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ABSTRACT
Recently, neural networks have been successfully employed to im-
prove upon state-of-the-art effectiveness in ad-hoc retrieval tasks
via machine-learned ranking functions. While neural retrieval mod-
els grow in complexity and impact, little is understood about their
correspondence with well-studied IR principles. Recent work on
interpretability in machine learning has provided tools and tech-
niques to understand neural models in general, yet there has been
little progress towards explaining ranking models.

We investigate whether one can explain the behavior of neural
ranking models in terms of their congruence with well understood
principles of document ranking by using established theories from
axiomatic IR. Axiomatic analysis of information retrieval models
has formalized a set of constraints on ranking decisions that reason-
able retrieval models should fulfill. We operationalize this axiomatic
thinking to reproduce rankings based on combinations of elemen-
tary constraints. This allows us to investigate to what extent the
ranking decisions of neural rankers can be explained in terms of
the existing retrieval axioms, and which axioms apply in which
situations. Our experimental study considers a comprehensive set
of axioms over several representative neural rankers. While the ex-
isting axioms can already explain the particularly confident ranking
decisions rather well, future work should extend the axiom set to
also cover the other still “unexplainable” neural IR rank decisions.
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1 INTRODUCTION
When using machine learning models to rank search results, the
training data (clicks, human annotations) drives the way features
are combined as relevance signals by various models, ranging from
linear regression and decision trees to deep neural networks more
recently [37, 41, 46]. On a more abstract level, by learning how
to combine features to best rank documents, a machine-learned
model indirectly encodes the query intent. Documents are then
ordered by relevance, i.e., how well they match the underlying
query intent. While such models have achieved state-of-the-art
effectiveness in ad-hoc text retrieval, their complexity makes them
difficult to interpret, up to the point that eventually some of the
reported performance gains have been called into question [28].

Axiomatic thinking on relevance scoring functions has arisen
from a similar concern regarding a lack of rigor in formulating what
makes a good result ranking. Empirically, non-optimal parameter
settings had been shown to cause existing retrieval models to per-
form poorly, resulting in heavy parameter tuning. Axiomatic prac-
titioners have hence formalized desirable, elementary properties of
ranking functions. The analysis of popular scoring functions with
respect to their adherence to axiomatic constraints has given rise to
revised scoring functions with provably superior performance [30],
re-ranking approaches that improve an existing ranking’s adher-
ence [23], as well as datasets for diagnosing retrieval models’ axiom
adherence empirically [7, 44].

In this paper, we apply established retrieval axioms to ground
the behavior of arbitrary ranking models in a well understood
(and hence interpretable) axiomatic basis. The central question that
we raise in this paper is: “To what extent can we explain neural
models in terms of the existing IR axioms?” To this end, we follow
Hagen et al. [23] and operationalize the retrieval axioms as Boolean
predicates that, given a pair of documents and a query, express a
preference for either one document or the other to be ranked higher.
Given multiple axioms, this yields a set of possibly conflicting
ranking preferences for each document pair. Thus, to explain a
given result ranking, we compute axiom preferences across all of
its constituent document pairs and then fit an explanation model,
which is here a simple classification model trained to make the
same pairwise ordering decisions as the initial ranking, given only
the axiom preferences as predictors. This approach permits various
insights into the model that produced the initial ranking: (a) the
explanationmodel’s parameters reveal the degree to which different
axiomatic constraints are important to the retrieval model under
consideration, and (b) the fidelity with which the initial ranking can
be reconstructed can point to blind spots in the axiom set, which
can help to uncover new ranking properties yet to be formalized.
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Several previous studies have used retrieval axioms to explain
or improve ranking decisions, but our work is the first to com-
bine many axioms together to specifically try to reconstruct neural
rankings in an extensive experimental study. Our paper makes the
following contributions: (1) We propose a general-purpose frame-
work to analyze arbitrary rankings with respect to their adherence
to information retrieval axioms. (2) In an extensive experimental
study on the Robust04 [52] and MS MARCO [40] test collections,
we investigate to what extent five different state-of-the-art neural
retrieval models can be explained under the axiomatic framework.1
(3) We explore notions of locality in axiomatic explanations, such
as whether different explanations apply to different queries, or to
different locations in result rankings.

Our results show that the degree to which rankings can be ex-
plained with the currently known axioms is still rather limited over-
all. The axiomatic explainability of neural rankers tends to be on
par with that of simpler classical retrieval models. Large differences
in the retrieval score, where retrieval functions are highly confident
of the relevance differences they indicate, are well explainable with
axioms, but this is much less the case for small fluctuations among
closer result documents. Interesting directions for future work thus
are the formulation of additional axioms that capture other angles
of relevance and that apply in a wide range of real-world contexts,
as well as the development of a more rigorous approach to relaxing
the preconditions of the existing axioms for a wider applicability.

2 RELATEDWORK
The fundamental task of information retrieval—extracting from
a large collection those information items relevant to a particu-
lar information need—is typically accomplished by ranking the
items in a collection according to assigned relevance scores. Most
commonly-used scoring functions such as BM25 have been de-
signed to quantify some specific, narrow notion of relevance [2, 16].
Unlike recently-popular machine learning models, axiomatic IR
aims to explain a “good” retrieval function by means of mathemati-
cally described formal constraints. Possibly the earliest ideas that
are close to “axiomatic” IR were a retrieval system complemented
with the production rules from artificial intelligence [33], which
improved the performance of a Boolean model, a formalization of a
conditional logic underlying information retrieval [51], and termi-
nological logic to model IR processes [35]. The first real mention of
the term axiom in relation to IR was introduced in a study by Bruza
and Huibers [5], who proposed to describe retrieval mechanisms by
axioms expressed in terms of concepts from the information field.

In the last decades, the number of studies developing new ax-
ioms that describe what a good retrieval function looks like, has
considerably increased. More than 20 distinct axioms have been
proposed so far, which can be divided into groups by the particular
aspect of the relevance scoring problem that they aim to formal-
ize: term frequency [14–16, 39] and lower bounds on it [30, 31],
document length [10, 14], query aspects [20, 53, 60], semantic simi-
larity [13, 17], term proximity [23, 50], axioms for evaluation [3, 6],
axioms describing properties implied by link graphs [1], axioms

1For the sake of reproducibility, the code for the experiments described in this paper
is made available at https://github.com/webis-de/ICTIR-21

Table 1: The 20 retrieval axioms included in our study;
STMC1 and STMC2 each implemented in three variants (∗).

Purpose Axioms / Sources

Term frequency TFC1 [14], TFC3 [15], TDC [14]
Document length LNC1 [14], TF-LNC [14]
Lower-bounding term frequency LB1 [30]
Query aspects REG [53], AND [60], DIV [20]
Semantic Similarity STMC1∗ [17], STMC2∗ [17]
Term proximity PROX1–PROX5 [23]

for learned ranking functions [8, 9], multi-criteria relevance scor-
ing [19], user-rating based ranking [58], translation language model
axioms [25, 43], and term dependency [12]. The majority of the
aforementioned studies consider the axioms individually.

The first large-scale study on axioms’ impact on retrieval ef-
fectiveness was published by Hagen et al. [23], who combined
23 individual axioms to re-rank top-k result sets and showed that
different axiom combinations significantly improve the retrieval
performance of basic models such as BM25, Terrier DPH, or Dirich-
letLM. We follow this approach of operationalizing retrieval axioms
as computable functions, which enables the exploitation of a large
set of axioms. However, instead of manipulating rankings to more
closely match axiomatic preferences, we reconstruct a retrieval
model’s rankings via weighted axiom preferences to better under-
stand and explain the decisions underlying the ranking function.

Recently, retrieval axioms have been used to regularize neural
retrieval models to prevent over-parameterization, improving both
training time and retrieval effectiveness [45]. Retrieval axioms have
also been applied to weight meta-learner features which predict
how to combine the relevance scores of different retrieval models
into an overall score [4]. Rennings et al. [44] have developed a
pipeline to create diagnostic datasets for neural retrieval models,
each fulfilling one axiom, which allows to detect what kind of ax-
iomatically expressed search heuristics neural models are able to
learn. The study’s diagnostic datasets focus on only 4 simple indi-
vidual axioms, which cannot completely account for neural rankers’
decisions. In a follow-up publication, Câmara and Hauff [7] extend
the idea to building diagnostic datasets for 9 axioms separately, with
a focus on BERT-based rankers. MacAvaney et al. [32] systematize
the analysis of neural IR models as a framework comprising three
testing strategies—controlled manipulation of individual measure-
ments (e.g., term frequency or document length), manipulating doc-
ument texts, and constructing tests from non-IR datasets—whose
influence on neural rankers’ behavior can be investigated. In our
study, we follow a fourth approach: reconstructing rankings based
on elementary axiomatic properties. In the process, we combine
the ideas of 20 retrieval axioms at the same time (cf. Table 1; vari-
ants of STMC1 and STMC2 are described in Section 3.1), aiming to
capture and explain arbitrary neural rankers’ decisions. While the
aforementioned studies on axiomatic diagnostics of neural rankers
typically operate in very controlled and synthetic settings, our ap-
proach provides a complementary view based on more realistic,
TREC-style queries and document collections.
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The rationales behind the decisions of complex learning systems
are also studied in the field of interpretability in machine learn-
ing [26, 59]. Recent work on extracting feature attributions using
post-hoc approximations is similar to our model of explaining doc-
ument preference pairs [18, 47–49]. However, we crucially differ
from them in two ways: we use axioms as possible explanations
and we employ a learning framework to measure the fidelity to the
original model rather than a combinatorial framework [47].

3 AXIOMATICALLY EXPLAINING RANKINGS
Our axiomatic explanation framework generates post-hoc expla-
nations for the ranked result lists produced by the retrieval model
under investigation. The two main components are a set of axioms,
and an explanation model. Figure 1 provides a high-level overview
of the framework: Given a ranked list of documents (𝑑1, . . . , 𝑑𝑘 ) and
a set of axioms {𝐴1, . . . , 𝐴𝑛}, we first compute the pairwise rank-
ing preferences for every document pair under each axiom. Thus,
each document pair (𝑑𝑖 , 𝑑 𝑗 ) is associated with an 𝑛-dimensional
vector of axiom preferences, along with its ordering in the original
ranking. The axioms are operationalized as predicates that map a
given document pair to a ternary ranking preference—prefer 𝑑𝑖 ,
prefer 𝑑 𝑗 , or prefer neither. The explanation model aggregates a
vector of such axiomatic ranking preferences to a final ordering for
a given document pair in such a way that the ranking decisions of
the retrieval model under investigation are reproduced as faithfully
as possible. The explanation model’s parameters give insights into
how the retrieval axioms contribute to the ranking under scrutiny.

3.1 Operationalizing Retrieval Axioms
While a variety of axioms for different aspects of retrieval—such as
ranking, evaluation, or relevance feedback—have been specified in
the literature, we include only those that can be restated to express
ranking preferences on pairs of documents. In operationalizing
those axioms, we follow the approach of Hagen et al. [23], but
make modifications to adapt their axiomatic re-ranking framework
to our ranking explanation setting. In our setting, each axiom 𝐴

implements a ternary predicate 𝐴(𝑑𝑖 , 𝑑 𝑗 , 𝑞) that, given a document
pair (𝑑𝑖 , 𝑑 𝑗 ) and query 𝑞, maps to a ranking preference taking on
values of 1, −1 or 0 depending on whether the axiom would rank
document 𝑑𝑖 higher, 𝑑 𝑗 higher, or has no preference on the pair.

Table 1 summarizes the retrieval axioms we employ in our study
grouped by the general notion of relevance that they capture (ax-
ioms missing from the table cannot easily be restated to express
actual ranking preferences). For example, the term frequency ax-
ioms TFC1, TFC3, and TDC constrain how the term frequency tf
should manifest in document ranking and the first of these, TFC1,
states that, given two documents of the same length and a single-
term query, the document with more occurrences of the query term
should be ranked higher [14].

The axioms are generally framed in artificial preconditions to
allow for precisely reasoning about the properties of retrieval func-
tions (e.g., TFC1 for documents with exactly the same length). How-
ever, since this limits their practical applicability, we make modifi-
cations following Hagen et al. [23]. For example, in case of TFC1,
(1) we relax the equality constraint (i.e., we consider all document
pairs with a length difference of at most 10%), (2) we strengthen

the inequality constraint (i.e., requiring at least a 10% difference
in term frequency), and (3) we generalize it to multi-term queries
(i.e., using the sum of term frequencies over all query terms). The
other term frequency axioms are modified in a similar way. As orig-
inally stated, given two equally discriminative query terms and two
same-length documents, TFC3 prefers a document containing both
terms over another that contains only one whereas for two query
terms of differing discriminativeness, TDC prefers the document
containing the more discriminative term [15]. While implementing
term discriminativeness by inverse document frequency, we again
relax the equalities and strengthen the inequalities as for TFC1 and
generalize to summing over more query term pairs.

For the axioms capturing document length, lower-bounding, and
query aspect constraints, we largely follow the operationalization
of Hagen et al. [23]. In short, LNC1 prefers the shorter document
given identical term frequency of all query terms, while TF-LNC
prefers the document with more query term occurrences assum-
ing the term frequencies of all non-query terms are the same. The
lower-bounding axiom LB1 applies when there is a query term 𝑡

such that both documents obtain the same retrieval score if 𝑡 is
removed from the query; in this case, LB1 prefers documents that
contain 𝑡 over those that do not [30]. The query aspect axiom REG
evaluates the pairwise semantic similarity of the query terms, and
prefers documents with more occurrences of the term that is least
similar to all others—in our experiments, we employ theWu-Palmer
measure for term similarity [54]—whereas the axiom AND prefers
documents that contain every query term at least once. The di-
versity axiom DIV prefers the document that is less similar to the
query (measured via Jaccard similarity in our implementation).

The semantic similarity axiom STMC1 favors documents con-
taining terms that are semantically more similar to the query terms,
whereas STMC2 requires that a document exactly matching a query
term once contributes to the score at least as much as matching
semantically related terms arbitrarily many times instead [17]. We
operationalize STMC1 and STMC2 based on the Wu-Palmer mea-
sure in the same way as Hagen et al. [23] but also additionally
explore word embedding-based term similarity measures. We thus
also have STMC1-f and STMC2-f that utilize 1 million fastText
word vectors pre-trained with subword information on Wikipedia
from 2017 [36] and STMC1-fr and STMC2-fr that utilize custom
fastText embeddings trained on the Robust04 document collection.
The term proximity axioms PROX1–PROX5 are employed in the
same way as originally proposed by Hagen et al. [23]. Beyond these,
Hagen et al. [23] also propose the axiom ORIG that simply repro-
duces the ranking preferences of the original retrieval model. While
this axiom does not immediately apply to the explanation setting,
we do include its retrieval model-specific versions in some experi-
ments in order to study how one retrieval model’s decisions might
be explained in terms of those of another.

3.2 Aggregating Axiom Preferences
Once the axiomatic ranking preferences have been computed for a
set of axioms and document pairs, we fit an explanation model to
reconstruct the original ranking based on the axiomatic preferences.
On the level of pairwise ranking decisions, this is a binary classifi-
cation task. While a wide range of different models can accomplish
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Figure 1: Overview of the axiomatic explanation pipeline. (1) The retrieval model R ranks a document set of size k. (2) Axioms
produce ranking preferences for all document pairs. (3) A simple explanationmodel, trained to recreate the ordering produced
by R using the axiom preferences as features, reveals which axioms generate the ranking.

this task, there is a clear case for using models that are simple
enough to be inspected for insights on how exactly the retrieval
axioms interact to generate the ranking under scrutiny. There is a
trade-off between the fidelity of the explanation model—i.e., how
well it reconstructs input rankings—and the degree to which it can
be inspected: higher-capacity models tend to be less interpretable.

The goal of our present study is to test the feasibility of the
axiomatic explanation approach and to examine the completeness
of the axiom set. We thus employ a random forest model for ax-
iom preference aggregation. This is at the higher-fidelity end of
the spectrum but still offers useful, though limited, facilities for
inspection in terms of feature importance. Once a more comprehen-
sive axiom set is established—the need for this is indicated by our
current results—, lower-capacity models with richer interpretabil-
ity become reasonable. For instance, in a linear model like logistic
regression, both the magnitude and signs of the parameter vector
would be meaningful, while a single shallow decision tree could be
interpreted as a Boolean formula that explains a given ranking.

4 EXPERIMENTAL SETUP
The experimental study described in this section focuses on two
research questions: (1) To what extent can the axioms currently
known from axiomatic IR faithfully reconstruct the decisions made
by neural ranking models, and how does this compare to classical
retrieval scoring functions? (2) Which retrieval axioms are most
important in what scenarios, and what is the relationship between
axiomatic explanations and ranking quality?

In order to answer these questions, we apply our axiomatic ex-
planation framework on two standard evaluation datasets, and
examine the top 1000 retrieved results across 200 different queries
with three classical and five neural machine-learned retrieval mod-
els. For each ranking, we sample document pairs from the set of
all pairwise orderings, and generate axiomatic ranking preferences.
On these, we fit a random forest-based explanation model.

4.1 Collections
Neural ranking models need large amounts of labeled training data
to produce rankings substantially superior to classical retrieval
models [56], but not many training collections are available. We
follow recent trends and use the Robust04 and MSMARCO datasets.
Both are standard TREC collections containing relevance judgments

and due to their distinctive size and characteristics—in terms of
constituent documents and the associated search queries—allow us
to test our approach in various scenarios.

The Robust04 dataset was developed to improve the consistency
of retrieval techniques on difficult queries [52]. It offers a traditional
TREC-style evaluation setup of a document collection (528,155 doc-
uments from the Financial Times, the Federal Register 94, the LA
Times, and FBIS), a set of topics (250 topics with title and description
representing information needs and a narrative detailing which
documents are considered relevant), and manual relevance judg-
ments from human assessors. We use the short keyword-style titles
(e.g., “most dangerous vehicles”) as queries in our experiments and
randomly sample 150 topics for training the neural rankers and the
remaining 100 for our explainability experiments.

The MS MARCO dataset—originally only a collection for pas-
sage ranking and question answering—was recently used in the
TREC 2019 and 2020 Deep Learning tracks since it provides large
amounts of labeled data [38]. We use the data from the document
retrieval task that provides an end-to-end retrieval scenario for full
documents similar to Robust04. The dataset consists of 3.2 million
web documents and 367.000 training queries. Relevance labels are
derived from the labels of the associated passage retrieval dataset
under the assumption that a document with a relevant passage is a
relevant document. While being a potential source of label noise,
this does not constitute a hindrance to our experimental study,
since we are not interested in evaluating the effectiveness of the
trained models, but in explaining how they reach their ranking
decisions. We index the concatenation of the URL, the title, and the
body text of each document and randomly sample 100 of the 200
official test queries from the document retrieval task of the Deep
Learning track for our explainability experiments—training of the
neural ranking models described in the next section. Note that the
MS MARCO queries are notably longer (e.g., “what are the effects
of having low blood sugar”) than the Robust04 queries.

4.2 Ranking Models
In our study, we apply those neural ranking models on each dataset
that have been prominently applied in the respective setting in
previous work [11, 21, 34, 42, 57]—leaving a larger study with all
rankers on both datasets for future work. For comparison, we also
add three classical retrieval models.
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On Robust04, we study three pairwise neural ranking models.
(1) MatchPyramid [42] uses a query-document interaction matrix
as input to a convolutional neural network to extract matching
patterns; we employ the cosine similarity variant (referred to as MP-
COS henceforth), which performed best in preliminary experiments.
(2) DRMM [21] deploys a feed-forward neural network over query-
document count histograms to output a relevance score. (3) PACRR-
DRMM [34] combines the PACRR [24] model (which uses CNNs
with different kernel sizes to extract position-aware signals from
n-gram patterns) with the aggregation of DRMM.

The neural models were set to re-rank the top-1000 results
of BM25. We trained DRMM and MP-COS using the MatchZoo
toolkit [22], fine-tuning according to the hyperparameters reported
in the respective publications, and for PACRR-DRMM, we used its
authors’ implementation.2 For all models, we used word embed-
dings fitted on Robust04, and labeled training data from the TREC
Robust track. Our explainability experiments are run on the result
sets of the 100 queries held out from the ranking model training.

On MS MARCO, we study two BERT-based ranking models.
(1) DAI [11] is trained by fine tuning BERT to predict passage
level relevance; we use the MaxP variant, where document rele-
vance is the maximum of its passage-level relevances (DAI-MAXP).
(2) BERT-3S [57] aggregates top-𝑘 sentence scores, evaluated by
a transfer model,3 to compute document relevance scores. Both
models fine-tune a pretrained BERT model during training, and
then use an aggregation procedure to predict document relevance;
for more details on their training, we refer readers to the respective
original publications. For our experiments, we used the MSMARCO
training set from the TREC 2019 Deep Learning track, and chose
the best performing models according to MAP calculated on the
corresponding validation set. Our explainability experiments are
run on the results sets of 100 queries from the MS MARCO test set.

For the explainability experiments, we complement the neural
ranking models with the classical retrieval models BM25, TF-IDF,
and PL2—all parameters set to their defaults according to the im-
plementation in the Anserini toolkit [55].

4.3 Explanation Parameters
For our experiments, we instantiate the axiomatic explanation
framework described in Section 3 with 20 axioms: the 16 axioms
shown in Table 1 and the aforementioned 4 embedding-based vari-
ants for the semantic-similarity axioms STMC1 and STMC2. We
operate on the top-1000 results of each ranking, but sample only a
subset of all constituent document pairs. Based on the assumption
that explanations of the top ranks are of the most interest, we follow
a non-uniform sampling strategy that includes all pairs of docu-
ments from the top-20 ranks, plus 1% of all remaining pairs sampled
uniformly at random. We instantiate the explanation model as a
random forest with 128 trees of maximum depth 20.

The input to the explanation model is a set of pairwise rank-
ing decisions made by the retrieval model to be explained, at a
scope that depends on the granularity of the explanation model
(Section 4.4). This input dataset is randomly split into ten folds

2https://github.com/nlpaueb/deep-relevance-ranking
3We fine-tuned this model using MS MARCO; Microblogs were not used.

which are alternately used to fit the explanation model, and to eval-
uate its explanation fidelity, in a standard ten-fold cross-validation
setting. Every individual instance comprises the identifiers of the
two documents involved, the ranking preferences for this pair for
each of the 20 axioms, and the ranking preference of the retrieval
model to be explained. All experiments use the latter ranking prefer-
ence as the dependent variable for the explanation model to predict
and the axiomatic ranking preferences as independent variables.
Note that if an instance for document pair (𝑑𝑖 , 𝑑 𝑗 ) is included, so
is the instance for pair (𝑑 𝑗 , 𝑑𝑖 )—with inverted preferences. Both
instances forming such mirrored pairs are always assigned to the
same cross-validation fold to avoid train-test information leakage.

4.4 Explanation Model Locality
To answer our research questions related to the degree of locality at
which axiomatic explanations apply, we train explanation models
not only at the scope of the full ranking, but also at the scope of
subsets of the ranking. Overall, we consider three types of locality:
(1) locality by query, (2) locality by ranking position, and (3) locality
by score differences. The distinction between ranking and score
difference is useful to incorporate a notion of degree of certainty
of the ranking model—a ranking assigns documents to different
positions even if they obtain the same score. We create 24 bins of
approximately the same size for locality by ranking position and
for locality by score differences, and we combine the these with
locality by query to obtain five binning strategies in total that we
use to select documents to train our explanation models.

The left-hand side of Table 2 illustrates five different experi-
ment configurations resulting from this setup, which fit explanation
models at the following scopes: (1) one model per query, yielding
100 explanation models per retrieval model and dataset; (2) one
model per one of the 24 bins of the ranking differences across all
queries; (3) one model per one of the 24 bins of min-max normal-
ized differences in retrieval score across all queries; (4) one model
per combination of query and rank-difference bin; (5) one model
per combination of query and score-difference bin. The first two
columns of Table 2 (“Scope” and “Per Retrieval Model”) show the
scopes of the explanation models as described above, along with the
number of explanation models per retrieval model resulting from
the respective granularity level. The next two columns (“Train” and
“Test”) show the average number of training and test instances per
cross-validation fold for each of these explanation models. Note
that differences—mostly in the number of the most finely-granular
explanation models—arise from the fact that not every retrieval
model returns the full top-1000 results for every query. The values
shown in the table are averaged over all retrieval models.

5 RESULTS
The “Explanation Fidelity” columns of Table 2 show to what extent
our axiomatic explanation framework can characterize three clas-
sical retrieval models (BM25, TF-IDF, and PL2) and several neural
rankers on the Robust04 and MS MARCO datasets. Explanation
fidelity is measured as the accuracy of the explanation model in
terms of reproducing the retrieval model’s ranking decisions, macro-
averaged over the ten cross-validation folds and over the number
of explanation models (column “per Retrieval Model” in Table 2).

5
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Table 2: Overview of the ranking explanation experiments. Explanation fidelity is measured as the proportion of document
pairs ordered correctly, and is averaged over ten cross-validation folds across all models evaluated in the corresponding row.

Explanation Models Instances per Model Explanation Fidelity
Scope per Retr. Model Train Test Classical Retrieval Models Neural Retrieval Models

Robust04 BM25 TF-IDF PL2 MP-COS DRMM PACRR-DRMM
query 100 8,943 1,279 0.75 0.66 0.78 0.67 0.68 0.72
rank-diff bin 24 38,213 4,380 0.71 0.63 0.77 0.59 0.61 0.67
score-diff bin 24 38,327 4,265 0.72 0.64 0.78 0.59 0.61 0.68
query, rank-diff bin 2,368 384 44 0.73 0.64 0.77 0.65 0.66 0.70
query, score-diff bin 2,394 383 44 0.74 0.65 0.79 0.64 0.66 0.70

MS MARCO BM25 TF-IDF PL2 BERT-3S DAI-MAXP
query 100 8,936 1,278 0.64 0.60 0.63 0.61 0.59
rank-diff bin 24 38,208 4,350 0.60 0.56 0.59 0.57 0.54
score-diff bin 24 38,280 4,278 0.61 0.56 0.59 0.59 0.55
query, rank-diff bin 2,400 382 44 0.62 0.58 0.61 0.60 0.57
query, score-diff bin 2,376 386 44 0.63 0.60 0.62 0.61 0.58

5.1 Overall Explanation Fidelity
We achieve explanation fidelities of 0.54 and higher for all exam-
ined ranking models under all considered parameters. The classical
retrieval model PL2 achieves the best explainability of nearly 80%
on the Robust04 dataset, where the explanation granularity makes
little difference. This high accuracy indicates that the limited set
of simple retrieval axioms—although individually comprehensible
for humans—can be combined to explain at least some of these
relatively complex ranking formulas. The BM25 model is nearly as
accurately explainable as PL2, even though BM25 can be considered
more complicated since it has two tunable parameters, and PL2 has
none. Rankings produced with TF-IDF illustrate that the simplic-
ity of the ranking model does not guarantee good explainability.
The accuracy of the TF-IDF explanations varies only slightly over
different explanation model scopes, which is an observation that
repeats for all classical ranking models under consideration.

By contrast, the accuracy often varies more for different expla-
nation scopes in case of rankings produced by neural models. We
find that this does not pose a problem, since the simple query-level
granularity is always a reasonable choice that often outperforms
more complicated setups like binning by rank difference. In the
end, the scope of the explanation model does not strongly influence
the fidelity of the explanations for any retrieval model. Fitting one
explanation model per ranking appears to be the most straight-
forward approach, and in most cases the best-performing one.

The explanation fidelity of all neural ranking models under in-
vestigation on Robust04 is within the range of the fidelities obtained
for the classical models TF-IDF and BM25. PACRR-DRMM reaches
an accuracy of 0.72, almost at the level of BM25. Similarly, rankings
from MP-COS and DRMM obtain accuracies slightly above TF-IDF,
but both almost double the accuracy difference across model scopes.

On MS MARCO, the explainability for all classical retrieval mod-
els is much lower than on Robust04, especially for PL2. As outlined
in Section 4.1, the two collections significantly vary in terms of size
and query characteristics, which may explain the drop in fidelity.

The neural rankers tested on MS MARCO also achieve poorer ex-
planation fidelities compared to those tested on Robust04, but are
not directly comparable. The BERT-3S model attains slightly better
explanations than DAI-MAXP across all explanation model scopes.
For all retrieval models tested on MS MARCO, the query-scope
explanation models perform best.

Due to our sampling strategy, the explanation model solves a
balanced binary classification problem, where an accuracy of 0.5
corresponds to failure to explain the given ranking decisions better
than random chance. As a sanity check, we apply the explanation
model also to randomly-shuffled variants of the rankings from the
previous experiment. In this setting, the explanation fidelity re-
mains consistently below 0.52 everywhere. Thus, our axiomatic
framework explains all retrieval models at least somewhat bet-
ter than random chance. However, especially for the MS MARCO
rankings, explanation fidelity is very limited. Going forward, we
investigate the aggregated results from Table 2 in finer detail to bet-
ter understand in what contexts the axiomatic explanation models
perform well, and which axioms are responsible.

5.2 Explanation Fidelity by Score Difference
An initial comparison of the explanation models at rank-difference
scope to those at score-difference scope indicates that the score
difference is slightly more useful both when training explanation
models as well as when applying those models to explain rankings.
This is expected, as a difference in rank does not necessarily corre-
spond to a high confidence of the ranking model in the difference,
since it does not take score ties into account [27]. For this reason,
we proceed with the score-difference based binning.

To better understand how locality within the ranking might
affect the fidelity of our axiomatic explanations, we inspect the
performance of the query-level explanation models on the level
of individual bins of the pairwise score differences produced by
the studied retrieval models. For each dataset and retrieval model,
we employ the 100 explanation models of the “query” scope (cf.
Table 2) and subdivide the document pair instances from the test
folds into 24 bins according to the min-max normalized difference in
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Figure 2: Explanation fidelity by score difference per query on Robust04 (left) and MS MARCO (right).

retrieval score. The bin edges are chosen in such a way that all bins
contain the same number of instances on average across queries.
We then compute the explanation fidelity for each bin separately
and macro-average the results across the testing folds and queries.

Figure 2 shows the explanation fidelity by the score difference
binning per query as one line for each retrieval model’s averaged ex-
planation fidelities. Solid lines represent the classical retrieval mod-
els, and dashed lines the neural ones. The bands indicate 95% confi-
dence intervals across queries. Small changes in a retrieval model’s
scores are hardly ever well explainable. This indicates that if the
retrieval model is uncertain about a document pair and assigns a
small score difference, this pair will also be hard to explain; large
score differences, by contrast, will be much more explainable.

The increase in explainability with increasing score difference is
more pronounced for Robust04; the explanations on both datasets
perform pretty poorly at the low score difference end. This indicates
that the better explainability of Robust04 rankings (Table 2) mainly
results from document pairs far apart in retrieval score, while for
the larger MS MARCO collection the probably much larger clusters
of highly-similarly scored documents may be more problematic.

For a deeper look into what the axiomatic preferences actually
explain, we examine the feature importance of the axioms in the
random forest explanation model. To this end, we fit the explana-
tion models on four more coarse-grained bins over the min-max
normalized retrieval scores, again chosen to contain approximately
the same number of instances. In this setting, we examine which
axioms account for small score differences of 12.6% or less, mid-
dling differences from 12.6% to 25.2%, and from 25.6% to 50%, as
well as large differences greater than 50%. We perform this analysis
on the Robust04 dataset due to its better overall explainability. To
quantify the feature importance of an axiom 𝐴, we measure the
mean decrease in Gini impurity averaged over all decision trees in
the ensemble, and over all splits where 𝐴 is used, weighted by the
number of training instances involved in the split [29].

Table 3 shows the mean decrease in impurity of the three most
important axioms for each combination of score difference bin
and retrieval model. Most strikingly, we found a large degree of
overlap among nearly all investigated retrieval models, and across
the majority of the score difference bins. The query aspect axiom
REG features prominently; while this axiom rewards occurrence
of the most “outlier” query term in result documents, the mere

fact that it directly rewards query term occurrence may suffice to
make it feature prominently in axiomatic explanations. The term
proximity axiom PROX4 contributes to the axiomatic explanations
in almost all cases. As originally formulated [23], PROX4 rewards
the occurrence of close groupings of all query terms with few non-
query terms in between. None of the classical retrieval models
incorporate notions of term proximity, but meeting the PROX4
constraint implies that a document contains all query terms. The
diversity axiomDIV, which penalizes Jaccard similarity to the query,
constitutes a useful feature for most retrieval models and score
differences, but since the explanation models are based on decision
trees, they will likely use violations of the DIV axiom as a positive
signal, as this is more in line with the behavior of the classical
retrieval models. By further simplifying the explanation model to,
for example, a regression model, such effects will be apparent in
the algebraic signs of the parameters.

The rankings produced by the PL2 retrieval model, which tend
to be best explainable overall on Robust04, tend to match the same
axioms as other retrieval models for small score differences. How-
ever, for large score differences of 50% and more, PL2 has no overlap
among the top three axioms with any other model, while all other
models share the same top three axioms in this range. Interestingly,
two variants of the semantic matching axiom STMC1 feature promi-
nently for PL2 in this range, even though the PL2 scoring function
considers exact matches only. It seems that the document property
rewarded by STMC1—the presence of terms semantically similar to
query terms—correlates with the divergence from randomness of
the term frequency of query terms, which PL2 measures.

5.3 Ranking Quality and Explanation Fidelity
Over all Robust04 queries, we observe weak but consistently posi-
tive correlations between retrieval model effectiveness as measured
by nDCG and the explanation fidelity of the query-scoped explana-
tion models (Spearman’s correlations of 0.16 for DRMM, 0.26 for
MP-COS, and 0.2 for PACRR-DRMM). Table 4 shows some exam-
ples: the good rankings for queries like 425 or 612 tend to be much
better explainable than the worse rankings for queries like 344 that
are not well-explainable. However, there are notable exceptions like
query 367 on which no system performs particularly well in terms
of nDCG but the explanation fidelity is high across all models.
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Table 3: Axiom importance for explanation fidelity on RO-
BUST04 in terms of mean decrease in impurity for the top
three axioms across min-max normalized score difference
bins (PACRR-DRMM denoted as PACRR for brevity).

Diff. ≤ 12.6% 12.6% < Diff. ≤ 25.2%

REG PROX4 LNC1 DIV LB1 REG PROX4 LNC1 DIV

BM25 0.14 0.13 0.17 0.16 0.16 0.13
TF-IDF 0.15 0.12 0.12 0.15 0.12 0.15
PL2 0.15 0.13 0.11 0.14 0.15 0.13
MP-COS 0.16 0.11 0.11 0.17 0.11 0.11
DRMM 0.16 0.11 0.11 0.16 0.11 0.11
PACRR 0.14 0.12 0.12 0.15 0.14 0.11

25.2% < Diff. ≤ 50% 50% < Diff. ≤ 100%

REG PROX4 PROX5 LNC1 DIV REG PROX4 PROX5 DIV STMC1-f STMC1-fr

BM25 0.21 0.16 0.09 0.28 0.16 0.15
TF-IDF 0.16 0.13 0.11 0.23 0.14 0.15
PL2 0.11 0.11 0.20 0.25 0.13 0.13
MP-COS 0.20 0.13 0.11 0.31 0.14 0.11
DRMM 0.19 0.12 0.11 0.28 0.14 0.18
PACRR 0.20 0.15 0.11 0.29 0.15 0.17

The top half of Table 5 shows the first ten results of the DRMM
ranking for query 367, along with our axiomatic explanations illus-
trated as a summary aggregating how many axioms would rank a
particular result document in the same position, higher, or lower
compared to the system ranking. Note that no axiom expresses
a preference for every document pair—in fact, the total number
of preferences is usually way lower than the actual number of
20 axioms. The last column illustrates the ranking preferences of
individual axioms, as they relate to explaining the position of the
document in the current row. Out of all axioms with any ranking
preference regarding the row’s document, we show the top three
by how much they support or oppose the document’s rank.

The many non-relevant top-10 results for query 367 can be ex-
plained by the specifics of the TREC topic. While DRMM only saw
the single-term query “piracy,” the assessor instructions clarify that
traditional high-seas piracy is meant, but not computer piracy as
covered in many of the top-10 documents. The DRMM ranking is
best explained by the REG and DIV axioms that may not really
be the most “intuitive” choices for single-term queries. Still, REG
degenerates to simply preferring documents with more query term
occurrences for single-term queries which then “makes sense” for
query 367. However, the agreement between the axioms and the
top-10 ranks is rather poor; the overall good explanation fidelity
comes from more distant pairs beyond the top ten results.

The lower half of Table 5 shows the top-10 DRMM results for the
two-term query 425 “counterfeiting money”. Here, DRMM performs
considerably better and there also is a better agreement between
the axioms and the top-10 ranks—with the term proximity axioms
being the most important to explain the ranker’s decisions.

5.4 Limitations and Summary
The results of the preceding analysis indicate that while good ex-
planation fidelity is possible in some contexts, the reason why
axiomatic explanations work at all can be somewhat incidental to
the criteria employed by the retrieval model to be explained. In this
sense, not much can yet be said on what brings about the ranking

Table 4: Explanation fidelity and retrieval effectiveness for
selected Robust04 queries (PACRR-DRMM as PACRR).

Q
ue

ry

Explanation fidelity Topic title nDCG
MP-COS DRMM PACRR MP-COS DRMM PACRR

344 0.55 0.57 0.60 Abuses of E-Mail 0.27 0.26 0.33
352 0.56 0.64 0.61 British Chunnel impact 0.17 0.15 0.15
356 0.73 0.61 0.60 Postmenopaus. estrogen Britain 0.10 0.15 0.10
367 0.74 0.82 0.87 Piracy 0.34 0.29 0.31
399 0.61 0.57 0.71 Oceanographic vessels 0.28 0.30 0.28
409 0.84 0.81 0.62 Legal, Pan Am, 103 0.24 0.35 0.44
425 0.78 0.81 0.85 Counterfeiting money 0.74 0.77 0.75
612 0.80 0.81 0.85 Tibet protesters 0.46 0.57 0.54
618 0.81 0.82 0.83 Ayatollah Khomeini death 0.52 0.41 0.44
684 0.55 0.67 0.66 Part-time benefits 0.26 0.41 0.39

decisions of the more inscrutable neural rankers, except that similar
criteria to classical retrieval scenarios clearly apply. However, we
also do find evidence that something else is at play. In an experi-
ment with versions of the ORIG axiom [23] expressing the ranking
preferences of the classical retrieval models, all the classical mod-
els are highly effective at explaining each other’s decisions. The
full axiom set of the 20 before mentioned axioms extended by two
axioms each expressing the rank preferences of the respective two
not-to-be-explained classical models reaches explanation fidelities
above 99% for the classical models. Still, the explanation fidelity for
the neural models increases only moderately.

We thus hypothesize that formulations we did use for the 20 ax-
ioms still lack some reliable indicators for some basic relevance
signals used by classical retrieval models. For instance, even though
there are axioms capturing term frequency, their current formula-
tion might not be very useful in practice. To test this, we investigate
how often the individual axioms’ preconditions are satisfied, and
find that the 10% relaxation of equality constraints—we used it fol-
lowing Hagen et al. [23]—may still be too strict. In an experiment
on Robust04, we find that the term frequency axioms’ document
length precondition is satisfied only in approximately 7% of the
document pairs, the preconditions of LNC1 only in 9%, the proxim-
ity axioms PROX1–3 can be applied to only 21%, and axiom LB1 to
only 36% of the document pairs, while the remaining axioms apply
to 90% or more of the document pairs.

In summary, we find that large differences in retrieval score can
be reasonably well explained with the simple axiomatic feature set
employed in our study. Especially for the MS MARCO dataset, the
explainability does not depend very much on the specific retrieval
model used to produce the ranking, and across all datasets, the sim-
ple setup of training one explanation model per query outperforms
more complicated binning approaches, although binning may still
be useful to understand model behavior across levels of score dif-
ferences. However, a closer investigation of this behavior indicates
that our current axiom set does not fully capture the scoring cri-
teria of most ranking models, one possibly reason being the strict
preconditions contained in several of the axioms.

6 CONCLUSION & FUTUREWORK
We have introduced an axiomatic framework to explain the result
rankings of information retrieval systems in terms of how well a
system’s ranking decisions adhere to a set of axiomatic constraints.
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Table 5: Example rankings with axiomatic explanations. (Non-)relevant Document IDs have a suffix + (−). Axiomatic expla-
nations show how many axioms would rank this result the same (⇔), higher (↑) or lower (↓), followed by up to three most
relevant axioms, and how many other results they rank the same (superscript) or differently (subscript).

System: DRMM Query: 367 “piracy” Axiomatic explanation
Rank Docid Content ⇔ / ↑ / ↓ Most relevant axioms

1 FT944-16684− Software companies offer rewards in anti-piracy drive – Leading software compan. . . 1 / 0 / 1 REG9
0 DIV3

6
2 FT931-8281− Survey of Personal and Portable Computers (21): Tougher times for pirates / a lo. . . 2 / 0 / 1 REG8

1 DIV4
5 LNC110

3 FT934-14966− Sixties buccaneer deals in high-tech piracy – In his days as a radio caroline p. . . 3 / 0 / 3 DIV4
5 REG3

5 STMC210
4 FT911-1567− A rich haul from the sound of music: the illicit copying and sale of recorded mu. . . 3 / 1 / 0 REG7

2 DIV4
5 LNC110

5 LA032889-0045− Busting cable pirates; simi valley piracy case is one of the first to result in . . . 3 / 1 / 0 REG6
1 DIV4

5 LNC120
6 FBIS3-43017− Computer piracy in russia is a widespread phenomenon. the world average ratio of. . . 5 / 1 / 0 REG6

1 DIV3
5 LNC110

7 FBIS3-42979− Computer piracy in russia is a widespread phenomenon. the world average ratio of. . . 2 / 1 / 0 REG6
1 DIV3

5 LNC110
8 FT923-9880+ Jakarta sinks plan to combat piracy – Plans for an international centre to figh. . . 5 / 0 / 0 REG8

1 DIV8
1 STMC220

9 FT944-9277− UK company news: BSkyB says piracy could undermine float confidence – British s. . . 2 / 1 / 0 DIV8
1 REG8

0 LNC101
10 FT924-15875− Piracy warnings – A 24-hour centre to counter piracy in the seas of south-east . . . 2 / 0 / 0 DIV9

0 REG9
0

System: DRMM Query: 425 “counterfeiting money” ⇔ / ↑ / ↓ Most relevant axioms

1 FBIS3-58171+ The head of the gang that wanted to circulate some 970,000 counterfeit dollars i. . . 6 / 0 / 5 PROX581 PROX372 STMC1_f72
2 FBIS4-46741+ Crime Counterfeiting is probably one of the world’s oldest and most widespread t. . . 10 / 0 / 1 PROX272 PROX372 REG7

2
3 FBIS4-26260+ The Hongqiao District people’s court examined and concluded a case of traffickin. . . 5 / 0 / 5 PROX472 PROX572 PROX272
4 LA091590-0091+ PLUMBERS DISCOVER CASH FLOW PROBLEM IN SEWER; COUNTERFEITING:. . . 7 / 2 / 0 PROX472 PROX572 PROX163
5 FBIS3-54773+ On 25 December a criminal gang of six Chechnya inhabitants was arrested in St. P. . . 7 / 1 / 2 PROX472 PROX572 REG5

4
6 LA102189-0077+ CALIFORNIA IN BRIEF; MODESTO; MAN INDICTED IN COUNTERFEITING. . . 7 / 3 / 0 PROX471 PROX563 PROX163
7 FBIS4-47199+ The number of counterfeit ruble bank notes, bank notes of convertible currency, . . . 7 / 4 / 0 PROX581 STMC163 PROX461
8 FBIS4-58263+ Counterfeit, 1990-issue $100 bills have recently found their way onto the Jorda. . . 6 / 4 / 0 PROX472 REG7

2 PROX371
9 FBIS4-59139+ For some time, Tel Aviv has anxiously been raising with Egyptian politicians an . . . 10 / 1 / 0 PROX181 PROX381 PROX281
10 LA010390-0055− RIVAL ATHLETIC SHOE MAKERS FORMED AN ALLIANCE TO BATTLE COUNT. . . 6 / 5 / 0 PROX190 PROX481 PROX581

Instantiated with a set of 20 axioms from the literature and a ran-
dom forest model to reconstruct pairwise orderings from axiomatic
ranking preferences, we have demonstrated our suggested frame-
work’s general capacity to explain rankings in an experimental
study on the Robust04 and MS MARCO test collections. The re-
sults show that axiomatic explanations for eight different retrieval
systems—five of them complex deep neural network-based ranking
functions and three classical scoring functions—work reliably for
document pairs with very different retrieval scores (i.e., correspond-
ing to a high confidence in a difference in relevance). Pairs with
more similar retrieval scores are more difficult to explain—not too
surprising given the rather few retrieval aspects that the 20 axioms
do cover. Especially axioms with a precondition constraining the
documents’ length difference can rarely be applied, even when this
constraint is relaxed to allow for a 10% difference, as was suggested
in previous studies. Further relaxing or even dropping precondi-
tions entirely may be an easy remedy, but also a vast departure
from the original axioms and their formalization of the constraints
they capture. Instead, it seems desirable to formulate new axioms
that capture the same ideas in a more practically applicable way,
or that capture retrieval constraints not yet covered by the known
axioms, and to develop a weighting scheme that can quantify the
degree to which preconditions are satisfied.

The explanation fidelity on the smaller, more genre-focused
Robust04 collection with its shorter queries is superior to that on
theMSMARCO dataset. Further investigation into the causes of this
discrepancy is warranted, but the vastly different characteristics
of the respective queries and documents seem likely candidates.

The explainability of neural rankers is mostly on par with that
of classical retrieval functions, and there are notable overlaps in
the axioms that are most useful to the explanation models. Still,
the “known” and studied axioms do not cover a range of aspects
important tomodern search engines such as the timeliness of results,
stylistic and readability considerations, or how well some results
match user preferences expressed through previous interactions.

While formalizing and operationalizing axiomatic constraints for
such properties certainly seems worthwhile, such an endeavor was
beyond the scope of our paper. Even though we can demonstrate
promising first steps to axiomatically explain retrieval systems’
result rankings, the addition of further well-grounded axiomatic
constraints capturing other retrieval aspects seems to be needed to
further improve the explanations. Its current limitations notwith-
standing, we consider our approach a promising complement to
the more tightly-controlled studies from previous work [7, 32, 44].
While the latter shed light on the general principles under which
complex relevance scoring models operate, our axiomatic recon-
struction framework could help IR system designers—or even end
users—make sense of a concrete ranking for a real-world query.
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