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A graph operation that contracts edges is one of the fundamental operations in
the theory of graph minors. Parameterized Complexity of editing to a family of
graphs by contracting k edges has recently gained substantial scientific attention,
and several new results have been obtained. Some important families of graphs,
namely the subfamilies of chordal graphs, in the context of edge contractions, have
proven to be significantly difficult than one might expect. In this paper, we study
the F-Contraction problem, where F is a subfamily of chordal graphs, in the
realm of parameterized approximation. Formally, given a graph G and an integer
k, F-Contraction asks whether there exists X ⊆ E(G) such that G/X ∈ F and
|X| ≤ k. Here, G/X is the graph obtained from G by contracting edges in X. We
obtain the following results for the F-Contraction problem.
• Clique Contraction is known to be FPT. However, unless NP ⊆ coNP/poly,
it does not admit a polynomial kernel. We show that it admits a polynomial-
size approximate kernelization scheme (PSAKS). That is, it admits a (1 + ε)-
approximate kernel with O(kf(ε)) vertices for every ε > 0.
• Split Contraction is known to be W[1]-Hard. We deconstruct this in-

tractability result in two ways. Firstly, we give a (2 + ε)-approximate poly-
nomial kernel for Split Contraction (which also implies a factor (2 + ε)-
FPT-approximation algorithm for Split Contraction). Furthermore, we
show that, assuming Gap-ETH, there is no

(
5
4 − δ

)
-FPT-approximation algo-

rithm for Split Contraction. Here, ε, δ > 0 are fixed constants.
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• Chordal Contraction is known to be W[2]-Hard. We complement this result
by observing that the existing W[2]-hardness reduction can be adapted to show
that, assuming FPT 6= W[1], there is no F (k)-FPT-approximation algorithm for
Chordal Contraction. Here, F (k) is an arbitrary function depending on k
alone.

We say that an algorithm is an h(k)-FPT-approximation algorithm for the F-Contraction
problem, if it runs in FPT time, and on any input (G, k) such that there exists
X ⊆ E(G) satisfying G/X ∈ F and |X| ≤ k, it outputs an edge set Y of size at
most h(k) · k for which G/Y is in F . We find it extremely interesting that three
closely related problems have different behavior with respect to FPT-approximation.

1 Introduction
Graph modification problems have been extensively studied since the inception of Parameterized
Complexity in the early ‘90s. The input of a typical graph modification problem consists
of a graph G and a positive integer k, and the objective is to edit k vertices (or edges) so
that the resulting graph belongs to some particular family, F , of graphs. These problems are
not only mathematically and structurally challenging, but have also led to the discovery of
several important techniques in the field of Parameterized Complexity. It would be completely
appropriate to say that solutions to these problems played a central role in the growth of
the field. In fact, just in the last few years, parameterized algorithms have been developed
for several graph editing problems [CM14, Cao15, CM15, Cao16, BFPP14, BFPP16, FV13,
FKP+14, DDLS15, DFPV14, DP18, GKK+15]. The focus of all of these papers and the vast
majority of papers on parameterized graph editing problems has so far been limited to edit
operations that delete vertices, delete edges or add edges.
In recent years, a different edit operation has begun to attract significant scientific attention.

This operation, which is arguably the most natural edit operation apart from deletions/inser-
tions of vertices/edges, is the one that contracts an edge. Here, given an edge uv that exists in
the input graph, we remove the edge from the graph and merge its two endpoints. Edge con-
traction is a fundamental operation in the theory of graph minors. For some particular family
of graphs, F , we say that a graph G belongs to F+kv, F+ke or F −ke if some graph in F can
be obtained by deleting at most k vertices from G, deleting at most k edges from G or adding
at most k edges to G, respectively. Using this terminology, we say that a graph G belongs to
F|ke if some graph in F can be obtained by contracting at most k edges in G. In this paper,
we study the following problem.

F-Contraction Parameter: k
Input: A graph G and an integer k
Question: Does G belong to F|ke?

For several families of graphs F , early papers by Watanabe et al. [WAN81, WAN83], and Asano
and Hirata [AH83] showed that F-Edge Contraction is NP-complete.

In the framework of Parameterized Complexity, these problems exhibit properties that are
quite different from those problems where we only delete or add vertices and edges. Indeed,
a well-known result by Cai [Cai96] states that in case F is a hereditary family of graphs with
a finite set of forbidden induced subgraphs, then the graph modification problems, F + kv,
F + ke or F − ke, defined by F admits a simple FPT algorithm (an algorithm with running
time f(k)nO(1)). However, for F-Contraction, the result by Cai [Cai96] does not hold. In
particular, Lokshtanov et al. [LMS13] and Cai and Guo [CG13] independently showed that if
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F is either the family of P`-free graphs for some ` ≥ 5 or the family of C`-free graphs for
some ` ≥ 4, then F-Contraction is W[2]-Hard (W[i]-hardness, for i ≥ 1, is an analogue
to NP-hardness in Parameterized Complexity, and is used to rule out FPT-algorithm for the
problem) when parameterized by k (the number of edges to be contracted). These results
immediately imply that Chordal Contraction is W[2]-Hard when parameterized by k. The
parameterized hardness result for Chordal Contraction led to finding subfamilies of chordal
graphs, where the problem could be shown to be FPT. Two subfamilies that have been considered
in the literature are families of split graphs and cliques. Cai and Guo [CG13] showed that
Clique Contraction is FPT, however, it does not admit a polynomial kernel. Later, Cai
and Guo [GC15] also claimed to design an algorithm that solves Split Contraction in time
2O(k2) · nO(1), which proves that the problem is FPT. However, Agrawal et al. [ALSZ17] found
an error with the proof and showed that Split Contraction is W[1]-Hard.

Inspired by the intractable results that Chordal Contraction, Split Contraction
and Clique Contraction are W[2]-Hard, W[1]-Hard, and does not admit polynomial
kernel, respectively, we study them from the viewpoint of parameterized approximation.

Our Results and Methods. We start by defining a few basic definitions in parameterized
approximation. To formally define these, we need a notion of parameterized optimization prob-
lems. We defer formal definitions to Section 2 and give intuitive definitions here. We say that
an algorithm is an h(k)-FPT-approximation algorithm for the F-Contraction problem, if it
runs in FPT time, and on any input (G, k) if there exists X ⊆ E(G) such that G/X ∈ F and
|X| ≤ k, it outputs an edge set Y of size at most h(k) · k and G/Y ∈ F . Let α ≥ 1 be a
real number. We now give an informal definition of α-approximate kernels. The kernelization
algorithm takes an instance I with parameter k, runs in polynomial time, and produces a new
instance I ′ with parameter k′. Both k′ and the size of I ′ should be bounded in terms of just
the parameter k. That is, there exists a function g(k) such that |I ′| ≤ g(k) and k′ ≤ g(k). This
function g(k) is called the size of the kernel. For minimization problems, we also require the
following from α-approximate kernels: For every c ≥ 1, a c-approximate solution S′ to I ′ can
be transformed in polynomial time into a (c · α)-approximate solution S to I. However, if the
quality of S′ is “worse than” k′, or (c · α) · OPT (I) > k, the algorithm that transforms S′ into
S is allowed to fail. Here, OPT (I) is the value of the optimum solution of the instance I.
Our first result is about Clique Contraction. It is known to be FPT. However, unless

NP ⊆ coNP/poly, it does not admit a polynomial kernel [CG13]. We show that it admits a
PSAKS. That is, it admits a (1 + ε)-approximate polynomial kernel with O(kf(ε)) vertices for
every ε > 0. In particular, we obtain the following result.

Theorem 1.1. For any ε > 0, Clique Contraction parameterized by the size of solution
k, admits a time efficient (1 + ε)-approximate polynomial kernel with O(kd+1) vertices, where
d = d1

ε e.

Overview of the proof of Theorem 1.1. Let us fix an input (G, k) and a constant ε > 0.
Given a graph G, contracting edges of G to get into a graph class F is same as partitioning the
vertex set V (G) into connected sets, W1,W2, . . . ,W`, and then contracting each connected set
to a vertex. These connected sets are called witness sets. A witness set Wi is called non-trivial,
if |Wi| ≥ 2, and trivial otherwise.
Observe that if a graph G can be transformed into a clique by contracting edges in F , then G

can also be converted into a clique by deleting all the endpoints of edges in F . This observation
implies that if G is k-contractible to a clique, then there exists an induced clique of size at least
|V (G)|−2k. Let I be a set of vertices in G, which induces this large clique and let C = V (G)\I.
Observe that C forms a vertex cover in the graph G (graph with vertex set V (G) and those
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edges that are not present in E(G)). Using a factor 2-approximation algorithm, we find a vertex
cover X of G. Let Y = V (G) − X be an independent set in G. If |X| > 4k, we immediately
say No. Now, suppose that we have some solution and let W1,W2, . . . ,W` be those witness sets
that are either non-trivial or contained in X. Now, let us say that a set Wi is nice if it has
at least one vertex outside X, and small if it contains less than O(1/ε) vertices. A set that is
not small is large. Observe that there exists a (1 + ε)-approximate solution where the only sets
that are not nice are small. Also, observe that all nice sets are adjacent. Now, we classify all
subsets of X of size at most O(1/ε) as possible and impossible small witness sets. Notice that
if a set A ⊆ X has more than 2k non-neighbors, then it can not possibly be a witness set, as
one of these non-neighbors will be a trivial witness set. Now for every set, A ⊆ X of size at
most O(1/ε) mark all of its non-neighbors, but if there are more than 2k, then mark 2k + 1
of them. Now, look at an unmarked vertex in Y , the only reason it could still be relevant if
it is part of some Wi. So its job is (a) connecting the vertices in Wi, or (b) potentially being
the vertex in Y that is making some Wi nice, or (c) it is a neighbor to all the small (not nice)
subsets of X in the solution. Now notice that any vertex in Y that is unmarked does jobs (b)
and (c) equally well. So we only need to care about connectivity. Look at some nice and small
set Wi; we only need to preserve the neighborhoods of the vertices of Y into Wi. For every
subset of size O(1/ε), we keep one vertex in Y that has that set in its neighborhood. Notice
that we do not care that different Wi’s use different marked vertices for connectivity because
merging two Wi’s is more profitable for us. Finally, we delete all unmarked vertices and obtain
an (1+ε)-approximate kernel of size roughly kO(1/ε). We argue that this kernelization algorithm
is time efficient i.e. the running time is polynomial in the size of an input and the constant in
the exponent is independent of ε. This completes the overview of the proof for Theorem 1.1.
Next, we move to Split Contraction.

Split Contraction is known to be W[1]-Hard [ALSZ17]. We ask ourselves whether Split
Contraction is completely FPT-inapproximable or admits an α-FPT-approximation algorithm,
for some fixed constant α > 0. We obtain two results towards our goal.

Theorem 1.2. For every ε > 0, Split Contraction admits a factor (2+ε)-FPT-approximation
algorithm. In fact, for any ε > 0, Split Contraction admits a (2 + ε)-approximate kernel
with O(kf(ε)) vertices.

Given, Theorem 1.2, it is natural to ask whether Split Contraction admits a factor (1+ε)-
FPT-approximation algorithm, for every ε > 0. We show that this is not true and obtain the
following hardness result.

Theorem 1.3. Assuming Gap-ETH, no FPT time algorithm can approximate Split Contrac-
tion within a factor of

(
5
4 − δ

)
, for any fixed constant δ > 0.

Overview of the proofs of Theorems 1.2 and 1.3. Our proof for Theorem 1.2 uses ideas
for (1 + ε)-approximate kernel for Clique Contraction (Theorem 1.1) and thus we omit its
overview. Towards the proof of Theorem 1.3, we give a gap preserving reduction from a variant of
the Densest-k-Subgraph problem (given a graph G and an integer k, find a subset S ⊆ V (G)
of k vertices that induces maximum number of edges). Chalermsook et al. [CCK+17a] showed
that, assuming Gap-ETH, for any g = o(1), there is no FPT-time algorithm that, given an integer
k and any graph G on n vertices that contains at least one k-clique, always output S ⊆ V (G),
of size k, such that Den(S) ≥ k−g(k). Here, Den(S) = |E(G[S])|/

(|S|
2
)
. We need a strengthening

of this result that says that assuming Gap-ETH, for any g = o(1) and for any constant α > 1,
there is no FPT-time algorithm that, given an integer k and any graph G on n vertices that
contains at least one k-clique, always outputs S ⊆ V (G), of size αk, such that Den(S) ≥ k−g(k).

We refer the readers to [CCK+17a] for the definition of Gap-ETH and related terms.
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Starting from this result, we give a gap-preserving reduction to Split Contraction that takes
FPT time and obtain Theorem 1.3. Given an instance (G, k) of Densest-k-Subgraph, we first
use color coding to partition the edges into t =

(k
2
)
color classes such that every color class

contains exactly one edge of a “densest subgraph” (or a clique). For each color class we make
one edge selection gadget. Each edge selection gadget corresponding to the color class j consists
of an independent set ESj that contains a vertex corresponding to each edge in the color classj,
and a cap vertex gj that is adjacent to every vertex in ESj . Next, we add a sufficiently large
clique Z of size ρ · |V (G)|, where for every vertex v ∈ V (G), we have ρ vertices. Every vertex
in an edge selection gadget is adjacent to every vertex of Z, except those corresponding to the
endpoints of the edge the vertex represents. Finally, we add a clique SV of size t that has one
vertex sj for each edge selection gadget. Make the vertex sj adjacent to every vertex in ESj .
We also add sufficient guards on vertices everywhere, so that “unwanted” contractions do not
happen. The idea of the reduction is to contract edges in a way that the vertices in SV, Z, and
gj , j ∈ {1, . . . , t}, become a giant clique and other vertices become part of an independent set,
resulting in a split graph. Towards this we first use 2t contractions so that gj , sj , and a vertex
aj ∈ ESj are contracted into one. One way to ensure that they form a clique along with Z is
to contract each of them to a vertex in Z. However, this will again require t edge contractions.
We set our budget in a way that this is not possible. Thus, what we need is to destroy the
non-neighbors of aj . One way to do this again will be to match the vertices obtained after the
first round of 2t contractions in a way that there are no non-adjacencies left. However, this
will also cost t/2, and our budget does not allow this. The other option (which we take) is
to take the union of all non-neighbors of aj , say N , and contract each of them to one of the
vertex in Z \ N . Observe that to minimize the contractions to get rid of non-neighbors of aj ,
we would like to minimize |N |. This will happen when N spans a large number of edges. Thus,
it precisely captures the Densest-k-Subgraph problem. The budget is chosen in a way that
we get the desired gap-preserving reduction, which enables us to prove Theorem 1.3.
Our final result concerns Chordal Contraction. Lokshtanov et al. [LMS13] showed that

Chordal Contraction is W[2]-Hard. We observe that the existing W[2]-hardness reduction
can be adapted to show the following theorem.

Theorem 1.4. Assuming FPT 6= W[1], no FPT time algorithm can approximate Chordal Con-
traction within a factor of F (k). Here, F (k) is a function depending on k alone.

Overview of the proof of Theorem 1.4. Towards proving Theorem 1.4, we give a 1-approximate
polynomial parameter transformation (1-appt) from Set Cover (given a universe U , a family
of subsets S, and an integer k, we shall decide the existence of a subfamily of size k that contains
all the elements of U) to Chordal Contraction. That is, given any solution of size at most
` for Chordal Contraction, we can transform this into a solution for Set Cover of size at
most `. Karthik et al. [KLM18] showed that assuming FPT 6= W[1], no FPT time algorithm can
approximate Set Cover within a factor of F (k). Pipelining this result with our reduction we
get Theorem 1.4.

Related Work. To the best of our knowledge, Heggernes et al. [HvtHL+14] was the first
to explicitly study F-Contraction from the viewpoint of Parameterized Complexity. They
showed that in case F is the family of trees, F-Contraction is FPT but does not admit a
polynomial kernel, while in case F is the family of paths, the corresponding problem admits a
faster algorithm and an O(k)-vertex kernel. Golovach et al. [GvHP13] proved that if F is the
family of planar graphs, then F-Contraction is again FPT. Moreover, Cai and Guo [CG13]
showed that in case F is the family of cliques, F-Contraction is solvable in time 2O(k log k) ·
nO(1), while in case F is the family of chordal graphs, the problem is W[2]-Hard. Heggernes
et al. [HvHLP13] developed an FPT algorithm for the case where F is the family of bipartite
graphs. Later, a faster algorithm was proposed by Guillemot and Marx [GM13].
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Pioneering work of Lokshtanov et al. [LPRS17] on the approximate kernel is being fol-
lowed by a series of papers generalizing/improving results mentioned in this work and estab-
lishing lossy kernels for various other problems. Lossy kernels for some variations of Con-
nected Vertex Cover [EHR17, KMR18], Connected Feedback Vertex Set [Ram19],
Steiner Tree [DFK+18] and Dominating Set [EKM+19, Sie17] have been established (also
see [Man19, vBFT18]). Krithika et al. [KMRT16] were first to study graph contraction problems
from the lenses of lossy kernelization. They proved that for any α > 1, Tree Contraction
admits an α-lossy kernel with O(kd) vertices, where d = dα/(α − 1)e. Agarwal et al. [AST17]
proved similar result for F-Contraction problems where graph class F is defined in para-
metric way from set of trees. Eiben et al. [EHR17] obtained similar result for Connected
H-Hitting Set problem.

Guide to the paper. We start by giving the notations and preliminaries that we use throughout
the paper in Section 2. This section is best used as a reference, rather than being read linearly.
In Section 3 we give the (1 + ε)–approximate polynomial kernel for Clique Contraction.
Section 4 gives the (2 + ε)–approximate polynomial kernel for Split Contraction. The ideas
here are similar to those used in Section 3, and thus an eager reader could skip further. In
Section 5, we show that assuming Gap-ETH, no FPT time algorithm can approximate Split
Contraction within a factor of

(
5
4 − δ

)
, for any fixed constant δ > 0. Section 6 shows

that, assuming FPT 6= W[1], no FPT time algorithm can approximate Chordal Contraction
within a factor of F (k). This is an adaptation of the existing W[2]-hardness reduction and may
be skipped. Thus, our main technical results appear in Sections 3 and 5. We conclude the paper
with some interesting open problems in Section 7.

2 Preliminaries
In this section, we give notations and definitions that we use throughout the paper. Unless
specified, we will be using all general graph terminologies from the book of Diestel [Die12].

2.1 Graph Theoretic Definitions and Notations
For an undirected graph G, sets V (G) and E(G) denote the set of vertices and edges, respec-
tively. Two vertices u, v in V (G) are said to be adjacent if there is an edge uv in E(G). The
neighborhood of a vertex v, denoted by NG(v), is the set of vertices adjacent to v in G. For
subset S of vertices, we define N(S) =

⋃
v∈S N(v)) \ S. The subscript in the notation for the

neighborhood is omitted if the graph under consideration is clear. For a set of edges F , set V (F )
denotes the endpoints of edges in F . For a subset S of V (G), we denote the graph obtained by
deleting S from G by G− S and the subgraph of G induced on set S by G[S]. For two subsets
S1, S2 of V (G), we say S1, S2 are adjacent if there exists an edge with one endpoint in S1 and
other in S2.

An edge e in G is a chord of a cycle C (resp. path P ) if (i) both the endpoints of e are in
C (resp. in P ), and (ii) edge e is not in C (resp. not in P ). An induced cycle (resp. path) is
a cycle (resp. path) which has no chord. We denote induced cycle and path on ` vertices by
C` and P`, respectively. A complete graph G is an undirected graph in which for every pair of
vertices u, v ∈ V (G), there is an edge uv in E(G). As an immediate consequence of definition
we get the following.

Lemma 2.1. A connected graph G is complete if and only if G does not contain an induced P3.

A clique is a subset of vertices in the graph that induces a complete graph. A set I ⊆ V (G) of
pairwise non-adjacent vertices is called an independent set. A graph G is a split graph if V (G)
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can be partitioned into a clique and an independent set. For split graph G, partition (X,Y ) is
split partition if X is a clique and Y is an independent set. In this article, whenever we mention
a split partition, we first mention the clique followed by the independent set. We will also use
the following well-known characterization of split graphs. Let, 2K2 be a graph induced on four
vertices, which contains exactly two edges and no isolated vertices.

Lemma 2.2 ([Gol04]). A graph G is a split graph if and only if it does not contain C4, C5 or
2K2 as an induced subgraph.

A graph G is chordal if every induced cycle in G is a triangle; equivalently, if every cycle of
length at least four has a chord. A vertex subset S ⊆ V (G) is said to cover an edge uv ∈ E(G)
if S ∩ {u, v} 6= ∅. A vertex subset S ⊆ V (G) is called a vertex cover in G if it covers all the
edges in G.
We start with the following observation, which is useful to find a large induced clique in the

input graph. The complement of G, denoted by Ḡ, is a graph whose vertex set is V (G) and
edge set is precisely those edges which are not present in E(G). Note that given a graph G, if
S is a set of vertices such that G − S is a clique, then S is a vertex cover in the complement
graphs of G, denoted by Ḡ, as Ḡ− S is edgeless. Using the well-known factor 2-approximation
algorithm for Vertex Cover [BYE81], we have following.

Observation 2.1 ([BYE81]). There is a factor 2-approximation algorithm to compute a set of
vertices whose deletion results in a complete graph.

Using, Lemma 2.2 one can obtain a simple factor 5-approximation algorithm for deleting
vertices to get a split graph.

Observation 2.2. There is a factor 5-approximation algorithm to compute a set of vertices
whose deletion results in a split graph.

Recently, for every ε > 0, a factor (2 + ε)-approximation algorithm for deleting vertices to
get a split graph has been obtained [LMP+20]. However, for our purposes Observation 2.2 will
suffice.

2.2 Graph Contraction
The contraction of edge e = uv in G deletes vertices u and v from G, and adds a new vertex,
which is made adjacent to vertices that were adjacent to either u or v. Any parallel edges added
in the process are deleted so that the graph remains simple. The resulting graph is denoted
by G/e. Formally, for a given graph G and edge e = uv, we define G/e in the following way:
V (G/e) = (V (G)∪{w})\{u, v} and E(G/e) = {xy | x, y ∈ V (G)\{u, v}, xy ∈ E(G)}∪{wx| x ∈
NG(u) ∪ NG(v)}. For a subset of edges F in G, graph G/F denotes the graph obtained from
G by repeatedly contracting edges in F until no such edge remains. We say that a graph G
is contractible to a graph H if there exists an onto function ψ : V (G) → V (H) such that the
following properties hold.

• For any vertex h in V (H), graph G[W (h)] is connected, where set W (h) := {v ∈ V (G) |
ψ(v) = h}.
• For any two vertices h, h′ in V (H), edge hh′ is present in H if and only if there exists an
edge in G with one endpoint in W (h) and another in W (h′).

For a vertex h in H, set W (h) is called a witness set associated with h. We define H-witness
structure of G, denoted by W, as collection of all witness sets. Formally, W = {W (h) |
h ∈ V (H)}. Witness structure W is a partition of vertices in G, where each witness forms a
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connected set in G. Recall that if a witness set contains more than one vertex, then we call it
non-trivial witness set, otherwise a trivial witness set.
If graph G has a H-witness structure, then graph H can be obtained from G by a series of

edge contractions. For a fixed H-witness structure, let F be the union of spanning trees of
all witness sets. By convention, the spanning tree of a singleton set is an empty set. Thus, to
obtain H from G, it is sufficient to contract edges in F . If such witness structure exists, then we
say that graph G is contractible to H. We say that graph G is k-contractible to H if cardinality
of F is at most k. In other words, H can be obtained from G by at most k edge contractions.
Following observation is an immediate consequence of definitions.

Observation 2.3. If graph G is k-contractible to graph H, then the following statements are
true.

• For any witness set W in a H-witness structure of G, the cardinality of W is at most
k + 1.
• For a fixed H-witness structure, the number of vertices in G, which are contained in non-
trivial witness sets is at most 2k.

In the following two observations, we state that if a graph can be transformed into a clique
or a split graph by contracting few edges, then it can also be converted into a clique or split
graph by deleting few vertices.

Observation 2.4. If a graph G is k-contractible to a clique, then G can be converted into a
clique by deleting at most 2k vertices.

Proof. Let F be a set of edges of size at most k such that G/F is a clique. Let W be a G/F -
witness structure of G. Let X be a set of all vertices which are contained in the non-trivial
witness sets in W. By Observation 2.3, size of X is at most 2k. Any two vertices in V (G) \X
are adjacent to each other as these vertices form singleton sets, which are adjacent in G/F .
Hence, G can be converted into a clique by deleting vertices in X.

Observation 2.5. If a graph G is k-contractible to a split graph then G can be converted into
a split graph by deleting at most 2k vertices.

Proof. For graph G, let F be the set of edges such that G/F is a split graph and |F | ≤ k.
Let V (F ) be the collection of all endpoints of edges in F . Since cardinality of F is at most k,
|V (F )| is at most 2k. We argue that G− V (F ) is a split graph. For the sake of contradiction,
assume that G − V (F ) is not a split graph. We know that a graph is split if and only if it
does not contain induced C4, C5 or 2K2. This implies that there exists a set of vertices V ′ in
V (G) \ V (F ) such that G[V ′] is either C4, C5 or 2K2. Since no edge in F is incident on any
vertices in V ′, G/F [V ′] is isomorphic to G[V ′]. Hence, there exists a C4, C5 or 2K2 in G/F
contradicting the fact that G/F is a split graph. Hence, our assumption is wrong and G−V (F )
is a split graph.

Consider a connected graph G which is k-contractible to the cliqueK`. LetW be aK`-witness
structure of G. The following observation gives a sufficient condition for obtaining a witness
structure of an induced subgraph of G from W.

Observation 2.6. LetW be a clique witness structure of G. If there exists two different witness
sets W (t1),W (t2) in W and a vertex v in W (t1) such that the set W (t) = (W (t1)∪W (t2))\{v}
is a connected set in G − {v}, then W ′ is a clique witness structure of G − {v}, where W ′ is
obtained from W by removing W (t1),W (t2) and adding W (t).
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Proof. Let G′ = G−{v}. Note that W ′ is a partition of vertices in G′. Any set in W ′ \ {W (t)}
is a witness set in W and does not contain v. Hence, these sets are connected in G′. Since
G′[W (t)] is also connected, all the witness sets in W ′ are connected in G′.
Consider any two witness sets W (t′),W (t′′) in W ′. If none of these two is equal to W (t)

then both of these sets are present in W. Since none of these witness sets contains vertex v,
they are adjacent to each other in G′. Now, consider a case when one of them, say W (t′′), is
equal to W (t). As witness sets W (t′) and W (t2) are present in W, there exists an edge with
one endpoint in W (t′) and another in W (t2). The same edge is present in graph G′ as it is not
incident on v. Since W (t2) is subset of W (t), sets W (t′) and W (t) are adjacent in G′. Hence
any two witness sets in W ′ are adjacent to each other. This implies that W ′ is a clique witness
structure of graph G− {v}.

In the case of Split Contraction, the following observation guarantees the existence of
witness structure with a particular property.

Observation 2.7. For a connected graph G, let F be a set of edges such that G/F is a split
graph. Then, there exists a set of edges F ′ which satisfy the following properties: (i) G/F ′
is a split graph. (ii) The number of edges in F ′ is at most |F |. (iii) There exists a split
partition of G/F ′ such that all vertices in G/F ′ which correspond to a non-trivial witness set
in G/F ′-witness structure of G are in clique side.

Proof. Let (C, I) be a split partition of vertices of G/F such that C is a clique and I is an
independent set. If all the vertices corresponding to non-trivial witness sets are in C, then the
observation is true. Consider a vertex a in I which corresponds to a non-trivial witness set Wa.
Since G is connected, G/F is a connected split graph. This implies that there exists a vertex,
say b, in C which is adjacent to a in G/F . We denote witness set corresponding to b by Wb.
We construct a new witness structure by shifting all but one vertices in Wa to Wb. Since ab is
an edge in G/F , there exists an edge in G with one endpoint in Wa and another in Wb. Let
that edge be uaub with vertices ua and ub contained in sets Wa and Wb, respectively. Consider
a spanning tree T of graph G[Wa] which is rooted at ua. We can replace edges in F whose
both endpoints are in V (Wa) with E(T ) to obtain another set of edges F ∗ such that G/F ∗ is
a split graph. Formally, F ∗ = (F ∪ E(T )) \ (E(G[Wa]) ∩ F ). Note that the number of edges
in F ∗ and F are same. Let v1 be a leaf vertex in T and v2 be its unique neighbor. Consider
F ′ = (F ∗ ∪ {uaub}) \ {v1v2}. Since edge v1v2 is in F ∗ and uaub is not in F ∗, |F ′| = |F ∗|. We
now argue that G/F ′ is also a split graph. Let W ′ be the G/F ′-witness structure of G. Note
that W ′ can be obtained from G/F ∗-witness structure W∗ of G by replacing Wa by {v1} and
Wb by Wb ∪ (Wa \ {v1}). Since all other witness set remains unchanged any witness set which
was adjacent to Wb is also adjacent to Wb ∪ (Wa \ {v1}). Similarly, any witness set which was
not adjacent to Wa is not adjacent to {v2}. In other words, this operation of shifting edges
did not remove any vertex from the neighborhood of b (which is in C) nor it added any vertex
in the neighborhood of a (which is in I). Hence, G/F ′ is also a split graph with (C, I) as one
of its split partition. Note that there exists a split partition of G/F ′ such that the number of
vertices in the independent side corresponding to non-trivial witness set is one less than the
number of vertices in I which corresponds to non-trivial witness sets. Hence, by repeating this
process at most |V (G)| times, we get a set of edges that satisfy three properties mentioned in
the observation.

2.3 Parameterized Complexity and Lossy Kernelization
An important notion in parameterized complexity is kernelization, which captures the efficiency
of data reduction techniques. A parameterized problem Π admits a kernel of size g(k) (or g(k)-
kernel) if there is a polynomial time algorithm (called kernelization algorithm) which takes as
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input (I, k), and returns an instance (I ′, k′) of Π such that: (i) (I, k) is a yes-instance if and
only if (I ′, k′) is a yes-instance; and (ii) |I ′| + k′ ≤ g(k), where g(·) is a computable function
whose value depends only on k. Depending on whether the function g(·) is linear, polynomial or
exponential, the problem is said to admit a linear, polynomial or exponential kernel, respectively.
We refer to the corresponding chapters in the books [FLSZ19, CFK+15, DF13, FG06, Nie06]
for a detailed introduction to the field of kernelization.
In lossy kernelization, we work with the optimization analog of parameterized problem. Along

with an instance and a parameter, an optimization analog of the problem also has a string
called solution. We start with the definition of a parameterized optimization problem. It is
the parameterized analog of an optimization problem used in the theory of approximation
algorithms.

Definition 2.1 (Parameterized Optimization Problem). A parameterized optimization problem
is a computable function Π : Σ∗ × N× Σ∗ 7→ R ∪ {±∞}. The instances of Π are pairs (I, k) ∈
Σ∗ × N and a solution to (I, k) which is simply a string S ∈ Σ∗ such that |S| ≤ |I|+ k.

The value of a solution S is Π(I, k, S). In this paper, all optimization problems are minimiza-
tion problems. Therefore, we present the rest of the section only with respect to parameterized
minimization problem. The optimum value of (I, k) is defined as:

OPTΠ(I, k) = min
S∈Σ∗, |S|≤|I|+k

Π(I, k, S),

and an optimum solution for (I, k) is a solution S such that Π(I, k, S) = OPTΠ(I, k). For a
constant c > 1, S is c-factor approximate solution for (I, k) if Π(I,k,S)

OPTΠ(I,k) ≤ c. We omit the
subscript Π in the notation for optimum value if the problem under consideration is clear from
the context.
For some parameterized optimization problems we are unable to obtain FPT algorithms,

and we are also unable to find satisfactory polynomial time approximation algorithms. In this
case one might aim for FPTapproximation algorithms, algorithms that run in time f(k)nc and
provide good approximate solutions to the instance.

Definition 2.2. Let α ≥ 1 be constant. A fixed parameter tractable α-approximation algorithm
for a parameterized optimization problem Π is an algorithm that takes as input an instance
(I, k), runs in time f(k)|I|O(1), and outputs a solution S such that Π(I, k, S) ≤ α ·OPT(I, k)
if Π is a minimization problem, and α ·Π(I, k, S) ≥ OPT(I, k) if Π is a maximization problem.

Note that Definition 2.2 only defines constant factor FPT-approximation algorithms. The
definition can in a natural way be extended to approximation algorithms whose approximation
ratio depends on the parameter k, on the instance I, or on both. Next, we define an α-
approximate polynomial-time preprocessing algorithm for a parameterized minimization problem
Π as follows.

Definition 2.3 (α-Approximate Polynomial-time Preprocessing Algorithm). Let α ≥ 1 be a real
number and Π be a parameterized minimization problem. An α-approximate polynomial-time
preprocessing algorithm is defined as a pair of polynomial-time algorithms, called the reduction
algorithm and the solution lifting algorithm, that satisfy the following properties.

• Given an instance (I, k) of Π, the reduction algorithm computes an instance (I ′, k′) of Π.
• Given instances (I, k) and (I ′, k′) of Π, and a solution S′ to (I ′, k′), the solution lifting
algorithm computes a solution S to (I, k) such that Π(I,k,S)

OPT(I,k) ≤ α ·
Π(I′,k′,S′)
OPT(I′,k′) .

We sometimes refer α-approximate polynomial-time preprocessing algorithm kernel as α-lossy
rule or α-reduction rule.
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3 Lossy Kernel for Clique Contraction
In this section, we present a lossy kernel for Clique Contraction. We first define a natural
optimization version of the problem.

ClC(G, k, F ) =
{

min{|F |, k + 1} if G/F is a clique
∞ otherwise

If the number of vertices in the input graph is at most k + 3, then we can return the same
instance as a kernel for the given problem. Further, we assume that the input graph is connected;
otherwise, it can not be edited into a clique by edge contraction only. Thus, we only consider
connected graphs with at least k+ 3 vertices. By the definition of optimization problem, for any
set of edges F , if G/F is a clique, then the maximum value of ClC(G, k, F ) is k+1. Hence, any
spanning tree of G is a solution of cost k+ 1. We call it a trivial solution for the given instance.
Consider an instance (P4, 1), where P4 is a path on four vertices. One needs to contract at least
two edges to convert P4 into a clique. We call (P4, 1) a trivial No-instance for this problem.
Finally, we assume that we are given an ε > 0.

We start with a reduction rule, which says that if the minimum number of vertices that need
to be deleted from an input graph to obtain a clique is large, then we can return a trivial
instance as a lossy kernel.

Reduction Rule 3.1. For a given instance (G, k), apply the algorithm mentioned in Observa-
tion 2.1 to find a set X such that G −X is a clique. If the size of X is greater than 4k, then
return (P4, 1).

Lemma 3.1. Reduction Rule 3.1 is a 1-reduction rule.

Proof. Let (G, k) be an instance of Clique Contraction such that the Reduction Rule 3.1
returns (P4, 1) when applied on it. The solution lifting algorithm returns a spanning tree F of
G. Note that for a set of edges F ′, if P4/F

′ is a clique then F ′ contains at least two edges. This
implies ClC(P4, 1, F ′) = 2 and OPT(P4, 1) = 2.

Since a factor 2-approximation algorithm returned a set of size strictly more than 4k, for any
set X ′ of size at most 2k, G−X ′ is not a clique. But by Observation 2.4, if G is k-contractible
to a clique then G can be edited into a clique by deleting at most 2k vertices. Hence, for any
set of edges F ∗ if G/F ∗ is a clique, then the size of F ∗ is at least k + 1. This implies that
OPT(G, k) = k + 1, and for a spanning tree F of G, ClC(G, k, F ) = k + 1.

Combining these values, we get ClC(G,k,F )
OPT(G,k) = k+1

k+1 = 2
2 = ClC(P4,1,F ′)

OPT(P4,1) . This implies that if F ′

is factor c-approximate solution for (P4, 1), then F is factor c-approximate solution for (G, k).
This concludes the proof.

We now consider an instance (G, k) for which Reduction Rule 3.1 does not return a trivial
instance. This implies that for a given graph G, in polynomial time, one can find a partition
(X,Y ) of V (G) such that G − X = G[Y ] is a clique and |X| is at most 4k. For ε > 0, find a
smallest integer d, such that d+1

d ≤ 1 + ε. In other words, fix d = d1
ε e. We note that if the

number of vertices in the graph is at most O(kd+1), then the algorithm returns this graph as a
lossy kernel of the desired size. Hence, without loss of generality, we assume that the number
of vertices in the graph is larger than O(kd+1).
Given an instance (G, k), a partition (X,Y ) of V (G) with G[Y ] being a clique, and an integer

d, consider the following two marking schemes.

Marking Scheme 3.1. For a subset A of X, let M1(A) be the set of vertices in Y whose
neighborhood contains A. For every subset A of X which is of size at most d, mark a vertex in
M1(A).
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Formally, M1(A) = {y ∈ Y |A ⊆ N(y)}. If M1(A) is an empty set, then the marking scheme
does not mark any vertex. If it is non-empty, then the marking scheme arbitrarily chooses a
vertex and marks it.

Marking Scheme 3.2. For a subset A of X, let M2(A) be the set of vertices in Y whose
neighborhood does not intersect A. For every subset A of X which is of size at most d, mark
2k + 1 vertices in M2(A).

Formally, M2(A) = {y ∈ Y |N(y) ∩ A = ∅}. If the number of vertices in M2(A) is at most
2k + 1, then the marking scheme marks all vertices in M2(A). If it is larger than 2k + 1, then
it arbitrarily chooses 2k + 1 vertices and marks them.

Reduction Rule 3.2. For a given instance (G, k), partition (X,Y ) of V (G) with G[Y ] being a
clique, and an integer d, apply the Marking Schemes 3.1 and 3.2. Let G′ be the graph obtained
from G by deleting all the unmarked vertices in Y . Return the instance (G′, k).

Above reduction rule can be applied in time |X|d · |V (G)|O(1) = O(kO(d)|V (G)|O(1)) as |X| is
at most 4k. Note that G′ is an induced subgraph of G. We first show that since G is a connected
graph, G′ is also connected. In the following lemma, we prove a stronger statement.

Lemma 3.2. Consider instance (G, k) of Clique Contraction. Let Y ′ be the set of vertices
marked by Marking Scheme 3.1 or 3.2 for some positive integer d. For any subset Y ′′ of Y \Y ′,
let G′′ be the graph obtained from G by deleting Y ′′. Then, G′′ is connected.

Proof. Recall that, by our assumption, G is connected and Y is a clique in G. Hence, for
every vertex in X, there exists a path from it to some vertex in Y . By the construction of
G′′, (X,Y \ Y ′′) forms a partition of V (G′′) and Y \ Y ′′ is a clique in G′′. To prove that G′′ is
connected, it is sufficient to prove that for every vertex in X, there exists a path from it to a
vertex in Y \ Y ′′ in G.

Fix an arbitrary vertex, say x, in X. Consider a path P from x to y in G, where y is some
vertex in Y . Without loss of generality, we can assume that y is the only vertex in V (P ) ∩ Y .
We argue that there exists another path, say P1, from x to a vertex in Y \ Y ′′. If y is in Y \ Y ′′
then P1 = P is a desired path. Consider the case when y is in Y ′′. Let x0 be the vertex in V (P )
which is adjacent with y. Note that x0 may be same as x. As Marking Scheme 3.1 considers
all subsets of size at most d, it considered singleton set {x0}. As x0 is adjacent with y, we have
{x0} ⊆ N(y). Since y is in Y ′′, and hence unmarked, there exists a vertex, say y1, in Y which
has been marked by Marking Scheme 3.1. Consider a path P1 obtained from P by deleting
vertex y (and hence edge x0y) and adding vertex y1 with edge x0y1. This is a desired path from
x to a vertex in Y \ Y ′′. As x is an arbitrary vertex in X, this statement is true for any vertex
in X and hence G′′ is connected.

Thus, because of Lemma 3.2, from now onwards, we assume that G′ is connected. In fact, in
our one of the proof, we will iteratively remove vertices from Y \ Y ′, and Lemma 3.2 ensures
that the graph at each step remains connected. In the following lemma, we argue that given a
solution for (G′, k), we can construct a solution of almost the same size for (G, k).

Lemma 3.3. Let (G′, k) be the instance returned by Reduction Rule 3.2 when applied on an
instance (G, k). If there exists a set of edges of size at most k, say F ′, such that G′/F ′ is a
clique, then there exists a set of edges F such that G/F is a clique and cardinality of F is at
most (1 + ε) · |F ′|.

Proof. If no vertex in Y is deleted, then G′ and G are identical graphs, and the statement is
true. We assume that at least one vertex in Y is deleted. Let Y ′ be the set of vertices in Y ,
which are marked. Note that the sets X,Y ′ forms a partition of V (G′) such that Y ′ is a clique
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Figure 1: Straight lines (e.g within W (t)) represent edges in original solution F . Dashed lines
(e.g. across W (t) and W (t′)) represents extra edges added to solution F . Please refer
to the proof of Lemma 3.3.

and a proper subset of Y . Let W ′ be a G′/F ′-witness structure of G′. We construct a clique
witness structure W of G from W ′ by adding singleton witness sets {y} for every vertex y in
Y \ Y ′. Since G[Y \ Y ′] is a clique in G, any two newly added witness sets are adjacent to each
other. Moreover, any witness set in W ′, which intersects Y ′ is also adjacent to the newly added
witness sets. We now consider witness sets in W ′, which do not intersect Y ′.

LetW? be a collection of witness sets W (t) inW ′ such that W (t) is contained in X and there
exists a vertex y in Y \ Y ′ whose neighborhood does not intersect with W (t). See Figure 1. We
argue that every witness set in W? has at least d + 1 vertices. For the sake of contradiction,
assume that there exists a witness set W (t) in W? which contains at most d vertices. Since
Marking Scheme 3.2 iterated over all the subsets of X of size at most d, it also considered W (t)
while marking. Note that the vertex y belongs to the set M2(W (t)). Since y is unmarked, there
are 2k + 1 vertices in M2(W (t)) which have been marked. All these marked vertices are in G′.
Since the cardinality of F ′ is at most k, the number of vertices in V (F ′) is at most 2k. Hence,
at least one marked vertex in M2(W (t)) is a singleton witness set in W ′. However, there is no
edge between this singleton witness set andW (t). This non-existence of an edge contradicts the
fact that any two witness sets in W ′ are adjacent to each other in G′. Hence, our assumption
is wrong, and W (t) has at least d+ 1 vertices.
Next, we show that there exists a witness set in W ′ that intersects Y ′. This is ensured by the

fact that G′ is connected, and we are in the case where at least one vertex in Y is deleted. The
last assertion implies that Y ′ is non-empty, and hence there must be a witness set in W ′ that
intersects Y ′. Let W (t′) be a witness set in W ′ that intersects Y ′. Note that W (t′) is adjacent
to every vertex in Y \ Y ′. Let W (t) be a witness set in W?. Since W (t′) and W (t) are two
witness sets in the G′/F ′-witness structure, there exists an edge with one endpoint inW (t′) and
another in W (t). Therefore, the set W (t′) ∪W (t) is adjacent to every other witness set in W.
We now describe how to obtain F from F ′. We initialize F = F ′. For every witness set W (t)

in W? add an edge between W (t) and W (t′) to the set F ′. Equivalently, we construct a new
witness set by taking the union of W (t′) and all witness sets W (t) in W?. This witness set is
adjacent to every vertex in Y \Y ′, and hence G/F is a clique. We now argue the size bound on
F . Note that we have added one extra edge for every witness set W (t) in W?. We also know
that every such witness set has at least d + 1 vertices. Hence, we have added one extra edge
for at least d edges in the solution F ′. Moreover, since witness sets in W? are vertex disjoint,
no edge in F can be part of two witness sets. This implies that the number of edges in F ′ is at
most (d+1/d)|F | ≤ (1 + ε) · |F |.
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In the following lemma, we argue that the value of the optimum solution for the reduced
instance can be upper bounded by the value of an optimum solution for the original instance.

Lemma 3.4. Let (G′, k) be the instance returned by Reduction Rule 3.2 when applied on an
instance (G, k). If OPT(G, k) ≤ k, then OPT(G′, k) ≤ OPT(G, k).

Proof. Let F be a set of at most k edges in G such that OPT(G, k) = ClC(G, k, F ) and W
be a G/F -witness structure of G. Since we are working with a minimization problem, to prove
this lemma it is sufficient to find a solution for G′ which is of size |F |. Recall that (X,Y ) is a
partition of V (G) such that G −X = G[Y ] is a clique. Let Y ′ be the set of vertices that were
marked by either of the marking schemes. In other words, (X,Y ′) is a partition of G′ such that
G′ −X = G′[Y ] is a clique. We proceed as follows. At each step, we construct graph G? from
G by deleting one or more vertices of Y \ Y ′. Simultaneously, we also construct a set of edges
F ? from F by either replacing the existing edges by new ones or by simply adding extra edges
to F . At any intermediate state, we ensure that G?/F ? is a clique, and the number of edges
in F ? is at most |F |. Let F ◦ = F be an optimum solution for the input instance (G, k). For
notational convenience, we rename G? to G and F ? to F at regular intervals but do not change
F ◦.
To obtain G? and F ?, we delete witness sets which are subsets of Y \Y ′ (Condition 3.1) and

modify the ones which intersect with Y \ Y ′. Every witness set of latter type intersects with
Y ′ or X or both. We partition these non-trivial witness sets in W into two groups depending
on whether the intersection with X is empty (Condition 3.2) or not (Condition 3.3). We first
modify the witness sets that satisfy the least indexed condition. If there does not exist a witness
set which satisfies either of these three conditions, then Y \ Y ′ is an empty set, and the lemma
is vacuously true.

Condition 3.1. There exists a witness set W (t) in W which is a subset of Y \ Y ′.

Construct G? from G by deleting the witness sets W (t) in W. Let F ? be obtained from F
by deleting those edges whose both the endpoints are in W (t). Since the class of cliques is
closed under vertex deletion, G?/F ? is a clique, and as we only deleted edges from F , we have
|F ∗| ≤ |F |. We repeat this process until there exists a witness set that satisfies Condition 3.1.

At this stage we rename G? to G and F ? to F .

Condition 3.2. There exists a witness set W (t) in W which contains vertices from Y \ Y ′ but
does not intersect X.

Since W (t) is not contained in Y \ Y ′ and W (t) ∩X is empty it must intersect with Y ′. See
Figure 2. Let y4 and y5 be vertices in W (t) ∩ Y ′ and W (t) ∩ (Y \ Y ′), respectively. Let W (t1),
different from W (t), be a witness set which intersects Y ′. Since Y ′ is large and non-empty,
such a witness set exists. Let y6 be a vertex in the set W (t1) ∩ Y ′. Consider the witness
sets W (t),W (t1) and vertex y5 in W (t) in graph G. Lemma 3.2 implies that these witness sets
satisfy the premise of Observation 2.6. This impliesW? is a clique witness structure of G−{y5},
whereW? is obtained fromW by removingW (t),W (t1) and adding (W (t)∪W (t1))\{y5}. This
corresponds to replacing an edge in F which was incident to y5 with the one across W (t) and
W (t1). For example, in Figure 2, we replace edge y4y5 in the set F with an edge y4y6 to obtain
a solution for G − {y5}. An edge in F has been replaced with another edge and one vertex in
Y \ Y ′ is deleted. The size of F ? is same as that of F and G?/F ? is a clique. We repeat this
process until there exist a witness set which satisfies Condition 3.2.

At this stage we rename G? to G and F ? to F .
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Figure 2: Straight lines (e.g. y4y5) represent edges in original solution F . Dotted lines (e.g.
y4y6) represents edges which are replaced for some edges in F . Please refer to the
proof of Lemma 3.4.

Condition 3.3. There exists a witness set W (t) in W which contains vertices from Y \Y ′ and
intersects X.

Let y be a vertex in W (t)∩ (Y \Y ′), Xt be the set of vertices in W (t)∩X which are adjacent
to y via edges in F , and Qt be the set of vertices in W (t)∩ Y which are adjacent to y via edges
in F . We find a substitute for y in Y ′. If the set Xt is empty then the vertex y is adjacent
only with the vertices of Y , in this case the edges incident to y can be replaced as mentioned
in the Condition 3.2. Assume that Xt is non-empty. For every vertex x in Xt the set {x} is
considered by Marking Scheme 3.1. Since y is adjacent to every vertex x in Xt, the setM1({x})
is non-empty. As y is in Y \ Y ′, and hence unmarked, for every x in Xt, there is a vertex in
M1({x}), say yx, different from y which has been marked. We construct F ? from F by the
following operation: For every vertex x in Xt, replace the edge xy in F by xyx. Fix a vertex xo
in Xt, and for every vertex u in Qt, replace the edge uy in F with uyxo . Since we are replacing
a set of edges in F with another set of edges of same size we have |F ?| ≤ |F |. (For example, in
Figure 2, Xt = W1 and Qt = {y7}. Edges yx1, yy7 are replaced by x1y1, y1y7 resp.) We argue
that if G? is obtained from G by removing y, then G?/F ? is a clique.

We argue that contracting edges in F ? partitionsW (t) into |Xt|+ |Qt| many parts and merges
each part with some witness set inW\{W (t)}. Recall that F contains a spanning tree of graph
G[W (t)]. Let T be a spanning tree of G[W (t)] such that E(T ) ⊆ F and T contains all edges in
F that are incident on y. It is easy to see that such a spanning tree exists. Let y be the root
of tree T . For every z in Xt ∪ Qt, let W ′(z) be the set of vertices in the subtree of T rooted
at z. As V (T ) = W (t), set {W ′(z)| z ∈ Xt ∪ Qt} is a partition of W (t) \ {y}. For every x in
Xt, let W (yx) be the witness set in W containing the vertex yx. For every x in Xt \ {xo}, let
W ?(yx) be the set W (yx)∪W ′(x). Let W ?(yxo) be the set W (yxo)∪W ′(xo)∪

⋃
y′W

′(y′) for all
y′ in Qt. We obtain W? from W by removing W (t) and W (yx) for every x in Xt, and adding
the sets W ?(yx) for every x in Xt. Since W ?(yx) contains the set W (yx) which was adjacent to
every witness set in W, W ?(yx) will be adjacent with every witness set in W?. We repeat this
process until there exists a witness set that satisfies this condition.
Any vertex in Y \ Y ′ must be a part of some witness set in W, and any witness set in W

satisfies at least one of the above conditions. If there are no witness sets that satisfy these
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conditions, then Y \ Y ′ is empty. This implies G? = G′ and there exists a solution F ? of size at
most |F ◦|. This concludes the proof of the lemma.

We are now in a position to prove the following lemma.

Lemma 3.5. Reduction Rule 3.2, along with a solution lifting algorithm, is an (1+ε)-reduction
rule.

Proof. Let (G′, k) be the instance returned by Reduction Rule 3.2 when applied on an instance
(G, k). We present a solution lifting algorithm as follows. For a solution F ′ for (G, k) if
ClC(G′, k, F ′) = k + 1, then the solution lifting algorithm returns a spanning tree F of G
(a trivial solution) as solution for (G, k). In this case, ClC(G, k, F ) = ClC(G′, k, F ′). If
ClC(G′, k, F ′) ≤ k, then size of F ′ is at most k and G′/F ′ is a clique. Solution lifting algorithm
uses Lemma 3.3 to construct a solution F for (G, k) such that cardinality of F is at most
(1 + ε) · |F ′|. In this case, ClC(G, k, F ) ≤ (1 + ε) ·ClC(G′, k, F ′). Hence, there exists a solution
lifting algorithm which given a solution F ′ for (G′, k′) returns a solution F for (G, k) such that
ClC(G, k, F ) ≤ (1 + ε) ·ClC(G′, k, F ′).
If OPT(G, k) ≤ k, then by Lemma 3.4, OPT(G′, k) ≤ OPT(G, k). If OPT(G, k) = k + 1

then OPT(G′, k) ≤ k + 1 = OPT(G, k). Hence in either case, OPT(G′, k) ≤ OPT(G, k).
Combining the two inequalities, we get ClC(G,k,F )

OPT(G,k) ≤
(1+ε)·ClC(G′,k,F ′)

OPT(G′,k) . This implies that if F ′

is a factor c-approximate solution for (G′, k) then F is a factor (c · (1 + ε))-approximate solution
for (G, k). This concludes the proof.

We are now in a position to present the main result of this section.

Theorem 1.1. For any ε > 0, Clique Contraction parameterized by the size of solution
k, admits a time efficient (1 + ε)-approximate polynomial kernel with O(kd+1) vertices, where
d = d1

ε e.

Proof. For a given instance (G, k) with |V (G)| ≥ k + 3, a kernelization algorithm applies the
Reduction Rule 3.1. If it returns a trivial instance, then the statement is vacuously true. If it
does not return a trivial instance, then the algorithm partitions V (G) into two sets (X,Y ) such
that G − X = G[Y ] is a clique and size of X is at most 4k. Then the algorithm applies the
Reduction Rule 3.2 on the instance (G, k) with the partition (X,Y ) and the integer d = d1

ε e.
The algorithm returns the reduced instance as (1 + ε)-lossy kernel for (G, k).

The correctness of the algorithm follows from Lemma 3.1 and Lemma 3.5 combined with the
fact that Reduction Rule 3.2 is applied at most once. By Observation 2.1, Reduction Rule 3.1
can be applied in polynomial time. The size of the instance returned by Reduction Rule 3.2 is
at most O((4k)d · (2k+ 1) + 4k) = O(kd+1). Reduction Rule 3.2 can be applied in time nO(1) if
the number of vertices in (G, k) is more than O(kd+1).

4 Lossy Kernel for Split Contraction
In this section, we present a lossy kernel for Split Contraction. We start by defining a
natural optimization version of the problem.

SpC(G, k, F ) =
{

min{|F |, k + 1} if G/F is a split graph
∞ otherwise.

We assume that the input graph is connected and justify this assumption at the end. If the
number of vertices in the input graph is at most k + 3, then we return the same instance as a
kernel for the given problem. Thus we only consider inputs that have at least k+ 3 vertices. By

15



the definition of optimization problem, for any set of edges F if G/F is a split graph then the
maximum value of SpC(G, k, F ) is k + 1. Hence, any spanning tree of G is a solution of cost
k+ 1. We call it a trivial solution for the given instance. Consider an instance (C5, 1) where C5
is a cycle on five vertices. One needs to contract at least two edges to convert C5 into a split
graph. We say (C5, 1) a trivial no instance for Split Contraction.
We start with a reduction rule, which says that if the minimum number of vertices that need

to be deleted from an input graph to obtain a split graph is large, then we can return a trivial
instance as a lossy kernel.

Reduction Rule 4.1. Given an instance (G, k), apply the algorithm mentioned in Observa-
tion 2.2 to find a set S such that G− S is a split graph. If |S| > 10k then return (C5, 1).

Lemma 4.1. Reduction Rule 4.1 is a 1-reduction rule.

Proof. Let (G, k) be an instance such that Reduction Rule 4.1 returns (C5, 1) when applied on
it. Solution lifting algorithm returns a spanning tree F of G.
For a set of edges F ′, if C5/F

′ is a split graph then F ′ contains at least two edges. This
implies OPT(C5, 1) = 2.
Since a factor 5-approximate algorithm returns a set of size strictly more than 10k, for any

S′ of size at most 2k, G− S′ is not a split graph. But by Observation 2.5 if G is k-contractible
to a split graph then G can be converted into a split graph by deleting at most 2k vertices.
Hence, for any set of edges F ?, if G/F ? is a split graph, then the size of F ? is at least k + 1.
This implies that OPT(G, k) = k + 1.

Combining these values, we get SpC(G,k,F )
OPT(G,k) = k+1

k+1 = 2
2 = SpC(C5,1,F ′)

OPT(C5,1) . This implies that if F ′ is
a factor c-approximate solution for (C5, 1), then F is a factor c-approximate solution for (G, k).
This concludes the proof.

We consider an instance (G, k) for which Reduction Rule 4.1 does not return a trivial instance.
This implies that for a given graph G, in polynomial time, one can find a partition (S,X, Y ) of
V (G) such that |S| is at most 10k and G− S is a split graph with (X,Y ) as its split partition.
Recall that, our objective is to present a (2 + ε)-approximate polynomial kernel for given ε > 0.
Fix α = (2 + ε)/2. Find a smallest integer d such that d+1

d ≤ α. In other words, fix d = d 1
α−1e.

If the number of vertices in the graph is at most O(kd2+d+1), then the algorithm returns the
original graph as a lossy kernel of the desired size. Hence, without loss of generality, we assume
that the number of vertices is larger than O(kd2+d+1).

Given an instance (G, k), a partition (S,X, Y ) of V (G), and an integer d, we marks some
vertices in Y using the following two marking schemes.

Marking Scheme 4.1. For a subset A of S, let MNY (A) be the set of neighbors of A in Y .
For every subset A of S whose size is at most d, mark k + 2 vertices in MNY (A).

Formally, MNY (A) = {y ∈ Y |y ∈ N(A)}. If the number of vertices in MNY (A) is at most
k + 2, then the marking scheme marks all vertices in MNY , else it arbitrarily chooses k + 2
vertices and marks them.

Marking Scheme 4.2. For a subset A of S, let MCY (A) be the set of vertices in Y whose
neighborhood contains A. For every subset A of S whose size is at most d, mark a vertex in
MCY (A). Marking scheme prefers a vertex with highest degree.

Formally, MCY (A) = {y ∈ Y |A ⊆ N(y)}. If MCY (A) is empty, then marking scheme does
not mark any vertex, otherwise it picks a vertex with the highest degree.
Let Y ′ be the set of vertices of Y that have been marked by the Marking Schemes 4.1 or 4.2.

Using set S and marked vertices in Y , Marking Schemes 4.3 and 4.4 marks some vertices in X.
We remark that these two schemes are similar to Marking Schemes 3.1 and 3.2
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Marking Scheme 4.3. For a subset A of S ∪ Y ′, let MCX(A) be the set of vertices in X
whose neighborhood contains A. For every subset A of S ∪Y ′ whose size is at most d, mark two
vertices in MCX(A).

Formally, MCX(A) = {x ∈ X| A ⊆ N(x)}. If MCX(A) is empty, then the marking scheme
does not mark any vertex, and if it has only one vertex, then the marking scheme marks that
vertex. If it has at least two vertices, then the marking scheme arbitrarily chooses two vertices
and marks them.

Marking Scheme 4.4. For a subset A of S∪Y ′, let MNX(A) be the set of vertices in X whose
neighborhood does not intersect A. For every subset A of S ∪ Y ′ whose size is at most d, mark
2k + 2 vertices in MNX(A).

Formally, MNX(A) = {x ∈ X| N(x) ∩ A = ∅}. If the number of vertices in MNX(A) is at
most 2k + 2, then the marking scheme marks all vertices in MNX(A). If the number is greater
than 2k + 2, then the marking scheme arbitrarily chooses 2k + 2 vertices and marks them.

Reduction Rule 4.2. For a given instance (G, k), a partition (S,X, Y ) of V (G), and an
integer d, apply Marking Schemes 4.1 to 4.4. Let G′ be the graph obtained from G by deleting
unmarked vertices of X and Y . Return the instance (G′, k).

The number of vertices in Y marked by Marking Schemes 4.1 and 4.2 is at most O(|S|d+1).
This implies that the total number of vertices marked by these four marking schemes is at most
O(|S|d2+d+1). Above reduction rule can be applied in time |S|d2+d+1 · |V (G)|O(1) = |V (G)|O(1)

as |S| is at most 10k and number of vertices in G is at least O(kd2+d+1). Note that G′ is an
induced subgraph of G, and hence G′ − S is a split graph with (X ′, Y ′) as its split partition.
We first prove the following lemma which is similar to Lemma 3.2.

Lemma 4.2. Consider instance (G, k) of Split Contraction. Let Y ′ be the set of vertices
marked by Marking Schemes 4.1 to 4.4 for some positive integer d. For any subset Z ′′ of
(X \X ′)∪ (Y \Y ′), let G′′ be the graph obtained from G by deleting Z ′′. Then, G′′ is connected.

Proof. Recall that, by our assumption, G is connected and X is a clique in G. Hence, for every
vertex in S ∪ Y , there exists a path from it to some vertex in X. By the construction of G′′,
(S,X \ Z ′′, Y \ Z ′′) forms a partition of V (G′′) and X \ Z ′′ is a clique in G′′. To prove that G′′
is connected, it is sufficient to prove that for every vertex in S ∪ (Y \ Z ′′), there exists a path
from it to a vertex in X \ Z ′′ in G.
We first prove that every vertex in Y \ Z ′′ has a path from it to a vertex in X \ Z ′′. Fix an

arbitrary vertex, say y, in Y \Z ′′. Consider a path P from y to x in G, where x is some vertex
in X. Without loss of generality, we can assume that x is the only vertex in V (P ) ∩ X. We
argue that there exists a path, say P1, from y to a vertex in X \ Z ′′. If x is in X \ Z ′′ then
P1 = P is a desired path. Consider the case when x is in Z ′′. Let w be the vertex in V (P ) which
is adjacent with x. Note that w is either in S or in Y . It may be the same as y. As Marking
Scheme 4.3 considered all subsets of size at most d in S ∪ (Y \ Z ′′), it considered the singleton
set {w}. As w is adjacent with x, we have {w} ⊆ N(x). Since x is in Z ′′, and hence unmarked,
there exists a vertex, say x1, in X which has been marked by Marking Scheme 4.3. Consider
the path P1 obtained from P by deleting vertex x (and hence edge wx) and adding vertex x1
with edge wx1. This is a desired path from y to a vertex in X \Z ′′. As y is an arbitrary vertex
in Y \ Z ′′, this statement is true for any vertex in Y \ Z ′′ and hence G′′ is connected.
Now, it is sufficient to argue that for every vertex in S, there exists a path from it to a vertex

in (X ∪Y )\Z ′′. Fix an arbitrary vertex, say s, in S. Consider a path P from s to u in G, where
u is some vertex in X ∪ Y . As G is connected, such a path exists. Without loss of generality,
we can assume that u is the only vertex in V (P )∩ (X ∪ Y ). We argue that there exists a path,
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Figure 3: Left hand side figure shows partition (S,X, Y ) of G where as right hand side figure
shows witness sets in G and G′. We need to modify witness sets in WI which are
adjancent with each other (e.g. {y1} and {x2}) and witness sets in WC which are not
adjancent with each other (e.g. W (t) and {x1}). Please refer to Lemma 4.3.

say P1, from s to a vertex in (X ∪ Y ) \ Z ′′. If u is in (X ∪ Y ) \ Z ′′ then P1 = P is a desired
path. Consider the case when u is in Z ′′. Let s0 be the vertex in V (P ) which is adjacent with
u. Note that s0 is in S and it may be the same as s. As Marking Scheme 4.1 and 4.3 considered
all subsets of size at most d in S, it considered the singleton set {s0}. As s0 is adjacent with
u, we have {s0} ⊆ N(u). Since u is in Z ′′, and hence unmarked, there exists a vertex, say u1,
in (X ∪ Y ) \ Z ′′ which has been marked by Marking Scheme 4.1 or 4.3. Consider a path P1
obtained from P by deleting vertex u (and hence edge s0u) and adding the vertex u1 with edge
s0u1. This is a desired path from s to a vertex in (X ∪ Y ) \ Z ′′. As s is an arbitrary vertex in
S, this statement is true for any vertex in S.
Hence, there exists a path from every vertex in S ∪ (Y \Z ′′) to a vertex in X \Z ′′ in G′′. As

X \ Z ′′ is a clique in G′′, we can conclude that G′′ is connected.

As in case of Clique Contraction, we will iteratively remove vertices from (X \X ′)∪ (Y \
Y ′), and Lemma 4.2 ensures that the graph at each step remains connected.
To avoid corner cases, we need to ensure that whenever X \X ′ is non-empty, there is at least

one witness set, which contains a vertex in X ′. We ensure that by marking a few additional
vertices in X.

Remark 4.1. Mark any 2k + 2 vertices in X.

Note that we can not infer anything about the adjacency of these vertices with vertices in
S ∪ Y . We use these vertices only to add certain edges, which are entirely contained in X.
In Lemma 4.3, we argue that given a solution for (G′, k), we can construct a solution of almost

the same size for (G, k).

Lemma 4.3. Let (G′, k) be the instance returned by Reduction Rule 4.2 when applied on the
instance (G, k). If there exists a set of edges of size at most k, say F ′, such that G′/F ′ is a split
graph then there exists a set of edges F such that G/F is a split graph and cardinality of F is
at most α · |F ′|+ 1.

Proof. If no vertex in X ∪ Y has been deleted, then G′ and G are identical graphs, and the
statement is true. We assume that at least one vertex from X ∪ Y has been deleted. Recall
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that X ′, Y ′ is the set of vertices in X,Y , respectively, that have been marked. It is easy to see
that (S,X ′, Y ′) is a partition of V (G′) such that G′ − S is a split graph with (X ′, Y ′) as one of
its split partition.
LetW ′ be a G′/F ′-witness structure of G′. By Lemma 4.2, G′ is connected and without loss of

generality we assume that edges F ′ satisfies the three properties mentioned in Observation 2.7.
Let (C ′, I ′) be the split partition of G′/F ′ mentioned in the third property in Observation 2.7.
Let WC′ (resp. WI′) be the collection of witness sets in W ′ which correspond to vertices in C ′
(resp. I ′). We intentionally name a subset of W ′ with WC′ (instead of W ′C′) as it simplifies
notations in remaining proof. Note that any two witness sets inWC′ are adjacent with each other
in G′ and no two witness sets in WI′ are adjacent with each other in G′. By Observation 2.7,
all non-trivial witness sets in W ′ are contained in WC′ .

We start constructing witness structure W and set a of edges F of G from W ′ and F ′ as
follows. For every vertex u in (X \ X ′) ∪ (Y \ Y ′), add singleton witness sets {u} to W ′.
Initialize F to F ′. Let WC\C′ be the set of newly added singleton witness sets that correspond
to the vertices in X \ X ′ and let WI\I′ be the set of newly added singleton witness sets that
correspond to the vertices in Y \ Y ′.
In the remaining proof, we argue that we can carefully add some edges in F ′ such that

following two conditions are satisfied. (i) Any two witness sets in WC′ ∪ WC\C′ are adjacent
with each other in G (ii) No two witness sets in WI′ ∪WI\I′ are adjacent with each other in G.
To ensure condition (i), we might have to add one extra edge for d edges present in F ′. This
addition of edges introduces the multiplicative factor of α in the upper bound for
the size of F in terms of F ′. To ensure condition (ii), we might have to contract an
edge outside F ′. This brings an additive factor of one.
Let W∗ be the collection of witness sets in WC′ which violates Condition (i). In other words,
W∗ is the collection of witness set W (t) in WC′ such that there exists a (singleton) witness set
{x} in WC\C′ which is not adjacent with W (t). See Figure 3. (For example, here witness set
{x1} is not adjacent with W (t).) We argue that every witness set in W∗ has at least d + 1
vertices. For the sake of contradiction, assume that there exists a witness set W (t) inW∗ which
contains at most d vertices. Let {x1} be a singleton set in WC\C′ which is not adjacent with
W (t). Since G[X] induces a clique in G, witness set W (t) is contained in S ∪Y ′. Since Marking
Scheme 4.4 iterated over all sets of size at most d, it also considered W (t) while marking. Note
that x1 is contained in MNX(W (t)), a set of non-neighbors of W (t) in X. As x1 is unmarked,
there are 2k + 2 vertices in MNX(W (t)) that have been marked. All these marked vertices are
in G′. Since the cardinality of F ′ is at most k, the number of vertices in V (F ′) is at most 2k.
This implies that at least two marked vertices in MNX(W (t)) remain as singleton witness set.
Since these two witness sets are adjacent to each other, at least one of these sets in contained
in WC′ . This contradicts the fact that any two witness sets in WC′ are adjacent to each other.
Hence our assumption is wrong and W (t) has at least d+ 1 vertices.

Fix a witness set, say W (t′), in WC′ which intersects with X ′. By Remark 4.1, X ′ is non-
empty and such set exists. We note that W (t′) is adjacent with every (singleton) witness set
in WC\C′ . For every witness set W (t) in W∗, we add an edge between W (t) and W (t′) to the
set F ′. Equivalently, we construct a new witness set by taking the union of W (t′) and all the
witness sets W (t) in W∗.

We now argue the size bound of F . Note that we have added one extra edge for every witness
set W (t) in W∗. As every witness set of W∗ has at least d + 1 vertices, we have added one
extra edge for at least d edges in the solution F . Moreover, since witness sets in W∗ are vertex
disjoint, no edge in F ′ can be part of two witness sets. This implies that the number of edges
in F is at most d+1

d |F
′| ≤ α · |F ′|.

We now consider Condition (ii). Let W∗ be the collection of witness sets in WI′ which
violates Condition (ii). In other words, W∗ is the collection of witness set W (t) in WI′ such
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that there exists a (singleton) witness set {y} in WI\I′ which is adjacent with W (t). Since Y
is an independent set in G, any witness set W (t) in W∗ intersects with either X ′ or S. We
consider two cases depending on whether W (t) intersects X ′ or not. We argue that in the first
case, we can add an extra edge to F ′ and avoid all such cases, while the second case can not
occur.
Consider a witness set W (t) in I ′ which intersects with X ′. Let a be the vertex in I ′ and

Wa = W (t) be the witness set corresponding to it. By Remark 4.1, there exists vertex b in
G′/F ′ which is adjacent to a. Let Wb be the witness set in W ′ corresponding to b. Remove
Wb,Wa from W ′ and add Wa ∪Wb as a witness set to W ′ (or more specifically to WC′). Since
X ′ is a clique, at most one vertex from X ′ can be part of witness set in WI′ . Hence there is at
most one such vertex in I ′. Since edge across Wa,Wb is not in F ′, this operation adds one extra
edge in F ′. (For example, edge x2x3 in Figure 3). Hence, in order to make sure that no witness
set violates Condition (i) and (ii), we have added edges to F ′ to obtain F such that the size is
at most α|F ′|+ 1.

Now, consider the second case. Assume that there exists a witnessW (t) inW∗ which does not
intersect with X ′. This implies that W (t) is contained in S. Let y1 be a singleton witness set in
WI\I′ which is adjacent withW (t). By Observation 2.7, we know thatW (t) is a singleton witness
set and is contained in S. Hence set A = W (t) has been considered by Marking Scheme 4.1.
Note that y1 is contained in MNY (A), a set of neighbors of A in I. Since y1 is unmarked, there
are k+2 vertices inMNY (A) that have been marked. All these marked vertices are in G′. Since
Y ′ is an independent set in G′, at most k vertices in Y ′ can be incident on solution edges. Only
these vertices can be part of WC′ . There can be at most one vertex which is a singleton witness
set in WC′ . Hence there exists at least one singleton witness set in WI′ which is adjacent with
W (t). This contradicts the fact that no two witness sets in WI′ are adjacent to each other.
Hence our assumption is wrong, and no such witness structure exists inW∗. This concludes the
proof of the lemma.

In the following lemma, we argue that the value of the optimum solution for reduced instance
can be upper bounded by the value of the optimum solution for the original instance.

Lemma 4.4. Let (G′, k) be the instance returned by Reduction Rule 4.2 when applied on an
instance (G, k). If OPT(G, k) ≤ k then OPT(G′, k) ≤ 2 ·OPT(G, k).

Proof. Let F be a set of at most k edges in G such that OPT(G, k) = SpC(G, k, F ). Since
we are working with a minimization problem, to prove the lemma, it is sufficient to find a
solution for G′, which is of size at most 2 · |F |. Recall that (S,X, Y ) is a partition of V (G)
such that G− S is a split graph with (X,Y ) as split partition where X is a clique, and Y is an
independent set. The set of vertices that have been marked in Y is denoted by Y ′, and the set
of vertices that have been marked in X is denoted by X ′. By our assumption, the input graph
G is connected. Without loss of generality, we can assume that F satisfies three properties
mentioned in Observation 2.7. Let (C, I) be the split partition of G/F mentioned in the third
property in Observation 2.7. Let W be a G/F -witness structure of G. Let WC (resp. WI)
be the collection of witness sets in W which correspond to vertices in C (resp. I). Note that
any two witness sets in WC are adjacent with each other in G, and no two witness sets in WI

are adjacent with each other in G. By Observation 2.7, all non-trivial witness sets in W are
contained in WC .

At each step, we construct the graph G∗ from G by deleting one or more vertices in (X \
X ′)∪ (Y \Y ′). By Lemma 4.2, G∗ is connected. We also construct a set of edges F ∗ from
F by replacing existing edges and/or adding extra edges to F . In terms of witness
sets, we delete witness sets that are subsets of (X \ X ′) ∪ (Y \ Y ′) and modify the ones that
intersect (X \X ′)∪(Y \Y ′). After the modification, we represent the witness sets corresponding
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to vertices in the clique as W∗C and the independent set as W∗I . At any point, we ensure that
any two witness sets in W∗C are adjacent to each other, and any two witness sets in W∗I are not
adjacent to each other. This implies that at any intermediate state, G∗/F ∗ is a split graph. We
modify F to obtain F ∗ such that the number of edges in F ∗ is at most 2 · |F ◦|, where F ◦ = F
be an optimum solution for the original instance (G, k). For notational convenience, we rename
G∗ to G and F ∗ to F at regular intervals but do not change F ◦.

Since the class of split graphs is closed under vertex deletion, we can delete all witness sets,
which are entirely contained in (X \ X ′) ∪ (Y \ Y ′). Suppose that there exists a witness set
W (t) in W which is a subset of (X \X ′) ∪ (Y \ Y ′), construct G∗ from G by deleting witness
set W (t) in W. Delete the edges corresponding to spanning tree of G[W (t)] from F to obtain
F ∗. We repeat this process until there exists a witness set that satisfies this condition. After
exhaustively applying this process, we have |F ∗| ≤ |F |.

At this stage we rename G? to G and F ? to F .

Note that at this stage, there is no witness set inWI which contains vertex in (X\X ′)∪(Y \Y ′).
Hence, we do not need to modify witness sets in WI . In all the conditions mentioned below,
the modification is done on non-trivial witness sets in WC only. These modifications do not
affect the independent property of witness sets in WI . So, to prove that the modified witness
structure obtained corresponds to a split graph, it is enough to show that the witness sets in
W∗C are connected, and any two of them are adjacent to each other.

We partition all non-trivial witness sets in WC with respect to their intersection with sets
S,X, Y . For a non-trivial witness setW (t), we denote its intersection with S,X, Y , respectively,
using an ordered tuple (i; j; k) where integers i, j, k take 0 or 1. If W (t) intersects with Z in
{S,X, Y }, then we assign the corresponding integer to 1 and 0 otherwise. Since (S,X, Y ) is a
partition of V (G), witness sets in WC can be partitioned into seven parts (excluding the trivial
(0; 0; 0) case). Note that since Y is an independent set in G, no non-trivial witness set can
contain only vertices in Y . This implies that there is no non-trivial witness set in partition of
WC corresponding to (0; 0; 1). Consider a witness set that is entirely contained in S. Since we
do not delete any vertex in S while creating G∗ from G, this witness set remains unchanged
throughout the process. Hence we do not consider witness sets in partition corresponding to
(1; 0; 0).

This implies we only need to modify witness sets in five partitions of WC . Each of these
partitions can be further divided into subparts based on whether witness set intersects with
X \X ′ or Y \ Y ′ or both or none. We note that any witness set which does not intersect with
(X \X ′)∪ (Y \ Y ′) is not affected; hence we only need to consider first three cases. We modify
a witness set that satisfies the least indexed condition. If there does not exist any witness set
which satisfies either of these conditions, then (X \X ′)∪(Y \Y ′) is an empty set, and the lemma
is vacuously true. Hence in every case, we assume that witness set intersects (X \X ′)∪ (Y \Y ′),
and it is not entirely contained inside it.
Condition 1 : [ Partition (0; 1; 0)] There exists a witness set, say W (t), which intersects with X
but does not intersect with S or Y .
Since W (t) is contained in set X, it intersects with X \X ′ but is not contained in it. Hence

both the setsW (t)∩X ′ andW (t)∩(X\X ′) are non empty. Let x1 be a vertex inW (t)∩(X\X ′).
Fix a witness set, say W (t#), in WC which is different from W (t) and intersects with X ′. By
Remark 4.1, X ′ is of size at least 2k + 2 and hence such a set exists. Let W∗C be the witness
set obtained from WC by removing W (t),W (t#) and adding (W (t) \ {x1})∪W (t#). Note that
in WC ,W (t),W (t#) and x1 satisfy the premise of Observation 2.6. This implies that any two
witness sets in W∗C are adjacent with each other. Let F ∗ be the set of edges obtained from F
by removing an edge incident on x1 and adding an edge across W (t) and W (t#). Hence, if G∗
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Figure 4: Straight lines (e.g. xx′) represent edges in original solution F . Dotted lines (e.g. x1x
′)

represents an edges replaced in F . Dashed lines (e.g. x1x2) represents extra edges
added to F . Please refer to Conditions 2 and 3 in Lemma 4.4. Vertex z2 can be in X
or S.

is obtained from G by deleting x1 then G∗/F ∗ is a split graph. Since we are deleting at least
one edge from F and adding only one edge, we have |F ∗| ≤ |F |.

At this stage we rename G? to G and F ? to F .

Condition 2 : [ Partition (1; 1; 0)] There exists a witness set, say W (t), which intersects with S
and X but does not intersect with Y . Since W (t) does not intersect with Y , it intersects with
X \X ′. Let x be a vertex in W (t) ∩ (X \X ′); St be the set of vertices in W (t) ∩ S which are
adjacent with x via edges in F and Qt be the set of vertices in W (t) ∩ X which are adjacent
with x via edges of F . We find a substitute for x in X ′. (This condition is same as that of
Condition 3.3 in the proof of Lemma 3.4.) Note that if St is empty then Qt must be non-empty
and we replace the edges incident on x similar to that of in Condition 1. Every vertex in St is
considered by Marking Scheme 4.3. For every s in St, vertex x is contained in MCX({s}), the
set of vertices in X whose neighborhood contains {s}. Since x is in X \X ′, and hence unmarked,
there are two vertices in MCX({s}), say x1

s, x
2
s, different from x which have been marked for

each s in St. Since X is a clique in G, at most one of these two vertices are part of witness
set contained in WI . Without loss of generality, assume that for every vertex s in St, vertex x1

s

is contained in witness set contained in WC . We construct F ∗ from F by following operation:
Arbitrarily fix a vertex s0 in St. Remove the edge sox in F and add the edge sox1

so and for every
vertex s in St \{so}, remove the edge sx in F and add two edges sx1

s, x
1
sx

1
so . For every vertex x′

in Qt replace the edge x′x by x′x1
s0 . (For example, in Figure 4, let W (t) = {x, x′, s1, s2, s3} and

x is in X \X ′. This implies that St = {s1, s2, s3} and Qt = {x′}. Let s1 be the vertex which is
fixed arbitrarily. In this process, edge xs3 is deleted and two edges x3s3, x3x1 are added to F .)

We argue that contracting edges in F ∗ merges W (t) \ {x} into the witness set in W∗C that
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contains x1
s. Define W := (W (t) \ {x}) ∪ (

⋃
s∈StW (x1

s)) where W (x1
s) is the witness set in W

containing the vertex x1
s. Let W∗C be the witness structure obtained from WC by removing

every witness set which intersects W and adding W . Since W contains W (x1
s0), it is adjacent

with every other witness set in WC and hence in W∗C . This implies that any two witness sets
in W∗C are adjacent to each other. Hence, if G∗ is obtained from G by deleting x, then G∗/F ∗
is a split graph. Since we are adding at most two edges only for deleted edges in F , we have
|F ∗| ≤ 2 · |F |.

At this stage we rename G? to G and F ? to F .

Condition 3 : [ Partition (1; 0; 1)] There exists a witness set, say W (t), which intersects with S
and Y but does not intersect with X.
Since W (t) does not intersect with X, it intersects with Y \ Y ′. Let y be a vertex in W (t) ∩

(Y \ Y ′); St be the set of vertices in W (t) ∩ S which are adjacent with y via edges in F . After
removing all the edges incident on y we add some edges to ensure connectivity of vertices in St
and some other to ensure adjacency among witness sets in WC . Arbitrarily fix a vertex s0 in
St. If St \ {s0} is an empty set then no edge needs to be included to ensure connectivity. For
every vertex s in St \ {s0}, set {s0, s} is considered by Marking Scheme 4.2. (For any α > 1,
d is at least two.) For every s in St \ {s0}, vertex y is contained in MCY ({s0, s}), the set of
common neighbors of {s0, s} in Y . Since y is in Y \ Y ′, and hence unmarked, there is a vertex
in MCY ({s0, s}) different from y which has been marked for each set {s0, s}. For every vertex s
in St \ {s0}, let ys be the marked vertex which is adjacent with s0 and s. We construct F ∗ from
F by following operation: Remove the edge soy and for every vertex s in St \ {so}, remove the
edge sy in F and add two edges sys, soys. (For example, in Figure 4, let W (t) = {y, s4, s5, s6}
and y is in Y \ Y ′. This implies that St = {s4, s5, s6}. Let s4 be the vertex which is fixed
arbitrarily. In this process, edges s4y, s5y are deleted and two edge s5y2, s4y2 are added to F .)
Now we include additional edges to ensure adjacency among witness sets in WC . Towards this
we first prove that there always exists a witness set W (t#) different from W (t), in WC that is
adjacent with either W (t) \ {y} or with ys for some s in St \ {so}. Suppose that there is no
set W (t#) that is adjacent with W (t) \ {y} this implies that every witness set in W is adjacent
with only vertex y in W (t). As the size of X ′ is at least 2k + 2 and y is adjacent with every
witness set inW\{W (t)} and every vertex in St, y is adjacent with at least k+2 vertices. For a
vertex s′ in St \ {so}, let ys′ be the vertex marked by Marking Scheme 4.2 while considering set
{so, s′}. Note that Marking Scheme 4.2 preferred ys′ over y. This implies that ys′ is adjacent
with at least k + 2 vertices. Hence, ys′ has at least one neighbor outside W (t). Note that ys′
is not in the clique because W (t) \ {y} did not have a neighbor in WC , this implies that the
neighbor of ys′ is in WC . Since there always exists another witness set W (t#) that is adjacent
with (W (t) \ {y}) ∪ {ys| for every s in St \ {so}}, we add the edge across W (t),W (t#) in F .

Let W be the superset of W (t) \ {y} which contains witness sets of all the newly added
vertices to W (t). Formally, W = (W (t) \ {y}) ∪ (

⋃
s∈St\{so}W (ys)) where W (ys) is the witness

set containing ys. Note that every vertex in St is connected with each other (as we have added
edges yss, yss0 for every s in St \ {so}) and W is adjacent with W (t#). Let W∗C be the witness
structure obtained fromWC by removing every witness set which intersects with W,W (t#) and
adding W ∪ W (t#). Since W ∪ W (t#) contains W (t#), which is adjacent with every other
witness set in WC and hence in W∗C . This implies that any two witness sets in W∗C are adjacent
with each other. Hence, if G∗ is obtained from G by deleting y then G∗/F ∗ is a split graph.
Since we are adding two edges of the form yss, yss0 for every edge of the form sy in F , where
s ∈ St \ {so} and one edge across W (t),W (t#) instead of yso we have |F ∗| ≤ 2 · |F |.
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At this stage we rename G? to G and F ? to F .

Condition 4 : [ Partition (0; 1; 1)] There exists a witness set, say W (t), which intersects with X
and Y but does not intersect with S.
We construct F ∗ from F in two steps, where the first step deletes the vertices of Y \ Y ′,

and the second step deletes the vertices of X \ X ′. Suppose that there exists a vertex y in
W (t) ∩ (Y \ Y ′). Fix a witness set, say W (t#), in WC which is different from W (t) and
intersects X ′. By Remark 4.1, X ′ is of size at least 2k+ 2 and hence such set exists. LetW∗C be
the witness set obtained from WC by removing W (t),W (t#) and adding W (t#)∪ (W (t) \ {y}).
Note that in WC , witness sets W (t),W (t#) and y satisfy the premise of Observation 2.6. This
implies that any two witness sets in W∗C are adjacent with each other. Hence, if G∗ is obtained
from G by deleting y then G∗/F ∗ is a split graph. Since we are deleting at least one edge from
F and adding only one edge, we have |F ∗| ≤ |F |. We repeat this process as long as there exists
a witness set that satisfy Condition 4 and intersects Y \ Y ′.

Consider a witness set W (t) which satisfies Condition 4 and does not intersect with Y \ Y ′.
This implies W (t) intersects with X \ X ′ and every vertex in W (t) ∩ Y is contained in Y ′.
Consider a vertex x in W (t)∩ (X \X ′). If F does not contain any edges across {x} and Y ′ then
in WC , witness sets W (t),W (t#) and x satisfy the premise of Observation 2.6. We obtain the
modified graph as mentioned in previous case. Suppose that there exist edges in F across {x}
and Y ′. Let Yt be the set of neighbors of x in Y ′ via edges in F . For every y in Yt, the set {y}
is considered by Marking Scheme 4.3. Note that x is contained in the set MCX({y}), the set of
vertices in X whose neighborhood contains {y}. Since x is in X \X ′, and hence unmarked, there
are two vertices inMCX({y}), say x1

y, x
2
y, different from x which have been marked for each y in

Yt. Since X is a clique in G, at most one of these two vertices are part of witness set contained
in WI . Without loss of generality, assume that for every vertex y in Yt, vertex x1

y is contained
in the witness set in WC . We construct F ∗ from F by following operation (This step is similar
modification as we did in Condition 2): Arbitrarily fix a vertex y0 in Yt. For every vertex y in Yt,
remove the edge yx in F and add two edges yx1

y, x
1
yx

1
y0 . Let W = (W (t) \ {x})∪ (

⋃
y∈YtW (x1

y))
where W (x1

y) is the witness set in W containing x1
y. We obtain the witness structure W∗C from

WC by removing every witness set that intersects W and adding W . Since W contains W (x1
y0),

it is adjacent with every other witness set in WC and hence in W∗C . This implies that any two
witness sets in W∗C are adjacent to each other. Hence, if G∗ is obtained from G by deleting x,
then G∗/F ∗ is a split graph. Since we are adding at most two edges yx1

y, x
1
yx

1
yo for one deleted

edge of the form yx in F , we have |F ∗| ≤ 2 · |F |.

At this stage we rename G? to G and F ? to F .

Condition 5 : [ Partition (1; 1; 1)] There exists a witness set, say W (t), which intersects with
S,X and Y .
We further divide this condition based on whether the intersection of W (t) with (Y \ Y ′) is

empty (Condition 5(a)) or not (Condition 5(b))
Condition 5(a): Consider that W (t) ∩ (Y \ Y ′) is empty. Then there is at least one vertex in
W (t) ∩ (X \ X ′). In this case, construction of G∗ and F ∗ is similar to that of Condition 2.
Instead of considering a subset of S in Condition 2, we consider a subset of S ∪ Y ′. Let x be a
vertex in W (t) ∩ (X \X ′); Zt be the set of vertices in W (t) ∩ (S ∪ Y ′) which are adjacent with
x via edges in F and Qt be the set of vertices in W (t)∩X ′ which are adjacent with x via edges
of F . Note that every vertex in Zt is considered by the Marking Scheme 4.3. For every vertex z
in Zt, vertex x is contained in MCX({z}), the set of vertices in X whose neighborhood contains
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{z}. Since x is in X \X ′, and hence unmarked, there are two vertices in MCX({z}), say x1
z, x

2
z,

different from x which have been marked for each z in Zt. Since X is a clique in G, at most
one of these two vertices are part of witness set contained in WI . Without loss of generality,
assume that for every vertex z in Zt, vertex x1

z is contained in witness set of WC . We construct
F ∗ from F by following operation: Arbitrarily fix a vertex z0 in Zt. remove the edge z0x and
for every vertex z in Zt \{z0}, remove the edge zx in F and add two edges zx1

z, x
1
zx

1
z0 . For every

vertex x′ in Qt replace the edge x′x by x′x1
z0 .

Let W be the superset of W (t) \ {x} which contains witness set containing all newly added
vertices in W (t). Formally, W = (W (t) \ {x}) ∪ (

⋃
z∈ZtW (x1

z)) where W (x1
z) is the witness set

in W containing x1
z. Let W∗C be the witness structure obtained from WC by removing every

witness set which intersects W and adding W . Since W contains W (x1
z0), it is adjacent with

every other witness set in WC and hence in W∗C . This implies that any two witness sets in W∗C
are adjacent to each other. Hence, if G∗ is obtained from G by deleting x, then G∗/F ∗ is a split
graph. Since we are adding at most two edges only for deleted edges in F , we have |F ∗| ≤ 2 · |F |.

At this stage we rename G? to G and F ? to F .

Condition 5(b): Consider that W (t) ∩ (Y \ Y ′) is non-empty. In this case, construction of G∗
and F ∗ is similar to that of Condition 3. Let y be a vertex in W (t)∩ (Y \ Y ′) and St be the set
of vertices in W (t)∩S which are adjacent with y via edges in F and Qt be the set of vertices in
W (t) ∩X which are adjacent with y via edges in F . Arbitrarily fix a vertex s0 in St. We add
some edges to ensure connectivity of vertices in St and some other to ensure adjacency among
witness sets in WC . If St \ {so} is an empty set then no edge needs to be included to ensure
connectivity. For every vertex s in St\{so}, the set {so, s} is considered by Marking Scheme 4.2.
(For any α > 1, d is at least two.) For every s in St\{so}, vertex y is contained inMCY ({so, s}),
the set of common neighbors of {so, s} in Y . Since y is in Y \ Y ′, and hence unmarked, there is
a vertex in MCY ({so, s}) different from y which has been marked for each set {so, s}. For every
vertex s in St \ {so}, let ys be the marked vertex which is adjacent with so and s. We construct
F ∗ from F by following operation: Remove the edge soy and for every vertex s in St \ {so},
remove edge sy in F and add two edges sys, soys. Since W (t) also intersects X, there exists
another witness set W (t#), in WC such there is an edge across W (t#) and W (t) \ {y}. Let uv
be that edge. Include uv in the solution.

Let W be the superset of W (t) \ {y} which contains the witness sets of all the newly added
vertices in W (t). Formally, W = (W (t) \ {y}) ∪ (

⋃
s∈StW (ys)) where W (ys) is the witness set

containing ys. Note that every vertex in St is connected with each other (as we have added
edges yss, ysso for every s in St \ {so}) and W is adjacent with W (t#). Let W∗C be the witness
structure obtained fromWC by removing every witness set which intersects with W,W (t#) and
adding W ∪ W (t#). Since W ∪ W (t#) contains W (t#), which is adjacent with every other
witness set in WC and hence in W ′C . This implies that any two witness sets in W∗C are adjacent
with each other. Hence, if G∗ is obtained from G by deleting y then G∗/F ∗ is a split graph.
Since we are adding at most two edges of the form yss, ysso for every edge of the form sy in F
where y ∈ St \ {so} and at most two edges for edge yso, we have |F ∗| ≤ 2 · |F |.
We now argue that even after repeating the process, the size of |F ∗| is bounded. In every

condition, an edge uv is replaced only if one of the endpoints belongs to (X \ X ′) ∪ (Y \ Y ′).
Every time edges were replaced by those edges that belong to G′. So once any of the conditions
mentioned above consider an edge in F , it will never be considered by any other condition. This
implies that the number of edges in F ∗ is always upper bounded by 2·|F ◦| where F ◦ is a solution
for original instance (G, k). If there exists no witness set that satisfies any condition, then
G′ = G∗ and solution F ∗ is the solution with desired properties. This concludes the proof of
the lemma.
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Lemma 4.3 and 4.4 are not sufficient to prove a time-efficient (2 + ε)-approximate polynomial
kernel. This is primarily because of the additive factor in Lemma 4.3. We present the following
lemma, which describes a solution lifting algorithm whose running time is dependent on ε.

Lemma 4.5. For a fixed α′, α satisfying α′ > α > 1, there exists a solution lifting algorithm
which satisfies following properties.

1. Given a reduced instance (G′, k) obtained by applying Reduction Rule 4.2 on instance
(G, k), partition (S,X, Y ) of V (G) and an integer d = d 1

α−1e together with a solution F ′

for (G′, k), it returns a solution F for (G, k) such that SpC(G,k,F )
OPT(G,k) ≤ 2 · α′ · SpC(G′,k,F ′)

OPT(G′,k) .

2. The algorithm runs in time O(mα·c+2) where m is the number of edges in G and c = 1
α′−α .

Proof. We present a solution lifting algorithm which considers three cases depending on car-
dinality of F ′. Before mentioning the algorithm, we recall Lemma 4.4 which states that if
OPT(G, k) ≤ k then OPT(G′, k) ≤ 2 ·OPT(G, k). If OPT(G, k) = k + 1 then OPT(G′, k) ≤
k + 1 = OPT(G, k). Hence in either case, OPT(G′, k) ≤ 2 ·OPT(G, k).

If cardinality of F ′ is greater than or equal to k + 1 then solution lifting algorithm returns
a spanning tree F of G (a trivial solution) as solution for (G, k). In this case, SpC(G, k, F ) =
k + 1 = SpC(G′, k, F ′). Since OPT(G′, k) ≤ 2 · OPT(G, k), in this case we get SpC(G,k,F )

OPT(G,k) ≤
2 · SpC(G′,k,F ′)

OPT(G′,k) .
If cardinality of F ′ is at most k but greater than or equal to c then the algorithm uses

Lemma 4.3 to compute a solution F for (G, k) such that cardinality of F is at most α · |F ′|+ 1.
Since OPT(G′, k) ≤ 2 ·OPT(G, k), this implies:

|F |
OPT(G, k) ≤

2 · (α · |F ′|+ 1)
OPT(G′, k) ≤ 2 ·

(
α+ 1
|F ′|

)
· |F ′|

OPT(G′, k) ≤ 2 · α′ · |F ′|
OPT(G′, k)

Last inequality follows from the fact that |F ′| ≥ c and 1/c = α′ − α. Hence in this case,
SpC(G,k,F )
OPT(G,k) ≤ 2 · α′ · SpC(G′,k,F ′)

OPT(G′,k) .
Consider the remaining case when |F ′| < c. By definition, F ′ is a valid solution for (G′, k).

By Lemma 4.3, there exists a solution F for (G, k) such that |F | ≤ α|F ′|+1 < α ·c+1. Since we
are working with minimization problem, this implies OPT(G, k) ≤ α · c. In this case, solution
lifting algorithm computes an optimum solution for (G, k) by brute force, i.e. checking all set
of edges in G of size at most α · c, and returns it. In this case, we have, SpC(G,k,F )

OPT(G,k) = 1.
Hence, the solution lifting algorithm returns a solution with the desired property. The running

time of the algorithm follows from its description, and the fact that solution satisfying Lemma 4.3
can be obtained in polynomial time.

We note that solution lifting algorithm mentioned in Lemma 4.5 allows us to choose a value
of α between 1 and α′. This choice of α is a trade-off between the running time of the algorithm
(as c is inversely proportional to α′−α) and the size of lossy kernel (as d is inversely proportional
to α− 1). We now present the main result of this section.

Theorem 1.2. For any ε > 0, Split Contraction parameterized by the size of solution k,
admits (2 + ε)-approximate polynomial kernelization algorithm which runs in O(mα·c+2) time
and return an instance with O(kd2+d+1) vertices. Here, m is number of edges in G and constants
α, c, and d depend only on ε.

Proof. Any split graph can have at most one component which contains an edge. Hence, if
graph G in given instance (G, k) is not connected, then all but one connected component needs
to be contracted to an isolated vertex. If there are more than one connected components with
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at least k + 1 vertices, then we return a trivial instance. Otherwise, we apply reduction rules
to the unique connected component in G, which has more than k + 1 vertices. Hence, we can
assume that the input graph is connected.
For a given instance (G, k), a kernelization algorithm applies Reduction Rule 4.1. If it returns

a trivial instance then the statement is vacuously true. If it does not return a trivial instance
then the algorithm partitions V (G) in three sets (S,X, Y ) such that |S| ≤ 10k and G− S is a
split graph with (X,Y ) as its split partition. For given ε, fix α′ = 1 + ε/2. The algorithm fixes
α which is strictly more than 1 and strictly less than α′. The algorithm then applies Reduction
Rule 4.2 on (G, k) with partition (S,X, Y ) and α. The algorithm returns the reduced instance
as an (2 · α′)-lossy kernel for (G, k).

The correctness of the algorithms follows from Lemma 4.4 and 4.5 combined with the fact
that Reduction Rule 4.2 is applied at most once. By Observation 2.2, Reduction Rule 4.1 can
be applied in polynomial time. The size of the instance returned by Reduction Rule 4.2 is at
most O(kd2+d+1). Reduction Rule 4.2 can be applied in time nO(1) if number of the vertices in
G is more than O(kd2+d+1).

5 Lower Bound on Inapproximability of Split Contraction
In this section, we show that for any δ > 0, Split Contraction parameterized by the solution
size does not admit a factor (5/4 − δ)-FPT approximation algorithm, assuming Gap-ETH. To-
wards this, we give a polynomial time reduction from Multicolored Densest-k-Subgraph
with Perfect Completeness, which is ko(1)-factor FPT inapproximable (Corollary 5.1).
In the Densest-k-Subgraph problem, input is a graph G and an integer k; and the goal
is to find a subset S of V (G) of size k such that Den(S) ≥ k−g(k). Recall that we defined
Den(S) = |E(G[S])|/

(|S|
2
)
. Densest-k-Subgraph with Perfect Completeness is a special

case of Densest-k-Subgraph problem, in which the input graph G contains a k-clique, and it
is known to be ko(1)-factor FPT inapproximable [CCK+17b]. Now, we define a colorful version
of Densest-k-Subgraph with Perfect Completeness. We call a set of edges colorful,
if all the edges in the set are colored with pairwise distinct colors. We say that a clique is
colorful-clique, if the set of edges in this clique is colorful. In the Multicolored Densest-k-
Subgraph with Perfect Completeness, an input graph G is given with an edge coloring
φ : E(G)→ [

(k
2
)
], and G is promised to have a colorful-k-clique. The goal is to find a subset S

of V (G) of size k such that the set E(G[S]) is colorful and Den(S) ≥ k−g(k).
We start with the following known inapproximability result for Densest-k-Subgraph with

Perfect Completeness.

Proposition 5.1 (Lemma 5.21 in [CCK+17b]). Assuming Gap-ETH, for every function g = o(1)
and every function f , there is no f(k) · nO(1)-time algorithm such that, given an integer k and
a graph G with n vertices containing a k-clique, always outputs a set S of k vertices such that
Den(S) ≥ k−g(k).

For notational convenience, let t =
(k

2
)
. The size of (|E(G)|, t)-perfect hash family is bounded

by ettO(log t) ·nO(1) [NSS95]. Using (|E(G)|, t)-perfect hash family and Proposition 5.1, we obtain
the following result for Multicolored Densest-k-Subgraph with Perfect Complete-
ness.

Corollary 5.1. Assuming Gap-ETH, for every function g = o(1) and every function f , there is
no f(k) · nO(1)-time algorithm such that, given an integer k and an edge colored graph G with
n vertices containing a colorful-k-clique, always outputs a set S of k vertices such that E(G[S])
is colorful and Den(S) ≥ k−g(k).
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For a given subset S of vertices, we say that S spans an edge, if both of its endpoints are in
S. Due to Corollary 5.1, we obtain following result.

Corollary 5.2. Assuming Gap-ETH, for every 0 < ε < 1, and for every function f , there is no
f(k) · nO(1)-time algorithm such that, given an integer k and an edge colored graph G with n
vertices containing a colorful-k-clique, always outputs a set S of k vertices which span at least
ε
(k

2
)
colorful edges.

In the following lemma, we strengthen the above result.

Lemma 5.1. Assuming Gap-ETH, for every 0 < ε < 1, α > 1 and every function f , there is
no f(k) ·nO(1)-time algorithm such that, given an integer k and an edge colored graph G with n
vertices containing a colorful-k-clique, always outputs a set S of at most αk vertices that spans
at least ε

(k
2
)
colorful edges.

Proof. Assume that there is a f(k) · nO(1)-time algorithm, A, that takes the input (G, k) such
that G has a colorful-k-clique, and outputs a set S of at most αk vertices, that spans at least
ε
(k

2
)
colorful edges. Partition the set S into d2αe sets S1, S2, · · · , Sd2αe each of size at most k/2.

As the set S spans at least ε
(k

2
)
colorful edges, there exists a pair of sets, say Si, Sj , in this

partition, such that Si ∪ Sj spans at least ε′
(k

2
)
colorful edges, where ε′ = ε/(d2αe2 ). Moreover,

the size of Si ∪ Sj is at most k. This implies that there exists an algorithm, that outputs a
set of vertices of size at most k that spans ε′

(k
2
)
colorful edges, in time f(k) · nO(1). Hence, the

existence of such algorithm contradicts Corollary 5.2.

Now, we are ready to give our reduction. We argue that if Split Contraction param-
eterized by the solution size admits a factor (5/4 − δ)-FPT approximation algorithm for some
δ, then it contradicts Lemma 5.1, and hence Gap-ETH. Towards this, we present a reduction
in which given an instance (G, k) of Multicolored Densest-k-Subgraph with Perfect
Completeness, and a constant δ, constructs an instance (G′, k′) of Split Contraction.

Reduction Algorithm: Given an instance (G, k) of Multicolored Densest-k-Subgraph
with Perfect Completeness, and a constant δ > 0, the algorithm constructs a graph G′ as
follows. Recall that t =

(k
2
)
.

• Fix ρ = dδt/ke, k′ = 2t+ ρk, and k◦ = d5/2 · k′e+ 2.
• For every vertex u in V (G), add ρ copies of it to V (G′) and convert them into a clique.
Formally, define Xu := {u1, · · · , uρ} for every vertex u in V (G). Let Z = ∪u∈V (G)Xu. We
add k◦ + 2 extra vertices in Z. For every pair of vertices z1, z2 ∈ Z, add an edge z1z2 to
E(G′). That is, the vertices in Z ′ form a clique.
• For every vertex z in Z, we add k◦ pendant vertices y1, · · · , yk◦ to V (G′). We denote the
set of these vertices as GuardV . We also add edges zy1, · · · , zyk◦ to E(G′).
• For a given coloring function φ : E(G) → [t], let Ei denote the set of edges, which are
assigned color i. For every i ∈ [t], we create a set of vertices ESi as follows. We add a
vertex we corresponding to every edge e in Ei. Formally, ESi = {we | e ∈ Ei}. For every
i ∈ [t], we add ESi to V (G′). We call these sets edge selector sets. Let e = uv be an edge
in G, we add all the edges between we and the vertices in Z \ (Xu ∪ Xv) to E(G′). Let
ES = ∪i∈[t]ESi.
• For every ESi, we add a vertex gi to V (G′). We call this vertex cap vertex, corresponding

to ESi. We also add all the edges between gi and the vertices in ESi. We denote the set of
cap vertices by Cap.
• For every cap vertex gi in V (G′), we add k◦ pendant vertices y1

i , · · · , yk
◦
i to V (G′). We

denote the set of these vertices as GuardE . We also add edges giy1
i , · · · , giyk

◦
i to E(G′).
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Figure 5: Sets with rectangular boundary represent cliques whereas sets with elliptical boundary
represent independent sets. A vertex wuv, corresponding to an edge uv, is adjacent
to all vertices in Z except the ones in Xu ∪ Xv. Dashed lines shows non-adjacency
between the vertex and sets. Please refer to reduction from Multicolored Densest-
k-Subgraph with Perfect Completeness to Split Contraction for details.

• We add a set of t special vertices, SV = {s1, · · · , st} to V (G′). We add all the edges
between si and the vertices in ESi, where i ∈ [t]. We add edges between every pair of
vertices in SV, that is, for all si, sj ∈ SV, we add an edge sisj to E(G′). That is, the
vertices in SV form a clique. We call si as special vertex corresponding to ESi.
• For every special vertex x in SV, we add k◦ pendant vertices x1, · · · , xk◦ to V (G′). We
denote the set of these vertices as GuardS . We also add edges xx1, · · · , xxk◦ to E(G′).

This completes the construction. Reduction algorithm returns (G′, k′) as an instance of Split
Contraction. See Figure 5 for an illustration.
Note that without loss of generality, we can assume that for a given instance (G, k) of Multi-

colored Densest-k-Subgraph with Perfect Completeness, graph G contains at least
k + 1 vertices, and k is not a constant.

Lemma 5.2. Let (G′, k′) be the instance of Split Contraction returned by the reduction
algorithm mentioned above when the input is (G, k) and δ > 0. Then, there exists a set of edges
F ′ in G′ of size most k′, such that G′/F ′ is a split graph.

Proof. Let S = {u1, · · · , uk} be a set of vertices that induces a colorful-k-clique in (G, k). Let
ES = {e1, · · · , et} be the set of edges in G[S]. Since ES is a set of colorful edges, let ei ∈ Ei,
where i in [t]. Let W = {wei ∈ V (G′) | ei ∈ ES}, we construct a solution F ′ to (G′, k′) as
follows. For every wei ∈W , add the edges weigi, weisi ∈ E(G′) to F ′, where gi is the cap vertex
corresponding to ESi, and si is the special vertex corresponding to ESi. Note that we have added
2t edges to F ′. As the number of vertices in V (G) is at least k + 1, there exists a vertex, say
u0, in V (G) \ S. Consider a vertex z0 in Xu0 in graph G′. For every vertex u in S, we add
the edges {u1z0, · · · , uρz0} to F ′. Thus, for every u ∈ S, we have added ρ edges to F ′. Hence,
|F ′| = 2t+ ρk = k′.
We now show that G′/F ′ is a split graph. Let New be the set of new vertices that are

introduced in G′/F ′ by contracting edges in F ′. Let C = (Z \ (∪u∈SXu ∪ {z0})) ∪ New. Let
I = GuardV ∪ GuardE ∪ GuardS ∪ (ES \W ). We claim that (C, I) is a split partition of G′/F ′.
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By the construction of G′, V (G′) = Z ∪ ES ∪ Cap ∪ SV ∪ GuardV ∪ GuardE ∪ GuardS . Since
{z0}∪(∪u∈SXu)∪W ∪ Cap∪ SV ⊆ V (F ′), we know that (C, I) is a partition of G′/F ′. As I is an
independent set in G′ and no edges incident to I are contracted, this set is also an independent
set in G′/F ′.
We now argue that C is a clique in G′. Since every pair of vertices in Z is adjacent to each

other in G′/F ′, if the vertices u, v are in Z \New, then they are adjacent to each other in G′/F ′.
Consider a vertex u in New; we have the following two cases.
Case (A): Vertex u is obtained by contracting weigi and weisi for some edge ei(= xy) in Ei. By
the construction of G′, the vertex wei is adjacent to all the vertices in Z \(Xx∪Xy) of the graph
G′. Hence, u is adjacent to all the vertices, which are in Z \ (Xx ∪Xy), thus, u is adjacent to
all the vertices in Z \ (∪u∈SXu ∪ {z0}). We now show that u is also adjacent to all the vertices
in New. Let v ∈ New, and suppose that v is a vertex obtained by contracting wejgj and wejsj ,
where ej ∈ ES . Since si, sj are in SV, sisj ∈ E(G′), u, v are adjacent to each other in G′/F ′.
Now, suppose that v is obtained by contracting xiz0, where x ∈ S and i ∈ [ρ]. Since u0 /∈ S, z0
is adjacent to wei , uv is an edge in E(G′/F ′).
Case (B): Vertex u is obtained by contracting the edge xiz0, where x ∈ S. Since z0 ∈ Z, u is
adjacent to all the vertices in Z \ (∪u∈SXu∪{z0}). Now, consider another vertex v ∈ New. Note
that as u, v are two different vertices in V (G′/F ′), v can not be obtained by contracting yiz0
for any y ∈ S. Thus, v is obtained by contracting wejgj and wejsj , where ej ∈ ES . Then, as
argued above uv is an edge in E(G′/F ′) (we only need to interchang u and v in the previous
argument). Hence, any two vertices in C are adjacent.

This implies that (C, I) is a split partition of G′/F ′, and hence G′/F ′ is a split graph. Since
the number of edges in F ′ is at most k′, this proves the lemma.

In the following lemma, we argue that given an approximate solution for an instance of Split
Contraction, one can obtain a set of αk vertices, α > 1, that spans at least εt colorful edges,
where 0 < ε < 1.

Lemma 5.3. Let (G′, k′) be an instance of Split Contraction returned by the reduction
algorithm mentioned above when the input is (G, k) and δ > 0. If there exists a set of edges F ′
in G′ such that G′/F ′ is a split graph and size of F ′ is at most (5/4 − δ)k′, then there exists a
set of at most 1/δ · k vertices in G that spans at least 3δ/2 · t colorful edges.

We establish some properties of the instance of Split Contraction that is returned by the
reduction algorithm and its solution before presenting proof of Lemma 5.3. In Claims 5.1 to 5.7,
we use the following notation: The reduction algorithm returns (G′, k′), when input is (G, k),
and δ. Let F ′ be a set of edges in G′ such that G′/F ′ is a split graph and size of F ′ is at most
(5/4 − δ) · k′. Let W be the G′/F ′-witness structure of G′. Let ψ : V (G′) → V (G′/F ′) be the
onto function corresponding to contracting all the edges in F ′. For a vertex w̃ in V (G′/F ′),
W (w̃) denotes the witness set which is contracted to obtain the vertex w̃. Hence, for a vertex
u in V (G′), if u ∈W (w̃) then ψ(u) = w̃. We fix a split partition (C̃, Ĩ) of V (G′/F ′). Note that
|F ′| + 2 ≤ 2|F ′| ≤ 2(5/4 − δ)k′ ≤ 5/2k′ ≤ k◦. Hence, there are at least |F ′| + 2 many pendant
vertices adjacent to every cap vertices, special vertices, and every vertex in Z of G′. Moreover,
since the size of Z is at least k◦+ 2, there exists at least one vertex in Z which is not in V (F ′).
Let z? be one such vertex in V (G′) which is in Z \ V (F ′). Note that W (ψ(z?)) = {z?}.

We refer readers to Section 1 for an overview of the proof. Consider a cap vertex gi and
the witness set W (ψ(gi)). A cap vertex gi is said to be spoiled, if W (ψ(gi)) either (a) contains
another cap vertex; (b) intersects with Z; or (c) has more than one vertex from ES. We bound
the number of cap vertices that can be spoiled because of (a), (b) or (c) in Claims 5.5, 5.6, and
5.7, respectively. We first present few results, which are used in the proof of these claims.

Claim 5.1. If u ∈ V (G′) is either a cap vertex or a special vertex or in Z, then ψ(u) is in C̃.
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Proof. Any such vertex u is adjacent to |F ′|+ 2 many pendant vertices. This implies that there
are at least two pendant vertices, say u1, u2, which are not in V (F ′), which in turn implies that
W (ψ(u1)) and W (ψ(u2)) are singleton sets in W. Since u1, u2 are not adjacent to each other in
G′ and W (ψ(u1)),W (ψ(u2)) are singleton witness sets, ψ(u1), ψ(u2) are not adjacent to each
other in G′/F ′. Hence, at most one of them can be in C̃. Without loss of generality, let ψ(u1)
is in Ĩ. Since u is adjacent to u1 in G′, and u is not contained in ψ(u1), ψ(u) is adjacent to
ψ(u1). This implies ψ(u) is in C̃.

Claim 5.2. For every cap vertex gi there exists a vertex ue in ESi such that giue is in F .

Proof. Recall that ψ(z?) is a vertex in C̃ and W (ψ(z?)) is a singleton witness set. Assume that
for a cap vertex gi, there is no vertex ue in ESi such that edge giue is in F . This implies that
ψ(gi) ∩ ESi is an empty set. Since neighbors of gi outside ESi (i.e. pendant neighbors of gi) are
not adjacent to z? in G′, there is no edge with one endpoint in W (ψ(gi)) and another one in
W (φ(z?)). But by Claim 5.1, both ψ(z?) and ψ(gi) are in C̃. This contradicts the fact that C̃
is a clique. Hence, our assumption is wrong, which concludes the proof of the claim.

Claim 5.3. For every special vertex si there exists a vertex ue in ES such that ue is in W (ψ(si)).

Proof. For the sake of contradiction, assume that there exists a witness set, say W (ψ(si)) such
that W (ψ(si))∩ ES = ∅. Recall that ψ(z?) is a vertex in C̃ and W (ψ(z?)) is a singleton witness
set. Since W (ψ(si)) does not contain any vertex of ES, W (ψ(si)) ⊆ SV ∪ GuardS . Hence, there
is no edge with one endpoint in W (ψ(si)) and another one in W (ψ(z?)). By Claim 5.1 both
ψ(si) and ψ(z?) are in C̃. This contradicts the fact that C̃ is a clique. Hence, our assumption
is wrong, which concludes the proof of the claim.

Claim 5.4. There are at least 2t edges in F ′, which are incident to either cap vertices, or special
vertices. Moreover, every vertex can be assigned to an edge in F ′, which is unique to it.

Proof. By Claim 5.2, there are at least t edges incident to cap vertices. Since a cap vertex
is neither adjacent to other cap vertex nor to a special vertex, a cap vertex can be uniquely
mapped to the edge incident to it.
Consider a special vertex si. Define S = W (ψ(si)) ∩ SV. By Claim 5.3, W (ψ(si)) contains

a vertex, say ue, which is in ES. Hence, there is an additional edge, which is incident to S.
Without loss of generality, we can assume that F ′ contains a spanning tree of G′[S∪{ue}]. This
implies that there is at least |S| many edges incident to S. To assign each vertex to a unique
edge, we root this spanning tree at ue. For every vertex in S, assign it to the edge connecting
that vertex to its parent in this rooted tree. Since witness structure W, partitions SV, there are
at least |SV| = t edges in F ′ which has at least one endpoint in SV. Note that none of these
edges is incident to cap vertices. This concludes the proof.

Claim 5.4 allows us to define an one-to-one function λ from the set of cap vertices and special
vertices to the edges in F ′ such that λ(v) is an edge incident to v. We call such functions as
accounting functions. We use such a function in the following arguments to bound certain kinds
of witness sets. For an accounting function λ, the set of edges in F ′ which do not belong to the
range of λ are called extra edges. We fix a function λ and modify it in Claim 5.5 and 5.7 at
certain vertices of special vertices to obtain another accounting function. We use the number
of edges in extra edges with respect to this function to argue that the number of spoiled cap
vertices is not very large. Let γ = 3δ/4. Note that, for any accounting function λ, the number
of edges in extra edges is at most |F ′| − 2t ≤ (5/4 − δ)k′ − 2t ≤ (5/4 − δ) · (2t + ρk) − 2t ≤
(1/2)t − (3δ/4)t = (1/2 − γ) · t. If an edge is not incident to cap or special vertex then such an
edge is always in extra edges for any accounting function.
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Claim 5.5. Let Cap1 be a subset of Cap such that every vertex in Cap1 is in a witness set
in W that contains at least two cap vertices. Then, F ′ contains at least 1/2 · |Cap1| edges in
extra edges for an accounting function λ.

Proof. Let W1 be the collection of witness sets in W which contains at least two cap vertices.
Clearly, |W1| ≤ 1/2 · |Cap1|. Consider a witness set W (p) in W1, we argue that there are at least
|W (p)∩Cap1|−1 many edges in extra edges incident to the vertices ofW (p) for an accounting
function λ.

Consider the accounting function λ which is constructed/modified before considering W (p).
We modify this accounting function for some vertices in SV to obtain another accounting func-
tion. Let T be a spanning tree of G′[W (p)] such that E(T ) ⊆ F ′. We arbitrarily fix a cap vertex
go in W (p) and the root of T at go. Consider a cap vertex gi and let gj be the first cap vertex
on the unique path from gi to go in T (Note that gj can be equal to go). Let Pgigj be the unique
path between gi and gj in the tree T . By the construction of G′, there exists a vertex uie in ESi
such that giuie is an edge in E(Pgigj ). We modify λ in a way that there exists an edge incident
to uie which is in extra edges. Since uie is not in the domain of accounting function, this edge
in extra edges is unique to gi. Hence, for every cap vertex in W (p)∩ Cap1 except for go, there
is an edge in extra edges with respect to an accounting function λ.
Consider the path Pgigj between gi and gj in the spanning tree T . Clearly, there exists a

vertex uie ∈ ESi and a vertex w ∈ Z ∪ {si} such that giuie, uiew ∈ E(Pgigj ), otherwise there
cannot be a path between gi and gj . If w ∈ Z, then uiew is in extra edges for λ. Suppose that
w = si. Then, in the path Pgigj , either si is adjacent to uie′ ∈ ESi or a special vertex sq ∈ SV,
then siuie′ ∈ E(Pgigj ). Note that either siuie or siuie′ is in extra edges for λ. Now, suppose that
sisq ∈ E(Pgigj ). If λ(si) = sisq, then siuie is in extra edges for λ. Suppose that λ(si) = siu

i
e.

Now, we modify λ to obtain λ(si) = sisq. We denote the successor and predecessor of a vertex
s in the path Pgigj by succ[s] and pred[s], respectively. Let s` be the first special vertex in the
path Pgigj such that either λ(s`) = s`succ[s`] or succ[s`] ∈ ES`. Let S̃V be the set of the vertices
in the subpath of Pgigj from si to s`. For every special vertex s in S̃V, we set λ(s) = ssucc[s].
Note that λ is still a one-to-one function as earlier either s`pred[s`] (when λ(s`) = s`succ[s`]) or
s`succ[s`] (when λ(s`) = s`pred[s`], and succ[s`] ∈ ES`) was not in the range of λ. Now, since
λ(si) = sisq, siuie is in extra edges for the modified λ. This implies that for any cap vertex
gi 6= g0 there is an edge incident to uie which is in extra edges for an accounting function λ.
Hence, F ′ has at least |W (p) ∩ Cap1| − 1 edges in extra edges.
By the above discussion, for every witness set W (p) ∈ W1, F ′ has at least |W (p) ∩ Cap1| − 1

edges in extra edges for the function λ. Since W partitions vertices in Cap, we can infer that
F ′ has at least |Cap1| − |W1| edges in extra edges for the function λ.

Claim 5.6. Let Cap2 be a subset of Cap such that every vertex in Cap2 is in a witness set in
W that intersects with Z and contains exactly one cap vertex. Then, F ′ contains at least |Cap2|
edges in extra edges for any function λ.

Proof. LetW2 be the collection of witness sets inW that intersects with Z and contains exactly
one cap vertex. Consider a witness set W (p) in W2 and let z be a vertex in W (p) ∩ Z. Hence,
F ′ contains at least one edge incident to z. For any function λ, an edge incident to a vertex
of Z is in extra edges as the vertices of Z are neither adjacent to cap vertices nor special
vertices. This implies that F ′ contains an edge in extra edges that is incident to a vertex of
W (p). Since W partitions vertices in Cap2, and every witness set in W2 contains exactly one
cap vertex, F ′ has at least |Cap2| edges in extra edges for the function λ.

Claim 5.7. Let Cap3 be a subset of Cap such that every vertex in Cap3 is in a witness set in W
that is disjoint from Z; contains exactly one cap vertex; and at least two vertices of ES. Then,
F ′ contains at least |Cap3| edges in extra edges for a function λ.
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Proof. Let W3 be a collection of witness sets in W that are disjoint from Z; contains exactly
one cap vertex; and at least two vertices of ES. Consider a witness set W (p) in W3. We argue
that F ′ has at least one edge in extra edges that is incident to a vertex of W (p) for a function
λ.
Let T be a spanning tree of G′[W (p)] such that E(T ) ⊆ F ′. Consider the accounting function

λ which is constructed/modified before considering W (p). Let gi be the cap vertex contained
in W (p). By Claim 5.2, there exists uie ∈ ESi such that giuie ∈ F ′. We consider two cases
depending on whether another vertex in ES ∩W (p) is in ESi or not. Suppose that there exists
a vertex uie′ ∈ ESi ∩W (p) such that uie′ 6= uie and if giuie′ ∈ E(T ), then either giuie or giuie′ is in
extra edges for λ. Suppose that giuie′ /∈ E(T ) and consider a path from gi to uie′ , say Pgiuie′ , in
the spanning tree T . SinceW (p) does not intersect with Z, E(Pgiuie′ ) = {giuie, uiesi, siuie′}, either
siu

i
e or siuie′ is in extra edges for λ. Now, suppose that uie is the only vertex in ESi ∩W (p).

Since W (p) contains at least two vertices of ES, there exists a vertex uje′ ∈ ESj ∩W (p), where
j ∈ [t], j 6= i. Consider a path P

giu
j

e′
from gi to uje′ , since W (p) is disjoint from Z, uiesi, u

j
e′sj ∈

E(P
giu

j

e′
) (otherwise there can not be a path from gi to uje′), and the path from si to sj in T

contains only special vertices. Let S be the set of vertices in the path from si to sj in T . We
modify λ to define λ(s) = ssucc[s], for all s ∈ S. Note that λ is still a one-to-one function, and
siu

i
e is in extra edges. Hence, for every witness set in Cap3, we have an edge in extra edges

for some function λ.

Proof. (of Lemma 5.3) Let Cap1, Cap2, and Cap3 be the subset of Cap as defined in Claim 5.5,
5.6 and 5.7. Note that sets Cap1, Cap2, Cap3 are pairwise disjoint. Let Cap4 be the collection of
cap vertices in Cap \ (Cap1 ∪ Cap2 ∪ Cap3).

We first argue that |Cap4| ≥ 2γt. Since there are t many cap vertices, |Cap1|+ |Cap2|+ |Cap3|+
|Cap4| = t. Recall the accounting function λ, which was fixed before Claim 5.5. We modify this
function in Claim 5.5 and 5.7 at some special vertices to obtain another accounting function.
Note that the modifications to λ in Claim 5.5 are at special vertices, which are contained in
witness sets that contains at least two cap vertices. The modifications to λ in Claim 5.7 are at
special vertices, which are contained in witness sets that contains exactly one cap vertex. Since
witness sets partition special vertices, one modification does not affect another. Since Claim 5.6
holds true for any accounting function, we know that for the function λ, there are at least
1/2 · |Cap1|+ |Cap2|+ |Cap3| many edges in extra edges. Since there are at most (1/2−γ)t many
edges in extra edges for any accounting function, |Cap| − |Cap4| = |Cap1| + |Cap2| + |Cap3| ≤
(1−2γ)t. Hence, |Cap4| ≥ 2γt. This implies that there are at least 2γt many cap vertices, which
are contained in a witness set, that does not contain any other cap vertex, no vertex of Z, and
precisely one vertex of ES.

Let W? be the subset of witness sets that contain at least one cap vertex. Let W1,W2,
and W3 be the subset of W? as defined in the proofs of Claim 5.5, 5.6 and 5.7. Let W4 be
the collection of remaining witness sets in W? \ (W1 ∪ W2 ∪ W3). Note that any witness set
in W4 contains exactly one cap vertex, no vertex of Z, and exactly one vertex of ES. Hence,
|W4| = |Cap4| ≥ 2γt.
Let W (p) be a witness set in W4 and ue be a vertex in W (p) ∩ ES. We argue that all the

non-neighbors of ue in Z are in V (F ′). For the contradiction, suppose that there exists a non-
neighbor of ue, say w, in Z that does not belong to V (F ′). Note that W (p) contains a cap
vertex. By Claim 5.1, ψ(w) and p are in C̃. Since W (p) neither contains a vertex of Z nor any
other vertex of ES, p and ψ(w) are not adjacent to each other, a contradiction to the fact that C̃
is a clique. Hence, our assumption is wrong and all the non-neighbors of ue in Z are in V (F ′).
Recall that for every vertex v in G, the reduction algorithm has added ρ many copies of v in
G′, and the set of these vertices is denoted by Xv. If the vertex ue in graph G′ corresponds to
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the edge e = v1v2 then all vertices in Xv1 ∪Xv2 are contained in V (F ′).
Let Y be the subset of ES such that every vertex in Y is in a witness set in W4. Since each

witness set in W4 contains exactly one vertex of Y , |Y | ≥ 2γt. Let YE be the set of edges in G,
which corresponds to vertices in Y . Let N̄Z(Y ) be the set of non-neighbors of Y in Z. We know
that N̄Z(Y ) ⊆ V (F ′). Since size of F ′ is at most |F ′| ≤ (5/2)t− γt and 2t edges are incident to
Cap ∪ SV (Claim 5.4) there are at most t/2− γt edges incident to the vertices of Z. Since every
edge can be incident to at most two vertices of N̄Z(Y ), |N̄Z(Y )| ≤ t− 2γt. Let S be the set of
vertices, which are endpoint of some edge in YE in G. Since we have added ρ copies for each
vertex in S, we have ρ|S| = |N̄Z(Y )| ≤ t− 2γt. This implies there are at most (1− 2γ)t/ρ ≤ k/δ
(as ρ = dδt/ke) vertices which span at least 2γt many edges in G. Since a witness set in W4
contains exactly one cap vertex and exactly one vertex of ES, due to Claim 5.2, any two edges in
YE corresponds to two vertices in G′, which are in different edge selector sets, that corresponds
to different color class in edge coloring φ in G. Hence, the set of edges YE is colorful. This
completes the proof of the lemma.

We are now in a position to prove the main theorem of this section.

Theorem 1.3. Assuming Gap-ETH, no FPT time algorithm can approximate Split Contrac-
tion within a factor of (5/4− δ), for any fixed constant δ > 0.

Proof. For the sake of contradiction, assume that for a given fixed δ > 0, there exists an FPT
time algorithm, say Aδ, which can approximate Split Contraction within a factor of (5/4−δ).

Consider an instance (G, k) of Multicolored Densest-k-Subgraph with Perfect Com-
pleteness. We run the reduction algorithm mentioned in this section to obtain an instance
(G′, k′) of Split Contraction, where k′ = 2t+ dδt/ke, k′ ∈ O(k2). Let opt(G′) be the number
of minimum edges that needs to be contracted in G′ to convert it into a split graph.
By Lemma 5.2, there exists a set of edges F ′ in G′ such that G′/F ′ is a split graph and the

size of F ′ is at most k′. This implies that opt(G′) ≤ k′. Let F̃ be the set of edges returned
by algorithm Aδ when the input is (G′, k′). Since Aδ returns an approximate solution within
factor (5/4 − δ), we know that |F̃ | ≤ (5/4 − δ) · opt(G′) ≤ (5/4 − δ) · k′. By Lemma 5.3, there
exists a set of at most k/δ vertices in G that spans at least (3δ/2)t edges in G. Note that the
proof of Lemma 5.3 can easily be converted into a polynomial time algorithm to obtain these
set of vertices and edges in G given F ′. Since Aδ is an FPT time approximation algorithm, it
runs in time f(k′) · |V (G′)|O(1) = f(k) · |V (G)|O(1) time.
We can conclude that there is a f(k) · |V (G)|O(1)-time algorithm such that, given an integer

k and an edge colored graph G containing a colorful-k-clique, always outputs a vertex set of
size at most k/δ vertices that span at least 2γt colorful edges. Fix positive constants ε, α such
that 0 < ε < 1; 1 < α and 3 ≤ 4αε. For δ = 1/α, the above conclusion contradicts Lemma 5.1.
Hence, our assumption is wrong, which implies the correctness of the theorem.

6 (No) FPT Approximation Algorithm for Chordal Contraction
In this section, we show that unlike Clique Contraction or Split Contraction, one can
not obtain a lossy kernel of any size for Chordal Contraction. It is known that for ev-
ery α ≥ 1 and parameterized optimization problem Π, Π admits a fixed parameter tractable
α-approximation algorithm if and only if Π has an α-approximate kernel [LPRS17, Propo-
sition 2.11]. We prove that Chordal Contraction parameterized by the solution size k,
cannot be approximated within a factor of F (k) in FPT time. Towards this we give a reduction
from Set Cover and use a known result that no FPT time algorithm can approximate Set
Cover within a factor of F (k), where F (k) is the function of k alone [KLM18].
The parameterized optimization version of Chordal Contraction is defined as follows.
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ChC(G, k, F ) =
{

min {|F |, k + 1} if G/F is a chordal graph
∞ otherwise.

Lokshtanov et al. [LMS13] proved that Chordal Contraction, parameterized by solution
size k, does not admit a (classical) kernel of any size under widely believed assumption. They
proved this by presenting a parameter preserving reduction from Hitting Set problem to
Chordal Contraction. In the following lemma, we argue that such parameter preserving
reduction can also be obtained in case of the optimization version of problems. Our reduction is
the same as the reduction given by Lokshtanov et al. [LMS13]. We need some more arguments
to show that there exists a 1-appt from Set Cover/k to Chordal Contraction when
parameterized by solution size. For the sake of completeness, we give the full reduction.

Lemma 6.1. There exists an 1-approximate polynomial parameter transformation (1-appt)
from Set Cover/k to Chordal Contraction parameterized by solution size.

Proof. To prove this lemma, we present a reduction algorithm, RA, which given an instance
((U,S), k) of Set Cover/k outputs an instance (G, k′) of Chordal Contraction. We also
present a solution lifting algorithm that takes as input an instance ((U,S), k) of Set Cover/k;
an output instance (G, k′) = RA((U,S), k) of Chordal Contraction; and a solution F to
the instance (G, k′); and outputs a solution F to ((U,S), k) such that SC/k((U,S), k,F) =
ChC(G, k, F ).
Without loss of generality, we assume that every element of the universe U is contained in

some set Si in S as otherwise ((U,S), k) is a trivial instance. We first present a reduction
algorithm.
Reduction Algorithm : Given an instance ((U,S), k) of the Set Cover problem with U =
{u1, · · · , un} and S = {S1, · · · , Sm}, the algorithm constructs graph G as follows: It creates a
vertex sj for each set Sj in S and three vertices ai, bi and ci for each element ui in the universe
U . It also adds a special vertex g to G. It adds following edges in G.

• an edge between any two different vertices corresponding to sets; (In other words, the
algorithm converts set {s1, s2, · · · , sm} into a clique by adding all edges sjsj′ for 1 ≤
j, j′ ≤ m and j 6= j′.)

• edge gsj for every j in {1, 2, · · · ,m} and edges gai, gbi for every i in {1, 2, · · · , n};

• edges aici and bici for every i in {1, 2, · · · , n};

• for an element xi and a set Sj , if xi is in Sj then it adds edge cisj ;

The algorithm returns (G, k) as an instance of Chordal Contraction. See Figure 6 for an
illustration.
It is easy to verify that graph G does not contain any induced cycle of length five or more.

We have created cycles of length four for each element in the universe which intersects with each
other only in g. Informally speaking, all these cycles can be killed by introducing the edge gcj
for every cycle. To introduce all these chords with at most k contractions, we need to carefully
select at most k sets (and contracts edges of the form gsi) which covers all the elements. We
argue that introducing chords of the form gsj also kills other cycles of length four in the graph.
Solution Lifting Algorithm: Let F ◦ be the given solution for (G, k). If |F ◦| ≥ k + 1 then
the algorithm returns F = S as a solution. Otherwise, the algorithm first constructs another
solution for (G, k) with the following two operations. (a) If F ◦ contains an edge of the form
gai, gbi, aici or bici, then replace it by gsj , where Sj is any set containing ui. (b) If F ◦ contains
an edge of the form sjci, then replace it by gsj . Let F be the solution obtained from F ◦ by
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Figure 6: Reduction from an instance ((U,S), k) of Set Cover to an instance (G, k) of
Chordal Contraction. Here U = {u1, u2, u3};S = {S1, S2, S3} where S1 =
{u1, u2}, S2 = {u1, u2, u3}, and S3 = {u2, u3}. Straight lines (eg. a1g) are part of
gadget construction whereas dashed lines (eg. c1s1) are added because of containment
relationship between elements and sets. Please refer to the Reduction Algorithm in
the proof of Lemma 6.1.

exhaustively applying these two operations. Consider a G/F -witness structure of G and let
W (g) be the witness set containing g. Define F as a collection of sets in S whose corresponding
vertices are contained in W (g). The algorithm returns F as a solution for ((U,S), k).
We justify the two modification operations defined in solution lifting algorithm. It is easy to

see that |F | ≤ |F ◦|. We slightly abuse notations and rename new vertex added while contracting
edge gsj as g. The only cycle affected by contracting edges of the form gai, gbi, aici or bici is
{g, ai, ci, bi}. By contracting an edge of the form gsj where Sj is any set containing ui, we
introduce another chord gci which destroys the cycle. Similarly, if F ◦ contains an edge of
the form sjci, then the only four-cycles of G that gets a chord in G/{sjci} are: {g, ai, ci, bi},
{sj , g, ai, ci}, and {sj , g, bi, ci}. All of these cycles get a chord when the edge gsj is contracted
instead. This implies that if G/F ◦ is a chordal graph then so is G/F .
We now prove that the cycles present in the graph G are of a very specific type. This claim is

similar to Proposition 1 in [LMS13]. Note that because of Claim 1, to convert G into a chordal
graph it is sufficient to introduce chords gci for every i in {1, 2, · · · , n}.

Claim 1. Graph G does not contain any induced cycle of length five or more. The only induced
cycles of length four in the graph G are of one of the three forms: (i) {g, ai, ci, sj} for some
element ui and set Sj containing it; (ii) {g, bi, ci, sj} for some element ui and set Sj containing
it; (iii) {g, ai, ci, bi} for some element ui.
Proof: We define subsets T,A,B,C of V (G) as collections of vertices sj ’s, ai’s, bi’s and ci’s
respectively. Formally, T = {s1, s2, · · · , sm}; A = {a1, a2, · · · , an}; B = {b1, b2, · · · , bn} and
C = {c1, c2, · · · , cn}. Note that G[T ] is a clique whereas A,B,C are independent sets in G.
Since G[T ∪ {g}] is a clique, any induced cycle of length at least four contains at most two

vertices of T ∪{g}. As G\ (T ∪{g}) is a collection of induced paths on three vertices, and hence
acyclic, the largest induced cycle possible in G is of length five. We note that every induced
paths is of the form {ai, ci, bi} and only other vertex adjacent to ai, bi is g. Hence, such path
can not be part of an induced C5. This implies that G does not contain an induced cycle of
length five or more.
Assume that there exists an induced C4 with two vertices, say sj , sj′ , in T . By construction,

the only vertices which are adjacent with sj , sj′ are in the set C ∪ {g}. Since g is adjacent
with both these vertices, it can not be part of induced C4 that contains sj , sj′ . This implies
that the remaining two vertices in C4 are from C. As sj , sj′ are adjacent to each other, the
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remaining two vertices in C4 must be adjacent to each other. This contradicts the fact that C
is an independent set in G. Hence our assumption is wrong and no such induced C4 exists.
Consider an induced C4 which contains exactly one vertex, say sj , in T . Assume that this

induced C4 does not contain g. By construction, only neighbors of sj outside T are in C. Let
ci, cj are two vertices contained in this induced C4. Since the only common neighbor of ci, cj
outside T is g, our assumption that this C4 does not contain g is wrong. This implies every such
induced C4 contains g. Since the only other neighbor of sj is in C, one of the remaining vertex
in this cycle is from set C. Let that vertex be ci. Since ai or bi are the only common neighbors
of g and ci, the only possible cycles are of the form (i) or (ii) mentioned in the claim. As there
is no edge between following pair of vertices- (g, ci), (sj , ai) and (sj , bi), this cycle is indeed an
induced C4.
Consider an induced C4 which does not intersect with T . Since G \ (T ∪ {g}) is acyclic,

every cycle of this type contains g. In this cycle, neighbors of g are from sets A and B. By
construction, vertices ai and bi′ have a common neighbor only if i = i′. This implies the only
possible induced C4 which does not intersect with T is of the form (iii).
As we have considered all cases exhaustively, this proves the claim. �

We now prove that any solution of Set Cover/k naturally leads to a solution for Chordal
Contraction. For any subset F of S, let FF be the set of edges in G which are incident on g
and si for some si in F .

Claim 2: If F is a set cover of instance the ((U,S), k), then G/FF is a chordal graph.
Proof : Let H be the graph obtained from G by contracting all edges in FF . Since F covers all
the elements of U , contracting all the edges in FF introduces edge gci for every i in {1, 2, · · · , n}
in graph H. By Claim 1, all the induced cycles in G are of the form {g, ai, ci, sj} or {g, bi, ci, sj}
or {g, ai, ci, bi} for some element ui. Hence, there is no induced cycle of length four or more in
H; thus it is a chordal graph. �

Let F be the given solution for (G, k) such that G/F is a chordal graph and |F | is at most
k. Let F be the solution for Set Cover/k instance returned by the solution lifting algorithm.
Recall that the modification operation (a) or (b) mentioned in the solution lifting algorithm
does not change the size of F .

Claim 3: F is a set cover of size at most |F | for (U,S).
Proof: Consider the four-cycle given by {g, ai, ci, bi} in graph G. Since G/F is a chordal graph,
there exists an edge gci in E(G/F ). This implies there is an edge gsj in F for some set Sj which
contains ui. Hence there is a set Sj in F which contains element ui. Since this is true for any
element in U , F is a set cover for (U,S). As |W (g)| is at most |F |+ 1 and it contains vertex g,
upper bound on F follows. �

We are now in the position to conclude the proof. Claim 2 implies that OPTChC(G,k) ≤
OPTSC/k((U,S), k). Moreover, if |F | ≥ k + 1, then solution lifting algorithm returns F = S.
In this case, ChC(G, k, F ) = k+ 1 = SC/k((U,S), k,S). If |F | ≤ k and G/F is a chordal graph
then by Claim 3, SC/k((U,S), k,F) ≤ ChC(G, k, F ). This implies that there exists a 1-appt
from Set Cover/k to Chordal Contraction when parameterized by solution size.

Karthik et al. [KLM18, see conclusion] showed that assuming FPT 6= W[1], no FPT time
algorithm can approximate Set Cover within a factor of F (k). Pipelining this result with
Lemma 6.1, we get the following result.

Theorem 1.4. Assuming FPT 6= W[1], no FPT time algorithm can approximate Chordal Con-
traction within a factor of F (k). Here, F (k) is a function depending on k alone.
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7 Conclusion
In this paper, we studied the F-Contraction problem, where F is a subfamily of chordal
graphs, in the realm of parameterized approximation. We showed that Clique Contrac-
tion admits a PSAKS. On the other hand, Split Contraction admits a factor (2 + ε)-
FPT-approximation algorithm, for any ε > 0. In fact, we showed that for any ε > 0, Split
Contraction admits an (2 + ε)-approximate kernel with O(kf(ε)) vertices. We complemented
this result by showing that, assuming Gap-ETH, no FPT time algorithm can approximate Split
Contraction within a factor of

(
5
4 − δ

)
, for any fixed constant δ > 0. Finally, we showed that,

assuming FPT 6= W[1], Chordal Contraction does not admit any F (k)-FPT-approximation
algorithm. Our results add to this growing list of collection of FPT-approximable and FPT-in-
approximable problems.
We find it extremely interesting that three closely related problems have different behavior

with respect to FPT-approximation. Our paper also shows that further classification of problems
using lossy kernels are of interest and could shed new light on even well-studied problems. The
paper naturally leads to the following question: can the gap between upper and lower bounds
for Split Contraction brought closer? We conjecture that Split Contraction does admit
5
4 -FPT-approximation algorithm.
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