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ABSTRACT 
The ability to predict protein function from amino acid sequence 
is a central research goal of molecular biology.  Such a capability 
would greatly aid the biological interpretation of the genomic data 
and accelerate its medical exploitation.  For the existing 
sequenced genomes function can be assigned to typically only 
between 40-60% of the genes [4,8,12,7]. The new science of 
functional genomics is dedicated to discovering the function of 
these genes, and to further detailing gene function [10,27,17,6].  
Here we present a novel data-mining [24,18] approach to 
predicting protein functional class from sequence.  We 
demonstrate the effectiveness of this approach on the 
Mycobacterium tuberculosis [8] genome.  Biologically 
interpretable rules are identified that can predict protein function 
even in the absence of identifiable sequence homology.  These 
rules predict 65% of the genes with no previous assigned function 
in Mycobacterium tuberculosis (the bacteria which causes TB) 
with an estimated accuracy of 60-80% (depending on the level of 
functional assignment).  The rules give insight into the 
evolutionary history of the organism.  

Categories and Subject 
Database Applications, Learning, Life and Medical Sciences 

General Terms 
Data mining, Concept learning, Biology and genetics. 

1. INTRODUCTION 
The formation of a theory to explain a set of observations is 

central to science.  Computer based methods to assist in this 

process are becoming increasingly important [20].  Such methods 
are especially needed in molecular biology, where there is an 
overwhelming flood of new data.  Here we demonstrate the 
effectiveness of automatic scientific discovery on an important 
scientific problem.  We successfully apply a novel data mining 
approach to the problem of predicting protein functional class 
from sequence. 

To predict the biological functional class of proteins directly 
from sequence what is abstractly required is a discrimination 
function [10] that maps sequence to biological function.  

To predict protein function directly from sequence what is 
abstractly required is a discrimination function10 that maps 
sequence to biological function.  The existing sequence homology 
recognition methods can be viewed as examples of such 
functions: methods based on direct sequence similarity [23,2] can 
be considered as nearest neighbour type functions [11] (in 
sequence space), and the more complicated homology recognition 
methods based on motifs/profiles [28] resemble case-based 
learning functions [1]. The creation of annotated databases of 
protein function has now opened up the possibility of 
automatically identifying more general forms of discrimination 
function using data.  

 

2. DATA 
For analysis, we selected the tuberculosis genome, probably 

the prokaryote genome of greatest medical importance.  
According to the World Health Organization (WHO), tuberculosis 
kills 2 million people each year. Their concern about the growing 
epidemic has led the WHO to declare tuberculosis a global 
emergency [15].  

We used 3,924 genes [8] * (over 4 million base pairs) with 
functional class assignments from the Sanger Centre [14].  (Note 
that there are errors in annotation of function [5], and this adds 
“noise” to the data mining process [18]).  The assignments of 
function are organised in a strict hierarchy (tree), where each 
higher level in the tree is more general than the level below it, and 

                                                                 
* For readability reasons we used “gene” throughout the paper, 

knowing that “potenial gene” or open reading frame (ORF) 
should be used. 
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Figure 1. An example subset of the genes functional hierarchy.  This example has  

only three out of four possible classification levels. 

the leaf nodes are the individual functions of proteins.  A 
subsection of the function hierarchy is shown in figure 1. 

For example, a typical protein in the tubercle bacillus is L-
fuculose phosphate aldolase (Rv0727c fucA), its top-level class 
assignment is “Small-molecule metabolism”, its second-level class 
is “Degradation”, and its third-level class is “Carbon compounds”. 
We attempted to learn discriminatory functions for every level of 
the functional hierarchy.  Success on these different levels would 
demonstrate the generality of the approach.  

To generate the database to mine we formed a single 
deductive database of genes and their known functional 
assignments.  We then processed this data to form sequence 
descriptions of the genes.  Therefore, these descriptions are solely 
based on features that can be computed from sequence alone.  The 
most commonly used technique to gain information about a 
sequence is to run a sequence similarity search, and this was used 
as the starting point in forming descriptions.  The basic data 
structure in the deductive database is the result of a PSI-BLAST 
search [2] (we used the parameters: e = 10, h = 0.0005, j = 20, 
NRProt 16/11/98). NRProt is a protein sequence database 
merging together protein sequences with less than 100 percent 
sequence identity from a variety of multi-genome protein 
databases. Using each gene, and each protein identified as having 
sequence similarity to it, we formed an expressive description 
based on: the frequency of singlets and pairs of residues in the 
gene; the phylogeny (“family tree”) of the organism from which 
each protein was obtained - from SWISS-PROT [3] (a standard 
protein database); SWISS-PROT protein keywords (membrane, 
transmembrane, inner_membrane, outer_membrane, repeat, 
plasmid, and alternative_splicing); and the length and molecular 
weight of the gene. This description resembles a “phylogenic 

profile” [17], but is more general and expressive. In total 
5,895,649 facts were generated. Table 2 shows the available 
database facts and their description. 
 

3. DATA MINING METHOD 
We then mined this database to generate rules that predict 

protein functional class from sequence description. This was done 
using a combination of clustering and rule learning (see Figure 2).  

This hybrid approach has proved successful in the past on 
other scientific discovery tasks [9]. It is powerful because 
clustering improves the representation for learning (using the 
expressive power of inductive logic programming – ILP [19]), 
and discrimination efficiently exploits the pre-labeled examples.  
WARMR [9] is an ILP data mining algorithm that is used to 
identify frequent patterns (conjunctive queries) in the sequence 
descriptions.  In this experiment roughly 18,000 frequent queries 
were discovered. These were converted into 18,000 Boolean 
attributes for rule learning, where an attribute gets value 1 for a 
specific gene if the corresponding query succeeds for that gene.  
Conversely, if the query fails, the corresponding attribute is 
assigned value 0. 

 The machine learning algorithms C4.5 and C5 [26] were 
used to induce rules that predict function from the attributes.  
Good rules were selected on a validation set, and the unbiased 
accuracy of these rules estimated on a test set.  Rules were 
selected to balance accuracy with unidentified gene coverage.  In 
general the correct balance of accuracy and coverage for any 
particular application depends on the relative cost of making 
errors of commission and omission [25] (making incorrect 
predictions v missing genes).  The system can be tuned to select  
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Table 1. Database facts and their description. These facts are generated for each of the genes. 

Database argument Description 
hom(A)� refers to a homologous protein (A) found by PSI-BLAST.�
keyword(A, Word)� refers to a SwissProt keyword found in A.�
classification(A, Class)� refers to the phylogenic classification of the organism A came from, taken from SwissProt.�
species(A, Species)� refers to the species of A, taken from SwissProt.�
mol_wt_rule(A, Weight)� refers to the molecular weight of A: 1 very low, 2 low, 3 medium, 4 high, and 5 very high.�
amino_acid_ratio_rule(A, 
Residue, Weight)� refers to the percentage composition of the residue in the sequence.�

e_val_rule(A, Weight)� refers to the PSI-Blast sequence similarity measure (note that a low value means a high 
sequence similarity).�

e_val_gt(Value) 
e_val_lteq(Value)�

refers to the PSI-Blast sequence similarity measure, greater than or less than/equal to a 
certain value�

mol_wt_lteq(A, Weight) 
mol_wt_gt(A, Weight)� refers to the molecular weight of A being greater than or less than/equal to some value�

amino_acid_pairs_wg()� and others similar, refers to the number of pairs of these two amino acids, in this case 
tryptophan and glycine�

amino_acid_pair_ratio_qh 
(Ratio)�

and others similar, refers to the ratio of one amino acid to another in the gene, in this case 
the ratio of glutamine(q) to histidine(h). This ratio is not a percentage, not out of a hundred, 
instead it’s a ratio out of a thousand. So for example 2.8 means 0.28%.�

amino_acid_ratio_g 
(Percentage)�

and others similar, refers to the percentage composition of the residue in the sequence of 
the gene, in this case the percentage of glycine�

psi_iter_gt(Number) 
psi_iter_lteq(Number)�

refers to the number of iterations of the PSI_BLAST search (greater than or less than/equal 
to some number)�
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Figure 2. Flow chart of the data mining methodology. The genes of known functions were split randomly, one third to be held 
out for the final testing and two thirds to be used to generate prediction rules. The data used to generate the rules were in turn 

split randomly, two thirds to actually generate the rules and one third to be used as validation set for selecting good rules 
according to accuracy and coverage. After the selection of good rules, we tested their accuracy on the held-out test data, and 

also used them to predict biological function for the genes of currently unknown function (classified as “Unkown” or 
“Conserved Hypotheticals”). 
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Table 2. The number of rules found are those selected on 
the validation set.  A rule predicts more than one homology 
class if there is more than one sequence similarity cluster in 
the correct test predictions.  A rule predicts a new 
homology class if there is a sequence similarity cluster in 
the test predictions that has no members in the training 
data.  Average test accuracy is the accuracy of the 
predictions on the test proteins of assigned function (if 
conflicts occur, the prediction with the highest a priori 
probability is chosen).  Default test accuracy is the accuracy 
that could be achieved by always selecting the most 
populous class.  “New functions assigned” is the number of 
genes of unassigned function predicted. 

 

 Level 
1 

Level 
2 

Level 
3 

Level 
4 

Number of rules 
found 

25 30 20 3 

Rules predicting more 
than one homology 
class  

19 18 8 1 

Rules predicting a 
new homology class 

14 15 1 0 

Average test accuracy 62% 65% 62% 76% 

Default test accuracy 48% 14% 6% 2% 

New functions 
assigned 

886 
(58%) 

507 
(33%) 

60 
(4%) 

19 
(1%) 

 

 

 

 

 

Figure 3. Example rule found for the Macromolecule 
metabolism functional class. 

If    

the percentage composition of lysine in the gene is > 6.6% 

Then  

the ORF has the functional class “Macromolecule 
metabolism”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A more complex rule for the classification of 
“Degradation of macromolecules”. 

different balances.  The prediction rules were then applied to 
genes that have not been assigned a function. 

 

4. RESULTS 
It was possible to find good rules that predict function from 

sequence at all levels of the functional hierarchies, as shown in 
Table 2.  

The test accuracy of these rules is far higher than possible by 
chance.  Of the genes originally in the “Conserved Hypothetical” 
or “Unknown” function classes, 985 (65%) were predicted to have 
a function at one or more levels of the hierarchy. The rule learning 
data, the rules, and the predictions, are given at: 
http://www.aber.ac.uk/~dcswww/Research/bio/ProteinFunction/.   

We illustrate the value of the rules by describing rule 
TB_C50_1_26 shown in figure 3. 

This top-level rule is 85% (11/13) accurate on the test set 
(the probability of this result occurring by chance is estimated at 
1.2x10-5 as the class Macromolecule metabolism covers ~25% of 
examples).  The rule correctly predicts the following proteins 
(rpsG (S7), rpsI (S9), rpsL (S12), rpsT (S20), rplJ (L10), rplP 
(L16), rplS (L19), rplX (L24), rpmE (L31), rpmJ (L36), infC (IF-
3)).  These proteins are all involved in protein translation.  When 
the training data are included the rule covers 46 out of the 58 
proteins known to be involved in ribosomal protein synthesis and 
modification.  The two errors (of commission) made in the test 

data were groEL2 a “60 kD Chaperonin 2 gene” and Rv3583c a 
“putative transcriptional regulator”.  The rule predicts the function 
of five genes classed as “Conserved Hypotheticals” (Rv566, 
Rv854, Rv910, Rv2185, Rv2708) and ten genes classed as 
“Unknowns” (Rv123, Rv810, Rv909, Rv1893, Rv1955, Rv2061, 
Rv2517, Rv2819, Rv2822, Rv3718).  The prediction rule is 
consistent with protein chemistry, as lysine is positively charged 
which is desirable for interaction with negatively charged RNA.  
The choice of lysine over arginine for the positively charged 
residue may be connected with the high GC content of the M. 
tuberculosis genome [8] - lysine is coded by the codons AAA and 
AAG; while arg is coded by CGU, CGC, CGA, CGG; and his by 
CAT and CAC. 

Not all rules are as simple as the example in figure 3, a more 
complex rule is shown in figure 4. This rule predicts the level two 
functional class “Degradation of macromolecules“. The rule is 
62.5% accurate (5/8) on the test set. It predicts 3 genes, which are 
currently classified as “Unknown” or “Conserved Hypothetical”. 
The errors of commission are rplV (synthesis and modification of 
macromolecules), Rv1566 (Virulence) and ponA2  (penicillin 
binding protein). 

The approach described in this paper is the first that can 
systematically find rules not based on homology. To show this we 
carried out all-against-all PSI-BLAST searches for those proteins 
correctly predicted by each rule. If all the proteins could be linked 
together by PSI-BLAST scores < 10 then the proteins were 
considered homologous.  It was found that many of the predictive 
rules were more general than possible using sequence homology.  

If   
there exists a homologous protein in SwissProt with the 
keyword "membrane" and 
there exists a homologous protein in Bacillus subtilis  
and  there does not exist a homologous protein with very 
low molecular weight, a large percentage of glutamic acid, 
and medium sequence similarity  
and  there does not exist a homologous protein in SwissProt 
with good sequence similarity, low percentage of cysteine, 
the keyword "transmembrane" and a fairly high molecular 
weight 
there does not exist a firmicutes sp. protein in SwissProt 
with the keyword "transmembrane", with medium molecular 
weight, and a very high amount of low entropy sequence  
and  there exists a homologous mammalian protein in 
SwissProt with the keyword  "repeat" with very high 
molecular weight 
Then  
the ORF has the functional class "Degradation of 
macromolecules". 
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This was shown in two ways: the rules correctly predict the 
function of sets of proteins that are not homologous to each other, 
and they correctly predict the function of proteins that are not 
homologous to any in the training data (Table 1).  Such rules 
provide a way of predicting function in the absence of 
recognisable sequence homology.  The other rules, those of equal 
power to sequence homology, are also valuable as they provide a 
novel way of detecting homology. 

 

5. DISCUSSION 
The discovered rules are important in two ways: they make 

predictions that are useful in determining the functions of genes of 
currently unknown function, and they provide evolutionary 
insight.  The actual function of a gene can only be determined by 
“wet” experiment.  However, bioinformatic techniques such as 
sequence homology detection, and the prediction rules presented 
here, can make such experimental determination simpler.  It is 
clearly more efficient to test a high probability hypothesis than to 
randomly test for possible functions.  We look forward to the 
testing of our predictions by other workers, and we are designing 
automatic methods to test the rules ourselves. 

The existence of general rules for predicting biological 
function raises the question of their evolutionary causation.  How 
are such rules possible, given the notoriously complicated 
mappings between function and structure, and structure and 
sequence?  Several possibilities exist: the rules are paralogous 
[16] with homology so distant as to be undetectable by sequence 
analysis; convergent evolution has occurred, forcing proteins with 
similar function to resemble each other; or horizontal evolution 
has transferred functional related groups of protein into the 
organisms.  Evidence in favour of a role for distant homology is 
that it is possible to predict function better than random based on 
predicted secondary structure alone, and secondary structure is 
better conserved over evolution than sequence [22].  Evidence 
against this is that we have found little evidence for common 
SCOP database [21] “superfamily” and “fold” classifications for 
proteins predicted by the same rule.  Convergent evolution seems 
to be the dominant factor in rules such as TB_C50_1_26 (Figure 
3).  Evidence for horizontal transfer of genes into M. tuberculosis 
is the importance of phylogeny in many rules where a paralogous 
explanation seems to be ruled out. 

 

6. CONCLUSION 
We have demonstrated the utility of automatic knowledge 

discovery techniques by showing that they can discover prediction 
rules that are effective and of biological interest in functional 
genomics.   The data mining approach described is extendable to 
analysis of other forms of bioinformatic data, such as expression 
profiles, pathway analysis, structural studies, etc. [10,27,17,6]. 
Information from all these diverse approaches will be able to be 
combined together to produce more powerful predictions than any 
single one in isolation. 
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