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In numerical applications, one needs sometimes a point
z* with F(z*) # 0, if F # 0. The usual procedure which
helps in exact arithmetic (at most deg(F) unsuccessful tri-
als) cannot be applied, since small values F(z*) ~ 0 are
numerically useless. Hence the problem is how to find an z*
with |F(z")| in a reasonable order of magnitude compared
to a norm of F' # 0. In this exposition, I describe two ways
of finding good points z*.

The appropriate norm in this context is certainly the
maximum norm over an interval or a compact region in
the complex plane and z* chosen from that region. How-
ever, the computation of this norm requires the solution of
a maximum problem. Therefore it is more convenient to
use a norm of the coefficient vector for fixing the norm of
the polynomial and to use known results on the comparison
of different polynomial norms like in the book [2]. Unfor-
tunately, in [2] the maximum norm for polynomials is not
considered. In the formulas (2) and (6) below, I compare a
maximum norm with the euclidean norm. I hope, that the
beauty of the following identity (1) and its elegant proof is
also of some interest for the reader.

In Schénhage’s article on quasi-gcd computations [4] =
is constructed by means of the identity

n 1 N-1
2 _ i 2
> e’ = w Z |F(w”)]
v=0 =0
where

)n<N

T
= E a,z", w—exp(

v=0

F(z)

This identity says, that the squared euclidean norm of the
coefficient vector is the arithmetical mean of the values
|F(w?)|?, 5 = 0,...,N —1. (1) can be proved by using
properties of the primitive N-th root w. I found a more
direct proof of this formula, which goes as follows.

Proof. Let N € IN and w = exp(%5t). Then defice the
N X N-matrlx Q= (W e ',- It is well known that with

(w’k) o the identity

Q0 =N-I

Hence the symmetrlc
,N—1

holds, see for instance [1,p. 131].
matrix —Q is unitary. Let a, :=0forv =n+1,.
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and define

M, = (ao,... ,aN_1).
aN-1

Then the matrices M; and

M, \/—QMIQ\/— N(F(WJ)F(W ))],k =0
are similar. Therefore
n N-1
VZ_Q{a.,[ = trace(My) = trace(Ms) = i Zo |F(w?)]

Corollary 1. Let [Fll2 := /30 _q [av]?, where

F(z) =37 _ya,2", and [|Flleo = maz{ |F(2)] : |z] < 1}.
Then
1
ﬁ“F”w SIFNl2 < 1Floo- (1)

Proof. By the maximum principle for holomorphic func-
tions, ||F|lec = |F(e*)| for a real t. Define F; by Fi(z) :=
F(ze"). Then |Flz = [|Fill2 and |Fllco = |Felloo = |F(1).
The application of (1) with N =n+ 1 on F; gives

—1|Ft(1)| <IFlE = —— Z]Ft(w’)l

2o = IFll%

whence the assertion follows.

Both bounds are sharp. The upper bound because of
F =1, the lower because of F(z) = >.7_, 2", since then
[[Fllc = F(1) =n+1 and ||F|l2 = vn + 1.

Now, the problem we started with can be solved by se-
lecting as z* an w® such that |F(w’°)|2 is not less than the
arithmetic mean of all |[F(w’)|?, § =0,...,n. Then
SIF@E") < 1Flloo

1
ﬁ“ﬂ(oo (2)

and obviously ||F||2 < |F(z*)].


http://crossmark.crossref.org/dialog/?doi=10.1145%2F347127.347131&domain=pdf&date_stamp=1999-09-01

An identity using only real points similar to (1) can be
obtained by the discrete orthogonality of Chebyshev poly-
nomials, as given for instance in [3, p.50],

n n for k=me {0,n}

Z"Tk(z.,)Tm(m,,)= % for k=me{l,...,n—1}

v=0 0 for k#m, 0<km<n
®3)

Here, S0 _o"uy == fuo+ w1 + ... + a1 + 3us and z, :=
cos(2*) and Ti(x) := cos(k arccos(m)), the k th Chebyshev
polynomlal (first kind). Using the (n+ 1) X (n+ 1) matrices
U := (Te(xe))k =0 and D := dzag(f 1, \/_), the
discrete orthogonality (4) reads

UDWUD)T = §D‘2.

U is symmetric because of Ti(xe) = cos(E) = Ty(zs).

Hence V := \/gDUD is a real-symmetric orthogonal ma-
trix.
Proposition. Let p:= Y.7_."b,T, and z, := cos(*")
forv=0,...,n Then
- "y2 2 = " 2
S = 23 a(a ) @
v=0 v=0

Proof. In analogy to the proof of (1), we define

bo/V2
b b b
M = : 22 by, baot, —
1 b (\/5 1 1 \/i)
n—1
ba/V2

and M, := VM1V. Then by some matrix calculations using
the symmetry of V, the comparison of the traces gives the
assertion.

If T define here ||pllec = ma:t;{|p(a:)| -1 <z <1},
the Cauchy-Schwarz inequality gives using |T.(§)} <1 for
all £ E [ 1 1] and for the first and last summand of 3"

using § = = ﬂ,

lp(&))* =
< Z ub2

Hence %lelm < l|p||2 = />0 "b2. This bound is

sharp because of p : Z"_O "T,. An immediate conse-
quence of the proposmon is then for p :== % »_,"b.T, and

z* = cos(X%) such that |p(z*)| = maxl—o|p(cos(Z))|

lIpll2e =

I Z /leTV (§)|2

IIT £) <nan2

%Z_nnpno° < —knpnz <pE) < oo (5)
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