Good non-zeros of polynomials

Michael Moeller
FB Mathematik der Universität Dortmund
Vogelpothsweg 87, 44221 Dortmund, Germany
email: moeller@math.uni-dortmund.de

In numerical applications, one needs sometimes a point x^{*} with $F\left(x^{*}\right) \neq 0$, if $F \neq 0$. The usual procedure which helps in exact arithmetic (at most $\operatorname{deg}(F)$ unsuccessful trials) cannot be applied, since small values $F\left(x^{*}\right) \approx 0$ are numerically useless. Hence the problem is how to find an x^{*} with $\left|F\left(x^{*}\right)\right|$ in a reasonable order of magnitude compared to a norm of $F \neq 0$. In this exposition, I describe two ways of finding good points x^{*}.

The appropriate norm in this context is certainly the maximum norm over an interval or a compact region in the complex plane and x^{*} chosen from that region. However, the computation of this norm requires the solution of a maximum problem. Therefore it is more convenient to use a norm of the coefficient vector for fixing the norm of the polynomial and to use known results on the comparison of different polynomial norms like in the book [2]. Unfortunately, in [2] the maximum norm for polynomials is not considered. In the formulas (2) and (6) below, I compare a maximum norm with the euclidean norm. I hope, that the beauty of the following identity (1) and its elegant proof is also of some interest for the reader.

In Schönhage's article on quasi-gcd computations [4] x^{*} is constructed by means of the identity

$$
\sum_{\nu=0}^{n}\left|a_{\nu}\right|^{2}=\frac{1}{N} \sum_{j=0}^{N-1}\left|F\left(\omega^{j}\right)\right|^{2}
$$

where

$$
F(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}, \omega=\exp \left(\frac{2 \pi i}{N}\right), n<N
$$

This identity says, that the squared euclidean norm of the coefficient vector is the arithmetical mean of the values $\left|F\left(\omega^{j}\right)\right|^{2}, j=0, \ldots, N-1$. (1) can be proved by using properties of the primitive N-th root ω. I found a more direct proof of this formula, which goes as follows.

Proof. Let $N \in \mathbb{N}$ and $\omega=\exp \left(\frac{2 \pi i}{N}\right)$. Then define the $N \times N$-matrix $\Omega:=\left(\omega^{j k}\right)_{j, k=0}^{N-1}$. It is well known that with $\bar{\Omega}=\left(\bar{\omega}^{j k}\right)_{j, k=0}^{N-1}$ the identity

$$
\bar{\Omega} \Omega=N \cdot I
$$

holds, see for instance [1,p. 131]. Hence the symmetric matrix $\frac{1}{\sqrt{N}} \Omega$ is unitary. Let $a_{\nu}:=0$ for $\nu=n+1, \ldots, N-1$
and define

$$
M_{1}:=\left(\begin{array}{c}
\overline{a_{0}} \\
\overline{a_{1}} \\
\vdots \\
\overline{a_{N-1}}
\end{array}\right)\left(a_{0}, \ldots, a_{N-1}\right)
$$

Then the matrices M_{1} and

$$
M_{2}:=\frac{1}{\sqrt{N}} \bar{\Omega} M_{1} \Omega \frac{1}{\sqrt{N}}=\frac{1}{N}\left(\overline{F\left(\omega^{j}\right)} F\left(\omega^{k}\right)\right)_{j, k=0}^{N-1}
$$

are similar. Therefore

$$
\sum_{\nu=0}^{n}\left|a_{\nu}\right|^{2}=\operatorname{trace}\left(M_{1}\right)=\operatorname{trace}\left(M_{2}\right)=\frac{1}{N} \sum_{j=0}^{N-1}\left|F\left(\omega^{j}\right)\right|^{2} .
$$

Corollary 1. Let $\|F\|_{2}:=\sqrt{\sum_{\nu=0}^{n}\left|a_{\nu}\right|^{2}}$, where $F(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$, and $\|F\|_{\infty}:=\max \{|F(z)|:|z| \leq 1\}$. Then

$$
\begin{equation*}
\frac{1}{\sqrt{n+1}}\|F\|_{\infty} \leq\|F\|_{2} \leq\|F\|_{\infty} \tag{1}
\end{equation*}
$$

Proof. By the maximum principle for holomorphic functions, $\|F\|_{\infty}=\left|F\left(e^{i t}\right)\right|$ for a real t. Define F_{t} by $F_{t}(z):=$ $F\left(z e^{i t}\right)$. Then $\|F\|_{2}=\left\|F_{t}\right\|_{2}$ and $\|F\|_{\infty}=\left\|F_{t}\right\|_{\infty}=\left|F_{t}(1)\right|$. The application of (1) with $N=n+1$ on F_{t} gives

$$
\begin{aligned}
\frac{1}{n+1}\left|F_{t}(1)\right|^{2} & \leq\left\|F_{t}\right\|_{2}^{2}=\frac{1}{n+1} \sum_{j=0}^{n}\left|F_{t}\left(\omega^{j}\right)\right|^{2} \\
& \leq \frac{1}{n+1} \sum_{j=0}^{n}\left\|F_{t}\right\|_{\infty}^{2}=\left\|F_{t}\right\|_{\infty}^{2}
\end{aligned}
$$

whence the assertion follows.
Both bounds are sharp. The upper bound because of $F=1$, the lower because of $F(z)=\sum_{\nu=0}^{n} z^{\nu}$, since then $\|F\|_{\infty}=F(1)=n+1$ and $\|F\|_{2}=\sqrt{n+1}$.

Now, the problem we started with can be solved by selecting as x^{*} an ω^{k} such that $\left|F\left(\omega^{k}\right)\right|^{2}$ is not less than the arithmetic mean of all $\left|F\left(\omega^{j}\right)\right|^{2}, j=0, \ldots, n$. Then

$$
\begin{equation*}
\frac{1}{\sqrt{n+1}}\|F\|_{\infty} \leq\left|F\left(x^{*}\right)\right| \leq\|F\|_{\infty} \tag{2}
\end{equation*}
$$

and obviously $\|F\|_{2} \leq\left|F\left(x^{*}\right)\right|$.

An identity using only real points similar to (1) can be obtained by the discrete orthogonality of Chebyshev polynomials, as given for instance in [3, p.50],

$$
\sum_{\nu=0}^{n}{ }^{\prime \prime} T_{k}\left(x_{\nu}\right) T_{m}\left(x_{\nu}\right)= \begin{cases}n & \text { for } k=m \in\{0, n\} \tag{3}\\ \frac{n}{2} & \text { for } k=m \in\{1, \ldots, n-1\} \\ 0 & \text { for } k \neq m, 0 \leq k, m \leq n\end{cases}
$$

Here, $\sum_{\nu=0}^{n}{ }^{\prime \prime} u_{\nu}:=\frac{1}{2} u_{0}+u_{1}+\ldots+u_{n-1}+\frac{1}{2} u_{n}$ and $x_{\nu}:=$ $\cos \left(\frac{\nu \pi}{n}\right)$ and $T_{k}(x):=\cos (k \arccos (x))$, the k-th Chebyshev polynomial (first kind). Using the $(n+1) \times(n+1)$ matrices $U:=\left(T_{k}\left(x_{\ell}\right)\right)_{k, \ell=0}^{n}$ and $D:=\operatorname{diag}\left(\frac{1}{\sqrt{2}}, 1, \ldots, 1, \frac{1}{\sqrt{2}}\right)$, the discrete orthogonality (4) reads

$$
U D(U D)^{T}=\frac{n}{2} D^{-2}
$$

U is symmetric because of $T_{k}\left(x_{\ell}\right)=\cos \left(\frac{k \ell \pi}{n}\right)=T_{\ell}\left(x_{k}\right)$. Hence $V:=\sqrt{\frac{2}{n}} D U D$ is a real-symmetric orthogonal matrix.

Proposition. Let $p:=\sum_{\nu=0}^{n}{ }^{\prime \prime} b_{\nu} T_{\nu}$ and $x_{\nu}:=\cos \left(\frac{\nu \pi}{n}\right)$ for $\nu=0, \ldots, n$. Then

$$
\begin{equation*}
\sum_{\nu=0}^{n}{ }^{\prime \prime} b_{\nu}^{2}=\frac{2}{n} \sum_{\nu=0}^{n}{ }^{\prime \prime} p\left(x_{\nu}\right)^{2} \tag{4}
\end{equation*}
$$

Proof. In analogy to the proof of (1), we define

$$
M_{1}:=\left(\begin{array}{c}
b_{0} / \sqrt{2} \\
b_{1} \\
\vdots \\
b_{n-1} \\
b_{n} / \sqrt{2}
\end{array}\right)\left(\frac{b_{0}}{\sqrt{2}}, b_{1}, \ldots, b_{n-1}, \frac{b_{n}}{\sqrt{2}}\right)
$$

and $M_{2}:=V M_{1} V$. Then by some matrix calculations using the symmetry of V, the comparison of the traces gives the assertion.

If I define here $\|p\|_{\infty}:=\max \{|p(x)|:-1 \leq x \leq 1\}$, the Cauchy-Schwarz inequality gives using $\left|T_{\nu}(\xi)\right| \leq 1$ for all $\xi \in[-1,1]$ and for the first and last summand of $\Sigma^{\prime \prime}$ using $\frac{a b}{2}=\frac{a}{\sqrt{2}} \frac{b}{\sqrt{2}}$,

$$
\begin{aligned}
\|p\|_{\infty}^{2} & =|p(\xi)|^{2}=\left|\sum_{\nu=0}^{n}{ }^{\prime \prime} b_{\nu} T_{\nu}(\xi)\right|^{2} \\
& \leq \sum_{\nu=0}^{n}{ }^{\prime \prime} b_{\nu}^{2} \sum_{\nu=0}^{n}{ }^{\prime \prime} T_{\nu}(\xi)^{2} \leq n \sum_{\nu=0}^{n}{ }^{\prime \prime} b_{\nu}^{2}
\end{aligned}
$$

Hence $\frac{1}{\sqrt{n}}\|p\|_{\infty} \leq\|p\|_{2}:=\sqrt{\sum_{\nu=0}^{n} b_{\nu}^{2}}$. This bound is sharp because of $p:=\sum_{\nu=0}^{n}{ }^{\prime \prime} T_{\nu}$. An immediate consequence of the proposition is then for $p:=\sum_{\nu=0}^{n}{ }^{\prime \prime} b_{\nu} T_{\nu}$ and $x^{*}=\cos \left(\frac{k \pi}{n}\right)$ such that $\left|p\left(x^{*}\right)\right|=\max _{\nu=0}^{n}\left|p\left(\cos \left(\frac{\nu \pi}{n}\right)\right)\right|$

$$
\begin{equation*}
\frac{1}{\sqrt{2 n}}\|p\|_{\infty} \leq \frac{1}{\sqrt{2}}\|p\|_{2} \leq\left|p\left(x^{*}\right)\right| \leq\|p\|_{\infty} \tag{5}
\end{equation*}
$$

References

[1] Geddes, K.A., Czapor, S.R., and Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publisher, 1992.
[2] Mignotte, M. and Stefanescu, D.: Polynomials, an Algorithmic Approach. Springer, 1999.
[3] Rivlin, Th. J.: The Chebyshev-Polynomials, John Wiley\&Sons, 1974.
[4] Schönhage, A. : Quasi-GCD computations, J. of Complexity, 1, 118 - 137 (1985).

