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A Comparison of Symbolic Solution of 
Radioactive Decay Chains Using 

MATHEMATICA 
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Different analytical  methods available for the solution of 
radioactive decay chains have been implemented in Mathe- 
matica.  The implemented algorithms include the method of 
dagonalization, the Laplace transformation, Matr ix Expo- 
nential Method, Bateman solution and the E formulation. 
These methods have been programmed in Mathemat ica  by 
defining the functions for each method separately. These 
functions require only the decay constants.There is no lim- 
i tat ion on the number of members of decay chains. Each 
algorithm has been tested for different sets of decay con- 
stants.  These methods differ only in execution time. Laplace 
transformation is the slowest method while Bateman and E 
formulation proves to be the fastest ones. Method of diago- 
nalization and forward sequential method,  both  use built-in 
function DSovle, take comparable t ime for execution. Ma- 
t r ix Exponential  Method is also less t ime consuming in com- 
parision to Forward sequential and Method of diagonaliza- 
tion, however it  fails in the case of singularities. This failure 
may be prevented by avoiding the singularity. The methods 
may be extended to the chains where branching also occurs. 

Comput ing  the  Galois Group of 
y(3) + ay' + by = 0, a, b E C[x] 

Peter  Berman 
Depar tment  of Mathematics  

North Carolina State  University 
phberman@eos, ncsu. edu 

We describe an algori thm to compute the Galois group 
of a differential equation of the form y(3) + ay' -t- by = 

0, a, b 6 C[x], where e is a computable,  algebraically closed 
constant field of characteristic zero (e.g., the algebraic num- 
bers). This algorithm applies the approach used in [M. van 
der Put ,  Symbolic Analysis of  Differential Equations, Some 
Tapas of Computer  Algebra (Cohen et. al., ed.), Springer 
Verlag, 1998] to s tudy order-two equations with one or two 
singular points. 

Our algorithm relies on a result of Ramis tha t  says tha t  
the group of such an equation must  be connected and have 
defect zero (c.f., [C. Mitschi and M. Singer, Connected Lin- 
ear Groups as Differential Galois Groups, Journal  of Algebra 
184 (1996), 333-361] and [M. van der Put ,  Recent Work on 
Differential Galois Theory, Seminaire Bourbaki Vol. 1997- 
98, Asterisque 252, 1998]). Using this result we give a com- 
plete list of conjugacy classes of all subgroups of SL3(C) tha t  
occur as Galois groups of equations of the prescribed form. 
For each group we give a simple test based on finding ratio- 
nal solutions of Riccati equations of associated equations. 

A J a v a  F r a m e w o r k  f o r  M a s s i v e l y  

D i s t r i b u t e d  S y m b o l i c  C o m p u t i n g  

Lanrent Bernardin 
Inst i tute  for Scientific Computing 

ETH Zurich, Switzerland 
bernardin~inf, ethz. ch 

1 I n t r o d u c t i o n  

We present a framework for implementing massively dis- 
t r ibuted applications in symbolic computing. Using this 
framework, computat ions with massive resource require- 
ments can be dis t r ibuted and processed in parallel on a net- 
work of workstations [1] or on a large scale network such 
as the Internet  [3]. For each concrete applicat ion only min- 
imal code is needed to complement the  generic framework 
in order to enable large-scale dis t r ibuted processing of the 
application. 

The use of Java[2] is essential in order to allow secure 
dis t r ibuted computat ions on a set of heterogenous clients 
tha t  do not need to be known a priori. 
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2 T h e  " D i v i d e  a n d  
b e  C o n q u e r e d "  M o d e l  

The model we advocate in this paper  eliminates the burden 
of managing a pool of workers. The user advertises his need 
for computat ional  power along with the da ta  set to compute 
on. Any machine on the Internet that  sees this advertise- 
ment can choose to act as a worker for this part icular  task, 
compute on the corresponding da ta  and return results to 
the principal for that  computation.  One could say that  the 
workers "push" their computing power to the principal or 
that  the workers "shop around" on the Internet,  looking for 
suitable tasks to compute on. We call this model "divide 
and be conquered", since a large computat ion is broken up 
into small subtasks and the initiative for processing these 
subtasks is coming from the workers. 

This approach scales to a large number of hosts involved 
in a computat ion,  since the principal, which is originating 
and coordinating a computation,  needs no a priori knowl- 
edge of the workers which will be involved. In particular,  
the managing node does not (need to) know which machine 
is going to act when and for how long as a worker for his 
task. The hassle of maintaining a dedicated pool of workers 
disappears. 

Web Server 1 

Application Server 1 

rLoca! Host 

Browser 

-i I Java . . . . . . .  VM , 

Figure 1: The "divide and be conquered" model of dis- 
t r ibuted computing 

3 Conclusions 

We present a new alternative for distr ibuted symbolic com- 
puting on the Internet.  The use of the Java language pro- 
vides us with a flexible generic framework using a small 
amount of code. Certain large scale computations can take 
advantage of this model to advance the class of t ractable 
problems today. 
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The work we want to present on this poster derives 
from the experience we have developed on providing user- 
interfaces for deduction systems. The latest  developments 
concern a bet ter  display of mathemat ical  formulae, possibil- 
ities for illustrations, and rich interaction capabilities. 

1 W h a t  is it? 

CtCoq is an independent application designed to help per- 
form proofs using the Coq proof assistant.  It takes care of 
recording the commands sent to the Coq proof engine and 
it provides a bet ter  display for the mathematical  formulas 
constructed by the user or produced by the proof engine in 
response to requests. 

Through an analysis of mathemat ical  formulas and 
mouse gestures, it also provides novel ways to perform math-  
ematical reasoning. 

We intend to have a little paragraph explaining this 
multi-process architecture (and maybe a drawing showing 
the da ta  flow between the processes). 

2 Interaction features 

2.1 Displaying Mathemat ics  

We have an algorithm tha t  takes care of the layout of mathe-  
matical  formulae in two dimensions, thus making the display 
of square roots, summations,  fractions, and other formulae 
automatic. This algorithm is efficient and incremental, thus 
making it possible to use it in an interactive tool to per- 
form mathematics.  We intend to show a few examples of 
displayed mathematical  formulae. 

When da ta  is displayed on the screen, it is sensible to 
mouse interaction, thus making it possible to trigger opera- 
tions by simply clicking on some sub-formula. Wi th  this, we 
explored new ways to construct mechanically-checked proofs 
or to manipulate  algebraic formulas, based on direct manip- 
ulation. 

Work in progress in this area of formula layout concerns 
extensibility, enabling users to adapt  notat ions to their field 
of interest. We envision several levels of programmabili ty.  
The first one follows a model of programming by examples: 
users show the text  they want to see on the screen for some 
formula patterns,  but  they have no to limit their choice to 
a fixed set of graphical combinations. More complicated 
levels require a more precise description of layout computa-  
tion. For now, this complicated level requires programming 
in Java. 
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The layout mechanism also provides ways to include 
drawings or b i tmaps  and enriched text  in comments. 

2.2 U s i n g  t h e  mouse  to perform proofs 

With  the CtCoq experiment,  we have developed a strong 
competence around ways to use the mouse to express logical 
operations. 

A feature provided in CtCoq makes it possible to per- 
form proofs of predicate calculus without equality by sim- 
ply pointing at the sub-expressions of logical formulas that  
are subject  of the next step. We intend to show a sequence 
of windows, indicating the operations performed with the 
mouse and the consequence. 

A second feature provided in CtCoq makes it possible to 
perform proofs based on rewriting by dragging da ta  around 
algebraic expressions. This tool is very much inspired ]by the 
direct manipulat ion provided in tools such as Theorist (a 
product  dis t r ibuted in Europe under the name MathPlus).  
We will also show a litt le scenario of this kind of interaction. 

Work in this progress concerns ways to merge the two in- 
teraction techniques into one, using the drag-and-drop con- 
cept in new ways, etc. 

2.3 R e n d e r i n g  machine checked proofs 

We have also worked around the rendering of proof a t tempts  
as text  in a form close to natural  language. This makes it 
possible to present the formal proofs checked by the com- 
puter  in a manner  tha t  als0 seems natural  to readers that  
are not computer  specialists. 

This rendering mechanism can actually be used to dis- 
play proofs-in-progress. In this case, incomplete proofs ap- 
pear  like proof texts  in which unfinished parts  appear  as 
conjectures. Using mouse interaction facilities, users can 
then proceed by filling in the gaps, with the illusion of sim- 
ply transforming some proof text.  If our implementation 
progresses enough, we hope to include an example of incom- 
plete proof text  in the poster, and maybe steps that  show 
how the text  construction progresses. 

Mutat is  mutandi ,  this work can also be used to write 
functional programs in a programming style close to ML. In 
this case, the program and the proof of its correctness are 
developed in parallel. 

3 Application fields 

3.1 Education 

In its most basic used the proof engine can be used to force 
users to spell out the proofs they performed. In this respect, 
it can be used effectively to teach the basic techniques of 
mathemat ical  reasoning. Also, because proofs can be per- 
formed in advance by teachers and collected in some form 
of interactive books, with high-quality display of formulas, 
rich comments, and illustrations, this tool can also be used 
to provide a reference to mathemat ical  knowledge. 

As an interactive book, the tool can be used to enliven 
mathemat ical  results, as s tudents  may t ry  to redo proofs 
under the supervision of the computer~ with the possibility 
to analyze the proofs given as example by the teachers. 

3.2 Studying computer  a l g e b r a  a l g o r i t h m s  

The Coq proof system is part icularly well adapted  to rea- 
son on computer  algebra algorithms. For instance members 
of our team have developed a machine-checked implemen- 
tat ion of Buchberger 's algori thm for Gr6bner bases. Such 
mechanically checked algorithms may be integrated in the 
proof engine itself to make further proofs more efficient, re- 
placing the need for the user to spell out computat ion steps 
by the capabil i ty to let the computer  compute.  

We intend to have a box on the poster  containing an enu- 
meration of the various computer  algebra algorithms tha t  
have been studied using our technology (actually mention- 
ing work done with the previous implementat ion of our user- 
interface for mathematics  on the computer) .  

4 Conclusion 

The general impression that  we want to convey is tha t  the 
CtCoq tool can be used to support  the development of in- 
teractive books on mathematics ,  where the constraints of 
safe reasoning can be checked by the computer.  Apar t  from 
powerful notations and il lustration capabilities, the tool also 
provides the possibility to check the validity of logical rea- 
soning steps and computations.  For students,  this makes it 
possible to supervise exercises, for working mathematicians,  
this makes it possible to use the computer  as an "intelligent" 
sheet of scratch paper. 

D e v e l o p i n g  t h e  S o l i t o n  E x p l o r e r :  A 

P r o b l e m  S o l v i n g  E n v i r o n m e n t  f o r  S o l i t o n  

S u r f a c e  I n v e s t i g a t i o n  

Bruce W. Char 
Anthony Harrison 
Thomas Hewett  

Ron Perline 
Muksim Rakhimov 

Depar tment  of Mathematics  and Computer  Science 
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Philadelphia,  PA 19104 USA 
email: bchar~ncs .drexel. edu 

We discuss the continuing development of "Soliton Ex- 
plorer", a Problem Solving Environment for Soliton Geom- 
etry. 

Soliton equations are a recently investigated class of non- 
linear ordinary and part ial  differential equations, which can 
be linearized via a non-trivial  t ransformation (the so-called 
spectral transform); as a consequence there are many ex- 
plicit solutions to these equations, in terms of exponential ,  
trigonometric, and elliptic functions. 

Soliton geometry refers to geometric equations for curves 
and surfaces which can be explicitly described in terms of 
soliton equations. While there are many such equations, 
our project 's  research focus centers on the following par t ia l  
differential equation describing curve evolution in three di- 
mensions (and related modifications): 

This equation is called the smoke ring equation, or the local- 
ized induction equation (LIE), from fluid mechanics theory. 
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The equation LIE and its relatives are sufficiently compli- 
cated tha t  a custom Problem Solving Environment tailored 
to these equations is required. Our PSE, called Soliton Ex- 
plorer, is an interaction between analytic tools developed 
within Maple, a Fort ran l ibrary which produces da ta  files 
for surface visualization and analysis, and a Java3D Visual- 
ization tool for rendering. 

The part icular  roles of Maple include 
(i) generation of explicit solutions to related curvature 
equations; 
(ii) integration of curvature equations exactly to obtain 
desired curves and surfaces (the Sym differentiation trick); 
(iii) when possible, further structural  analysis of the 
explicitly described surface (geometry of parameter  curves, 
for example); 
(iv) automatic  code generation for numerical evaluation of 
geometric da ta  formulas. 

The purpose of the visualization tool includes the in- 
vestigation of topological and global questions not readily 
accessible thru algebraic calculations (connectivity, inter- 
section properties, symmetries,  etc.) 

Our poster  for Soliton Explorer illustrates some of the 
features available within our visualization tool for analysis of 
surfaces, including colorization options, culling options, and 
simultaneous rendering styles, which highlight the structure 
of the given surfaces. We discuss role of Maple as a code 
generating software component in this system, as well as 
some of the mathematical  discoveries tha t  have been made 
with the help of this tool. 

We conclude with a discussion of current and planned 
extensions of Soliton Explorer. 

This project is funded in part  by the National Science 
Foundation, as grant number CCR-9527130. 
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We present a classification of both known and newly dis- 
covered integrable cases of Abel ODEs, 

y' = f3(x)y3 + f2(x)y2 + f l ( x ) y +  fo(x) (1) 

where y _-- y(x).  It  is well known tha t  Abel ODEs can 
be organized into equivalence classes under the structure 
preserving transformation 

{x = F(t) ,  y(x)  = P(t )  u(t) + Q(t)} (2) 

The s tandard theory of Abel ODEs is based on certain in- 
variants of the transformation (2) which can be expressed 
in terms of the coefficients {fa, f2, f l ,  fo} and their deriva- 
tives. The nontrivial and therefore interesting case occurs 
when the invariants are not constant. Liouville [1] showed 
that  by comparing their respective invariants, it can be de- 
termined when a given ODE is equivalent to any one of a set 
of representative ODEs, each of different class, via a trans- 
formation (2). This determinat ion would fix the class of 
the given equation, so that  the transformation itself, along 
with the solution to the canonical representative of the class, 
would be enough to build the solution to the given equation. 

I t  is clear then that  the value of an integration strategy 
for nonconstant invariant Abel ODEs relies upon the num- 
ber of distinct integrable Abel ODE classes for which a rep- 
resentative and its solution are known. However, there are 
relatively few integrable cases with nonconstant invariant 
found in the literature, scattered widely among the various 
sources. Many of them have ended up in Kamke [2], but  the 
presentation there lacks a classification; for example some 
of the equations listed actually belong to the same equiv- 
alence class. Furthermore, we believe tha t  it has recently 
become possible, with the aid of computer  algebra tools, to 
conduct a more systematic and exhaustive search for new 
integrable cases than has been a t t empted  previously. Our 
goal was to collect the known integrable Abel ODE classes 
and search for new ones, building as complete as possible 
a set, including the corresponding canonical representatives 
and solutions. Inserting this da ta  into the ODEtools package 
of Maple would enable the computer  to solve automatical ly 
any Abel equations which we know how to solve by hand. 

One of the interesting aspects of this search has been 
the discovery of some new parameterized equivalence classes. 
For each different value of the parameter  there exists a dif- 
ferent class of Abel ODEs. 

Our results can be summarized as follows. By analyzing 
the Abel classes discussed in the pioneering works by Abel, 
Liouville and Appell  [3, 1, 4] we collected four 1-parameter 
classes - two of which were actually not presented in those 
works - plus three classes without parameters,  two of them 
by Liouville, and one by Halphen. 

Then we analyzed the collection of Abel equations pre- 
sented in Kamke (69 ODEs) noticing tha t  42 have constant 
invariant - hence presenting no interest - and from the re- 
maining set only one of them, number 235 is a new inte- 
grable class - without parameters.  All the other examples 
from Kamke are shown to be members of the classes just  
mentioned, or their solution is not shown in the book and 
we were not able to obtain it by other means. 

By following different approaches we then succeeded in 
obtaining three more classes without parameters  and one 
more integrable class depending on four parameters,  not pre- 
viously presented in the l i terature to the best  of our knowl- 
edge. By split t ing this 4-parameter  class into different cases, 
it is possible to show that  the class actually consists of a var- 
ied set of two, one and zero parameter  classes. 

The idea used to obtain this new 4-parameter  integrable 
class also leads to a wider 6-parameter  nonconstant invari- 
ant Abel class all of whose members can be systematically 
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mapped  into Riccati ODEs, as well as a recipe to generate 
new integrable Abel classes from previous ones when they 
satisfy certain conditions. 
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This poster  presents a design for a module system far the 
computer  algebra system Maple [6], and describes a proto- 
type implementat ion of it. The term "module" is used here 
in the computer  science sense, not the mathematical  sense. 

The module system design is similar to those found in 
implementat ions of most modern functional programming 
languages, such as Scheme [2] or ML [1]. Modules are first 
class expressions in Maple tha t  represent the lexical c][osure 
of a part icular  protected scope of computat ion that  exists 
transiently during the module 's  instantiation. It is possible 
to view a module as the result of invoking a thunk that  
returns some subset of its local environment for use by client 
code. 

A trivial, but  impor tant  use of modules is the construc- 
tion of "packages": collections of related procedures that  
are to be bundled together. Maple currently uses tables to 
aggregate routines into coherent packages. The abili ty to 
aggregate routines into packages is an important  part  of the 
management  of system namespaces. Thus, modules; con- 
t r ibute  to bet ter  software engineering in Maple. 

One source of difficulty with the extant  package system 
tha t  is addressed by modules is the inability to protect  the 
implementat ion of an API. There was no way to p:rotect 
da ta  used by a package from tampering.  The module system 
provides access control to module members. I t  is possible 
for the programmer to declare tha t  some da ta  or procedures 
are "private" to the module, and they are inaccessible from 
outside the modules definition. Only the da ta  or routines 
that  are supposed to be exposed to the user need be. 

A new b ind ( )  command supports  the interactive use of 
modules as packages. It improves on the with() command 
in tha t  it allows the effects of global rebinding of names to 
be reversed. 

We discuss some of the results of experiments that  use 
the prototype module system to create packages. 

For the programmer,  a distinct, but  complementary fea- 
ture of the design is a new use statement.  This s ta tement  
allows one to establish block local bindings for names. Al- 
though syntactically similar to the l e t  forms found in most 
functional languages, it is actually much closer to a macro 
facility as found in Common Lisp [3], in that  bindings are 
resolved at compile t ime ("simplification time" in Maple). 
If you say u s e (  MyModule ) then the bindings exported by 
the module MyModule are visible within the scope delimited 
by the use statement.  This facility is specifically designed 
to support  rebinding of operators.  Thus, within the body 
of a use statement,  the symbol '+' can be rebound to mean, 
for instance, matr ix  addition. 

Modules allow a programmer to implement "objects" 
tha t  have mutable local state,  and tha t  control access to 
that  state. This allows the programmer to construct  clean 
and robust  systems of interacting objects. On the other 
hand, our design avoids t rying to implement a full system 
for object orientation such as one finds in Common Lisp [3]. 
I t  is expected tha t  future revisions of the design will add 
subtyping via ML-style signatures [5]. 

Some simple examples of programming objects using 
modules are given. 

An interesting problem tha t  arose early in the design 
was the abili ty to save a module once instantiated.  Since 
module instantiat ion can involve arbi t rar i ly  large amount  of 
computation,  it is desirable to be able to generate a module 
and then save it in a "library". The existing facilities for 
saving Maple expressions were unable to cope with the new 
structures which essentially amount  to collections of escaped 
local variables (closures). Enhancements in the direction of 
a persistent store were effected to deal with this problem. 

Apar t  from the direct and obvious benefits to software 
engineering with Maple, one of the most exciting prospects 
for the use of modules is in programming domains of com- 
putation,  as found in Axiom [4] and the Maple package 
Domains [7]. This application is still being studied, but  we 
give some simple examples of how this might eventually be 
done. 
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Aut omat i c  Construct ion  of  an R Matr ix  
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Within  mathematical  physics, R matrices are of interest 
in the s tudy of exactly solvable models (i.e. quantum sta- 
tistical mechanics), and also in knot theory, in that  they are 
solutions of the Yang-Baxter  equation. In principle, to each 
member of a large class of representations of a large class 
of algebraic structures, there corresponds a unique (up to 
uni tary transformations) R matrix.  However, the explicit 
construction of tha t  R matr ix  typically presents both the- 
oretical and practical difficulties, thus there are few known 
explicit examples of them. 

Here (fixing m), we describe the automation of the con- 
struction of an R matr ix  corresponding to the 2 m dimen- 
sional (0m IS) highest weight representation of the quan- 
tum superalgebra Uq[gl(mll)]. This algebra contains a free 
complex variable q, whilst the vector space (i.e. module) 
V _---- V(0 m I ~) corresponding to the representation contains a 
free complex variable a .  In this case, there are no theoretical 
difficulties in the construction. The 'R  matr ix '  is actually a 
rank 4 tensor with 24m (mostly zero) components, each of 
which is an algebraic expression in the two complex variables 
q and (~. 

2 m 
Where V has an orthonormal (weight) basis (vl}i=l ,  the 

tensor product  V ® V  (also a Uq[gl(mll)] module) has a nat- 
ural 22m dimensional (weight) basis (v~ 2m ® Vj}i,j=l. TO build 
the corresponding R, we require a different, very specific (or- 
thonormal) basis B = U~__+l 1 Bk for V @ V corresponding to 
the (orthogonal) decomposition V ® V = ~:l:~k=l k of V ® V 
into orthogonal Uq[gl(mll)] submodules Vk. The basis vec- 
tors within each Bk are expressed as linear combinations of 
the vectors vi @ vj, where the coefficients involved are non- 
trivial algebraic functions of q and a.  From the Bk, we may 
immediately construct projectors P~ onto the modules Vk. 
R itself is then obtained as the sum ~ = + l  1 )~kPk, where Ak 
is the eigenvalue tha t  the second-order Uq [gl(mll)] Casimir 
invariant takes on Vk. Both the weights of the Vk and the 
eigenvalues Ak are well-known. 

Although the dimensions are quite small, manual calcu- 
lation is demanding (for the case m = 2, see [2]). To improve 
on this situation, we have writ ten a suite of MATHEMATICA 
functions to automate  the entire process for general m. The 
automation involves the prior writing of the Uq [gl(m I 1)] gen- 
erators and relations in a form that  facilitates the normal 
ordering of strings of generators [4]. This code is currently 
feasible for the cases m = 1, 2, 3 and 4. 

From a symbolic programming perspective, the interest- 
ing part  of the process is the construction of the Bk. 

• Initially, we declare a weight basis for V. Knowledge of 
the intended action of the algebra generators on these 
basis elements allows us to deduce the matr ix  elements 
of the representation, and this information facilitates 
the construction of the B~. 

• For each module Vk, we must  first construct a highest 
weight vector v~-; and this involves the establishment 
and solution of a system of algebraic equations (known 
to have a unique solution). The weights of the Vk are 
included as da ta  within the MATHEMATICA functions, 
although in principle this could be automatical ly de- 
duced. From this v~-, we construct a spanning set for 
Vk by the repeated action of (the coproduct  of) the 
Uq[gl(mll)] lowering generators. Applying a G r a m -  
Schmidt process to this spanning set yields the basis 
Bk, which typically contains huge expressions. 

• In contrast  with the vectors in the Bk, the components 
of R are quite wholesome, although we must typically 
apply some simplification efforts to see this. 

The R matrices obtained may be used in the evaluation 
of (new, two-variable) polynomial link invariants. A link in- 
variant associated with the m -- 2 case was introduced in [3], 
and first evaluated in [2]. The la t ter  work constructed the 
R matr ix  manually, and this construction has been used to 
confirm the correctness of our current algori thm and code. 
This evaluation also involves automat ic  symbolic computa-  
tion, but  the code is comparatively pedestrian. The results 
are exciting for knot theory in that  these invariants (for 
m/>  2) are more powerful than their confederates, the well- 
known HOMFLY and Kauffman polynomials [1]. 
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When unexpected results appear  as output  from your 
computation,  there may be bugs in the program, the input  
data, or your expectation. In grappling with difficult di- 
agnostic tasks one direction is to seek tools to analyze the 
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symbolic mapping from the input to the output .  We are 
generally ahead in this game if we can understand complex 
system behavior without necessarily studying detailed pro- 
gram source code. This is true especially if the source is in 
an unfamiliar language, difficult to understand, or simply 
unavailable. We explain two tools: t ime-honored "symbolic 
execution" which requires some kind of computer  ~dgebra 
system, and a novel modification, NaN-tracking. This is a 
simplified version of symbolic execution that  is too:re eas- 
ily implemented in a conventional language like Fortran or 
C. The principal requirement of this second approach is a 
competent  implementat ion of a compiler and run-t ime sys- 
tem. In particular,  the language system must provide access 
to features of the IEEE-754 binary floating-point arit]hmetic 
s tandard  [1]. While our own experiments are based in part  
on an implementat ion in Lisp, the mechanisms we use should 
be accessible from languages in nearly every C-based UNIX 
workstation used for scientific computing. 
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Communication, storage, transmission, and searching of 
complex mater ial  has become increasingly important .  Math- 
ematical  computing in a dis t r ibuted environment is also be- 
coming more plausible as libraries and computing facilities 
are connected with each other and with user facilities. TEX 
is a well-known mathemat ica l  typeset t ing language, and 
from the display perspective it might seem that  it could 
be used for communication between computer  systems as 
well as an intermediate form for the results of OCR (optical 
character recognition) of mathematical  expressions. There 
are flaws in this reasoning, since exchanging mathematical  
information requires a system to parse and semantically "un- 
derstand" the TEX, even if it is "ambiguous" notationally. 
A program we developed can handle 43% of 10,740 TEX for- 
mules in a well-known table of integrals. We expect tha t  a 
higher success rate  can be achieved easily. 
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It is known that  gaussian quadrature  is one the best  nu- 
merical methods for computing definite integrals of analytic 
functions. For example, consider using 101 evaluation points 
to find ~ from f014 (1 + x 2)-1 d x  . If we use a closed type  
Newton-Cotes formula, which just  integrates the interpolat-  
ing polynomial which agrees with the integrand at  the 101 
equally spaced nodes [0.00, 0.01, 0.02, ..., 1.00] then we can 
compute the integral to 54 significant digits. If we use the 
101 point gaussian quadrature  formula, then we can com- 
pute the integral to 134 significant digits. The evaluation 
points for an n point Gauss-Legendre quadrature  formula 
are the n roots of the n ~h Legendre polynomial.  One of the 
drawbacks to using gaussian quadrature,  is the problem of 
computing these roots. We will compare several methods 
for computing the nodes and weights for an n point Gauss- 
Legendre quadrature formula at various precisions. As an 
appl icat ion,  consider the problem of numerically computing 
a t runcated fourier series of a non-periodic analytic function. 
In this case gaussian quadrature  can be faster than the fast 
fourier transform based algorithm, if we only want a few 
trigonometric coefficients to high precision. If we compute 
the fourier series for e x p ( - x )  on the interval [0, 1] up to 
the terms cos(2~r21°x) and sin(21r21°x) then the 2048 point 
gaussian quadrature formula gives the coefficients to 32 dig- 
its to the right of the decimal point. Now compare this with 
an F F T  based algorithm. The error in a 2 m point  F F T  
algorithm is 0 (2  -2m) , so we would need about  227 eval- 
uation points for only double precision (16 digit) accuracy 
and about 254 evaluation points for quadruple precision (32 
digit) accuracy. 

C o m p u t i n g  G r e a t e s t  C o m m o n  D i v i s o r s  o f  
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Abstract  

In control theory the problem of computing greatest com- 
mon divisors of polynomial  matrices arises when trying to 
compute coprime matr ix  factorizations of a given transfer 
function (see Kailath [2]). Much work has been done on 
this topic in the numerical case, where the coefficients of 
the polynomials are floating point  numbers. We are inves- 
t igating the extension of these algorithms to the symbolic 
case. 
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1 M a t r i x  G r e a t e s t  C o m m o n  Div i so r s  

A matrix R(s)  is a Greatest Common Right Divisor (GCRD) 
of two matrices {N(s), M(s)} if it satisfies the following 
properties: 

1. there exist polynomial matrices N1 (s) and Ml(S) such 
that  

N(s)  = N1 (s)R(s) and M(s)  = M1 (s)R(s) 

2. If Rl(s )  is any other right divisor of N(s)  and M(s),  
then there exists a polynomial matrix W ( s )  such that 

R(s) = W ( s ) R l ( s )  

Matrices N(s)  and M(s)  are right coprime if all their 
GCRD's are unimodular, having determinants that are not 
a function of s. 

2 C o m p u t i n g  G C R D s  us ing  G a u s s i a n  E l i m i n a t i o n  

Bitmead et. al. [1] provide a method for computing Ma- 
trix GCDs which obtains the GCD by performing Gaussian 
Elimination on an associated generalized Sylvester matrix. 

Consider two matrices N(s)  and M(s)  with polynomial 
entries, each containing p columns. 

We can write N(s)  and M(s)  as polynomials with matrix 
coefficients 

N(s)  = Nos m + NlS ~-1  + . . .  + N m - l S  + N ~  

M(s)  = Mos m + M l s  m-I  + . . .  + M m - l S  + Mm 

where m is the highest degree of all the polynomial en- 
tries of N(s)  and M(s) .  

The generalized Sylvester matrix of N(s)  and M(s)  of 
order k is defined as 

S• 

0 
0 

Let k* 

N o  N~ . . .  Nm 0 . . .  0 
Mo M1 . . .  Mm 0 . . .  0 
0 No N~ . . .  Nm 0 
0 Mo M1 . . .  Mm 0 

0 No N1 
0 Mo Mi  

• .. Nm 
• .. Mm 

2k block rows 

be the smallest integer satisfying rank Sk. - 
rank Sk*- 1 = p. 

Then the coefficient matrices of a GCRD of N and M 
can be extracted from certain rows of Ek*, the row-echelon 
form of Sk.. 

However, since k* is not known in advance, we start with 
$1 and add and eliminate 2 block rows at a time until the 
desired number of zero rows is achieved. 

Bitmead et. al. [1] speed up the computation by at each 
step copying the results from the previous 2 block rows as 
the rows to be added. 

This procedure provides a goood routine for computing 
matrix GCDs in the case where the coefficient matrices con- 
tain floating point numbers; however, numerical stability 
cannot be guaranteed, since complete pivoting cannot be 
used. More elaborate methods rely on singular value de- 
composition. 

3 Fract ion-Free  M e t h o d s  

When working in an exact arithmetic or symbolic environ- 
ment, we desire to use fraction-free Gaussian elimination in 
order to avoid coefficient growth. 

When trying to extend the numerical GCD algorithm 
described in the previous section, we run into the following 
difficulties: 

1. At each step, when we add 2 block rows to the 
Sylvester matrix, careful bookkeeping is required to keep 
track of row divisors. 

2. The first problem is compounded when trying to take 
advantage of the structure of the Sylvester matrix, as was 
done by Bitmead et. al. [1] in the numerical case. The 
problem here arises from the fact that at some columns of 
the Sylvester matrix, two pivot elements have been used in 
the elimination. 

3. Even with careful bookkeeping, this method will not 
remove the entire content of the rows of the Sylvester matrix. 

In this poster, we will demonstrate these difficulties with 
specific examples, and then provide a fraction-free matrix 
GCD algorithm. We also compare an implementation of this 
method with an implementation of the fraction-free matrix 
GCD algorithm described by Beckermann and Labahn [3]. 
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