
Exploring Constraints to EÆciently Mine Emerging Patterns

from Large High-dimensional Datasets

Xiuzhen Zhang
The University of Melbourne

xzhang@cs.mu.oz.au

Guozhu Dong
Wright State University

gdong@cs.wright.edu

Ramamohanarao Kotagiri
The University of Melbourne

rao@cs.mu.oz.au

ABSTRACT
Emerging patterns (EPs) were proposed recently to capture
changes or di�erences betw een datasets: an EP is a multi-
variate feature whose support increases sharply from a back-
ground dataset to a target dataset, and the support ratio is
called its gro wth rate. Interesting long EPs often have low
support; mining such EPs from high-dimensional datasets
is a great challenge due to the combinatorial explosion of
the number of candidates. We propose a Constraint-based
EP Miner, ConsEPMiner, that utilizes tw o types of con-
straints for e�ectively pruning the search space: External
constrain tsare user-giv enminimums on support, growth
rate, and growth-rate improvement to con�ne the result-
ing EP set. Inheren t constrain ts| same subset support,
top growth rate, and same origin | are deriv ed from the
propertiesof EPs and datasets, and are solely for pruning
the search space and saving computation. ConsEPMiner
can eÆciently mine all EPs at low support on large high-
dimensional datasets, with low minimums on growth rate
and growth-rate improvement. In comparison, the widely
known Apriori-like approach is ine�ective on high-dimensional
data. While ConsEPMiner adopts several ideas from Dense-
Miner [4], a recent constrain t-based association rule miner,
its main new contributions are the introduction of inherent
constrain ts and the ways to use them together with external-
constrain ts for eÆcient EP mining from dense datasets. Ex-
periments on dense data show that, at low support, Con-
sEPMiner outperforms the Apriori-like approach by orders
of magnitude and is more than twice as fast as the Dense-
Miner approach.

1. INTRODUCTION
Emerging patterns (EPs) are a new type of knowledge re-
cen tly introduced [5] to capture emerging trends in time-
stamped databases, or useful contrasts bet w een data classes.
Given a bac kground dataset D0 and a target dataset D00,
the growth rate of an itemset X from D0 to D00 is de�ned as

GR(X) = supp00(X)
supp0(X)

(we de�ne 0
0
= 0 and >0

0
= 1), where

supp0(X) and supp00(X) denote the support1 of X in D0 and
D00 respectiv ely. Given a gro wth rate threshold� > 1, an
emer ging p atternfrom D0 to D00 is an itemset whose growth
rate from D0 to D00 is � �. When D0 is clear from con-
text, an EP X from D0 to D00 is simply called an EP of D00.
The support of X in D00, supp00(X), is called the support of
the EP. The support and growth rate of an EP describe its
applicability and strength.

Example 1. The following are tw oEPs from the Malig-
nan t class to the Benign class of theWisconsin-breast-cancer
dataset from the UCI machine learning repository.
EP Malignant-support Benign-support growth rate
e1 0.41% 20.31% 49.54
e2 0% 3.28% 1

e1=f(bare-nuclei,1),(bland-c hromatin,3),(norm-nucleoli,1),(mitoses,1)g

e2=f(marginal-adhesion,1),(bare-nuclei,1),(normal-nucleoli,2)g

The EP e1, with a growth rate of 49.54, is a four-attribute
feature con trasting benign instances against malignant in-
stances. It has a very high predictive power: The odds that
instances con taining (or satisfying) e1 are benign is 98%.
The EP e2 has even greater predictiv epower: The odds
that instances containing e2 are benign is 100%.

EPs are characteristics distinguishing the target dataset from
the bac kground dataset. We have built powerful classi�ca-
tion systems [7] by aggregating the di�erentiating power of
EPs and the resulting classi�ers are usually more accurate
than existingstate-of-the-art classi�ers. Besides classi�ca-
tion, EPs are also useful as predictive patterns.

Di�ering from market basket type applications, datasets
for medicine, government, science and business are very of-
ten not only large, but also of high dimensionsand dense
(i.e. each instance has a value for eac h dimension). In the
UCI Connect-4 dataset, the Win and Loss classes consist of
16,635 and 67,557 instances respectively, and each instance
is de�ned by 42 attributes (and thus a transaction consists
of 42 items). Suc h datasets usually \contain" a huge num-
ber of EPs, and many of them are long (consisting of tens
of items). The Apriori-like [1] approach, considering only
the support constraint at the mining stage, are ine�ective
on suc h datasets:the support constraint cannot control the
combinatorial explosion of candidate itemsets; the bottom-
up itemset lattice framework is very expensive for searching

1Let U denote the item space. An itemset X is a subset of
U . A transaction is an itemset and a dataset is a collection
of transactions. The supp ort of an itemset X in a dataset

D, supp(X), is jft2DjX�tgj
jDj

.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD 2000, Boston, MA USA
© ACM 2000 1-58113-233-6/00/08 ...$5.00

310

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F347090.347158&domain=pdf&date_stamp=2000-08-01

long EPs | to mine an EP of 30 items, whatever pruning
techniques are used, at least 230 � 109 candidate itemsets,
all subsets of the EP, have to be generated and tested!

This paper proposes an algorithm Constraint-based EP Miner,
ConsEPMiner for short, for eÆciently mining EPs satisfy-
ing given support and growth-rate thresholds. Among other
ideas that will be discussed later, it uses both the support
and growth rate constraints to directly prune the search
space. We also introduce the growth-rate improvement con-
straint to eliminate EPs that are uninteresting, and use it
for direct pruning.

Minimums on support, growth rate and growth-rate im-
provement are all external constraints set by users to re-
strict the resulting EP set. We also consider additional con-
straints that can help further prune the search space and
save computation; some of these constraints are implied by
the datasets, and others are implied by special properties
of EPs. We call these constraints the inherent constraints,
since they are not given by users and do not a�ect the re-
sulting EP set.

In contrast to the Apriori-like approach, ConsEPMiner ef-
fectively controls the explosion of candidates from the very
beginning of mining, and achieves high eÆciency on large
high-dimensional datasets with modest support, growth rate
and growth-rate improvementminimums. It achieves this by
exploiting both external and inherent constraints.

Our work is motivated by Dense-Miner[4], a recently pro-
posed external-constraint-based association rule mining al-
gorithm that is much more e�ective than the Apriori-like
approach on dense data. However, ConsEPMiner consid-
ers new issues speci�c to EP mining, and more importantly,
uses new ideas based on inherent constraints. In ConsEP-
Miner we use the following ideas from Dense-Miner: the set-
enumeration tree (SE-tree) seach framework (Section 3) and
the breadth-�rst search strategy (Section 4), the bounding
mechanism for applying user-given minimums for pruning,
and the reordering considerations for more pruning chances.
Based on the external constraints, we introduce several new
ideas on e�ectively using inherent constraints to help prune
the search space. Although the inherent constraints do not
further restrict the �nal resulting EP set, considering them
explicitly reduce the overhead of computing group bounds
and scanning datasets, and the inherent-constraint-based
tail item reordering heuristics produces more pruning chances.

To see the bene�t of considering inherent constraints ex-
plicitly, we developed EP-DenseMiner. As in Dense-Miner,
it uses all the external constraints for direct pruning and
adopts largely the same pruning techniques. To mine EPs, it
uses the bounding theorems of Section 3.2 and the external-
constraint-based item reordering heuristics of Section 3.3.
Conceivably, EP-DenseMiner su�ers from the overhead of
not considering the inherent constraints explicitly and misses
the additional pruning chances produced by inherent con-
straints. Experiments indeed show that ConsEPMiner con-
sistently outperforms EP-DenseMiner.

Related works: In [2], an Apriori-like algorithm for mining
association rules was proposed, where some inherent con-

straints are considered. Our experiments show that the
Apriori-like EP miner, even enhanced with all the inher-
ent constraints, is still ine�ective on high-dimensional data
and is far inferior to ConsEPMiner. [5] proposed algorithms
for �nding the border description (but without actual sup-
port and growth rate) for EPs satisfying given support and
growth rate minimums. Further processing is needed to ex-
tract the embodied EPs and their support and growth rate,
and to select the interesting ones. The border �nding al-
gorithms (Max-Miner [3] or HorizonMiner [6]) only use the
support constraint in mining; the border manipulation al-
gorithms do not explicitly use constraints. In [7], an idea
similar to growth-rate improvement was used to reduce the
EP classi�er, but it was not exploited to make mining more
eÆcient. In [9] and [8], external constraints of various types,
orthogonal to those considered here, are exploited to mine
constrained association rules. The idea of pruning in an
SE-tree search employed in Dense-Miner and ConsEPMiner
originates from the idea of pruning in a lattice space with
pruning functions of [11].

2. CONSTRAINTS IN EP MINING
To eÆciently mine EPs, in addition to support and growth
rate, we also propose growth-rate improvement and inherent
constraints. Minimums on support (minsupp), growth rate
(minrate) and growth-rate improvement (minrateimp) are
called external constraints. They ensure a �nal set of EPs
with suÆcient predictive power and support and where none
of them is redundant; importantly, they are also used to di-
rectly prune the search space. Inherent constraints are in-
troduced only for pruning the search space and saving com-
putation.

2.1 Growth-rate improvement
The growth-rate improvement constraint is concerned with
the subset relationship between EPs and aims to remove
EPs that are not essential.

Example 2. Consider two EPs of the Benign class of the
Wisconsin-breast-cancer dataset.
EP Benign growth

support rate
e3=f(clump-thickness,1), (unif.-cell-shape,3)g 2.62% 6.32
e4=f(clump-thickness,1)g 31.0% 24.9

With a growth rate of 6.32, e3 seems to be an interesting
EP. However, compared to e4, e3 is actually signi�cantly in-
ferior in predictive ability (e4 has much higher growth rate),
conciseness (e4 � e3), and applicability (e4 has much higher
support).

In [4], improvement of association rules is de�ned in terms
of the di�erence in con�dence of rules. We de�ne below the
growth-rate improvement of EPs 2.

De�nition 1. Given an EP e, the growth-rate improve-
ment of e, rateimp(e) is de�ned as the minimum di�erence
between its growth rate and the growth rate of all of its
subsets,

rateimp(e) = min(8e0 � e; GR(e)�GR(e0))

A positive growth-rate improvement threshold,minrateimp >
0, ensures a concise, \grid-like" representative set of EPs
which are not subsumed by one another and where each EP

2This constraint was also independently used in [7].

311

consists of items that are strong contributors to its predictive
power. Experiments show that modestminrateimp settings
can reduce the resulting EP set dramatically: For the UCI
Mushroom dataset, at minsupp = 20%, minrate = 1:01, a
modest setting of minrateimp = 0:01 reduces the number
of EPs of the Edible class from 14,342 to 354.

Growth-rate Improvement is in terms of the absolute di�er-
ence on growth rate. We now de�ne a similar constraint in
terms of the relative di�erence on growth rate.

De�nition 2. Given an EP e, the relative growth rate im-
provement of e, rel rateimp(e) is de�ned as the minimum
ratio of its growth rate over that of all its subsets,
rel rateimp(e) = min(8e0 � e s:t: GR(e0) > 0; GR(e)=GR(e0))

Given an EP e, rel rateimp(e) > 1 implies rateimp(e) > 0.
The advantage of relative growth-rate improvement is that it
allows us to prune uninteresting EPs based on their strength
relative to that of their subsets. We will only report exper-
imental results using minrateimp; we note that ConsEP-
Miner is faster in experiments using the rel rateimp thresh-
old and produces smaller EP sets than using minrateimp.

2.2 Inherent constraints
Inherent constraints, namely same subset support, top growth
rate and same origin, are natural restrictions formed by
the properties of EPs or datasets on which itemsets can be
valid EPs. As will be discussed in the next section, these
constraints provide new perspectives on pruning the search
space and saving computation.

Same subset support: We say that an itemset S satis�es
the same subset support constraint if there exists X � S such
that S has the same support as X, and we denote the fact
by sameSupp(X;S). Note that if S satis�es the constraint
due to X, then so does S[Y (due to X[Y). The constraint
has two forms: (1) same target support | supp00(X) =
supp00(S), denoted as sameSupp00(X;S); (2) same subset
background support | supp0(X) = supp0(S), denoted as
sameSupp0(X;S). We use the constraint in two ways: (1)
Given sameSupp00(X;S), suppose supp00(X) is known, we
can derive supp00(S) and reduce dataset scanning time. (2)
Given sameSupp0(X;S), since supp00(X) � supp00(S), and
GR(X) � GR(S), as a result, rateimp(S) � 0 and thus S
and its supersets can be pruned.

Top growth rate: We denote by topGR(X) the fact that
X has growth rate 1 (i.e., X is a jumping EP [6]). Obvi-
ously, all supersets of a jumping EP have growth-rate im-
provement � 0, and thus can be pruned. The top growth
rate constraint is more useful at low support, since more
jumping EPs appear there.

Same origin: In the binary dataset mapped from rela-
tional data, items are mapped from (attribute, interval) or
(attribute, value) pairs. Itemsets containing items mapped
from the same attribute, and their supersets, cannot be EPs
and should be pruned. We call this constraint the same ori-
gin constraint and use sameOrg(X; i) to denote that the
constraint holds between some item of X and item i.

As will be seen in Section 3, the monotone property of inher-
ent constraints allows us to collect the constraints and prune

{ }

 3, 4

1 2 3 4

1, 3 1, 4 2, 3 2, 4 3, 4

1, 3, 41, 2, 41, 2, 3

1, 2

1, 2, 3, 4

2,

Figure 1: A complete set enumeration tree over

U=f1, 2, 3, 4g, with items lexically ordered.

groups of hopeless itemsets at the early stages of mining.

3. PRUNING WITH CONSTRAINTS
We consider how to best utilize external and inherent con-
straints to reduce the search space and save time for database
scanning and CPU processing. We will use the notations de-
veloped in Dense-Miner [4] in later discussions.

Our underlying itemset search framework is the set enumer-
ation tree (SE-tree) [10]. As shown in Figure 1, by imposing
an ordering on items, all itemsets in the item space are enu-
merated. A node g of an SE-tree is represented as a group
comprising two itemsets: head, h(g), the itemset enumer-
ated at g, and tail, t(g), an ordered set consisting of items
that can potentially be appended to h(g) to form an itemset
enumerated by some sub-node of g. For example in Figure 1,
for the root node r, h(r) = �, t(r) = f1; 2; 3; 4g. A child gc
of g is formed by taking an item i 2 t(g) and appending
it to h(g) to get h(gc); t(gc) then contains all items in t(g)
that follow i in the ordering. Given this child expansion
policy, without any pruning of nodes or items, the SE-tree
enumerates all possible itemsets. The order in which items
appear in t(g) is signi�cant since it re
ects how its children
are to be expanded. An itemset e is derivable from a group
g if h(g) � e, and e � h(g) [t(g). To process a group g
in a dataset D, we scan D to compute the support of h(g),
h(g) [fig (8i 2 t(g)), and h(g) [t(g). In EP mining, given
a background dataset D0 and a target dataset D00, g is half
processed if g is processed in D00; g is completely processed
if it is also processed in D0. We scan the SE-tree breadth-
�rst for valid EPs. In this process, as proposed in [4], while
pruning entire groups, we also prune group tail items.

3.1 Pruning first with inherent constraints
We adopt the \pruning �rst with inherent constraints" strat-
egy to prune unpromising groups of an SE-tree, speci�cally,
we directly prune group tail items with inherent constraints.

Observation 1. Given a group g and an item i 2 t(g),
i can be pruned if (1) sameSupp0(h(g); h(g) [fig), or (2)
topGR(h(g) [fig), or (3) sameOrg(h(g); i).

The observation follows directly from the inherent constraint
de�nitions. More importantly, with the breadth-�rst search
of SE-tree, checking the satis�ability of inherent constraints
is a very minor computation and does not incur extra scan-
ning over datasets. Only after pruning the tail items of a
group with inherent constraints, will we prune the group
with the more costly external constraints. This strategy
reduces the number of groups that must be considered for

312

pruning with external constraints, and the number of groups
whose frequency must be counted during database scans.

In addition to pruning, inherent constraints are also useful
for reducing database scanning time.

Observation 2. Given a group g and i 2 t(g), in gen-
erating its child group gc where h(gc) = h(g) [fig and
t(gc) = fj 2 t(g)jj follows ig, (1) if sameSupp00(h(g); h(g)[
fig), then supp00(h(gc) [fjg) = supp00(h(g) [fjg); (2) if
sameSupp00(h(g); h(g) [fjg), then supp00(h(gc) [fjg) =
supp00(h(g) [fig).

During the breadth-�rst search of an SE-tree, by applying
this observation in generating new groups, we can derive the
target support of tail items of many child groups of the next
level directly and avoids the expensive database scanning to
get their support.

3.2 Pruning with external constraints
In Dense-Miner, for mining association rules, to prune groups
with external constraints, theorems were proposed to upper
bound the support, con�dence and con�dence improvement
of groups. In EP mining, as the support, growth rate and
growth-rate improvement of EPs are de�ned di�erently, we
need to develop similar but new theorems bounding groups.
Speci�cally, for a group g, we compute the upper bounds of
support (usupp(g)), growth rate (urate(g)) and growth-rate
improvement (urateimp(g)).

usupp(g) is relatively easy to compute because support is
anti-monotone. ConsEPMiner estimates usupp(g) by
min(supp00(X)jX � h(g)). The estimation of other bounds
requires more costly computation.

Theorem 1. Given a group g, urate(g) =
x00

m

x0

n

, where

x00m � supp00(h(g)), x0n � supp0(h(g) [t(g)).

Proof. If X is derivable from g, then h(g) � X � h(g)[

t(g); GR(X) = supp00(X)
supp0(X)

�
x00

m

x0

n

holds because supp00(X) �

supp00(h(g)) � x00m, supp
0(X) � supp0(h(g)[t(g)) � x0n.

x00m is got from usupp(g); if supp0(h(g) [t(g)) is known,
we can immediately get urate(g); otherwise, we compute x0n
according to the observation below.

Observation 3. Given a dataset D and a group g, where
supp(h(g)) > 0 and supp(h(g) [t(g)) is not available, the
lower bound of supp(h(g)[t(g)) can be computed as fol-
lows: (1) if 9X � t(g) such that supp(X) = 0, supp(h(g) [
t(g)) = 0; (2) supp(h(gp) [t(gp)) � supp(h(g) [t(g));
(3) supp(h(g))�

P
i2t(g)(supp(h(gp)� supp(h(gp)[fig)) �

supp(h(g) [t(g)); (4) supp(h(g0)) �
P

i2t(g)(supp(h(g
0)) �

supp(h(g0) [fig)) � supp(h(g) [t(g)); (5) supp(h(g0) [
t(g0)) � supp(h(g) [t(g)), where gp is the parent of g, and
g0 is a group satisfying h(g) = h(g0), t(g) � t(g0).

(1) is obvious. (2) follows directly from h(gp) [t(gp) �
h(g) [t(g). (3) and (4) follow from the support lower-
bounding theorem of [3]. (5) follows from the fact that
h(g) [t(g) � h(g0) [t(g0). In EP mining, for a group g,
if 9X � t(g) such that sameOrg(X) or topGR(X), from (1)
we immediately know that x0n = 0, otherwise we have to

compute x0n. To get a tighter x
0
n, we compute several values

from (2)-(5) and use the largest as x0n. Note that (1), (2) and
(3) are applicable to unprocessed, half-processed and com-
pletely processed groups, whereas (4) and (5) only apply to
completely processed groups.

Theorem 2. Given a group g, urateimp(g) = urate(g)�
z, where z � max(GR(X)jX � h(g)).

Proof. Given X � h(g), X is a subset of any EP e
derivable from g; so rateimp(e) � GR(e)� z. As GR(e) �
urate(g), we have urateimp(g) = urate(g)� z:

We apply Theorem 2 by letting urateimp(g) = urate(g)�
max(GR(X) j X 2 E ^ X � h(g)), where E is the set of
valid EPs known at the time.

3.3 Reordering tail items
We use heuristics to prune more e�ectively. Let g be a com-
pletely processed group that survives the pruning with both
external and inherent constraints. Both inherent and exter-
nal constraints provide ways for more pruning chances: (1)
For all its child groups gc to be generated, we know that
supp00(h(gc)) � minsupp and :topGR(h(gc)). If 9X �
t(gc) such that sameOrg(X) or topGR(X), then supp0(X) =
0; as X � h(gc) [t(gc) supp

0(h(gc) [t(gc)) = 0. By The-
orem 1, x00m � supp00(h(gc)) � minsupp, x0n = 0, and thus

urate(gc) =
x00

m

x0

n

= 1. As :topGR(h(gc)), urateimp(gc) =

1; gc is not prunable. To avoid producing such gc's, we put
X (again sameOrg(X) or topGR(X)) early in t(g) so that
more child groups will satisfy Observation 1 and be pruned
on the
y. If there are several such X's, we order them
by decreasing cardinality. (2) According to Theorem 1 and
Theorem 2, based on an idea similar to Dense-Miner, we ar-
range the tail items in increasing order of supp0(h(g) [fig)
to produce more pruning chances. To apply both heuris-
tics, as we always prune �rst with inherent constraints and
pruning based on them is less costly, we always apply the
inherent-constraint-based heuristics �rst.

4. CONSTRAINT-BASED EP MINER
Figure 2 gives a sketch of ConsEPMiner. Due to the same
breadth-�rst search strategy over the SE-tree, the algorithm
has the same skeleton as Dense-Miner: Given a level of sur-
viving groups G, groups at the next level are generated by
expanding surviving groups in G (Prune-Gen-Next). Valid
EPs of G satisfying the given thresholds are accumulated in
E (lines 6-7). The algorithm �nishes when no new groups
are generated (line 2). We will thus discuss below only what
is speci�c to ConsEPMiner.

ConsEPMiner(background dataset D0, target dataset D00)
;; T = fminsupp; minrate; minrateimpg is global

;; Return the EP set E of D00 satisfying T, E is global

1) E �; G Gen-Initial-Groups(D0, D00)(1);
2) while G 6= � do
3) scan D00 to process the groups in G;

4) Prune-Groups(G)(2);

5) scan D0 to process the groups in G;
6) for each g 2 G and i 2 t(g) do
7) E = E [fh(g) [fig | h(g) [fig satisfies Tg;

8) Prune-Groups(G)(3);

9) G Prune-Gen-Next(G)(1);
10) return E;

Figure 2: Sketch of ConsEPMiner

313

A level of groups G is processed �rst in D00 and then in D0,
and this induces the 3-stage pruning of ConsEPMiner: as
indicated by the superscripts of lines 1, 4, 8 and 9, prun-
ing occurs in generating groups at a new level (stage 1),
where Prune-Groups is called, and when groups are half-
and completely-processed (stages 2 and 3). As can be seen
from Figure 3, in Prune-Groups, we always try �rst to prune
group tails with the less costly inherent constraints and
the support threshold; only groups with the possibility of
bounds > 0 are further pruned by computing the bounds
of groups (Rate-Imp-Bound-Prune). Given a level of groups
G, after the 3-stage pruning with inherent and external con-
straints, only groups with the possibility of deriving valid
EPs are kept; only tail items that can produce such promis-
ing child groups are kept.

In Prune-Gen-Next, Prune-Groups is �rst called to prune
newly generated groups and their tail items. As discussed
in Observation 2, we derive the target support of the tail
items of new groups by the same subset support constraint,
reducing the database scanning time considerably.

Prune-Groups(groups at a level G)
;; Prune G, G is passed by reference

1) for each g 2 G do
2) for each i 2 t(g) do

3) if sameOrg(h(g); i)(1) _ supp00(h(g) [fig) < minsupp(2)

_sameSupp0(h(g); h(g) [fig)(3) _ topGR(h(g) [fig)(3)

_9e 2 E s:t: (e � h(g) [fig ^ topGR(e))(3)

4) remove i from t(g);

5) Rate-Imp-Bound-Prune(G, g)(2;3);

Figure 3: Function Prune-Groups

ConsEPMiner ensures that E consists of all EPs that are fre-
quent and of large improvement with respect to their subsets
that are valid EPs. E is already concise enough for most ap-
plications (e.g., classi�cation). However, E may still contain
some EPs that do not have large improvement with respect
to their subsets that are not valid EPs. Post-processing is
desirable to further remove such EPs from E, which can also
be formulated as an SE-tree search problem [4].

5. EXPERIMENTS
We compare ConsEPMiner against two algorithms: EP-
DenseMiner (as discussed in Section 1) and EP-Apriori, an
EP mining algorithm based on the Apriori framework that
also considers inherent constraints to strengthen pruning.
All three algorithms were implemented in C++, with ex-
actly the same implementation techniques.

We used the three algorithms to �nd EPs between data
classes on many large dense UCI datasets and �nd that
ConsEPMiner consistently outperforms EP-Apriori and EP-
DenseMiner. We only report next the result on mining EPs
of the Win class of Connect-4, with a 500MHz Pentium PC
with 500M memory and with an execution time limit of
20,000 seconds. In Figure 4, the graph on the left shows the
dominance of ConsEPMiner over EP-Apriori: While EP-
Apriori can only �nd EPs at support greater than 88%,
ConsEPMiner can successfully mine EPs at as low as 3%;
at the support level where both algorithms succeed, Con-
sEPMiner is over 1000 times faster. While EP-DenseMiner
is superior to EP-Apriori, the graph on the right clearly
shows that ConsEPMiner outperforms EP-DenseMiner: EP-
DenseMiner can only �nish at higher support (5%); when

3 4 5 7 10 20 50 8095 10
Minimum support (%)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

C
P

U
 t

im
e

(s
ec

)

EP-Apriori
ConsEPMiner

5 6 7 8 9 10
Minimum support (%)

5000

7500

10000

12500

15000

17500

20000

C
P

U
 t

im
e

(s
ec

)

EP-DenseMiner
ConsEPMiner

Figure 4: CPU Time: Connect-4(minrate=2, minimp=0.01)

ConsEPMiner vs. EP-Apriori vs. EP-DenseMiner

both algorithm succeed, ConsEPMiner is 2.63 times as fast
as EP-DenseMiner.

6. CONCLUSIONS
We have presented and evaluated the algorithm ConsEP-
Miner for eÆciently mining emerging patterns (EPs) from
large dense datasets at low support. We have developed
various techniques to use inherent and external constraints
for e�ective pruning. The superior performance of Con-
sEPMiner shows that, pruning the search space directly
with user-speci�ed external constraints together with inher-
ent constraints is a promising approach to inhibit candidate
combinatorial explosion in data mining problems.

7. ACKNOWLEDGEMENTS
We would like to thank Roberto Bayardo for his insightful
comments which helped improve the presentation.

8. REFERENCES
[1] R Agrawal & R Srikant. Fast algorithms for mining

association rules. In Proc. VLDB, 1994.

[2] R J Bayardo. Brute-force mining of high-con�dence
classi�cation rules. In Proc. KDD, 1997.

[3] R J Bayardo. EÆciently mining long patterns from
databases. In Proc. SIGMOD, 1998.

[4] R J Bayardo, R Agrawal, & D Gunopulos.
Constraint-based rule mining in large dense databases.
In Proc. ICDE, 1999.

[5] G Dong & J Li. EÆcient mining of emerging patterns:
Discovering trends and di�erences. In Proc. KDD,
1999.

[6] G Dong, J Li, & X Zhang. Discovering emerging
patterns in real datasets. In Proc. IDC, 1999.

[7] G Dong, X Zhang, L Wong, & J Li. CAEP:
Classi�cation by aggregating emerging patterns. In
Proc. Discovery Science, 1999.

[8] L V S Lakshmanan, J Han R Ng, & A Pang.
Optimization of constrained frequent set queries with
2-variable constraints. In Proc. SIGMOD, 1999.

[9] R Ng, L V S Lakshmanan, J Han, & A Pang.
Exploratory mining and pruning optimizations of
constrained associations rules. In Proc. SIGMOD,
1998.

[10] R Rymon. An SE-tree based characterization of the
induction problem. In Proc. ICML, 1993.

[11] G I Webb. OPUS: An eÆcient admissible algorithm
for unordered search. In Journal of Arti�cial
Intelligence Research, 3:431-465, 1995.

314

