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Fig. 1. 2D Mach 3 compressible Euler flow around a disc; 38M unstructured Q1 nodes, Schlieren-like plot at 𝑡 = 3.5.

We discuss the efficient implementation of a high-performance second-order collocation-type finite-element scheme for solving the

compressible Euler equations of gas dynamics on unstructured meshes. The solver is based on the convex limiting technique introduced

by Guermond et al. (SIAM J. Sci. Comput. 40, A3211–A3239, 2018). As such it is invariant-domain preserving, i. e., the solver maintains

important physical invariants and is guaranteed to be stable without the use of ad-hoc tuning parameters. This stability comes at the

expense of a significantly more involved algorithmic structure that renders conventional high-performance discretizations challenging.

We develop an algorithmic design that allows SIMD vectorization of the compute kernel, identify the main ingredients for a good

node-level performance, and report excellent weak and strong scaling of a hybrid thread/MPI parallelization.
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1 INTRODUCTION

The appropriate discretization and simulation of the compressible Euler equations of gas dynamics is an ongoing

and intensely discussed debate [5, 14, 29, 42]. This is in contrast to, for example, the incompressible Navier-Stokes

equations for which a much more complete mathematical solution theory is available that establishes a common

framework to assess the quality and approximation property of fluid solvers at least for the pre-turbulent regime [34].

The lack of an accepted solution theory for the Euler equations allows for considerable freedom in the the notion what

constitutes a good computational approximation (see for example [29, 42]) and thus in the choice of discretization

scheme. Consequently, discretization schemes that allow for a high arithmetic intensity and good parallel scaling have

received a high level of attention during the last decade. An important example are high-order discontinuous Galerkin

(DG) discretizations [27, 38, 41] with some form of flux reconstruction and appropriate flux/slope limiters [9]. However,

in the transonic and supersonic regime found in certain shock-hydrodynamics applications, the use of variational

schemes might become questionable due to the lack of pointwise stability properties—at least without the perpetual

hunt for the right shock capturing technique [5].

In this publication we want to entertain a different approach. Instead of starting with a high-order discretization

and then constructing ad-hoc limiting techniques for solving certain benchmark problems, we instead start with the

mathematical description of a second-order collocation-type finite-element scheme that is based on the convex-limiting

technique pioneered by Guermond et al. [14, 18–20]. The methodology is invariant-domain preserving [20]. This means

that in addition to the usual notion of hyperbolic conservation (regarding density, momentum and total energy), a

number of important physical invariance principles are maintained strongly: positivity of the density and internal

energy and a local minimum principle on the specific entropy (see Section 3.9). The method is guaranteed to be stable

without the use of any ad-hoc tuning parameters. This stability comes at the expense of a significantly more involved

algorithmic structure. Taking the mathematical properties of the convex-limited collocation-type continuous Galerkin

scheme as a given, the contribution of the present work is the identification of data structures and algorithms that make

it run fast on modern hardware, and characterize the proposed computing kernels in an academic setting. In detail, our

contributions with the current work can be summarized as follows:

• We describe the algorithmic structure of a second-order collocation-type finite-element scheme for solving the

compressible Euler equations of gas dynamics. Our solver is based on a slight modification of [14] suitable for

SIMD vectorization to render it highly process and thread parallelizable. A high degree of instruction-level

vectorization can be achieved for a nonlinear convex-limiting scheme that involves a large number of root-finding

problems with transcendental functions as building blocks. Our approach is based on explicit vectorization

using the C++ template mechanism and operator overloading as a high-level user interface [3, 26], as well as on

algorithmic design that avoids branching on data.

• We comment on optimization strategies to achieve excellent scaling characteristics and absolute performance,

such as, avoiding index translations, cache-optimized traversal of data structures, using point-to-point MPI

communication, and efficient local caching. To this end we introduce a SIMD-optimized sparsity pattern that

uses a hybrid storage format blending a packed row (ELL) format for highly structures SIMD parallel regions

with a more flexible compressed sparse row (CSR) storage format for non-vectorized index regions.
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• We report excellent weak and strong scaling of our implementation for both 2D and 3D problems, and demonstrate

that our solver is able to tackle realistic 3D applications by computing a flow problem in 3D with about 1.8 billion

gridpoints (totalling to about 8 billion spatial degrees of freedom).

• The main performance limitations of the solver are assessed, considering the mathematical model as fixed down

to roundoff precision. Our analysis identifies which mathematical steps could be modified to further improve

performance in the future. This analysis gives a guideline for performance optimization of a broader class of

algorithms based on unstructured-grid stencil-based update formulas with complex data dependencies and heavy

transcendental arithmetic. In addition, the analysis allows for predictions regarding the expected performance

envelope on hardware with different characteristics than the present CPU-based architectures.

• A reference implementation of the solver is made available
1
that is based on the deal.II finite element library

[2, 3] and is freely available for the scientific community under an open source license.

The remainder of the paper is organized as follows. In Section 2 we review the compressible Euler equations and

introduce important physical quantities. In Section 3 the solver is discussed in a concise, abstract (mathematical) manner.

In particular, the invariant domain property of the solver is discussed in Section 3.3 and the convex limiting paradigm is

introduced in Section 3.4. We summarize key design decisions of our implementation in Section 4 and report benchmark

results and explore algorithmic alternatives in Section 5. We conclude in Section 6 with a detailed discussion of possible

further improvements that require some mathematical reformulation.

2 THE EULER EQUATIONS OF GAS DYNAMICS

Let Ω be an open polyhedral domain in R𝑑 , 𝑑 = 1, 2, 3. We consider the compressible Euler equations in conservative

form,

𝜕𝑡𝒖 + ∇ · f (𝒖) = 0, (1)

equipped with suitable initial conditions 𝒖 (𝒙, 0) = 𝒖0. Here, the independent variables are (𝒙, 𝑡) ∈ Ω × R+ and the

vector 𝒖 := (𝜌,𝒎, 𝐸)T ∈ R𝑑+2 describes the (dependent) conserved quantities, the density 𝜌 , the momentum 𝒎, and the

total energy 𝐸. The flux f (𝒖) ∈ R(𝑑+2)×𝑑 is given by

f (𝒖) :=
(
𝒎 , 𝒗 ⊗ 𝒎 + 𝑝I𝑑 , 𝒗 (𝐸 + 𝑝)

)T
, (2)

where I𝑑 is the 𝑑 × 𝑑 identity matrix, and 𝑝 is the pressure that will be defined below. Starting from the vector 𝒖 of

conserved quantities we define a number of derived physical quantities. The velocity of the fluid particles is denoted

𝒗 := 𝜌−1𝒎 and 𝑒 := 𝜌−1𝐸 − 1

2
𝒗2 denotes the specific internal energy. We call the quantity 𝜀 := 𝜌𝑒 = 𝐸 − 1

2
𝜌𝒗2 internal

energy. Here, we have used the notation 𝒗2 := ∥𝒗∥2, where ∥ · ∥ is the Euclidean norm.

The pressure 𝑝 is defined by an equation of state derived from a specific entropy 𝑠 (𝜌, 𝑒) [19, 22]. For the sake of
simplicity we limit the discussion in this paper to a polytropic ideal gas by setting

𝑠 (𝜌, 𝑒) − 𝑠0 = log

(
𝑒

1

𝛾−1 𝜌−1
)
,

where 𝛾 is the ratio of specific heats that we set to 𝛾 = 7⧸5. This implies that

𝑝 := −𝜌2 d𝑠
d𝜌

(
d𝑠

d𝑒

)−1
= (𝛾 − 1) 𝜀.

1
https://doi.org/10.5281/zenodo.3924365
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We also introduce the speed of sound 𝑐 =

√︃
𝛾 𝑝
𝜌 , as well as a scaled specific entropy that will be used in the context of

convex limiting,

𝜙 (𝒖) := exp

(
(𝛾 − 1) 𝑠 (𝜌, 𝑒 (𝒖))

)
= 𝜀 𝜌−𝛾 . (3)

As a last preparatory step we introduce a Harten-type entropy [22, Eq. 2.10a],

𝜂 (𝒖) :=
(
𝜌2𝑒

) 1

𝛾+1 =
(
𝜌𝜀

) 1

𝛾+1 . (4)

3 SECOND-ORDER INVARIANT-DOMAIN PRESERVING EULER SCHEME

Before proceeding to the algorithmic details of our solver we summarize the method in this section in a concise,

mathematical manner. Our solver is based on the convex-limiting technique pioneered by Guermond et al. [14]. We

refer the reader to [14, 18–20] for a detailed derivation and analysis of the respective building blocks. We summarize

and slightly adapt the algorithm here with the aim of developing a scalable hybrid-parallelized solver that can utilize

modern hardware. In the following, we introduce the underlying finite-element discretization, low- and high-order

update step, as well as necessary building blocks for the final time stepping (Section 3.5).

3.1 Finite element discretization

Let Tℎ be a partition of Ω into a shape-regular quadrilateral or hexahedral mesh. We denote by

{
𝜑ℎ
𝑖

}N
𝑖

the Lagrange

basis of Q1 (Tℎ), the space of piecewise linear, bilinear, or trilinear finite elements on Ω (𝑑 = 1, 2, 3). In the following we

will make use of two fundamental properties of the Lagrange basis, the nonnegativity of the lumped mass matrix and a

partition of unity property, respectively,∫
Ω
𝜑ℎ𝑖 d𝑥 > 0 for 1 ≤ 𝑖 ≤ N ,

N∑︁
𝑖=1

𝜑ℎ𝑖 (𝑥) = 1 for 𝑥 ∈ Ω.

Following the notation in [14], we introduce a number of scalar and vector-valued matrix elements:

𝑚𝑖 𝑗 B

∫
Ω
𝜑ℎ𝑖 (𝑥)𝜑

ℎ
𝑗 (𝑥)d𝑥, 𝑚𝑖 B

∫
Ω
𝜑ℎ𝑖 (𝑥)d𝑥,

𝒄𝑖 𝑗 B

∫
Ω
𝜑ℎ𝑖 (𝑥)∇𝜑

ℎ
𝑗 (𝑥)d𝑥, 𝒏𝑖 𝑗 B

𝒄𝑖 𝑗
∥𝒄𝑖 𝑗 ∥

,

𝛽𝑖 𝑗 B

∫
Ω
∇𝜑ℎ𝑖 (𝑥) · ∇𝜑

ℎ
𝑗 (𝑥)d𝑥, 𝑏𝑖 𝑗 B 𝛿𝑖 𝑗 −

𝑚𝑖 𝑗

𝑚 𝑗
,


(5)

where 𝛿𝑖 𝑗 denotes Kronecker’s delta. The matrices introduced in (5) only depend on the mesh and the particular choice

of the finite element basis. For a given index 𝑖 , we introduce a stencil of nonzero matrix entries

I(𝑖) B
{
1 ≤ 𝑗 ≤ N

��
supp (𝜑ℎ𝑖 ) ∩ supp (𝜑

ℎ
𝑗 ) ≠ ∅

}
.

3.2 Efficient precomputation

The solver algorithm discussed in the following consists of nonlinear updates that are organized as loops over the

stencil:

for 𝑖 = 1, . . . , N do
for 𝑗 ∈ I(𝑖) do

(Nonlinear) computation involving quantities with indices 𝑖 and 𝑗
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This is a stencil-centric operation in contrast to the usual cell-centric loops typically encountered in finite element

assembly [3]. In order to achieve good performance, the first decision is whether the matrices defined in (5) should be

recomputed “on the fly” in terms of a matrix-free approach, or whether it is more efficient to precompute and store some

matrices. For low-order discretizations, matrix-free schemes based on fast integration with sum factorization cannot

amortize the work at quadrature points to a sufficient number of degrees of freedom (dofs) on a cell, thus incurring a

substantial arithmetic overhead compared to matrix-based schemes [12, 26, 27]. The overhead is around 500 floating

point operations per nonzero entry for tri-linear polynomials in 3D using similar arguments as for the operator action

in [26, Fig. 1]. These computations are necessary because some of the nonlinear update steps specified below explicitly

require the full value of the (𝑖, 𝑗)-th entry of the respective matrix. We point out that even hierarchical, stencil-based

matrix-free methods (such as [7]) will need to incorporate additional steps to treat nonlinearities or deformed meshes

(we refer to [6] for a possible approach). As will be shown below, many steps are below the threshold of saturating

memory bandwidth in a matrix-based implementation for contemporary hardware. Furthermore, a reformulation of

our algorithms in terms of a cell-based loop, viz.

for 𝑇 ∈ Tℎ do
for 𝑖 with supp

(
𝜑ℎ
𝑖

)
∩𝑇 ≠ ∅ do

for 𝑗 with supp
(
𝜑ℎ
𝑗

)
∩𝑇 ≠ ∅ do

. . .

would necessitate additional communication from degrees of freedom from different cells, which is better done before

the time loop. Based on these considerations, the limiting resource identification underlying the roofline performance

model [40] suggests that the on-the-fly matrix-free computation would not relax the performance-limiting factor.

Even though arithmetic intensity would be further increased, the application metric of the throughput in terms of

points updated per second would decrease. Consequently, the most performance-beneficial setup is a stencil-based loop

structure with pre-computed matrices.

Starting from these considerations, we avoid all assembly operations during the time loop and precompute the three

matrices𝑚𝑖 𝑗 , 𝒄𝑖 𝑗 , 𝛽𝑖 𝑗 . Note that each matrix contains unique information in terms of the shape functions. Furthermore,

the frequent use of the diagonal matrix𝑚𝑖𝛿𝑖 𝑗 on the one hand and the low memory consumption on the other motivates

to also store this matrix. Given one layer of overlap in the mesh to the neighboring MPI ranks, the computation of

those four matrices is completely local to each MPI rank. Conversely, the matrices 𝒏𝑖 𝑗 and 𝑏𝑖 𝑗 are derived on the fly

from 𝒄𝑖 𝑗 and𝑚𝑖 𝑗 : Matrix 𝒏𝑖 𝑗 is used in close proximity to 𝒄𝑖 𝑗 , thus leading to a single division and three multiplications

of data present already in registers, which is cheaper than transferring three doubles through the memory hierarchy.

The motivation for 𝑏𝑖 𝑗 is more subtle: The code below uses both 𝑏𝑖 𝑗 and 𝑏 𝑗𝑖 for the update; whereas𝑚𝑖 𝑗 is symmetric,

the matrix 𝑏𝑖 𝑗 is not. In the presence of caches, see the analysis below, it is hence cheaper to only load the symmetric

entry𝑚𝑖 𝑗 and the entries 1/𝑚𝑖 and 1/𝑚 𝑗 derived from the diagonal mass matrix. In addition, we propose to precompute

the inverse of the lumped mass matrix, (1/𝑚𝑖 𝛿𝑖 𝑗 ), in order to avoid divisions. We refer to the detailed discussion in

Section 5.

3.3 Intermediate low-order update

Given a snapshot

(
𝑼𝑛
𝑖

)
1≤𝑖≤N of admissible states at time 𝑡𝑛 (this is to say that 𝜌 (𝑼𝑛

𝑖
) > 0 and 𝜀 (𝑼𝑛

𝑖
) > 0 ) with an

associated finite-element function 𝒖𝑛
ℎ
=

∑N
𝑖=1

𝑼𝑛
𝑖
𝜑ℎ
𝑖
, our goal is to compute a new snapshot

(
𝑼𝑛+1
𝑖

)
1≤𝑖≤N consistent

with the Euler equations (1) such that the states maintain the following crucial thermodynamical constraints

Manuscript submitted to ACM



6 Matthias Maier and Martin Kronbichler

• admissibility: positivity of density, 𝜌 (𝑼𝑛+1
𝑖
) > 0, and positivity of internal energy, 𝜀 (𝑼𝑛+1

𝑖
) > 0,

• local minimum principle on specific entropy: 𝑠 (𝑼𝑛+1
𝑖
) ≥ min𝑗 ∈I(𝑖) 𝑠 (𝑈𝑛

𝑗
).

The first algorithmic ingredient to achieve a high-order update obeying above constraints is the computation of

an intermediate low-order update 𝑼𝐿,𝑛+1
𝑖

with a first-order graph viscosity method [19]. The method is based on a

guaranteed maximum wavespeed estimate coming from an approximate Riemann solver [18]. We construct an explicit

update of the state 𝑢𝑛
ℎ
=

∑N
𝑖=1

𝑼𝑛
𝑖
𝜑ℎ
𝑖
at time 𝑡𝑛 for some new time 𝑡𝑛+1 = 𝑡𝑛 + 𝜏𝑛 as follows:

𝑼𝐿,𝑛+1
𝑖

= 𝑼𝑛
𝑖 +

𝜏𝑛

𝑚𝑖

∑︁
𝑗 ∈I(𝑖)

(
− f (𝑼𝑛

𝑗 ) · 𝒄𝑖 𝑗 + 𝑑
𝐿,𝑛
𝑖 𝑗

(
𝑼𝑛
𝑗 − 𝑼

𝑛
𝑖

) )
. (6)

Here, 𝑑
𝐿,𝑛
𝑖 𝑗

is a graph viscosity given by

𝑑
𝐿,𝑛
𝑖 𝑗
B max

(
˜𝜆max (𝒏𝑖 𝑗 , 𝑼𝑛

𝑖 , 𝑼
𝑛
𝑗 ) |𝒄𝑖 𝑗 | , ˜𝜆max (𝒏 𝑗𝑖 , 𝑼𝑛

𝑗 , 𝑼
𝑛
𝑖 ) |𝒄 𝑗𝑖 |

)
for 𝑖 ≠ 𝑗, 𝑑

𝐿,𝑛
𝑖𝑖

= −
∑︁

𝑖≠𝑗 ∈I(𝑖)
𝑑
𝐿,𝑛
𝑖 𝑗

, (7)

where
˜𝜆max (𝒏𝑖 𝑗 , 𝑼𝑛

𝑖
, 𝑼𝑛

𝑗
) is a suitable upper bound on the maximum wave speed in an associated one dimensional

Riemann problem [18, 19]. The exact definition of
˜𝜆max (𝒏𝑖 𝑗 , 𝑼𝑛

𝑖
, 𝑼𝑛

𝑗
) and description of the approximate Riemann solver

that is used in the computation is postponed to Section 3.7. The time-step size is set to

𝜏𝑛 = 𝑐
cfl

min

1≤𝑖≤N

(
𝑚𝑖

−2𝑑𝐿,𝑛
𝑖𝑖

)
, (8)

with a chosen constant 0 < 𝑐
cfl
≤ 1. In preparation for the high-order update with convex limiting, we rewrite the

low-order update (6) as follows,

𝑼𝐿,𝑛+1
𝑖

= 𝑼𝐿,𝑛
𝑖
+ 2𝜏𝑛

𝑚𝑖

∑︁
𝑗 ∈I(𝑖)

𝑑
𝐿,𝑛
𝑖 𝑗

𝑼
𝑛
𝑖 𝑗 , 𝑼

𝑛
𝑖 𝑗 B

1

2

(
𝑼𝑛
𝑖 + 𝑼

𝑛
𝑗

)
− 1

2𝑑
𝐿,𝑛
𝑖 𝑗

(
f (𝑼𝑛

𝑗 ) − f (𝑼𝑛
𝑖 )

)
· 𝒄𝑖 𝑗 , (9)

where we have used the identities

∑
𝑗 ∈I(𝑖) 𝒄𝑖 𝑗 = 0, and

∑
𝑗 ∈I(𝑖) 𝑑

𝐿,𝑛
𝑖 𝑗

= 0.

3.4 Intermediate high-order update

We now introduce a formally high-order update that is entropy consistent and close to being invariant-domain preserving

[14]. The update is similar to the low-order update (6), the only difference being that the graph viscosity 𝑑𝐿
𝑖 𝑗
of the

low-order update is replaced by a suitable 𝑑𝐻
𝑖 𝑗
≤ 𝑑𝐿

𝑖 𝑗
and the consistent mass matrix𝑚𝑖 𝑗 is used instead of the lumped

mass matrix𝑚𝑖 , ∑︁
𝑗 ∈I(𝑖)

𝑚𝑖 𝑗

(
𝑼̃
𝐻,𝑛+1
𝑗 − 𝑼𝑛

𝑗

)
= 𝜏𝑛

∑︁
𝑗 ∈I(𝑖)

(
− f (𝑼𝑛

𝑗 ) · 𝒄𝑖 𝑗 + 𝑑
𝐻,𝑛
𝑖 𝑗

(
𝑼𝑛
𝑗 − 𝑼

𝑛
𝑖

) )
, (10)

and where we set

𝑑
𝐻,𝑛
𝑖 𝑗

B 𝑑
𝐿,𝑛
𝑖 𝑗

𝛼𝑛
𝑖
+ 𝛼𝑛

𝑗

2

for 𝑖 ≠ 𝑗, 𝑑
𝐻,𝑛
𝑖𝑖

= −
∑︁

𝑖≠𝑗 ∈I(𝑖)
𝑑
𝐻,𝑛
𝑖 𝑗

. (11)

Here, 𝛼𝑛
𝑖
denotes an indicator given by a normalized entropy viscosity ratio. The precise definition and computation of 𝛼𝑛

𝑖

is discussed in Section 3.8. Solving for 𝑼̃
𝐻,𝑛+1
𝑗 given by (10) involves inverting the full mass matrix. This is undesirable

due to the high computational cost it incurs. Even with a competitive preconditioner, solving (10) can be as expensive as

the entire rest of the full (explicit) update step. We avoid this issue and obtain a very efficient scheme by approximating

the inverse of the matrix with a Neumann series. This introduces a second-order consistency error, which is however
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Efficient parallel second-order Euler solver 7

close to the underlying discretization error and much smaller than the error caused by the lumped mass matrix. We

start by rewriting (10) as follows∑︁
𝑗 ∈I(𝑖)

𝑚𝑖 𝑗

𝑚 𝑗

𝑚 𝑗

𝜏𝑛

(
𝑼̃
𝐻,𝑛+1
𝑗 − 𝑼𝑛

𝑗

)
= 𝑹𝑛𝑖 , with 𝑹𝑛𝑖 B

∑︁
𝑗 ∈I(𝑖)

(
− f (𝑼𝑛

𝑗 ) · 𝒄𝑖 𝑗 + 𝑑
𝐻,𝑛
𝑖 𝑗

(
𝑼𝑛
𝑗 − 𝑼

𝑛
𝑖

) )
. (12)

By expanding the inverse of the matrix𝑚𝑖 𝑗/𝑚 𝑗 into a Neumann series up to first order,(𝑚𝑖 𝑗

𝑚 𝑗

)−1
=

(
𝛿𝑖 𝑗 −

(
𝛿𝑖 𝑗 −

𝑚𝑖 𝑗

𝑚 𝑗

) )−1
≈ 𝛿𝑖 𝑗 +

(
𝛿𝑖 𝑗 −

𝑚𝑖 𝑗

𝑚 𝑗

)
= 𝛿𝑖 𝑗 + 𝑏𝑖 𝑗 ,

we obtain

𝑚𝑖

𝜏𝑛

(
𝑼𝐻,𝑛+1
𝑖

− 𝑼𝑛
𝑖

)
= 𝑹𝑛𝑖 +

∑︁
𝑗 ∈I(𝑖)

(
𝑏𝑖 𝑗𝑹

𝑛
𝑗 − 𝑏 𝑗𝑖𝑹

𝑛
𝑖

)
.

Here, we have used the fact that

∑
𝑗 ∈I(𝑖) 𝑏 𝑗𝑖 = 0 to add the second term in the sum on the right hand side. By taking

the difference of this equation with equation (6) that defines the low-order update we obtain

𝑼𝐻,𝑛+1
𝑖

− 𝑼𝐿,𝑛+1
𝑖

=
∑︁

𝑗 ∈I(𝑖)
𝜆 𝑷𝑛𝑖 𝑗 , where 𝑷𝑛𝑖 𝑗 B

𝜏𝑛

𝑚𝑖 𝜆

{
𝑏𝑖 𝑗𝑹

𝑛
𝑗 − 𝑏 𝑗𝑖𝑹

𝑛
𝑖 +

(
𝑑
𝐻,𝑛
𝑖 𝑗
− 𝑑𝐿,𝑛

𝑖 𝑗

) (
𝑼𝑛
𝑗 − 𝑼

𝑛
𝑖

)}
. (13)

In the above definition of 𝑷𝑛
𝑖 𝑗
we have introduced an additional scaling parameter, 𝜆 B 1/(card

(
I(𝑖)

)
− 1), that plays a

crucial role in the convex limiting [14] discussed in Section 3.9.

3.5 Full update step

The actual update is now defined as follows. Given 𝑼
𝑛
𝑖 𝑗 , the low-order update 𝑼

𝐿,𝑛+1
𝑖

, and 𝑷𝑛
𝑖 𝑗
as defined in (9) and (13),

the new state 𝑼𝑛+1
𝑖

is constructed by means of an iterative process [14]: First, start by setting

𝑼 𝑖 ← 𝑼𝐿,𝑛+1
𝑖

, 𝑷𝑖 𝑗 ← 𝑷𝑛𝑖 𝑗 .

Then, limiter bounds are computed and an update is performed:

𝑙𝑖 𝑗 = min

(
limiter

(
𝑼
𝑛
𝑖 𝑗 ; 𝑼 𝑖 , 𝑷𝑖 𝑗

)
, limiter

(
𝑼
𝑛
𝑖 𝑗 ; 𝑼 𝑗 , 𝑷𝑖 𝑗

) )
,

𝑼 𝑖 ← 𝑼 𝑖 +
∑︁

𝑗 ∈I(𝑖)
𝜆 𝑙𝑖 𝑗 𝑷𝑖 𝑗 , 𝑷𝑖 𝑗 ← (1 − 𝑙𝑖 𝑗 )𝑷𝑖 𝑗 .

 (14)

The discussion of the limiter function is deferred to Section 3.9. For reasons of stability, at least two passes of update

step (14) are performed before accepting the current value by setting 𝑼𝑛+1
𝑖
B 𝑼 𝑖 . For the convenience of the reader

the full update procedure is summarized as pseudo code in Alg. 1.

3.6 Strong stability preserving Runge-Kutta scheme

The update process described so far is second order in space but only first order in time. In order to obtain a scheme

that is also high-order in time, we combine the update process with a third-order strong stability preserving (SSP)

Runge-Kutta scheme [35]. More precisely, let 𝜏𝑛 , 𝑼
𝑛+1,(1)
𝑖

denote the computed time-step size and the computed update

of iterative process (14). We then repeat the update step described above in order to compute a second intermediate

state 𝑼𝑛+1,(2)
𝑖

and the actual update 𝑼𝑛+1
𝑖

by replacing the original state 𝑼𝑛
𝑖
by 𝑼𝑛+1,(1)

𝑖
, and 𝑼𝑛+1,(2)

𝑖
, (while keeping
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8 Matthias Maier and Martin Kronbichler

euler_step
// Step 0: precompute entropies (see Section 5)

// Step 1: compute off-diagonal 𝑑
𝐿,𝑛
𝑖 𝑗

and 𝛼𝑖:

for 𝑖 = 1, . . . , N do
indicator.reset(𝑼𝑛

𝑖
)

for 𝑗 ∈ I(𝑖), 𝑗 > 𝑖 do
𝑑
𝐿,𝑛
𝑖 𝑗
← max

(
˜𝜆max (𝒏𝑖 𝑗 , 𝑼𝑛

𝑖
, 𝑼𝑛

𝑗
) |𝒄𝑖 𝑗 | , ˜𝜆max (𝒏 𝑗𝑖 , 𝑼𝑛

𝑗
, 𝑼𝑛

𝑖
) |𝒄 𝑗𝑖 |

)
indicator.accumulate(𝑼𝑛

𝑗
, 𝒄𝑖 𝑗, 𝛽𝑖 𝑗)

𝛼𝑖 ← indicator.result()

// Step 2: fill lower-diagonal part and compute 𝑑
𝐿,𝑛
𝑖𝑖

and 𝜏𝑛:

𝜏𝑛 ← +∞
for 𝑖 = 1, . . . , N do

for 𝑗 ∈ I(𝑖), 𝑗 < 𝑖 do
𝑑
𝐿,𝑛
𝑖 𝑗
← 𝑑

𝐿,𝑛
𝑗𝑖

𝑑
𝐿,𝑛
𝑖𝑖
← −∑

𝑗 ∈I(𝑖), 𝑗≠𝑖 𝑑
𝐿,𝑛
𝑖 𝑗

; 𝜏𝑛 ← min

(
𝜏𝑛 , −𝑐cfl 𝑚𝑖

2𝑑
𝐿,𝑛
𝑖𝑖

)
// Step 3: low-order update, compute 𝑹𝑖 and accumulate limiter bounds

for 𝑖 = 1, . . . , N do
for 𝑗 ∈ I(𝑖) do

𝑑
𝐻,𝑛
𝑖 𝑗
← 𝑑

𝐿,𝑛
𝑖 𝑗

𝛼𝑛
𝑖
+𝛼𝑛

𝑗

2
; 𝑹𝑛

𝑖
← 𝑹𝑛

𝑖
− f𝑗 · 𝒄𝑖 𝑗 + 𝑑𝐻,𝑛

𝑖 𝑗

(
𝑼𝑛
𝑗
− 𝑼𝑛

𝑖

)
𝑼
𝑛
𝑖 𝑗 ← 1

2

(
𝑼𝑛
𝑖
+ 𝑼𝑛

𝑗

)
− 1

2𝑑
𝐿,𝑛
𝑖 𝑗

(
f𝑗 − f𝑖

)
· 𝒄𝑖 𝑗

𝑼𝑛+1
𝑖
← 2𝜏𝑛

𝑚𝑖
𝑑
𝐿,𝑛
𝑖 𝑗

𝑼
𝑛
𝑖 𝑗

limiter.accumulate_bounds(𝑼 𝑖, 𝑼 𝑗, 𝑼
𝑛
𝑖 𝑗)

bounds𝑖 ← limiter.bounds()

// Step 4: compute 𝑷𝑖 𝑗 and 𝑙𝑖 𝑗:

for 𝑖 = 1, . . . , N do
for 𝑗 ∈ I(𝑖) do

𝑷𝑖 𝑗 ← 𝜏𝑛
𝜆𝑚𝑖

( (
𝑑
𝐻,𝑛
𝑖 𝑗
− 𝑑𝐿,𝑛

𝑖 𝑗

) (
𝑼𝑛
𝑗
− 𝑼𝑛

𝑖

)
+ 𝑏𝑖 𝑗𝑹 𝑗 − 𝑏 𝑗𝑖𝑹𝑖

)
𝑙𝑖 𝑗 ← limiter.compute(𝑼𝑛+1

𝑖
, 𝑷𝑖 𝑗 , bounds𝑖)

for pass = 1, . . . , number of limiter passes do
// Step 5, 6, . . . : high-order update and recompute 𝑙𝑖 𝑗:

for 𝑖 = 1, . . . , N do
for 𝑗 ∈ I(𝑖) do

𝑼𝑛+1
𝑖
← 𝑼𝑛+1

𝑖
+ 𝜆min(𝑙𝑖 𝑗 , 𝑙 𝑗𝑖 )𝑷𝑛𝑖 𝑗

if not last round then
for 𝑗 ∈ I(𝑖) do

𝑷𝑖 𝑗 ←
(
1 −min(𝑙𝑖 𝑗 , 𝑙 𝑗𝑖 )

)
𝑷𝑖 𝑗

𝑙𝑖 𝑗 ← limiter.compute(𝑼𝑛+1
𝑖

, 𝑷𝑖 𝑗 , bounds𝑖)

Algorithm 1: High-order forward Euler step. The indicator and limiter are discussed in Section 3.8 and 3.9. The

˜𝜆max values are computed with an approximate Riemann solver discussed in Section 3.7.
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Efficient parallel second-order Euler solver 9

the time-step size 𝜏𝑛 fixed) and by scaling the result,

𝜏𝑛, 𝑼
𝑛+1,(1)
𝑖

← euler_step
(
𝑼𝑛
𝑖

)
,

𝑼𝑛+1,(2)
𝑖

← 3

4

𝑼𝑛
𝑖 +

1

4

euler_step
(
𝜏𝑛, 𝑼

𝑛+1,(1)
𝑖

)
,

𝑼𝑛+1
𝑖 ← 1

3

𝑼𝑛
𝑖 +

2

3

euler_step
(
𝜏𝑛, 𝑼

𝑛+1,(2)
𝑖

)
.


(15)

3.7 Approximate Riemann solver

For constructing the graph viscosity

𝑑
𝐿,𝑛
𝑖 𝑗

= max

(
˜𝜆max (𝒏𝑖 𝑗 , 𝑼𝑛

𝑖 , 𝑼
𝑛
𝑗 ) |𝒄𝑖 𝑗 | , ˜𝜆max (𝒏 𝑗𝑖 , 𝑼𝑛

𝑗 , 𝑼
𝑛
𝑖 ) |𝒄 𝑗𝑖 |

)
,

sharp upper bounds on the maximal wave speed
˜𝜆max (𝒏𝑖 𝑗 , 𝑼𝑛

𝑖
, 𝑼𝑛

𝑗
) of the associated 1D Riemann problem can be

computed with fast, approximate Riemann solvers [18]. For our purpose, however, the low-order articifical viscosity

𝑑
𝐿,𝑛
𝑖 𝑗

is allowed to be overestimated to a certain extent without degrading the performance of the second-order scheme.

We thus only use an inexpensive guaranteed upper bound on the maximum wave speed by means of a two-rarefaction

approximation [18] (and that would ordinarily used as a starting point for a quadratic Newton iteration [18]). This

choice has the added benefit that the approximate Riemann solver can also be efficiently SIMD parallelized as will be

discussed in Sections 4 and 5. For a given state 𝑼 and direction 𝒏𝑖 𝑗 , a projected 1D state is defined as follows

𝜌 B 𝜌, 𝑚̃ B 𝒏𝑖 𝑗 ·𝒎, 𝐸 B 𝐸 − 1

2 𝜌



𝒎 − 𝑚̃ 𝒏𝑖 𝑗 ∥2𝑙2 .

We now introduce two quantities of characteristic propagation speeds that depend on a pressure 𝑝∗ and either the 𝑼𝑛
𝑖

or 𝑼𝑛
𝑗
state [18],

𝜆1− (𝑼𝑛
𝑖 , 𝑝
∗) B 𝑢̃𝑛𝑖 − 𝑐𝑛𝑖

√√
1 + 𝛾 + 1

2𝛾

[
𝑝∗ − 𝑝𝑛

𝑖

𝑝𝑛
𝑖

]
pos

, 𝜆3+ (𝑼𝑛
𝑗 , 𝑝
∗) B 𝑢̃𝑛𝑗 + 𝑐𝑛𝑗

√√√
1 + 𝛾 + 1

2𝛾

[
𝑝∗ − 𝑝𝑛

𝑗

𝑝𝑛
𝑗

]
pos

,

where we have used the symbol [ 𝑥 ]
pos

=
|𝑥 |+𝑥
2

, and where the derived quantities 𝑐 and 𝑝 are computed from the

corresponding projected 1D states. A two-rarefaction pressure 𝑝∗ (𝑼𝑛
𝑖
, 𝑼𝑛

𝑗
) is given by

𝑝∗ (𝑼𝑛
𝑖 , 𝑼

𝑛
𝑗 ) = 𝑝 𝑗

©­­­«
𝑐𝑖 + 𝑐 𝑗 − 𝛾−1

2

(
𝑢̃ 𝑗 − 𝑢̃𝑖

)
𝑐𝑖

(
𝑝̃𝑖
𝑝̃ 𝑗

)−𝛾−1
2𝛾 + 𝑐 𝑗

ª®®®¬
2𝛾

𝛾−1

,

and a monotone increasing and concave down function [18] is constructed as follows

𝜓 (𝑝) B 𝑓 (𝑼𝑛
𝑖 , 𝑝) + 𝑓 (𝑼

𝑛
𝑗 , 𝑝) + 𝑢̃ 𝑗 − 𝑢̃𝑖 , 𝑓 (𝑼 , 𝑝) B



√
2 (𝑝 − 𝑝)√︃

𝜌
[
(𝛾 + 1) 𝑝 + (𝛾 − 1) 𝑝

] , if 𝑝 ≥ 𝑝,[
(𝑝/𝑝)

𝛾−1
2𝛾 − 1

]
2 𝑐

𝛾 − 1 , otherwise.

By using these ingredients, the wave speed estimate is constructed as follows,

˜𝜆max = max

( [
𝜆1− (𝑼𝑛

𝑖 , 𝑝
∗)

]
neg

,
[
𝜆3+ (𝑼𝑛

𝑗 , 𝑝
∗)

]
pos

)
,
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10 Matthias Maier and Martin Kronbichler

and where

𝑝∗ B

{
𝑝∗ (𝑼𝑛

𝑖 , 𝑼
𝑛
𝑗 ) if𝜓 (𝑝max) < 0,

min(𝑝max, 𝑝
∗ (𝑼𝑛

𝑖 , 𝑼
𝑛
𝑗 )) otherwise.

with the definitions 𝑝min = min(𝑝𝑖 , 𝑝 𝑗 ) and 𝑝max = max(𝑝𝑖 , 𝑝 𝑗 ).

3.8 Entropy viscosity commutator

The indicator used for constructing the high-order solver is an entropy-viscosity commutator as described in [14, 16].

We choose the Harten entropy 𝜂 as described in Section 2. Let 𝜂 ′ denote its derivative with respect to the state variables:

𝜂 ′(𝑼 ) =
(𝜌 𝜀)−𝛾/(𝛾+1)

𝛾 + 1

©­­­«
𝐸

−𝒎
𝜌

ª®®®¬ .
With the help of the two quantities

𝑎𝑛𝑖 B
∑︁

𝑗 ∈I(𝑖)

(
𝜂 (𝑼𝑛

𝑗
)

𝜌𝑛
𝑗

−
𝜂 (𝑼𝑛

𝑖
)

𝜌𝑛
𝑖

)
𝒎𝑛

𝑗 · 𝒄𝑖 𝑗 , 𝒃𝑛𝑖 B
∑︁

𝑗 ∈I(𝑖)

(
f (𝑼𝑛

𝑗 ) − f (𝑼𝑛
𝑖 )

)
· 𝒄𝑖 𝑗 ,

the normalized entropy viscosity ratio 𝛼𝑛
𝑖
for the state 𝑼𝑛

𝑖
is now constructed as follows:

𝛼𝑛𝑖 =
𝑁𝑛
𝑖

𝐷𝑛
𝑖

, 𝑁𝑛
𝑖 B

����𝑎𝑛𝑖 − 𝜂 ′(𝑼𝑛
𝑖 ) · 𝒃

𝑛
𝑖 +

𝜂 (𝑼𝑛
𝑖
)

𝜌𝑛
𝑖

(
𝒃𝑛𝑖

)
1

���� , 𝐷𝑛
𝑖 B

��𝑎𝑛𝑖 �� + 𝑑+1∑︁
𝑘=1

���� (𝜂 ′(𝑼𝑛
𝑖 )

)
𝑘 − 𝛿1𝑘

𝜂 (𝑼𝑛
𝑖
)

𝜌𝑛
𝑖

���� �� (𝒃𝑛𝑖 )𝑘 �� ,
where

(
.
)
𝑘 denotes the 𝑘-th component of a vector and 𝛿𝑖 𝑗 is Kronecker’s delta.

3.9 Convex limiting on specific entropy

The starting point of our discussion of the limiting process is Equation (13), viz.,

𝑼𝐻,𝑛+1
𝑖

= 𝑼𝐿,𝑛+1
𝑖

+
∑︁

𝑗 ∈I(𝑖)
𝜆𝑷𝑛𝑖 𝑗 .

We recall that 𝑼𝐿,𝑛+1
𝑖

is the intermediate low-order update that ensures that all thermodynamical constraints are

maintained (see Section 3.3). Unfortunately, the high-order update 𝑼𝐻,𝑛+1
𝑖

is invariant domain violating and cannot be

used immediately. We thus limit the high-order update by introducing 𝑙𝑖 𝑗 ∈ [0, 1],

𝑼̃ 𝑖 = 𝑼𝐿,𝑛+1
𝑖

+
∑︁

𝑗 ∈I(𝑖)
𝜆𝑙𝑖 𝑗𝑷

𝑛
𝑖 𝑗 . (16)

such that 𝑙𝑖 𝑗 = 𝑙 𝑗𝑖 (to ensure conservation) and such that 𝑼̃ 𝑖 maintain all stated thermodynamical constraints. Equation

(16) allows to break down the search for the factors (𝑙𝑖 𝑗 ) into successive one-dimensional root finding problems that

can be solved very efficiently:

max !
˜𝑙𝑖 𝑗 ∈ [0, 1] s. t. 𝑼 𝑖 + 𝑙𝑖 𝑗𝑷𝑖 𝑗 maintains thermodynamical constraints.

A key observation is the fact that the
˜𝑙𝑖 𝑗 found in that way have the property that the combined update (16) obeys the

thermodynamical constraints as well [14]. The downside of this approach, however, is the fact that the factors are not

necessarily optimal. This can be improved by repeating the limiting step a second time (as outlined in Section 3.5).
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0 N

MPI rank 0

. . .

thread 3

thread 2

thread 1

thread 0

MPI rank 1

. . .

thread 3

thread 2

thread 1

thread 0

. . .

. . .

Fig. 2. Hybrid process and thread parallelism: The index range N is divided into contiguous ranges distributed over all MPI ranks,
that in turn spawn threads subdividing the index range further.

For a given index 𝑖 we first define local bounds for the density and specific entropy (the computation of these

correspond to the limiter.accumulate_bounds call in Alg. 1):
𝜌min B min

𝑗 ∈I(𝑖)
𝜌 (𝑼𝑛

𝑖 𝑗 ),

𝜌max B max

𝑗 ∈I(𝑖)
𝜌 (𝑼𝑛

𝑖 𝑗 ),

𝜙min B min

𝑗 ∈I(𝑖)
𝜙 (𝑼 𝑗 ).

Remark 3.1. These bounds can be relaxed in order to obtain optimal 2nd-order convergence rates for smooth manufactured

solutions, we refer the reader to [14, Sec. 4.7]. The relaxation procedure is implemented in our accompanying source code.

For the sake of simplicity, however, we refrain from discussing the relaxation procedure.

Given above bounds and an update direction 𝑷𝑖 𝑗 one can now determine a candidate
˜𝑙𝑖 𝑗 by computing

˜𝑙𝑖 𝑗 = max

𝑙 ∈ [0,1]

{
𝜌min ≤ 𝜌 (𝑼 𝑖 + ˜𝑙𝑖 𝑗𝑷𝑖 𝑗 ) ≤ 𝜌max, 𝜙min ≤ 𝜙 (𝑼 𝑖 + ˜𝑙𝑖 𝑗𝑷𝑖 𝑗 )

}
.

Algorithmically this is accomplished as follows: We first determine an interval [𝑡𝐿, 𝑡𝑅] by setting 𝑡𝐿 = 0 and choosing

𝑡𝑅 ≤ 1 ensuring the bounds on the density [14]. We then perform a quadratic Newton iteration [18] solving for the root

of a 3-convex function [18]

Ψ(𝑼 ) = 𝜌𝛾+1 (𝑼 )
(
𝜙 (𝑼 ) − 𝜙min

)
.

We note that by definition of Ψ the condition Ψ(𝑼 ) ≥ 0 ensures that the local minimum principle on the specific entropy

is fulfilled. In addition, Ψ(𝑼 ) ≥ 0 also guarantees positivity of the internal energy by virtue of equation (3). Initially we

have Ψ(𝑼 𝑖 + 𝑡𝐿𝑷𝑖 𝑗 ) ≥ 0, i. e. the factor 𝑡𝐿 is an admissible limiter value. On the other hand, 𝑡𝑅 might be inadmissible, i. e.

Ψ(𝑼 𝑖 + 𝑡𝐿𝑷𝑖 𝑗 ) < 0. The quadratic Newton step updates the bounds 𝑡𝐿 and 𝑡𝑅 simulatenously maintaining the property

Ψ(𝑼 𝑖 + 𝑡𝐿𝑷𝑖 𝑗 ) ≥ 0 ≥ Ψ(𝑼 𝑖 + 𝑡𝐿𝑷𝑖 𝑗 ). The limiter step is oulined in detail in Alg. 2.

4 IMPLEMENTATION

In this section we discuss the central implementation details of the algorithm introduced in Section 3. Particular

emphasis is on the local index handling and SIMD-optimized data structures.
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limiter.compute (𝑼 𝑖, 𝑷𝑖 𝑗, bounds)
// Ensure positivity of the density 𝜌:

𝑡𝐿 ← 0

𝑡𝑅 ←


1 if 𝜌 (𝑼 𝑖 + 𝑡𝑅𝑷𝑖 𝑗 ) ≤ 𝜌max,��𝜌max − 𝜌 (𝑼 𝑖 )
����𝜌 (𝑷𝑖 𝑗 )�� else.

𝑡𝑅 ←


𝑡𝑅 if 𝜌 (𝑼 𝑖 + 𝑡𝑅𝑷𝑖 𝑗 ) ≥ 𝜌min,��𝜌min − 𝜌 (𝑼 𝑖 )
����𝜌 (𝑷𝑖 𝑗 )�� else.

// Perform quadratic Newton update:

for step = 1, . . . , max number of Newton steps do
Ψ𝑅 ← Ψ(𝑼 𝑖 + 𝑡𝑅𝑃𝑖 𝑗 )
// If Ψ𝑅 ≥ 0, then 𝑡𝑅 is already a good state, close interval:

𝑡𝐿 ←
{
𝑡𝑅 if Ψ𝑅 ≥ 0,

𝑡𝐿 else.

if Ψ𝑅 ≥ 0 then
// 𝑡𝑅 is already a good state, exit for loop

break

Ψ𝐿 ← Ψ(𝑼 𝑖 + 𝑡𝐿𝑃𝑖 𝑗 )
if Ψ𝐿 ≤ TOL then

// within a preset tolerance 𝑡𝐿 is a root of Ψ, exit for loop

break

dΨ𝐿 ← dΨ
d𝑡
(𝑼 𝑖 + 𝑡𝑷𝑖 𝑗 )

��
𝑡=𝑡𝑅

dΨ𝑅 ← dΨ
d𝑡
(𝑼 𝑖 + 𝑡𝑷𝑖 𝑗 )

��
𝑡=𝑡𝐿

[𝑡𝐿, 𝑡𝑅] ← quadratic_newton_step(𝑡𝐿, 𝑡𝑅, Ψ𝐿, Ψ𝑅, dΨ𝐿, dΨ𝑅).

// Accept 𝑡𝐿 as limiter bound:
˜𝑙𝑖 𝑗 ← 𝑡𝐿

Algorithm 2: The convex limiting procedure. The unusual control flow in the algorithm ensures a straight-forward

SIMD vectorization; see Section 4.2.

quadratic_newton_step (𝑡𝐿, 𝑡𝑅, Ψ𝐿, Ψ𝑅, dΨ𝐿, dΨ𝑅, sign)
scaling ← 1 / (𝑡𝑅 − 𝑡𝐿 + eps)
𝑑11 ← dΨ𝐿 ; 𝑑12 ← (Ψ𝑅 − Ψ𝐿) · scaling ; 𝑑22 ← dΨ𝑅
𝑑112 ← (𝑑12 − 𝑑11) · scaling ; 𝑑122 ← (𝑑22 − 𝑑12) · scaling

Λ𝐿 ←
(
dΨ𝐿

)
2 − 4Ψ𝐿 𝑑112 ; Λ𝑅 ←

(
dΨ𝑅

)
2 − 4Ψ𝑅 𝑑122

𝑡𝐿 ← 𝑡𝐿 − 2Ψ𝐿

dΨ𝐿 + sign
√
Λ𝐿

; 𝑡𝑅 ← 𝑡𝑅 − 2Ψ𝑅
dΨ𝑅 + sign

√
Λ𝑅

return [𝑡𝐿, 𝑡𝑅]
Algorithm 3: Quadratic Newton step with divided differences. The input function Ψ has to be 3-convex, i. e. the

third derivative of Ψ must be nonzero with a fixed positive or negative sign. (An actual implementation of the

quadratic Newton scheme should take numerical round-off errors into account which requires additional safeguards

not discussed here.)
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Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

sync 𝛼𝑖
barrier 𝜏max

sync 𝑹𝑖 sync 𝑙𝑖 𝑗 sync 𝑙𝑖 𝑗 sync 𝑼 𝑖

Fig. 3. MPI synchronization and barriers for Alg. 1 for the typical case of two limiter passes. During the execution of the forward
Euler step (Alg. 1) the 𝛼𝑖 , 𝑹𝑖 and 𝑼 𝑖 vectors and the 𝑙𝑖 𝑗 matrix have to be synchronized over MPI ranks: This incurs some MPI
communication and forces an individual MPI rank to wait until all necessary data is received. The computation of the maximal
admissible step size, 𝜏max, requires an MPI Allreduce operation and thus incurs an MPI barrier after step 2 during which all MPI ranks
have to wait for each other such that 𝜏max can be computed.

4.1 Distributed and shared memory parallelism

All building blocks of Alg. 1 are loops over the stencil:

for 𝑖 = 1, . . . , N do
for 𝑗 ∈ I(𝑖) do

Computation involving index 𝑖 and 𝑗 .

Since the computed updates to different indices 𝑖 are independent, the parallelization with MPI and threads is straight-

forward: First, partition the set N of indices among the participating MPI ranks. Then, the local index ranges can

be traversed in parallel by a number of workers; see Fig. 2. Introducing shared-memory thread parallelism into the

algorithm requires only minimal modifications, mainly introducing thread-local temporary memory and parallel for

loops. We have based our implementation on OpenMP [32] because it is readily supported by current C++ compilers.

In contrast, for distributed-memory parallelism we have to communicate information contained in vector entries

associated to the columns I(𝑖) between participating MPI ranks. We will comment on the precise handling of such

export and import indices in Section 4.3. For the time being we observe that Alg. 1 is organized such that an individual

step computes a quantity (for example 𝑹𝑖 in step 3) that in turn is needed in a subsequent step when looping over the

stencil (for example, 𝑹 𝑗 for 𝑗 ∈ I(𝑖) is used in step 4). Hence, all the values 𝑹 𝑗 need to be ready before proceeding with

the next step, including those values computed by another MPI rank which must be exchanged by a suitable export

step. Due to the arithmetic intensity in these steps as explored in Section 5 below, we consider global loops for each of

the steps. Wavefront diamond blocking away from the MPI processor boundary would be possible to increase data

locality between the steps for the case of lower arithmetic loads [30, 31, 39].

Fig. 3 gives an overview of all necessary MPI synchronization for the Euler update. The synchronization of the

vectors 𝛼𝑖 , 𝑹𝑖 and 𝑼 𝑖 and the matrix 𝑙𝑖 𝑗 over MPI ranks incurs point-to-point communication and forces an individual

MPI rank to wait until all necessary data has arrived. In addition, the computation of the maximal admissible step

size, 𝜏max, requires an MPI Allreduce operation and thus incurs an MPI barrier after step 2 during which all MPI ranks

have to wait. While the MPI barrier for computing 𝜏max is unavoidable, it is possible to mitigate the synchronization

overhead to a certain degree by scheduling the synchronization of vectors and matrices as soon as possible. We refer

to Section 4.5 for a detailed discussion how this can be achieved is in our approach. Benchmark results for weak and

strong scaling are given in Section 5.

Remark 4.1. An additional measure to reduce the number of MPI synchronizations is to increase the overlap of shared

cells between neighboring MPI ranks. This would allow to remove most of the synchronization steps outlined in Fig. 3

with the exception of the (essential) MPI barrier after step 2 that is necessary to determine 𝜏max. We do not pursue this
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optimization in the present work because it increases the amount of computations, the limiting resource away from the

strong scaling limit. Our benchmarks in Sec. 5 show that the MPI synchronization overhead is small, such that the choice

does not pose a real limitation.

4.2 Instruction-level SIMD vectorization

In order to exploit the SIMD capabilities offered by modern CPUs reliably and to an appreciable degree also for more

complex algorithms and data dependencies one is usually forced to “vectorize by hand” [27] instead of relying on the

auto-vectorization capabilities of optimizing compilers. This can be achieved in a portable manner by exploiting the

C++ class mechanism and operator overloading. We refer the reader to [2, 3, 26] for details on the implementation of

deal.II’s VectorizedArray class template that provides such a facility.
2

The first design decision that we have to make when expressing Alg. 1 in vectorized form is to decide which part of

the computation can be meaningfully fused together. Here, we have multiple options. We could, for example, decide to

introduce parallel SIMD instructions within the innermost loop, or to parallelize over the loop index 𝑗 , viz.,

for 𝑖 = 1, . . . , N do
for 𝑗 ∈ I(𝑖) do

// SIMD instructions parallelizing:

Computation involving index 𝑖 and 𝑗 .

for 𝑖 = 1, . . . , N do
// SIMD instructions fusing the for loop:

for ( 𝑗, 𝑗 + 1, . . . , 𝑗 + 𝑘) ∈ I(𝑖) do
Comp. involving index 𝑖 and ( 𝑗, 𝑗 + 1, . . . , 𝑗 + 𝑘).

However, these two approaches have the significant drawback that they would require carefully handwritten assembly

to achieve good utilization of vector registers. The difficulties are caused by complex data dependencies and because the

number of indices in I(𝑖) or the number of equations 𝑑 + 2 might not be divisible by the width 𝑘 of the SIMD registers.

We opt for a different strategy by applying SIMD to the outer loop over 𝑖:

// SIMD instructions fusing the for loop:

for (𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑘) ∈ [1,N] do
for ( 𝑗1, 𝑗2, . . . , 𝑗𝑘 ) ∈ I(𝑖) × I(𝑖 + 1) × . . . × I(𝑖 + 𝑘) do

Computation involving indices (𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑘) and ( 𝑗1, 𝑗2, . . . , 𝑗𝑘 ).

The main advantage of this scheme is that the operations on several points in the stencil are more uniform, leading

to a good utilization of vector units. The idea to apply vectorization at an outer loop with additional similarity is

conceptually similar to vectorization across elements popular of matrix-free methods [26, 27, 36]. This approach has

the minor drawback to require the set I(𝑖) to be of equal size for all indices that are processed at the same time, and

that the limiter involving the quadratic Newton iteration has to be adapted to process multiple states at the same time.

We point out that this can be achieved with relatively minor modifications to the (mathematical) algorithms presented

in Section 3. For example, Alg. 2 contains a number of ternary operations of the form

if (condition), select A, otherwise select B,

which can be efficiently implemented with SIMD masking techniques [23]
3
. Branching on data in the algorithm only

occurs with the break statements in the for loop in Alg. 2. These have to be modified to check whether the condition is

2
The VectorizedArray class is conceptually very similar to the std::simd class that is currently considered for inclusion into the upcoming C++23
standard; see [23].

3
Convenience functions implementing ternary operations on SIMD vectorized data are readily available in deal.II via function wrappers such as

compare_and_apply_mask<SIMDComparison::less_than>(a, b, c, d) which is equivalent to (a<b) ? c : d. These ternary operations are expected to

eventually become “first-class citizens” in a future C++23 standard with the introduction of std::simd and corresponding operator?: overloads.
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export export import

N𝑙𝑟N𝑙𝑜N𝑖0 N𝑒

Fig. 4. Local index handling: On each MPI rank we enumerate all locally relevant dofs with a local index [0,N lr) subject to the
following contraints: N i is a multiple of 𝑘 , the width of the SIMD registers and the interval [0,N i) only contains dofs with standard
connectivity (#(I (𝑖)) = 3, 9, or 27). A subsequent renumbering ensures that [0,Ne) contains all exported degrees of freedom of
the internal range. Ranges with dofs that have to be exported or imported during MPI synchronization are marked in blue and red,
respectively.

simultaneously fulfilled for all states of the SIMD vector. This implies that some of the states, which the limiter works

on in parallel, might undergo an additional Newton iteration in the algorithm despite convergence.

Another point to consider is the fact that parallelizing over the outer loop comes at the cost of increased pressure on

caches which will be discussed in more detail in Section 5.

4.3 Local indexing of degrees of freedom and a SIMD optimized sparsity pattern

A common strategy for handling a global numbering of degrees of freedom is to assign a contiguous interval of locally

owned dofs to an individual MPI rank in a 1:1 fashion, and a typically larger set of locally relevant dofs described by the

access pattern of the owned rows,

{
𝑗 ∈ I(𝑖) : 𝑖 is a locally owned dof

}
[3]. The latter index set includes the foreign

dofs, also called ghost dofs, necessary to update the locally owned range on the respective MPI rank.

This global numbering is then transformed into a numbering of dofs local to each MPI rank. It starts at 0 so that

the index can be directly used as an offset into the the underlying storage in memory. In the following we adopt the

convention that the local numbering range is comprised of two disjunct intervals: [0,N
lo
) contains all locally owned

dofs and [N
lo
,N

lr
) contains all locally relevant dofs that are not locally owned.

The SIMD parallelization approach outlined in the previous section requires a uniform stencil size, i. e., #(I(𝑖)) =
const., over the region of indices that will be vectorized. We ensure this property by applying a local renumbering of the

locally-owned index range [0,N
lo
) as follows. We sort the interval into a range [0,N𝑖 ) of internal degrees of freedom

with standard connectivity that we characterize by #(I(𝑖)) = 3, 9, or 27, depending on dimension. Correspondingly,

the interval [N𝑖 ,N lo
) contains dofs that have a different stencil size. We round N i down to the next integral multiple

of 𝑘 , the width of the SIMD registers, and schedule the loop with full SIMD width. As a final step the interval [0,N i)
is further rearranged so that [0,Ne) contains all exported dofs within the internal number range, that is, all internal

dofs that are also part of a foreign MPI rank’s locally relevant index range and thus have to be exchanged during MPI

synchronization. A graphical summary is given in Fig. 4.

Remark 4.2. It would be possible to also vectorize the remainder loop [N𝑖 ,N lo), for example by using an elaborate

masking strategy, or a fill with dummy values to account for differing stencil sizes. The latter comes with the additional

challenge that a suitable neutral element for all operations involved in the nonlinear stencil update would be needed. Thus,

we opt for the more pragmatic solution of not vectorizing the remainder. We justify this approach with two observations. First

of all, the number of affected degrees of freedom is asymptotically small, typically less than 3% of all degrees of freedom for

moderately sized problems (see Section 5). Secondly, treating boundary dofs separately allows for some further optimization

in Alg. 1. For example, the symmetrization of the wavespeed estimate coming from the Riemann solver in step 1 can be

skipped entirely [14].
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Fig. 5. A SIMD optimized sparsity pattern visualized for (the hypothetical case of) a standard connectivity of #(I (𝑖)) = 5 and a
width 𝑘 = 4 of the SIMD registers. The SIMD vectorized index range [0,N i) is stored in sliced ELL format as an “array of struct of
array” as follows: at the innermost ’array’ level, we group the same entry from 𝑘 consecutive rows together; next come the different
components in case we have a multi-component matrix, i. e., the “struct” level groups the components next to the inner array of
row data; finally, Finally, the outer array arranges the different components in an ELL storage format. The non-vectorized region is
stored in a CSR storage format (i.e., SELL-1) on the outer layer grouping the same struct level (that organizes the components of a
multi-component matrix together).

Based on our vectorization approach we propose an optimized sparsity pattern that ensures a linear traversal through

the storage region of all matrices in memory. The sparsity pattern handles vector-valued matrix entries as needed for

the 𝒄𝑖 𝑗 matrix: The SIMD-vectorized index range [0,N i) is stored in sliced-ELL format [25] as an “array of struct of

array” as follows: at the innermost ’array’ level, we group the same entry from 𝑘 consecutive rows together; next come

the different components in case we have a multi-component matrix, i. e., the “struct” level groups the components next

to the inner array of row data; finally, the outer array arranges the different components in an ELL storage format.

The non-vectorized region is stored in a CSR storage format on the outer layer grouping the same struct level (that

organizes the components of a multi-component matrix toegether).

The proposed storage scheme is a variant of the SELL-C-𝜎 sparsity pattern proposed by Kreutzer et al. [25]. This

format is well-suited for both contemporary CPU and GPU architectures with appropriate values for the parameter 𝐶

of the inner length of slices, see also the recent analysis of Anzt et al. [1]. As indicated above, the slice length proposed

in this work corresponds to the widest SIMD register in doubles, e.g., 8 for AVX-512. This ensures that vector loads can

be performed for all matrix entries. The classification of the rows corresponds to a large window 𝜎 for the row lengths

in the CELL-C-𝜎 format spanning all locally owned degrees of freedom. Thus, the fill in the sliced ELL region is always

optimal. However, we switch to slice length 𝐶 = 1 in the irregular rows for the present contribution, given their small
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share on the overall rows and the reasonable performance of scalar operations on general-purpose CPU architectures

considered here.

4.4 Storage of state vectors

On each node of the computational domain, the state vectors 𝑼𝑛
𝑖
as well as the temporary vector 𝑹𝑖 contain 𝑑 + 2

components. The two storage options are (i) a struct-of-array, keeping 𝑑 + 2 separate vectors for each component, or (ii)

an array-of-struct, a single vector which puts the 𝑑 + 2 components of a single node adjacent in memory. We propose

the array-of-struct storage option for the following reasons:

• The data exchange routines of conventional MPI-parallel vectors straight-forwardly combine the data from all

components into the same point-to-point messages, without manually collecting the data before sending. This

slightly reduces latency in the strong scaling limit, see also the discussion in Fischer et al. [12].

• The vectorized data access due to contiguous indices 𝑖 in the struct-of-array variant would only help the access

to row data in the outer 𝑖 loops, whereas the more frequent column access in the inner 𝑗 loops would still appear

as indirect gather access unless the mesh is completely structured. Thus, the array-of-struct format leads to more

contiguous access for unstructured meshes. This reduces pressure on the translation-lookaside buffer (TLB) and

increases hardware prefetching efficiency considerably.

• The necessary transpose operations from the stored array-of-struct to the SIMD struct-of-array format of multiple

row data can be done with two shuffle-type instructions per entry for chunks of four double-precision values.

Benchmarks of the code with the two variants revealed that the chosen struct-of-array storage makes the evaluation

considerably faster. For example for the access to 𝑼𝑛
𝑗
in step 1 of Alg. 1 computed with 28.6 million Q1 mesh points

followed over 1302 Euler step evaluations on 80 cores, the run time is reduced from 599 seconds to 391 seconds, all

other parts equal.

4.5 MPI communication hiding

A single explicit Euler update (Alg. 1) requires a number of MPI synchronization events between individual steps of the

algorithm that cannot continue until all foreign data of the locally relevant index range is exchanged; see Fig. 3. In order

to minimize latency incurred by the MPI synchronization we use a common MPI communication hiding [8] technique:

The non-SIMD vectorized part [N𝑖 ,N lo
) and the vectorized subregion [0,N𝑒 ) are computed first which allows to

start an asynchronous MPI synchronization process early. The computation can then continue with computing the

large vectorized index region [N𝑒 ,N i) while the MPI implementation exchanges messages. We use a simple thread

synchronization technique centered around a std::atomic for the actual implementation in context of our hybrid

thread-process parallelization, see Alg. 4.

4.6 Vectorized power function

The nonlinear update step shown in Alg. 1 makes heavy use of transcendental pow() operations when computing

the entropy-viscosity commutator described in Sec. 3.8 and in the limiter described in Sec. 3.9. Such transcendental

operations are computationally expensive [13]. As detailed in Sec. 5.1 below, an update step consists of about 4–8
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std::atomic<unsigned int> n_threads_ready ← 0

thread parallel region
parallel for 𝑖 ∈ [N𝑖 , N𝑙𝑜 ) do

// Compute serial part.

bool this_thread_ready ← false

parallel for 𝑖 ∈ [0, N𝑖 ) do
if [unlikely] ( this_thread_ready == false ) and ( 𝑖 ≥ N𝑒 ) then

this_thread_ready ← true

if ++n_threads_ready == n_threads then
// Initialize MPI synchronization.

// compute SIMD vectorized part.

// Wait for MPI synchronization to finish.
Algorithm 4: MPI communication hiding in thread-parallel context. A thread-local boolean this_thread_ready
is used to avoid unnecessary thread-synchronization and ensures that the if condition in the second parallel for

loop is only entered exactly once on every thread. The default memory model of std::atomic then ensures that

the condition n_threads_ready == n_threads is true on exactly one thread.

pow() invocations per non-zero entry in the stencil (nnz). It is thus of paramount importance to use an optimized and

vectorized pow() implementation. In our benchmark code we choose the C++ Vector Class Library
4
by Fog et al. [13].

In order to assess the computational properties, we ran a microbenchmark that repeatedly calls pow(x,1.4) over a

vector of 20,480 random numbers between 1 and 2. The reciprocal throughput per entry is for the naive (non-vectorized)

implementation using the standard library implementation std::pow5 gives an execution time of 73 nanoseconds at a

clock frequency of 2.8 GHz. The vectorized version of the Vector Class Library achieves a reciprocal throughput of

8.1 ns at a clock frequency of 2.0 GHz (the maximum frequency for AVX-512 heavy code when loading all cores of

an Intel Cascade Lake machine according to Table 1) or 65 ns (130 clock cycles) per call. The recorded throughput is

relatively close to more heavily optimized code for multiple pow() invocations with the Intel®Math Kernel Library

(mkl)
6
of about 4.4 ns, 4.3 ns, and 2.1 ns (for “high accuracy”, “low accuracy”, and “enhanced performance” variants).

We suspect that the performance for the mkl library is higher due to significantly better pipelining of instructions for

consecutive pow() operations. In order to realize this throughput in Alg. 1, a substantial rewrite of the algorithm (such

that pow() operations of multiple columns are executed in succession) would be necessary, a task we leave for future

research and modifications discussed in the outlook in Sec. 6.

5 BENCHMARKS AND RESULTS

All computations are performed for a 3D benchmark configuration [14], similar to the 2D configuration shown in

Fig. 1, that consists of a supersonic (air) flow at Mach 3 in a rectangular parallelepiped of size [0, 4] × [−1, 1] × [−1, 1]
past a cylinder with radius 0.25 is centered along (0.6, 0, 𝑧), 𝑧 ∈ [−1, 1]. The computational domain is meshed with

an unstructured hexahedral coarse mesh and trilinear Q1 elements consisting of 208 gridpoints, or nodal degrees of

freedom (Qdofs). A higher resolution is obtained by subdividing every hexahedron into 8 children an appropriate

number of times, using a cylindrical manifold to attach newly generated nodes along the cylinder to the curved surface.

Fig 6 shows a temporal snapshot at time 𝑡 = 5.0 of a typical computation with 1.8B Qdofs.

4
https://github.com/vectorclass

5
https://gcc.gnu.org/onlinedocs/libstdc++/

6
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
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Fig. 6. Temporal snapshot of a longer computation of a 3D Mach 3 compressible Euler flow around a disc discretized with 1.8 B Qdofs
at 𝑡 = 5.0. The two vertical outer cutplanes show a Schlieren plot, i. e., the magnitude of the gradient of the density is shown on an
exponential scale from white (low) to black (high). All other cutplanes show the magnitude of the vorticity on a white (low) - yellow
(medium) - red (high) scale. The computation was done with an earlier, not fully optimized version of the solver and ran on 30720 MPI
ranks with an average time-step size of 6.0e-05. The code achieved an average throughput of 969 QDofs per second (0.04M gridpoints
per second per CPU) with a second-order SSP Runge-Kutta time integrator, in contrast to the third-order variant suggested in this
paper (see Sec. 3.6).

Table 1. Hardware used for the computational experiments and benchmarks. The STREAM triad bandwidth is measured with
streaming stores, i.e., it reports the actually transferred data between the cores and the memory.

Intel Cascade Lake Intel Skylake

Model name Xeon Gold 6230 Xeon Platinum 8174

Cores / compute node 2 × 20 2 × 24
SIMD width 512 bit (AVX-512) 512 bit (AVX-512)

Turbo mode enabled disabled

Clock frequency scalar 2.8 GHz 2.3 GHz

Clock frequency AVX-512 2.0 GHz 2.3 GHz

L2 + L3 cache / core 1 MiB + 1.375 MiB 1 MiB + 1.375 MiB

Arithmetic peak with AVX-512 / compute node 2,560 GFlop/s 3,532 GFlop/s

Peak memory bandwidth / compute node 282 GB/s 256 GB/s

STREAM triad bandwidth from RAM / compute node 180 GB/s 205 GB/s

The hardware used for the experiments in this section is described in Table 1. Both machines are deployed in the

form of compute nodes with dual-socket configurations (two CPUs per compute node) with a high-speed network

interconnect (Infiniband/Omnipath). The Intel Cascade Lake system has a machine balance of 14.2 Flop/Byte computed

from the peak arithemtic throughput and the STREAM triad bandwidth
7
compared to 17.2 Flop/Byte on the Intel

Skylake system.
8

7
https://www.cs.virginia.edu/stream/ref.html

8
Note that for the Intel Cascade Lake system, the gap between the theoretical memory bandwidth and the actually measured STREAM bandwidth is

higher due to the particular hardware configuration (single-rank vs dual-rank memory modules).

Manuscript submitted to ACM

https://www.cs.virginia.edu/stream/ref.html


20 Matthias Maier and Martin Kronbichler

5.1 Roofline performance prediction and kernel selection

The mathematical description of Alg. 1 allows some freedom in rearranging computations between individual loops. In

order to find the algorithm variant with the best performance, we need to identify the limiting computational resource.

A stencil code such as the one presented in Alg. 1 of sufficient local size, i. e., with more than a few thousand Qdofs per

MPI rank, is operated in the throughput regime with respect to communication between the compute nodes. The two

primary bottlenecks are thus data access, which is governed by the bandwidth from main memory or caches, and the

in-core execution, which can be represented by the roofline performance model [40].

5.1.1 Data access. In Table 2 we list the expected memory access of the stages in the final optimized version of the

algorithm. All numbers are given as reads and writes per per non-zero entry in the stencil (nnz). The predicted access is

reported separately for read transfer (labeled ‘r’ in the table), writes (labeled ‘w’ in the table), and the read-for-ownership

transfer [21], labeled ‘rfo’ in the table. The read-for-ownership transfer adds additional read transfer for data that is

only written. We use non-temporal (streaming) stores for the matrices 𝑑𝑖 𝑗 of step 1, 𝑃𝑖 𝑗 in step 4 and 𝑙𝑖 𝑗 in steps 4 and

5 to avoid the read-for-ownership transfer, but regular stores for the vector data 𝑼𝑛+1
and 𝑹𝑛+1. The performance

prediction is based on the following assumptions:

• all big data structures need to be fetched from RAM memory in their entirety for every evaluation step; this

includes the matrices𝑚𝑖 𝑗 , 𝛽𝑖 𝑗 , c𝑖 𝑗 and the underlying sparsity pattern as well as the global vectors 𝑼𝑛
, 𝑹𝑛 , 𝑼𝑛+1

,

and the vector for the lumped mass matrix;
9

• access to column data of 𝑼𝑛
𝑗
and 𝑹𝑛

𝑗
, the inverse mass matrix and 𝛼 𝑗 exhibits perfect caching;

• access to the transposed matrix entries 𝑑 𝑗𝑖 and 𝑙 𝑗𝑖 in steps 2, 5 and 6, respectively, exhibits perfect caching with

perfect spatial locality.

The last two assumptions regarding data locality of column access are similar to the layer conditions found in

high-performance implementations of finite difference stencils [21]. For example, for the 2D five-point stencil the layer

criterion relates the spatial distance of an entry (𝑖, 𝑗) to the grid neighbors (𝑖 + 1, 𝑗), (𝑖 − 1, 𝑗), (𝑖, 𝑗 + 1), (𝑖, 𝑗 − 1) to the

cache size. In order to only load one data item per update, e. g., the (𝑖, 𝑗 + 1) entry during a lexicographic grid traversal,

the cache must be large enough to store two full rows of entries (2𝑛𝑥 items, where 𝑛𝑥 is the number of gridpoints in

𝑥-direction). For larger mesh sizes the loop must be tiled. The main difference to the present (finite-element) algorithms

is the fact that they are written for unstructured meshes with indirect addressing of column data. Thus, a corresponding

3D layer condition for a structured grid requiring that 2𝑛𝑥𝑛𝑦 items fit into cache has to be modified. A simple imitation

of lexicographic numbering for unstructured meshes is obtained by a Cuthill-McKee ordering of the unknowns [10].

We can assume that the Cuthill-McKee reordering maintains a bandwidth of approximately 𝑛
2/3
local

unknowns per row,

where 𝑛
local

is the number of DoFs per MPI rank. A modified line criterion could thus be the requirement to hold 2𝑛
2/3
local

entries in cache. This implies for the example presented in Table 2 with an average local size of 𝑛
local

= 358, 208 dofs

that about 10,200 entries have to be kept in cache. A state vector 𝑼𝑛
holds five variables per entry. With 8 bytes per

double this equates to 400 kiB. Given that the architecture in use provides around 2.4 MiB of L2 and L3 cache combined,

we can expect that the modified line criterion is mostly fulfilled in step 1 of the algorithm. On the other hand, in step 4,

both vectors 𝑼𝑛
and 𝑹𝑛 amounting to 800 kiB according to the modified layer criterion are required to be maintained

in cache, in addition to streaming through the matrices 𝑑
𝐿,𝑛
𝑖 𝑗

and𝑚𝑖 𝑗 at the same time. Realistically, step 4 will involve

some additional transfer from main memory due to cache eviction.

9
This assumption is justified because the loops are not overlapped and the size is big enough to exceed caches by at least a factor of 10.
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Table 2. Expected memory transfer and measured performance on a simulation with 29m nodes over 434 time steps (1302 RK stage
evaluations), run on 80 Intel Cascade Lake cores (2 compute nodes). Memory bandwidth for STREAM triad is 360 GB/s.

measurement with likwid prediction

time bandw read / write r / w barrier read / write

[s] [GB/s] [double / nnz] [double / nnz] [double / nnz]

step 0: entropies 9.65 239 0.22r + 0.07w 0.29r + 0.09w 0.19r + 0.07w + 0.07rfo

step 1: offdiagonal 𝑑𝐿
𝑖 𝑗
, 𝛼𝑖 391.4 132 5.83r + 0.74w 5.46r + 0.65w 4.72r + 0.56w + 0.04rfo

step 2: diagonal 𝑑𝐿
𝑖𝑖
, 𝜏𝑛 62.0 304 1.95r + 0.46w 2.44r + 0.56w 1.74r + 0.48w

step 3: low-order update 277.0 222 7.24r + 0.53w 7.21r + 0.51w 5.87r + 0.48w + 0.48rfo

step 4: 𝑃𝑖 𝑗 , 𝑙𝑖 𝑗 317.8 248 4.43r + 6.03w 4.31r + 6.04w 3.24r + 6.00w

step 5: h.-o. update, next 𝑙𝑖 𝑗 268.7 260 8.06r + 1.20w 8.21r + 1.21w 6.80r + 1.19w

step 6: final high-order update 132.5 394 6.71r + 0.21w 7.98r + 0.21w 6.69r + 0.19w

Table 2 includes measurements of the memory read and write access to the RAM memory, measured from hardware

performance counters recorded with the LIKWID tool [37], version 5.0.1, using an MPI-only experiment. The numbers

reported in the table are calculated from the absolute transfer measured with LIKWID, divided by the number of time

steps and stages per time step and by the number of nonzero entries in the sparse matrix. The result is further divided

by 8, the number of bytes per double, to make the numbers easily comparable to the transfer in terms of Alg. 1. The

table includes two sets of measurements of markers around the algorithmic part. The first part measures the sections as

they appear in the code. However, the numbers are inaccurate given a load imbalance of 5–15% because the memory

transfer is only recorded while the first core of a 20-core CPU resides in the relevant section. If some of the other 19

cores take more time to complete the section (given the implicit barrier via the MPI point-to-point communication

at a later stage), the memory transfer appears too low. This effect can be seen by the reads recorded for step 6 of the

algorithm, which should be close to step 5 in terms of the transfer, but the reported number is 1.35 doubles less than

the theoretical number. In order to obtain more accurate data, we performed a second experiment, labeled “barrier”

in Table 2, where MPI barriers are placed around the LIKWID_MARKER_{START/STOP} markers to ensure that only the

transfer of the respective section is measured. The write transfer, which is of streaming character, is predicted very

well. However, the actual read transfer is by 15%, 40%, 14%, 33%, 21%, and 19% higher than the best-case prediction

for steps 1–6, respectively. For steps 1 and 3, the excess transfer is contained because only a single vector 𝑼𝑛
and the

entropies, a total of 6 doubles per step, is accessed indirectly and one can expect caches to mostly fit this access, with

some minor deviations due to the somewhat unstructured access in the Cuthill–McKee numbering and missing spatial

locality. For step 4, the access to both 𝑼𝑛
and 𝑹𝑛 leads to a larger deviation. In steps 2, 5, 6, the excess transfer is due to

the transpose access into a sparse matrix, where both the limited size of the caches as well as the transfer of full cache

lines rather than single doubles are relevant.

5.1.2 In-core execution. The measured memory throughput in Table 2 demonstrates that only step 6 is at the limit of

the memory bandwidth of the architecture, whereas all other steps are primarily limited by the execution inside the

core. In order to assess the arithmetic work done by the various stages, Table 3 reports the main characteristics of the

floating point performance of the same computation. As discussed in Section 4.6, the nonlinear update steps are heavy

on pow(), division and square root operations. Therefore, the arithmetic peak performance of 4 Cascade Lake CPUs

with 80 cores in total, 5,120 GFlop/s, is not attainable.
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Table 3. Main arithmetic components and measured performance on a simulation with 29m nodes over 434 time steps (1302 RK stage
evaluations), run on 80 Intel Cascade Lake cores (2 compute nodes). Arithmetic peak is 5,120 GFlop/s.

time measurement with likwid prediction

[s] [GFlop/s] [Flop/nnz] [Flop/B] IPC [pow()/nnz] [div/nnz]

step 0: entropies 9.65 848 8 2.6 1.32 0.07 0.04

step 1: offdiagonal 𝑑𝐿
𝑖 𝑗
, 𝛼𝑖 391.4 681 262 5.5 0.95 1.08 8.88

step 2: diagonal 𝑑𝐿
𝑖𝑖
, 𝜏𝑛 62.0 17 1 0.04 1.65 0 0.04

step 3: low-order update 277.0 892 248 4.0 1.28 1 3.15

step 4: 𝑃𝑖 𝑗 , 𝑙𝑖 𝑗 317.8 571 183 2.2 1.16 1–2 (Newton) 2–8

step 5: h.-o. update, next 𝑙𝑖 𝑗 268.7 568 155 2.0 0.97 1–2 (Newton) 2–8

step 6: final high-order update 132.5 91 12 0.18 0.17 0 0

Exemplarily, for step 0 of the algorithm, inspection of the assembly code for the AVX-512 target shows that a single

loop iteration consists of 334 instructions. According to the LLVM machine code analyzer (LLVM-MCA)
10
, these are

predicted to run with a reciprocal throughput of 248 cycles or an instruction-per-cycle (IPC) rate of 1.35. According to

the analysis, the main bottleneck is the latency of operations inside the computation of the power function due to data

dependencies. More precisely, the polynomial evaluation and division operations in the Padé approximation used in the

vectorized pow() implementation [13], as well as the extraction of exponents, have long dependency chains. Since the

number of available physical registers and scheduler windows have limited size to keep around 100-200 instructions

in flight,
11

little overlap of work from one outer loop iteration (indexed with 𝑖) with the next one is possible. Among

the 334 instructions, there are 69 fused multiply-add operations, 22 additions/substractions, 31 multiplications, and

3 divisions. Given the LLVM-MCA prediction of execution in 248 cycles, this corresponds to a throughput of 0.78

arithmetic operations per cycle, or a utilizatoin of 19.6% of the arithmetic peak performance. The measured performance

of 848 GFlop/s corresponds to 17% of the arithmetic peak performance or 85% of the predicted arithmetic throughput.

This number matches with the ratio of the measured IPC of 1.32 compared to the predicted IPC of 1.35, showing that

the arithmetic operations have been counted correctly. According to the roofline model, the memory bandwidth is not a

limiting factor for step 0.

Using similar arguments, it can be shown that steps 1, 3, 4, and 5 of Alg. 1 are limited by the in-core execution

on the Cascade Lake processor. Steps 1, 4, and 5 are more strongly effected by long dependency chains that cannot

be overlapped sufficiently with independent work. This is evidenced by an IPC prediction of 1.27 for the vectorized

pow() function obtained from LLVM-MCA. Step 3 shows a higher performance that is due to a better instruction-level

parallelism obtained for the evaluation of f (𝑼𝑛
𝑗
) and multiplication with 𝒄𝑖 𝑗 . Step 2 appears odd (see Table 3) due to a

high IPC number but neither high GFlop/s or memory performance. This is because this function is not vectorized. The

alternative of computing all of 𝑑𝑖 𝑗 in vectorized form via step 1 instead of the symmetrization would be slower due to

the heavy computations in the power function.

5.1.3 Hyperthreading. In order to further assess the performance bottleneck due to latencies in the pipelined execution,

we run an additional experiment on 96 Intel Skylake cores comparing enabled and disabled hypertheading; see Table 4.

If we run the code with 2-way hyperthreading, scheduling 96 MPI jobs on each compute node, or 192 jobs in total,

10
https://llvm.org/docs/CommandGuide/llvm-mca.html

11
The physical register file for floating point numbers in the Skylake-X/Cascade Lake architecture has 168 slots, compared to 32 architectural registers.

Similar limits are imposed by the reorder buffer (224 entries) and the store buffer (56 entries).
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Table 4. Measured run times on a simulation with 29m nodes over 434 time steps (1302 RK stage evaluations), run on 96 Intel Skylake
cores (2 compute nodes) at 2.3 GHz with hyperthreading off and on, respectively. Memory bandwidth for STREAM triad is 410 GB/s,
arithmetic peak 7,066 GFlop/s.

hyperthreading off hyperthreading on

time arithmetic bandwidth time arithmetic bandwidth

[s] [GFlop/s] [GB/s] [s] [GFlop/s] [GB/s]

step 0: entropies 7.49 1,094 308 5.68 1,440 404

step 1: offdiagonal 𝑑𝐿
𝑖 𝑗
, 𝛼𝑖 295.4 902 177 210.3 1,268 257

step 2: diagonal 𝑑𝐿
𝑖𝑖
, 𝜏𝑛 54.2 19 352 50.8 21 381

step 3: low-order update 211.9 1,168 290 212.2 1,166 307

step 4: 𝑃𝑖 𝑗 , 𝑙𝑖 𝑗 250.0 726 318 243.4 746 338

step 5: h.-o. update, next 𝑙𝑖 𝑗 225.0 678 317 189.9 803 381

step 6: final high-order update 131.3 92 398 135.3 89 401

performance is increased for the latency-limited steps of the algorithm. For example, the run time of step 1 decreases

from 295 seconds to 210 seconds, with the arithmetic throughput reaching 18% of the arithmetic peak. Similarly, steps

4 and 5 run considerably faster. On the other hand, step 6 that was already limited by the memory bandwidth with

hyperthreading disabled, is slightly slower due to additional memory transfer and increased cache pressure (mainly

due to access to transposed entries 𝑙 𝑗𝑖 ) of the additional thread running on the same core. The performance with

hyperthreading on the algorithmic step 3 and, to a lesser extent step 4, is reduced. These steps are affected by additional

data streams due to indirect addressing into the column entries of 𝑼𝑛
𝑗
and 𝑹𝑛

𝑗
, which puts a higher strain on address

translation and prefetching.

When comparing the absolute run time of the whole solver (without output) for 434 time steps of a three-stage Runge–

Kutta integrator, we record 1,292 seconds for Skylake without hyperthreading, 1,164 seconds with hyperthreading, and

1,608 seconds on the slower Intel Cascade Lake system without hyperthreading. The higher performance of the Intel

Skylake system is in agreement with the hardware specification; cf. Table 1. As is expected for an architecture with a

higher machine balance, many of the components run closer to the memory bandwidth limit. With hyperthreading

enabled, step 0, 2, 5 and 6 are now almost entirely limited by the available memory bandwidth. This shows that the

optimizations presented in this work have paid off.

5.2 Exploration of algorithmic alternatives

In order to justify the chosen algorithmic layout, we explore a few alternative choices and analyze their performance

compared to the results presented in Section 5.1.

5.2.1 Merge step 2 with step 1. In Alg. 1 the symmetry of 𝑑𝐿
𝑖 𝑗
was exploited by only computing the upper triangular and

diagonal portion of 𝑑𝐿
𝑖 𝑗
in step 1 and fixing up the lower triangular part (along with computing the maximal time-step

size) in a separate pass (step 2). The memory access in step 2 is non-contiguous and therefore adds additional memory

transfer beyond the best-case prediction, as can be seen from Table 2. Given that there is no explicit barrier to fill up the

information, apart from the availability of the upper triangular part, this step can be done within the loop of step 1.

This promises higher performance because step 1 is limited by the arithmetic operations as described above, so the

additional memory transfer can be expected to be partly hidden. As the data in Table 5 shows, the combined time

for steps 1 & 2 is larger than with doing the transposition as part of the loop. Despite adding mostly memory access

Manuscript submitted to ACM



24 Matthias Maier and Martin Kronbichler

Table 5. Performance comparison of two variants that merge steps 1 and 2 of Alg. 1: (a) baseline computation with Alg. 1 as reported
in Tables 2 and 3; (b) read transpose values from 𝑑𝐿

𝑗𝑖
within compute loop; (c) compute full row of 𝑑𝐿

𝑖 𝑗
without explointing symmetry.

All tests were run for 1302 Runge–Kutta stage evaluations on 29 million grid points with 80 Cascade Lake cores.

time arithmetic bandwidth memory read / write

[s] [GFlop/s] [GB/s] [doubles / nnz]

(a) Baseline: compute 𝑑𝐿
𝑖 𝑗
as in Alg. 1 exploiting symmetry

step 1: offdiagonal 𝑑𝐿
𝑖 𝑗
, 𝛼𝑖 391.4 681 132 5.83r + 0.74w

step 2: diagonal 𝑑𝐿
𝑖𝑖
, 𝜏𝑛 62.0 17 304 1.95r + 0.46w

Variant 1: read transpose values from 𝑑𝐿
𝑗𝑖
within compute loop

step 1+2: complete 𝑑𝐿
𝑖 𝑗
, 𝛼𝑖 , 𝜏𝑛 415.7 644 164 7.57r + 1.09w

Variant 2: compute full row of 𝑑𝐿
𝑖 𝑗
without using symmetry

step 1+2: complete 𝑑𝐿
𝑖 𝑗
, 𝛼𝑖 , 𝜏𝑛 581.6 669 164 5.45r + 1.09w

in a core-bound algorithm, there is a small slowdown compared to step 1 executed alone. This is because the lower

diagonal part 𝑑𝐿
𝑖 𝑗
with 𝑖 > 𝑗 for vectorized rows can only be filled up once the complete upper diagonal part of the

matrix has been computed. Thus, the instruction-level parallelism given an out-of-order execution window of a few

hundreds instructions cannot be fully exploited while waiting for data that is not already prefetched by the hardware.

Even though this variant provides slightly higher performance, we do not consider it as the primary algorithm because

the basic variant proposed here only works for an MPI-only parallelization. For parallelization with threads, the upper

diagonal part to read 𝑑𝐿
𝑗𝑖
is not ready for all rows, and additional re-ordering or additional computations would be

necessary.

Table 5 includes a second variant of the merged steps 1 and 2 that computes all the entries in 𝑑𝐿
𝑖 𝑗
without considering

symmetry. While the data access is lowest in this case with loads that are mostly streaming, the performance is

significantly lower due to the increased number of computations.

Note that writing into 𝑑𝐿
𝑖 𝑗
can be done with streaming stores for the baseline algorithm as well as variant 2, where

the full 𝑑𝐿
𝑖 𝑗
matrix is computed, whereas regular stores with 1 double with read-for-ownership transfer is needed for

variant 1 to be able to hit parts of the transposed access in cache.

5.2.2 Split computation of 𝑃𝑖 𝑗 into steps 3 and 4. The contribution (𝑑𝐻,𝑛
𝑖 𝑗
− 𝑑𝐿,𝑛

𝑖 𝑗
) (𝑼𝑛

𝑗
− 𝑼𝑛

𝑖
) to matrix 𝑃𝑖 𝑗 is already

available in step 3 of the algorithm, whereas the baseline algorithm recomputes this information in step 4. Given that

both step 3 and 4 are limited by the computations in the core, an algorithmic alternative is to store this temporary result

in the storage location of 𝑃𝑖 𝑗 in step 3 and re-load it for the computation of step 4. This incurs writes of five doubles in

step 3 (which can be done with streaming stores) and reads of up to four doubles in step 4. On the other hand, 𝑑
𝐿,𝑛
𝑖 𝑗

and

𝑼𝑛
𝑗
do not need to be loaded again in step 4. This modification is reported as variant 3 in Table 6 (b). The results clearly

show the additional write data transfer in step 3 and the read transfer in step 4, with both steps running more slowly.

The computational time of both steps is significantly increased and the steps are now mostly memory transfer limited.

The measured throughput of around 300 GB/s is slightly below the STREAM triad limit of the platform.

While this algorithmic variant is not profitable on the chosen hardware, it can be promising for hardware with high

bandwidth-memory interfaces, or when indirect addressing (for example, access to 𝑼𝑛
𝑗
) is more expensive.
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Table 6. Performance comparison of different variants for computing 𝑙𝑖 𝑗 and 𝑃𝑖 𝑗 : (a) baseline computation with Alg. 1 as reported in
Tables 2 and 3; (b) split computation of 𝑃𝑖 𝑗 into steps 3 and 4 in order to to reduce indirect addressing and computations; (c) compute
both 𝑙𝑖 𝑗 and 𝑙 𝑗𝑖 rather than symmetrizing over the memory access the computation of 𝑃𝑖 𝑗 into steps 3 and 4 in order to reduce
indirect addressing and computations; (d) do not store the matrix 𝑃𝑖 𝑗 and instead compute the entries on the fly from the respective
ingredients in steps 5 and 6 of Alg. 1. All tests were run for 1302 Runge–Kutta stage evaluations on 29 million grid points with 80
Cascade Lake cores and report measured data with LIKWID.

time arithmetic bandwidth memory read / write

[s] [GFlop/s] [GB/s] [doubles / nnz]

(a) Baseline: compute 𝑙𝑖 𝑗 and 𝑃𝑖 𝑗 as in Alg. 1
step 3: low-order update 277.0 892 222 7.24r + 0.53w

step 4: 𝑃𝑖 𝑗 , 𝑙𝑖 𝑗 317.8 571 248 4.43r + 6.03w

step 5: h.-o. update, next 𝑙𝑖 𝑗 268.7 568 260 8.06r + 1.20w

step 6: final high-order update 132.5 91 394 6.71r + 0.21w

(b) Variant 3: split 𝑃𝑖 𝑗 into two parts
step 3: low-order update, first half of 𝑃𝑖 𝑗 325.2 779 312 7.33r + 5.52w

step 4: second half of 𝑃𝑖 𝑗 , 𝑙𝑖 𝑗 358.4 468 292 7.75r + 6.00w

(c) Variant 4: compute both 𝑙𝑖 𝑗 and 𝑙 𝑗𝑖

step 4: 𝑃𝑖 𝑗 , min(𝑙𝑖 𝑗 , 𝑙 𝑗𝑖 ) 558.7 567 152 5.78r + 6.18w

step 5: h.-o. update, next 𝑙𝑖 𝑗 259.2 584 204 5.74r + 1.09w

(d) Variant 5: compute 𝑃𝑖 𝑗 on the fly
step 4: 𝑙𝑖 𝑗 272.2 669 144 4.33r + 1.07w

step 5: h.-o. update, next 𝑙𝑖 𝑗 389.1 507 165 7.14r + 1.21w

step 6: final high-order update 210.9 271 239 6.30r + 0.23w

5.2.3 Compute symmetrization of limiter matrix. In steps 5 and 6, the update of 𝑃𝑛
𝑖 𝑗
requires the operation min(𝑙𝑖 𝑗 , 𝑙 𝑗𝑖 ),

with the latter accessing transpose entries in the matrix. In order to reduce the memory transfer, we analyze a variant 4

of our baseline algorithm that adds the computation of 𝑙 𝑗𝑖 within step 4 of the algorithm. Given that the matrix 𝑃𝑖 𝑗 is

skew-symmetric in the sense 𝜆𝑚𝑖𝑃𝑖 𝑗 = −𝜆𝑚 𝑗𝑃 𝑗𝑖 , only an additional load to 𝑼𝑛
𝑗
and bounds𝑗 is needed, in addition to

the actual computation in limiter.compute. Table 6 (c) shows an implementation of this variant. While the run time

of step 5 and the associated memory access are slightly reduced because the transposed entries are not needed, we

observe a noticable increase in execution time in step 4 becausethe simultaneous computation of 𝑙𝑖 𝑗 and 𝑙 𝑗𝑖 in step 4

doubles the number of critical computations. As discussed previously, latency effects inside the limiter are the dominant

bottleneck, which explains why the additional computations do not increase the arithmetic throughput. Overall, this

option is less attractive because the time gained in step 5 is only minor, given that the gain is mostly due to a reduction

in stalls when waiting for the indirectly accessed column data 𝑙 𝑗𝑖 to arrive. A similar modification could be considered

for computing the next 𝑙𝑖 𝑗 and 𝑙 𝑗𝑖 in anticipation of step 6. This has similar deficiencies as the alternative discussed

above, and in addition needs to wait for the update 𝑼𝑛+1
𝑖

to be finished for all columns I( 𝑗).

5.2.4 Computation of entries of 𝑃𝑖 𝑗 on the fly. As a final algorithm variant 5, we consider to skip the storage of 𝑃𝑖 𝑗

and instead evaluated it by the formula 𝑷𝑖 𝑗 =
𝜏𝑛
𝜆𝑚𝑖

( (
𝑑
𝐻,𝑛
𝑖 𝑗
− 𝑑𝐿,𝑛

𝑖 𝑗

) (
𝑼𝑛
𝑗
− 𝑼𝑛

𝑖

)
+ 𝑏𝑖 𝑗𝑹 𝑗 − 𝑏 𝑗𝑖𝑹𝑖

)
whenever necessary. This

significantly reduces the memory access as the matrix 𝑃𝑖 𝑗 amounts to a read/write of five doubles per non-zero entry,

compared to the two matrices 𝑑
𝐿,𝑛
𝑖 𝑗

and𝑚𝑖 𝑗 (for computing 𝑏𝑖 𝑗 ) and the vectors 𝑼𝑛
𝑖
, 𝑼𝑛

𝑗
as well as 𝑹𝑛

𝑖
, 𝑹𝑛

𝑗
. Table 6 (d)

compares this variant with the baseline algorithm. While step 4 becomes 45 seconds faster by removing the expensive
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Fig. 7. Strong and weak scaling of solver on Intel Skylake for problem sizes between 29 million and 15 billion points. The data has
been gather by runs using between 434 and 1732 time steps using a three-stage Runge–Kutta scheme and report the run time per
time step.

write operation of 𝑃𝑖 𝑗 , the additional computations slow down steps 5 and 6 by 120 seconds and 78 seconds, respectively.

From the recorded memory transfer, it becomes clear that the gain in transfer is not too high, which can be explained

by the fact that besides the two matrices 𝑑
𝐿,𝑛
𝑖 𝑗

and𝑚𝑖 𝑗 also indirect addressing to 𝑼𝑛
𝑗
and 𝑹𝑛

𝑗
needs to be performed.

As discussed previously, additional data that is kept in flight increases pressure on the caches and also cache misses,

eliminating part of the gain.

5.3 Strong scaling

Since the solver only involves local communication to the neighbors via non-blocking MPI send commands, plus

one MPI_Allreduce for computing the time step size, it is straight-forward to run the solver for simulations on large

supercomputers. Fig. 7 shows the result of a strong scaling experiment on up to 1,024 compute nodes of Intel Skylake on

the SuperMUC-NG machine in Garching, Germany. The experiment is conducted with 2-way hyperthreading enabled

using a separate MPI rank for each core and two threads per core. The largest computations are run on 49,152 MPI

ranks with 98,304 threads in total. The times reported in this section are based on the minimal time recorded for four

runs of the complete time evolution to minimize disturbances from other jobs running on the machine.

The results in Fig. 7 show an almost perfect scaling to times of around 0.2 seconds per time step or 0.07 seconds per

Runge–Kutta stage. The smallest size with 28 million nodes continues to improve throughput all the way to 49k cores

with 0.018 seconds per time step. However, the parallel efficiency drops to 46% already for 24k cores, using the run with

1.8 billion unknowns on the same core count as baseline. If we define the strong scaling limit as the point where 80% of

the saturated performance is obtained [12], the 29m grid point case scales to 3072 cores (with 81% of parallel efficiency)

and the 228m grid point case scales to 12k cores with 89% parallel efficiency. This excellent scalability is the result of

judicious algorithmic choices with the majority of communication only between nearest neighbors in the mesh. In each

Runge–Kutta stage, one MPI_Allreduce operation is also necessary to control the time step size.

The lowest computational time per Runge–Kutta stage is around 5 × 10
−3

seconds for the proposed algorithm.

We can compare this number with the time for one CG iteration of a matrix-free solvers of 2 × 10−4 seconds on the

same SuperMUC-NG system [4, Fig. 8] for the benchmark described in [12] or 10
−4

seconds for the nearest-neighbor
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communication of a matrix-vector product [28]. The higher limit for scaling in our case can be explained by the

significantly more expensive stencil update, as each update involves seven nearest-neighbor communication steps for

the various intermediate quantities in the algorithm and one global reduction, which already explains a factor of around

ten in the time increase. Furthermore, the computation on 29 million mesh points on 49k cores corresponds to only

290 mesh points per thread, which in itself is a very low value for any PDE-parallel code. Thus, the task granularity is

very small at this point, which makes small imbalances in the SIMD/non-SIMD portions more difficult to control. Also,

latency effects in the various algorithmic stages, including warm-up of the instruction caching, also play a role at this

level. We leave possible improvements along the strong scaling limit to future work (see Remark 4.1).

6 CONCLUSION AND OUTLOOK

In this paper we have discussed the efficient implementation of a second-order collocation-type finite-element com-

pressible Euler solver. To this end we started with the mathematical description of the scheme that is guaranteed stable

without the need of any tuning parameters. We then reorganized and optimized the given algorithmic structure (Sec. 3)

and discussed a scalable high-performance implementation (Sec. 4). The main algorithmic building blocks are traversals

through CELL-based sparse matrices with indirect addressing into the solution vector and some auxiliary quantities, as

well as a relatively high density of division and transcendental power functions. We demonstrated excellent arithmetic

throughput and scaling (Sec. 5) and justified our algorithmic choices against alternatives. We point out a number of

possible optimizations that we have not pursued and that we leave for further research and development:

• Further reduction of the number of MPI synchronizations by increasing the overlap of shared cells between

neighboring MPI ranks. In our current implementation the overlap is one ghost layer of cells [3]. An increased

overlap would allow to remove most of the synchronization steps outlined in Fig. 3.

• More efficient coefficient computation of transcendental functions by using a better pipelined custom vectorized

pow() implementation as discussed in Sec. 4.6.

• The developed algorithmic structure and the use of a SELL-based sparse matrix format for storage gives hope that

the proposed algorithms will also perform reasonably on GPU systems or other HPC architectures. Performance-

portable implementations, such as realizations with Kokkos [11] or Raja [24], for this kind of equations are still

missing, but could be guided by the performance envelopes and algorithmic behavior identified in the present

contribution.

By allowing to modify the mathematical structure we expect an even larger gain in performance of the algorithm:

• The 3D stencil for lowest-order Q1 elements has 27 entries. It is an open research question whether it is possible

to reduce the stencil size (for example by additional lumping) for part of the for loops in Alg. 1. In addition, the

convex-limiting methodology [14] is not restricted to a CG discretization and can be also applied to (high-order)

DG discretizations [33, 42]. Such flux-corrected DG schemes might promise a higher arithmetic throughput and

more regular data access.

• Much of the computational bottleneck stems from the heavy use of the transcendental pow() function. An

investigation of modified limiter approaches that still guarantee the invariant-domain property but use a cheaper

to evaluate 3-convex function Ψ(𝑼 ) (Sec. 3.9) thus seems very tempting.

• A similar consideration can be made for the entropy-viscosity commutator (Sec. 3.8) and the subsequent in-

teraction with the limiter: it needs to be investigated whether the number of transcendental functions in the
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indicator can be reduced by potentially including certain entropies in the limiting process or by using mono-

tonicity/convexity in some functional relations to pull out power functions from the inner 𝑗 loop to the outer 𝑖

loop.
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