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In numerical applications, one needs sometimes a point 
x* with F(x*) # O, if F # 0. The usual procedure which 
helps in exact arithmetic (at most deg(F) unsuccessful tri- 
als) cannot be applied, since small values F(x*) ,~ 0 are 
numerically useless. Hence the problem is how to find an x* 
with IF(x*)[ in a reasonable order of magnitude compared 
to a norm of F ~ 0. In this exposition, I describe two ways 
of finding good points x*. 

The appropriate norm in this context is certainly the 
maximum norm over an interval or a compact region in 
the complex plane and x* chosen from that region. How- 
ever, the computation of this norm requires the solution of 
a maximum problem. Therefore it is more convenient to 
use a norm of the coefficient vector for fixing the norm of 
the polynomial and to use'known results on the comparison 
of different polynomial norms like in the book [2]. Unfor- 
tunately, in [2] the maximum norm for polynomials iis not 
considered. In the formulas (2) and (6) below, I compare a 
maximum norm with the euclidean norm. I hope, that the 
beauty of the following identity (1) and its elegant proof is 
also of some interest for the reader. 

In Schbnhage's article on quasi-gcd computations [4] x* 
is constructed by means of the identity 

1 N - 1  
la~l 2 :  ~ ~ ] F ( J ) I  2 

v = O  j = O  

where 

rt 
F(z)  ~ avz ~, .27ri. = w = exp( -~- ) ,n  < N. 

~=0 

This identity says, that  the squared euclidean norm of the 
coefficient vector is the arithmetical mean of the values 
IF@J)l 2, j = 0, . . .  ,N  - 1. (1) can be proved by using 
properties of the primitive N-th  root w. I found a more 
direct proof of this formula, which goes as follows. 

Proof .  Let N E xW and w = e x p ( ~ ) .  Then define the 
( 50J k '~ N --1 N x N-matr ix  ~ := ~ Jj,k=o- It is well known that  with 

= t Jj,k=o the identity 

~f~= N .  I 

holds, see for instance [1,p. 131]. Hence the symmetric 
matrix ~ f ~  is unitary. Let a ,  := 0 for v = n + l , . . .  , N - 1  

and define 

ti- 
M1 :--- 

Then the matrices M1 and 

a o , . . .  ~aN--1). 

__• 1 1 ~ k N--1  
M2 := ~Ml~2V7 ~ -- ~ ( F ( w 3 ) F ( w  ))j,k=O 

are similar. Therefore 

1 
[a,,[ 2 ---- trace(M1) = trace(M2) ---- ~ ~ IF(wJ)t 2. 

u=O j = O  

C o r o l l a r y  1. Let IIFII2 : :  ~/E2=0 lavl 2, where 
F(z) = ~ = 0  a~z~, and IIFI[~ : :  max{ IF(z)[ : Iz[ _< 1}. 
Then 

1 
v~-~-~tlFIl~ ~ IIFIb ~ IIFII~. (1) 

Proof .  By the maximum principle for holomorphic func- 
tions, []F[[~ ---- IF(eit)[ for a real t. Define Ft by Ft(z) :---- 
F(zelt). Then []El[2 = liFt[]2 and [[F[[¢¢ = [[FtHc¢ = [Ft(1)[. 
The application of (1) with N = n + 1 on Ft gives 

1 iFt(1)12 < IIFFtHe2-- 1 ~ ]F t ( j )12  
n + l  -- n + l  

j = 0  

1 ~ l l F t l l 2  = HFt]12 ~ 
- < n + l  

j = o  

whence the assertion follows. 
Both bounds are sharp. The upper bound because of 

F = 1, the lower because of F(z)  = ~ = 0  z~, since then 
IIFIIoo = F(1) = n +  1 and ]IFH2 = V ~ +  1. 

Now, the problem we started with can be solved by se- 
lecting as x* an w k such that IF(w~)l 2 is not less than the 
arithmetic mean of all ]F(wJ)] 2, j = 0 , . . .  ,n.  Then 

1 
, , /~ - i [ IF I I~  _< IF(x*)l _< IIF[l~ (2) 

and obviously HFH2 < IF(x*)]. 
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An identity using only real points similar to (1) can be 
obtained by the discrete orthogonality of Chebyshev poly- 
nomials, as given for instance in [3, p.50], 

{ n for k = m E { O , n }  
"T  ~ for k = m e { 1 , . ,  n - l }  k(x~,)Tm(x,) = ~ • , 

~=o 0 for k-f ire,  O _ < k , m < n  
(3) 

Here, E:_o"U~, := ½u0 + ul + . . .  + u~-I  + ½u~ and xv := 
cos(W ) and T~(x) := cos(k arccos(x) ), the k-th Chebyshev 
polynomial (first kind). Using the ( n +  1) × ( n +  1) matrices 
U := (Tk(xt))~,e=o and D := d iag(~2,1 , . . .  ,1, ~ ) ,  the 
discrete orthogonality (4) reads 

UD(UD)  T = ~ D  -2. 

U is symmetric because of Tk(xl) = c o s ( ~ )  = Te(xk). n ~ 

Hence V := V/~-DUD is a real-symmetric orthogonal ma- 

trix. 
n H P r o p o s i t i o n .  Let p := ~ , = 0  b~T~ and x~ := cos(W ) 

for u = 0 , . . .  ,n. Then 

2 
"b~ = ~ E"P(X~)2"  (4) 

~ = 0  ~ = 0  

Proof .  In analogy to the proof of (1), we define I bol4~ ) 
bl 

bo , bl b~ 
U l  : =  " ( ~  , . . .  , b n - l , ~ )  

bn-  1 

bn/v'7 

and M2 := V M i V .  Then by some matrix calculations using 
the symmetry of V, the comparison of the traces gives the 
assertion. 

If I define here IIPlI~ := max{Ip(x)l  : - 1  < x < 1}, 
the Cauchy-Schwarz inequality gives using IT.(~I < 1 for 
all ~ E [-1,  1] and for the first and last summand of ~ "  

a b using -~ -- ~ .~,  

Ilpll~ = Ip(~)l 2 = I~"b~T~(~ ) l  2 
v ~ O  

< V " " b  2 "T . ( ( )  2 < n %2 
- -  ~ v - -  v v "  

Hence ~ItpLI~ ~ Ilpl12 := ~/E~=o'b~ • This bound is 
sharp because of p := ~ = o " T , "  An immediate conse- 
quence of the proposition is then for p := ~ = o " b ~ T ~  and 
x* = cos(W)  such that  Ip(x*)] = max~=olp(cos( W ) ) I 

•2nllPll ~ ~ ~211P112 ~ Ip(x*)l ~ IIPLI~. (5) 

R e f e r e n c e s  

[1] Geddes, K.A., Czapor, S.R., and Labahn, G.: Algorithms 
for Computer Algebra. Kluwer Academic Publisher, 1992. 

[2] Mignotte, M. and Stefanescu, D.: Polynomials, an Algo- 
rithmic Approach. Springer, 1999. 

[3] Rivlin, Th. J.: The Chebyshev-Polynomials, John Wi- 
ley&Sons, 1974. 

[4] Sch5nhage, A. : Quasi-GCD computations, J. of Com- 
plexity, 1, 118 - 137 (1985). 

11 


