, 109–124. DOI: https://doi.org/10.1109/SP.2010.15
[20] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely. 2019. The code that never ran: Modeling attacks

on speculative evaluation. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 1238–1255. DOI: https:
//doi.org/10.1109/SP.2019.00047

[21] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017. Komodo: Using verification to disen-
tangle secure-enclave hardware from software. In Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 287–305. DOI: https://doi.org/10.1145/3132747.3132782

[22] Cédric Fournet, Nikhil Swamy, Juan Chen, Pierre-Évariste Dagand, Pierre-Yves Strub, and Benjamin Livshits. 2013.
Fully abstract compilation to JavaScript. In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. ACM, 371–384.
[23] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of microarchitectural timing attacks and

countermeasures on contemporary hardware. J. Cryptog. Eng. 8, 1 (2018), 1–27. DOI: https://doi.org/10.1007/s13389-
016-0141-6

[24] Travis Goodspeed. 2008. Practical attacks against the MSP430 BSL. In Proceedings of the 25th Chaos Communications

Congress. Verlag Art d’Ameublement, Bielefeld.
[25] Johannes Götzfried, Tilo Müller, Ruan de Clercq, Pieter Maene, Felix Freiling, and Ingrid Verbauwhede. 2015. Soteria:

Offline software protection within low-cost embedded devices. In Proceedings of the 31st Computer Security Applica-

tions Conference. ACM, 241–250. DOI: https://doi.org/10.1145/2818000.2856129
[26] Daniel Gruss. 2017. Software-based Microarchitectural Attacks. Ph.D. Dissertation. Graz University of Technology.
[27] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking and fixing microarchitectural vulnera-

bilities by formal analysis. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security.
IEEE, 1853–1869. DOI: https://doi.org/10.1145/3372297.3417246

[28] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez. 2020. Spectector: Principled detection
of speculative information flows. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 1–19. DOI:
https://doi.org/10.1109/SP40000.2020.00011

[29] Wenjian He, Wei Zhang, Sanjeev Das, and Yang Liu. 2018. SGXlinger: A new side-channel attack vector based on
interrupt latency against enclave execution. In Proceedings of the 36th IEEE International Conference on Computer

Design. IEEE Computer Society, 108–114. DOI: https://doi.org/10.1109/ICCD.2018.00025

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1145/3152701.3152706
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/pre sentation/van-bulck
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1109/CSF49147.2020.00023
http://eprint.iacr.org/2016/086
https://doi.org/10.1109/ASAP.2014.6868649
https://doi.org/10.1109/SP.2010.15
https://doi.org/10.1109/SP.2019.00047
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1145/2818000.2856129
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/ICCD.2018.00025

12:76 M. Busi et al.

[30] Texas Instruments. 2016. MSP430x1xx Family: User Guide. Retrieved from http://www.ti.com/lit/ug/slau049f/slau049f.
pdf.

[31] Yannis Juglaret, Catalin Hritcu, Arthur Azevedo de Amorim, Boris Eng, and Benjamin C. Pierce. 2016. Beyond good
and evil: Formalizing the security guarantees of compartmentalizing compilation. In Proceedings of the IEEE 29th

Computer Security Foundations Symposium. IEEE, 45–60. DOI: https://doi.org/10.1109/CSF.2016.11
[32] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. 2011. Timing- and termination-sensitive secure information

flow: Exploring a new approach. In Proceedings of the 32nd IEEE Symposium on Security and Privacy. IEEE Computer
Society, 413–428. DOI: https://doi.org/10.1109/SP.2011.19

[33] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. 2014. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. In
Proceedings of the ACM/IEEE 41st International Symposium on Computer Architecture. IEEE Computer Society, 361–372.
DOI: https://doi.org/10.1109/ISCA.2014.6853210

[34] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting speculative execu-
tion. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 1–19. DOI: https://doi.org/10.1109/SP.2019.
00002

[35] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan. 2014. TrustLite: A security architecture
for tiny embedded devices. In Proceedings of the 9th Eurosys Conference. ACM, 10:1–10:14. DOI: https://doi.org/10.1145/
2592798.2592824

[36] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado. 2017. Inferring fine-
grained control flow inside SGX enclaves with branch shadowing. In Proceedings of the 26th USENIX Security Sympo-

sium. USENIX Association, 557–574. Retrieved from https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/lee-sangho.

[37] Xavier Leroy. 2009. A formally verified compiler back-end. J. Autom. Reason. 43, 4 (2009), 363–446. DOI: https://doi.
org/10.1007/s10817-009-9155-4

[38] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading kernel memory
from user space. In Proceedings of the 27th USENIX Security Symposium. USENIX Association, 973–990. Retrieved from
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp.

[39] Nancy A. Lynch and Mark R. Tuttle. 1989. An introduction to input/output automata. CWI Quart. 2 (1989), 219–246.
[40] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil D. Gligor, and Adrian Perrig. 2010.

TrustVisor: Efficient TCB reduction and attestation. In Proceedings of the 31st IEEE Symposium on Security and Privacy.
IEEE Computer Society, 143–158. DOI: https://doi.org/10.1109/SP.2010.17

[41] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R.
Savagaonkar. 2013. Innovative instructions and software model for isolated execution. In Proceedings of the 2nd Work-

shop on Hardware and Architectural Support for Security and Privacy. ACM, 10. DOI: https://doi.org/10.1145/2487726.
2488368

[42] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. 2020. CopyCat: Controlled
instruction-level attacks on enclaves. In Proceedings of the 29th USENIX Security Symposium. USENIX Association,
469–486.

[43] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank Piessens. 2020. Plundervolt:
Software-based fault injection attacks against Intel SGX. In Proceedings of the 41st IEEE Symposium on Security and

Privacy (S&P’20). IEEE, 1466–1482.
[44] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege, Christophe Huygens, Bart

Preneel, Ingrid Verbauwhede, and Frank Piessens. 2013. Sancus: Low-cost trustworthy extensible networked devices
with a zero-software trusted computing base. In Proceedings of the 22nd USENIX Security Symposium. 479–494. Re-
trieved from https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman.

[45] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter Maene, Bart Preneel, Ingrid Verbauwhede,
Johannes Götzfried, Tilo Müller, and Felix Freiling. 2017. Sancus 2.0: A low-cost security architecture for IoT Devices.
ACM Trans. Priv. Secur. 20, 3 (July 2017). DOI: https://doi.org/10.1145/3079763

[46] Ivan Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael Steiner, and Gene Tsudik. 2019. VRASED:
A verified hardware/software co-design for remote attestation. In Proceedings of the 28th USENIX Security Symposium.
USENIX Association, 1429–1446.

[47] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens. 2015. Secure compilation
to protected module architectures. ACM Trans. Prog. Lang. Syst. 37, 2 (2015), 6:1–6:50.

[48] Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal approaches to secure compilation: A survey of fully
abstract compilation and related work. ACM Comput. Surv. 51, 6 (2019). DOI: https://doi.org/10.1145/3280984

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

http://www.ti.com/lit/ug/slau049f/slau049f.pdf
https://doi.org/10.1109/CSF.2016.11
https://doi.org/10.1109/SP.2011.19
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/2592798.2592824
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://doi.org/10.1007/s10817-009-9155-4
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP.2010.17
https://doi.org/10.1145/2487726.2488368
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://doi.org/10.1145/3079763
https://doi.org/10.1145/3280984

Securing Interruptible Enclaved Execution on Small Microprocessors 12:77

[49] Marco Patrignani and Dave Clarke. 2015. Fully abstract trace semantics for protected module architectures. Comput.

Lang., Sys. Struct. 42 (2015), 22–45.
[50] Marco Patrignani and Deepak Garg. 2017. Secure compilation and hyperproperty preservation. In Proceedings of the

30th IEEE Computer Security Foundations Symposium. IEEE Computer Society, 392–404.
[51] Marco Patrignani and Marco Guarnieri. 2019. Exorcising spectres with secure compilers. CoRR abs/1910.08607 (2019).
[52] Michael Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical enclave malware with Intel SGX. CoRR

abs/1902.03256 (2019).
[53] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2017. Malware guard ex-

tension: Using SGX to conceal cache attacks. In Proceedings of the International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment. Springer, 3–24.
[54] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2017. CLKSCREW: Exposing the perils of security-

oblivious energy management. In Proceedings of the 26th USENIX Security Symposium. USENIX Association, 1057–
1074. Retrieved from https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang.

[55] Jo Van Bulck. 2020. Microarchitectural Side-channel Attacks for Privileged Software Adversaries. Ph.D. Dissertation. KU
Leuven, Leuven, Belgium. Retrieved from https://lirias.kuleuven.be/3047121.

[56] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying microarchitectural timing leaks in rudimen-
tary CPU interrupt logic. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security.
ACM, 178–195. DOI: https://doi.org/10.1145/3243734.3243822

[57] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean
Tullsen, and Deian Stefan. 2021. Automatically eliminating speculative leaks from cryptographic code with blade.
Proc. ACM Program. Lang. 5, POPL (Jan. 2021). DOI: https://doi.org/10.1145/3434330

[58] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. 2018. MAC. A verified static information-flow control
library. J. Logic. Algeb. Meth. Prog. 95 (2018), 148–180.

[59] Nico Weichbrodt, Anil Kurmus, Peter R. Pietzuch, and Rüdiger Kapitza. 2016. AsyncShock: Exploiting synchronisation
bugs in Intel SGX enclaves. In Proceedings of the European Symposium on Research in Computer Security. Springer, 440–
457. DOI: https://doi.org/10.1007/978-3-319-45744-4_22

[60] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer Society,
640–656. DOI: https://doi.org/10.1109/SP.2015.45

[61] Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. 2019. Using information flow to design an ISA that controls
timing channels. In Proceedings of the 32nd IEEE Computer Security Foundations Symposium. IEEE, 272–287. DOI: https:
//doi.org/10.1109/CSF.2019.00026

[62] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A hardware design language for timing-
sensitive information-flow security. In Proceedings of the 20th International Conference on Architectural Support for

Programming Languages and Operating Systems. ACM, 503–516. DOI: https://doi.org/10.1145/2694344.2694372

Received June 2020; revised May 2021; accepted June 2021

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 3, Article 12. Publication date: August 2021.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://lirias.kuleuven.be/3047121
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1145/3434330
https://doi.org/10.1007/978-3-319-45744-4_22
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1145/2694344.2694372

	Abstract
	1 Introduction
	2 Background
	2.1 Enclaved Execution
	2.2 Interrupt-based Attacks

	3 Overview of Our Approach
	3.1 Sancus Model
	3.2 Security Definitions
	3.3 Secure Interruptible Sancus

	4 The formal model of the architecture
	4.1 Memory and Memory Layout
	4.2 Register Files
	4.3 I/O Devices
	4.4 Software Modules, Contexts, and Whole Programs
	4.5 Instruction Set
	4.6 Configurations
	4.7 CPU Mode
	4.8 Memory Access Control

	5 The Semantics of SancusHand SancusLand their Interrupt Logic
	5.1 The Operational Semantics of SancusH
	5.2 The Operational Semantics of SancusL
	5.3 A Progress Property

	6 The Security Theorem
	6.1 Reflection of Behaviors
	6.2 Preservation of Behaviors

	7 Preservation of Hyperproperties
	7.1 Take One: Termination-insensitive, Time-sensitive Non-interference
	7.2 Take Two: Termination- and Time-sensitive Non-interference
	7.3 Take Three: Stepwise Termination- and Time-sensitive Non-interference
	7.4 Take Five: Hypersafety

	8 Implementation and Evaluation
	9 Discussion
	9.1 On the Use of Full Abstraction as a Security Objective
	9.2 The Impact of Our Simplifications
	9.3 Extending to More Complex Processors

	10 Related Work
	11 Conclusions and Future Work
	A Additional Definitions and Results
	A.1 The Device of Section 4.6.1 Is Deterministic
	A.2 Complete Operational Semantics Rules of SancusH(Section 5.1)
	A.3 Complete Operational Semantics Rules of SancusL(Section 5.2)
	A.4 Proof of Progress of Section 5.3
	A.5 Proofs and Additional Definition for Section 6.1
	A.6 Preliminary Definitions and Proofs for Lemmata 6.9 and 6.10
	A.7 Proofs of Lemmata 6.9 and 6.10 of Section 6.2.2
	A.8 Proof of Property 6.2 and Algorithm 2 of Section 6.2.3
	A.9 Proofs and Additional Definitions of Section 7

	Acknowledgments
	References

