
ISSAC'99 Poster Abstracts: Session I

Communicated by Eugene Zima
Symbolic Computation Group,

University of Waterloo,
Waterloo, Canada

ezimaOdaisy, uwaterloo, ca

Here we present the ISSAC 1999 poster abstracts;. The
abstracts are as dis t r ibuted at the conference. This is the
first of two parts, containing abstracts of the first poster
session. Eugene V. Zima, Mohamed O. Rayes.

A Comparison of Symbolic Solution of
Radioactive Decay Chains Using

MATHEMATICA

Aslam, Rao F. H. Khan and N. Ahmad
Pakistan Inst i tute of Engineering and Applied Sciences,

P.O. Nilore, Islamabad, Pakis tan

Different analytical methods available for the solution of
radioactive decay chains have been implemented in Mathe-
matica. The implemented algorithms include the method of
dagonalization, the Laplace transformation, Matr ix Expo-
nential Method, Bateman solution and the E formulation.
These methods have been programmed in Mathemat ica by
defining the functions for each method separately. These
functions require only the decay constants.There is no lim-
i tat ion on the number of members of decay chains. Each
algorithm has been tested for different sets of decay con-
stants. These methods differ only in execution time. Laplace
transformation is the slowest method while Bateman and E
formulation proves to be the fastest ones. Method of diago-
nalization and forward sequential method, both use built-in
function DSovle, take comparable t ime for execution. Ma-
t r ix Exponential Method is also less t ime consuming in com-
parision to Forward sequential and Method of diagonaliza-
tion, however it fails in the case of singularities. This failure
may be prevented by avoiding the singularity. The methods
may be extended to the chains where branching also occurs.

Comput ing the Galois Group of
y(3) + ay' + by = 0, a, b E C[x]

Peter Berman
Depar tment of Mathematics

North Carolina State University
phberman@eos, ncsu. edu

We describe an algori thm to compute the Galois group
of a differential equation of the form y(3) + ay' -t- by =

0, a, b 6 C[x], where e is a computable, algebraically closed
constant field of characteristic zero (e.g., the algebraic num-
bers). This algorithm applies the approach used in [M. van
der Put , Symbolic Analysis of Differential Equations, Some
Tapas of Computer Algebra (Cohen et. al., ed.), Springer
Verlag, 1998] to s tudy order-two equations with one or two
singular points.

Our algorithm relies on a result of Ramis tha t says tha t
the group of such an equation must be connected and have
defect zero (c.f., [C. Mitschi and M. Singer, Connected Lin-
ear Groups as Differential Galois Groups, Journal of Algebra
184 (1996), 333-361] and [M. van der Put , Recent Work on
Differential Galois Theory, Seminaire Bourbaki Vol. 1997-
98, Asterisque 252, 1998]). Using this result we give a com-
plete list of conjugacy classes of all subgroups of SL3(C) tha t
occur as Galois groups of equations of the prescribed form.
For each group we give a simple test based on finding ratio-
nal solutions of Riccati equations of associated equations.

A J a v a F r a m e w o r k f o r M a s s i v e l y

D i s t r i b u t e d S y m b o l i c C o m p u t i n g

Lanrent Bernardin
Inst i tute for Scientific Computing

ETH Zurich, Switzerland
bernardin~inf, ethz. ch

1 I n t r o d u c t i o n

We present a framework for implementing massively dis-
t r ibuted applications in symbolic computing. Using this
framework, computat ions with massive resource require-
ments can be dis t r ibuted and processed in parallel on a net-
work of workstations [1] or on a large scale network such
as the Internet [3]. For each concrete applicat ion only min-
imal code is needed to complement the generic framework
in order to enable large-scale dis t r ibuted processing of the
application.

The use of Java[2] is essential in order to allow secure
dis t r ibuted computat ions on a set of heterogenous clients
tha t do not need to be known a priori.

20

http://crossmark.crossref.org/dialog/?doi=10.1145%2F347127.347341&domain=pdf&date_stamp=1999-09-01

2 T h e " D i v i d e a n d
b e C o n q u e r e d " M o d e l

The model we advocate in this paper eliminates the burden
of managing a pool of workers. The user advertises his need
for computat ional power along with the da ta set to compute
on. Any machine on the Internet that sees this advertise-
ment can choose to act as a worker for this part icular task,
compute on the corresponding da ta and return results to
the principal for that computation. One could say that the
workers "push" their computing power to the principal or
that the workers "shop around" on the Internet, looking for
suitable tasks to compute on. We call this model "divide
and be conquered", since a large computat ion is broken up
into small subtasks and the initiative for processing these
subtasks is coming from the workers.

This approach scales to a large number of hosts involved
in a computat ion, since the principal, which is originating
and coordinating a computation, needs no a priori knowl-
edge of the workers which will be involved. In particular,
the managing node does not (need to) know which machine
is going to act when and for how long as a worker for his
task. The hassle of maintaining a dedicated pool of workers
disappears.

Web Server 1

Application Server 1

rLoca! Host

Browser

-i I Java VM ,

Figure 1: The "divide and be conquered" model of dis-
t r ibuted computing

3 Conclusions

We present a new alternative for distr ibuted symbolic com-
puting on the Internet. The use of the Java language pro-
vides us with a flexible generic framework using a small
amount of code. Certain large scale computations can take
advantage of this model to advance the class of t ractable
problems today.

R e f e r e n c e s

[1] ANDERSON, T. , CULLER, D., AND PATTERSON, D. A
case for NOW (networks of workstations). IEEE Micro
15, 1 (1995), 54-64.

[2] GOSLING, J., JoY, B., AND STEELE, G. The Java Lan-
guage Specification. Addison-Wesley, 1996.

[3] STRUMPEN, V. Coupling hundreds of workstations for
parallel molecular sequence analysis. Software - Practice
and Experience 25, 3 (1995), 291-304.

C t C o q : a n e n v i r o n m e n t f o r m a t h e m a t i c a l

r e a s o n i n g

Lemme Group
Yves Bertot, Laurence Rideau, Looc Pottier, and Laurent

Thiry
INRIA Sophia Antipolis

{Yves. Bettor, Laurence. Rideau}~inria. fr,
{Loic. Port ±er, Laurent. Thery}@inria. fr

The work we want to present on this poster derives
from the experience we have developed on providing user-
interfaces for deduction systems. The latest developments
concern a bet ter display of mathemat ical formulae, possibil-
ities for illustrations, and rich interaction capabilities.

1 W h a t is it?

CtCoq is an independent application designed to help per-
form proofs using the Coq proof assistant. It takes care of
recording the commands sent to the Coq proof engine and
it provides a bet ter display for the mathematical formulas
constructed by the user or produced by the proof engine in
response to requests.

Through an analysis of mathemat ical formulas and
mouse gestures, it also provides novel ways to perform math-
ematical reasoning.

We intend to have a little paragraph explaining this
multi-process architecture (and maybe a drawing showing
the da ta flow between the processes).

2 Interaction features

2.1 Displaying Mathemat ics

We have an algorithm tha t takes care of the layout of mathe-
matical formulae in two dimensions, thus making the display
of square roots, summations, fractions, and other formulae
automatic. This algorithm is efficient and incremental, thus
making it possible to use it in an interactive tool to per-
form mathematics. We intend to show a few examples of
displayed mathematical formulae.

When da ta is displayed on the screen, it is sensible to
mouse interaction, thus making it possible to trigger opera-
tions by simply clicking on some sub-formula. Wi th this, we
explored new ways to construct mechanically-checked proofs
or to manipulate algebraic formulas, based on direct manip-
ulation.

Work in progress in this area of formula layout concerns
extensibility, enabling users to adapt notat ions to their field
of interest. We envision several levels of programmabili ty.
The first one follows a model of programming by examples:
users show the text they want to see on the screen for some
formula patterns, but they have no to limit their choice to
a fixed set of graphical combinations. More complicated
levels require a more precise description of layout computa-
tion. For now, this complicated level requires programming
in Java.

21

The layout mechanism also provides ways to include
drawings or b i tmaps and enriched text in comments.

2.2 U s i n g t h e mouse to perform proofs

With the CtCoq experiment, we have developed a strong
competence around ways to use the mouse to express logical
operations.

A feature provided in CtCoq makes it possible to per-
form proofs of predicate calculus without equality by sim-
ply pointing at the sub-expressions of logical formulas that
are subject of the next step. We intend to show a sequence
of windows, indicating the operations performed with the
mouse and the consequence.

A second feature provided in CtCoq makes it possible to
perform proofs based on rewriting by dragging da ta around
algebraic expressions. This tool is very much inspired]by the
direct manipulat ion provided in tools such as Theorist (a
product dis t r ibuted in Europe under the name MathPlus).
We will also show a litt le scenario of this kind of interaction.

Work in this progress concerns ways to merge the two in-
teraction techniques into one, using the drag-and-drop con-
cept in new ways, etc.

2.3 R e n d e r i n g machine checked proofs

We have also worked around the rendering of proof a t tempts
as text in a form close to natural language. This makes it
possible to present the formal proofs checked by the com-
puter in a manner tha t als0 seems natural to readers that
are not computer specialists.

This rendering mechanism can actually be used to dis-
play proofs-in-progress. In this case, incomplete proofs ap-
pear like proof texts in which unfinished parts appear as
conjectures. Using mouse interaction facilities, users can
then proceed by filling in the gaps, with the illusion of sim-
ply transforming some proof text. If our implementation
progresses enough, we hope to include an example of incom-
plete proof text in the poster, and maybe steps that show
how the text construction progresses.

Mutat is mutandi , this work can also be used to write
functional programs in a programming style close to ML. In
this case, the program and the proof of its correctness are
developed in parallel.

3 Application fields

3.1 Education

In its most basic used the proof engine can be used to force
users to spell out the proofs they performed. In this respect,
it can be used effectively to teach the basic techniques of
mathemat ical reasoning. Also, because proofs can be per-
formed in advance by teachers and collected in some form
of interactive books, with high-quality display of formulas,
rich comments, and illustrations, this tool can also be used
to provide a reference to mathemat ical knowledge.

As an interactive book, the tool can be used to enliven
mathemat ical results, as s tudents may t ry to redo proofs
under the supervision of the computer~ with the possibility
to analyze the proofs given as example by the teachers.

3.2 Studying computer a l g e b r a a l g o r i t h m s

The Coq proof system is part icularly well adapted to rea-
son on computer algebra algorithms. For instance members
of our team have developed a machine-checked implemen-
tat ion of Buchberger 's algori thm for Gr6bner bases. Such
mechanically checked algorithms may be integrated in the
proof engine itself to make further proofs more efficient, re-
placing the need for the user to spell out computat ion steps
by the capabil i ty to let the computer compute.

We intend to have a box on the poster containing an enu-
meration of the various computer algebra algorithms tha t
have been studied using our technology (actually mention-
ing work done with the previous implementat ion of our user-
interface for mathematics on the computer) .

4 Conclusion

The general impression that we want to convey is tha t the
CtCoq tool can be used to support the development of in-
teractive books on mathematics , where the constraints of
safe reasoning can be checked by the computer. Apar t from
powerful notations and il lustration capabilities, the tool also
provides the possibility to check the validity of logical rea-
soning steps and computations. For students, this makes it
possible to supervise exercises, for working mathematicians,
this makes it possible to use the computer as an "intelligent"
sheet of scratch paper.

D e v e l o p i n g t h e S o l i t o n E x p l o r e r : A

P r o b l e m S o l v i n g E n v i r o n m e n t f o r S o l i t o n

S u r f a c e I n v e s t i g a t i o n

Bruce W. Char
Anthony Harrison
Thomas Hewett

Ron Perline
Muksim Rakhimov

Depar tment of Mathematics and Computer Science
Drexel University

Philadelphia, PA 19104 USA
email: bchar~ncs .drexel. edu

We discuss the continuing development of "Soliton Ex-
plorer", a Problem Solving Environment for Soliton Geom-
etry.

Soliton equations are a recently investigated class of non-
linear ordinary and part ial differential equations, which can
be linearized via a non-trivial t ransformation (the so-called
spectral transform); as a consequence there are many ex-
plicit solutions to these equations, in terms of exponential ,
trigonometric, and elliptic functions.

Soliton geometry refers to geometric equations for curves
and surfaces which can be explicitly described in terms of
soliton equations. While there are many such equations,
our project 's research focus centers on the following par t ia l
differential equation describing curve evolution in three di-
mensions (and related modifications):

This equation is called the smoke ring equation, or the local-
ized induction equation (LIE), from fluid mechanics theory.

22

The equation LIE and its relatives are sufficiently compli-
cated tha t a custom Problem Solving Environment tailored
to these equations is required. Our PSE, called Soliton Ex-
plorer, is an interaction between analytic tools developed
within Maple, a Fort ran l ibrary which produces da ta files
for surface visualization and analysis, and a Java3D Visual-
ization tool for rendering.

The part icular roles of Maple include
(i) generation of explicit solutions to related curvature
equations;
(ii) integration of curvature equations exactly to obtain
desired curves and surfaces (the Sym differentiation trick);
(iii) when possible, further structural analysis of the
explicitly described surface (geometry of parameter curves,
for example);
(iv) automatic code generation for numerical evaluation of
geometric da ta formulas.

The purpose of the visualization tool includes the in-
vestigation of topological and global questions not readily
accessible thru algebraic calculations (connectivity, inter-
section properties, symmetries, etc.)

Our poster for Soliton Explorer illustrates some of the
features available within our visualization tool for analysis of
surfaces, including colorization options, culling options, and
simultaneous rendering styles, which highlight the structure
of the given surfaces. We discuss role of Maple as a code
generating software component in this system, as well as
some of the mathematical discoveries tha t have been made
with the help of this tool.

We conclude with a discussion of current and planned
extensions of Soliton Explorer.

This project is funded in part by the National Science
Foundation, as grant number CCR-9527130.

T h e S e a r c h f o r a n d C l a s s i f i c a t i o n o f

I n t e g r a b l e A b e l O D E C l a s s e s

Edgardo S. Cheb-Terrab
Centre for Experimental and Constructive Mathematics

Simon Fraser University, Burnaby
British Columbia, Canada

e c t e r r a b ~ c e c m , s f u . c a

Theodore Kolokolnikov
Depar tment of Mathematics

University of British Columbia
Vancouver

British Columbia, Canada
tkolokol0math, ubc. ca

Austin D. Roche
Symbolic Computation Group

Department of Computer Science
University of Waterloo

Ontario, Canada
adroche@daisy, uwaterloo, ca

We present a classification of both known and newly dis-
covered integrable cases of Abel ODEs,

y' = f3(x)y3 + f2(x)y2 + f l (x) y + fo(x) (1)

where y _-- y(x). It is well known tha t Abel ODEs can
be organized into equivalence classes under the structure
preserving transformation

{x = F(t) , y(x) = P(t) u(t) + Q(t)} (2)

The s tandard theory of Abel ODEs is based on certain in-
variants of the transformation (2) which can be expressed
in terms of the coefficients {fa, f2, f l , fo} and their deriva-
tives. The nontrivial and therefore interesting case occurs
when the invariants are not constant. Liouville [1] showed
that by comparing their respective invariants, it can be de-
termined when a given ODE is equivalent to any one of a set
of representative ODEs, each of different class, via a trans-
formation (2). This determinat ion would fix the class of
the given equation, so that the transformation itself, along
with the solution to the canonical representative of the class,
would be enough to build the solution to the given equation.

I t is clear then that the value of an integration strategy
for nonconstant invariant Abel ODEs relies upon the num-
ber of distinct integrable Abel ODE classes for which a rep-
resentative and its solution are known. However, there are
relatively few integrable cases with nonconstant invariant
found in the literature, scattered widely among the various
sources. Many of them have ended up in Kamke [2], but the
presentation there lacks a classification; for example some
of the equations listed actually belong to the same equiv-
alence class. Furthermore, we believe tha t it has recently
become possible, with the aid of computer algebra tools, to
conduct a more systematic and exhaustive search for new
integrable cases than has been a t t empted previously. Our
goal was to collect the known integrable Abel ODE classes
and search for new ones, building as complete as possible
a set, including the corresponding canonical representatives
and solutions. Inserting this da ta into the ODEtools package
of Maple would enable the computer to solve automatical ly
any Abel equations which we know how to solve by hand.

One of the interesting aspects of this search has been
the discovery of some new parameterized equivalence classes.
For each different value of the parameter there exists a dif-
ferent class of Abel ODEs.

Our results can be summarized as follows. By analyzing
the Abel classes discussed in the pioneering works by Abel,
Liouville and Appell [3, 1, 4] we collected four 1-parameter
classes - two of which were actually not presented in those
works - plus three classes without parameters, two of them
by Liouville, and one by Halphen.

Then we analyzed the collection of Abel equations pre-
sented in Kamke (69 ODEs) noticing tha t 42 have constant
invariant - hence presenting no interest - and from the re-
maining set only one of them, number 235 is a new inte-
grable class - without parameters. All the other examples
from Kamke are shown to be members of the classes just
mentioned, or their solution is not shown in the book and
we were not able to obtain it by other means.

By following different approaches we then succeeded in
obtaining three more classes without parameters and one
more integrable class depending on four parameters, not pre-
viously presented in the l i terature to the best of our knowl-
edge. By split t ing this 4-parameter class into different cases,
it is possible to show that the class actually consists of a var-
ied set of two, one and zero parameter classes.

The idea used to obtain this new 4-parameter integrable
class also leads to a wider 6-parameter nonconstant invari-
ant Abel class all of whose members can be systematically

23

mapped into Riccati ODEs, as well as a recipe to generate
new integrable Abel classes from previous ones when they
satisfy certain conditions.

R e f e r e n c e s

[1] R. Liouville, Comptes Rendus, Sep. 12, 1887, p46D-463.

[2] E. Kamke, Differentialgleichungen: LSsungsmethoden
und L5sungen. Chelsea Publishing Co, New York (1959).

[3] N.H. Abel, Oevres Compl4tes II, S.Lie and L.Sylow,
Eds., Christiana, 1881.

[4] P. Appell, Journal de Math4matique 5, 361-423 (1889).

[5] E.S. Cheb-Terrab, A.D. Roche, Abel ODEs: Equivalence
and New Integrable Cases. (In progress)

[6] E.S. Cheb-Terrab, T. Kolokolnikov, A.D. Roche, Abel
ODEs: A symmetry approach. (In progress)

M o d u l e s f o r M a p l e

David Clark and James McCarron

Waterloo Maple, Inc.
{ d r c l a r k , jmcca r ro}~mapleso f t , cora

This poster presents a design for a module system far the
computer algebra system Maple [6], and describes a proto-
type implementat ion of it. The term "module" is used here
in the computer science sense, not the mathematical sense.

The module system design is similar to those found in
implementat ions of most modern functional programming
languages, such as Scheme [2] or ML [1]. Modules are first
class expressions in Maple tha t represent the lexical c][osure
of a part icular protected scope of computat ion that exists
transiently during the module 's instantiation. It is possible
to view a module as the result of invoking a thunk that
returns some subset of its local environment for use by client
code.

A trivial, but impor tant use of modules is the construc-
tion of "packages": collections of related procedures that
are to be bundled together. Maple currently uses tables to
aggregate routines into coherent packages. The abili ty to
aggregate routines into packages is an important part of the
management of system namespaces. Thus, modules; con-
t r ibute to bet ter software engineering in Maple.

One source of difficulty with the extant package system
tha t is addressed by modules is the inability to protect the
implementat ion of an API. There was no way to p:rotect
da ta used by a package from tampering. The module system
provides access control to module members. I t is possible
for the programmer to declare tha t some da ta or procedures
are "private" to the module, and they are inaccessible from
outside the modules definition. Only the da ta or routines
that are supposed to be exposed to the user need be.

A new b ind () command supports the interactive use of
modules as packages. It improves on the with() command
in tha t it allows the effects of global rebinding of names to
be reversed.

We discuss some of the results of experiments that use
the prototype module system to create packages.

For the programmer, a distinct, but complementary fea-
ture of the design is a new use statement. This s ta tement
allows one to establish block local bindings for names. Al-
though syntactically similar to the l e t forms found in most
functional languages, it is actually much closer to a macro
facility as found in Common Lisp [3], in that bindings are
resolved at compile t ime ("simplification time" in Maple).
If you say u s e (MyModule) then the bindings exported by
the module MyModule are visible within the scope delimited
by the use statement. This facility is specifically designed
to support rebinding of operators. Thus, within the body
of a use statement, the symbol '+' can be rebound to mean,
for instance, matr ix addition.

Modules allow a programmer to implement "objects"
tha t have mutable local state, and tha t control access to
that state. This allows the programmer to construct clean
and robust systems of interacting objects. On the other
hand, our design avoids t rying to implement a full system
for object orientation such as one finds in Common Lisp [3].
I t is expected tha t future revisions of the design will add
subtyping via ML-style signatures [5].

Some simple examples of programming objects using
modules are given.

An interesting problem tha t arose early in the design
was the abili ty to save a module once instantiated. Since
module instantiat ion can involve arbi t rar i ly large amount of
computation, it is desirable to be able to generate a module
and then save it in a "library". The existing facilities for
saving Maple expressions were unable to cope with the new
structures which essentially amount to collections of escaped
local variables (closures). Enhancements in the direction of
a persistent store were effected to deal with this problem.

Apar t from the direct and obvious benefits to software
engineering with Maple, one of the most exciting prospects
for the use of modules is in programming domains of com-
putation, as found in Axiom [4] and the Maple package
Domains [7]. This application is still being studied, but we
give some simple examples of how this might eventually be
done.

R e f e r e n c e s

[1] COUSINEAU, G., AND MAUNY, M. The Functional Ap-
proach to Programming. Cambridge University Press,
Cambridge, 1998.

[2] DYBVIG, R. K. The Scheme Programming Language:
ANSI Scheme, second ed. Prentice Hall, Upper Saddle
River, New Jersey, 1996.

[3] GRAHAM, P. ANSI Common Lisp. Prentice Hall, En-
glewood Cliffs, New Jersey, 1996.

[4] JENKS, R., AND SUTOR, R. AXIOM: The Scientific
Computation System. Springer Verlag, 1992.

[5] MILNER, R., TOFTE, M., AND HARPER, R. The Def-
inition of Standard ML. MIT Press, Cambridge, MA,
1989.

[6] MONAGAN, M., GEDDES, K., HEAL, K., LABAHN, G.,
AND VORKOETTER, S. Maple V Programming Guide.
Springer-Verlag, New York, 1996.

[7] MONAGAN, M. B. Gauss: A parameter ized domain of
computat ion system with support for signature func-
tions. In Proceedings of DISCO '93 (1993), vol. 722

24

of Lecture Notes in Computer Science, Springer-Verlag,
pp. 81-94.

Aut omat i c Construct ion of an R Matr ix

David De Wit
RIMS, Kyoto University, JAPAN

ddw@kurims.kyoto-u.ac.jp

Within mathematical physics, R matrices are of interest
in the s tudy of exactly solvable models (i.e. quantum sta-
tistical mechanics), and also in knot theory, in that they are
solutions of the Yang-Baxter equation. In principle, to each
member of a large class of representations of a large class
of algebraic structures, there corresponds a unique (up to
uni tary transformations) R matrix. However, the explicit
construction of tha t R matr ix typically presents both the-
oretical and practical difficulties, thus there are few known
explicit examples of them.

Here (fixing m), we describe the automation of the con-
struction of an R matr ix corresponding to the 2 m dimen-
sional (0m IS) highest weight representation of the quan-
tum superalgebra Uq[gl(mll)]. This algebra contains a free
complex variable q, whilst the vector space (i.e. module)
V _---- V(0 m I ~) corresponding to the representation contains a
free complex variable a . In this case, there are no theoretical
difficulties in the construction. The 'R matr ix ' is actually a
rank 4 tensor with 24m (mostly zero) components, each of
which is an algebraic expression in the two complex variables
q and (~.

2 m
Where V has an orthonormal (weight) basis (vl}i=l , the

tensor product V ® V (also a Uq[gl(mll)] module) has a nat-
ural 22m dimensional (weight) basis (v~ 2m ® Vj}i,j=l. TO build
the corresponding R, we require a different, very specific (or-
thonormal) basis B = U~__+l 1 Bk for V @ V corresponding to
the (orthogonal) decomposition V ® V = ~:l:~k=l k of V ® V
into orthogonal Uq[gl(mll)] submodules Vk. The basis vec-
tors within each Bk are expressed as linear combinations of
the vectors vi @ vj, where the coefficients involved are non-
trivial algebraic functions of q and a. From the Bk, we may
immediately construct projectors P~ onto the modules Vk.
R itself is then obtained as the sum ~ = + l 1)~kPk, where Ak
is the eigenvalue tha t the second-order Uq [gl(mll)] Casimir
invariant takes on Vk. Both the weights of the Vk and the
eigenvalues Ak are well-known.

Although the dimensions are quite small, manual calcu-
lation is demanding (for the case m = 2, see [2]). To improve
on this situation, we have writ ten a suite of MATHEMATICA
functions to automate the entire process for general m. The
automation involves the prior writing of the Uq [gl(m I 1)] gen-
erators and relations in a form that facilitates the normal
ordering of strings of generators [4]. This code is currently
feasible for the cases m = 1, 2, 3 and 4.

From a symbolic programming perspective, the interest-
ing part of the process is the construction of the Bk.

• Initially, we declare a weight basis for V. Knowledge of
the intended action of the algebra generators on these
basis elements allows us to deduce the matr ix elements
of the representation, and this information facilitates
the construction of the B~.

• For each module Vk, we must first construct a highest
weight vector v~-; and this involves the establishment
and solution of a system of algebraic equations (known
to have a unique solution). The weights of the Vk are
included as da ta within the MATHEMATICA functions,
although in principle this could be automatical ly de-
duced. From this v~-, we construct a spanning set for
Vk by the repeated action of (the coproduct of) the
Uq[gl(mll)] lowering generators. Applying a G r a m -
Schmidt process to this spanning set yields the basis
Bk, which typically contains huge expressions.

• In contrast with the vectors in the Bk, the components
of R are quite wholesome, although we must typically
apply some simplification efforts to see this.

The R matrices obtained may be used in the evaluation
of (new, two-variable) polynomial link invariants. A link in-
variant associated with the m -- 2 case was introduced in [3],
and first evaluated in [2]. The la t ter work constructed the
R matr ix manually, and this construction has been used to
confirm the correctness of our current algori thm and code.
This evaluation also involves automat ic symbolic computa-
tion, but the code is comparatively pedestrian. The results
are exciting for knot theory in that these invariants (for
m/> 2) are more powerful than their confederates, the well-
known HOMFLY and Kauffman polynomials [1].

R e f e r e n c e s

[1] David De Wit . Automat ic Evaluation of the Links-
Gould Invariant for all Pr ime Knots of up to 10 Cross-
ings. Under consideration as at May 1999.

[2] David De Wit , Louis H Kauffman, and Jon R Links.
On the Links-Gould Invariant of Links. To appear
in the Journal of Knot Theory and its Ramifications.
math. GN/9811128.

[3] Jon R Links and Mark D Gould. Two Variable Link
Polynomials from Quantum Supergroups. Letters in
Mathematical Physics, 26(3):187-198, November 1992.

[4] Rui Bin Zhang. Finite Dimensional Irreducible Rep-
resentations of the Quantum Supergroup Uq (gl(mln)).
Journal of Mathematical Physics, 34(3):1236-1254,
March 1993.

Symbol ic Exe c ut ion and NaNs:
Diagnost ic Tools for Tracking Scientific

C o m p u t a t i o n

Richard J. Fateman
Computer Science Division, EECS Dept.

University of California at Berkeley
Berkeley, CA 94720-1776, USA
f at eman@cs, berkeley, edu

http ://~. cs. berkeley, edu/ fateman

When unexpected results appear as output from your
computation, there may be bugs in the program, the input
data, or your expectation. In grappling with difficult di-
agnostic tasks one direction is to seek tools to analyze the

25

symbolic mapping from the input to the output . We are
generally ahead in this game if we can understand complex
system behavior without necessarily studying detailed pro-
gram source code. This is true especially if the source is in
an unfamiliar language, difficult to understand, or simply
unavailable. We explain two tools: t ime-honored "symbolic
execution" which requires some kind of computer ~dgebra
system, and a novel modification, NaN-tracking. This is a
simplified version of symbolic execution that is too:re eas-
ily implemented in a conventional language like Fortran or
C. The principal requirement of this second approach is a
competent implementat ion of a compiler and run-t ime sys-
tem. In particular, the language system must provide access
to features of the IEEE-754 binary floating-point arit]hmetic
s tandard [1]. While our own experiments are based in part
on an implementat ion in Lisp, the mechanisms we use should
be accessible from languages in nearly every C-based UNIX
workstation used for scientific computing.

References

[1] IEEE Computer Society Microprocessor Stm]dards
Commit tee Task P754, a s tandard for binary floating-
point ari thmetic, (see, for example, draft 8.0, C o m p u t e r

1~, 3 Mar. 1981, 52-63)

P a r s i n g T E X i n t o M a t h e m a t i c s

Richard J. Fateman
Computer Science Division, EECS Dept.

University of California at Berkeley
Berkeley, CA 94720-1776, USA
f ateman@cs, berkeley, edu

http ://www. cs. berkeley, edu/ fateman
Eylon Caspi

Computer Science Division, EECS Dept.
University of California at Berkeley

Berkeley, CA 94720-1776, USA
eylon@cs, berkeley, edu

Communication, storage, transmission, and searching of
complex mater ial has become increasingly important . Math-
ematical computing in a dis t r ibuted environment is also be-
coming more plausible as libraries and computing facilities
are connected with each other and with user facilities. TEX
is a well-known mathemat ica l typeset t ing language, and
from the display perspective it might seem that it could
be used for communication between computer systems as
well as an intermediate form for the results of OCR (optical
character recognition) of mathematical expressions. There
are flaws in this reasoning, since exchanging mathematical
information requires a system to parse and semantically "un-
derstand" the TEX, even if it is "ambiguous" notationally.
A program we developed can handle 43% of 10,740 TEX for-
mules in a well-known table of integrals. We expect tha t a
higher success rate can be achieved easily.

G a u s s - L e g e n d r e Q u a d r a t u r e

Greg Fee
Dept. of Mathematics and Statistics,

Simon Fraser Univ.,
Burnaby, B.C., V5A 1S6,

gj fee@cecm, s fu . ca

It is known that gaussian quadrature is one the best nu-
merical methods for computing definite integrals of analytic
functions. For example, consider using 101 evaluation points
to find ~ from f014 (1 + x 2)-1 d x . If we use a closed type
Newton-Cotes formula, which just integrates the interpolat-
ing polynomial which agrees with the integrand at the 101
equally spaced nodes [0.00, 0.01, 0.02, ..., 1.00] then we can
compute the integral to 54 significant digits. If we use the
101 point gaussian quadrature formula, then we can com-
pute the integral to 134 significant digits. The evaluation
points for an n point Gauss-Legendre quadrature formula
are the n roots of the n ~h Legendre polynomial. One of the
drawbacks to using gaussian quadrature, is the problem of
computing these roots. We will compare several methods
for computing the nodes and weights for an n point Gauss-
Legendre quadrature formula at various precisions. As an
appl icat ion, consider the problem of numerically computing
a t runcated fourier series of a non-periodic analytic function.
In this case gaussian quadrature can be faster than the fast
fourier transform based algorithm, if we only want a few
trigonometric coefficients to high precision. If we compute
the fourier series for e x p (- x) on the interval [0, 1] up to
the terms cos(2~r21°x) and sin(21r21°x) then the 2048 point
gaussian quadrature formula gives the coefficients to 32 dig-
its to the right of the decimal point. Now compare this with
an F F T based algorithm. The error in a 2 m point F F T
algorithm is 0 (2 -2m) , so we would need about 227 eval-
uation points for only double precision (16 digit) accuracy
and about 254 evaluation points for quadruple precision (32
digit) accuracy.

C o m p u t i n g G r e a t e s t C o m m o n D i v i s o r s o f

P o l y n o m i a l M a t r i c e s

Cassidy Gentle
Symbolic Computa t ion Group

University of Water loo
cgentle@daisy, uwaterloo, ca

Abstract

In control theory the problem of computing greatest com-
mon divisors of polynomial matrices arises when trying to
compute coprime matr ix factorizations of a given transfer
function (see Kailath [2]). Much work has been done on
this topic in the numerical case, where the coefficients of
the polynomials are floating point numbers. We are inves-
t igating the extension of these algorithms to the symbolic
case.

26

1 M a t r i x G r e a t e s t C o m m o n Div i so r s

A matrix R(s) is a Greatest Common Right Divisor (GCRD)
of two matrices {N(s), M(s)} if it satisfies the following
properties:

1. there exist polynomial matrices N1 (s) and Ml(S) such
that

N(s) = N1 (s)R(s) and M(s) = M1 (s)R(s)

2. If Rl(s) is any other right divisor of N(s) and M(s),
then there exists a polynomial matrix W (s) such that

R(s) = W (s) R l (s)

Matrices N(s) and M(s) are right coprime if all their
GCRD's are unimodular, having determinants that are not
a function of s.

2 C o m p u t i n g G C R D s us ing G a u s s i a n E l i m i n a t i o n

Bitmead et. al. [1] provide a method for computing Ma-
trix GCDs which obtains the GCD by performing Gaussian
Elimination on an associated generalized Sylvester matrix.

Consider two matrices N(s) and M(s) with polynomial
entries, each containing p columns.

We can write N(s) and M(s) as polynomials with matrix
coefficients

N(s) = Nos m + NlS ~-1 + . . . + N m - l S + N ~

M(s) = Mos m + M l s m-I + . . . + M m - l S + Mm

where m is the highest degree of all the polynomial en-
tries of N(s) and M(s) .

The generalized Sylvester matrix of N(s) and M(s) of
order k is defined as

S•

0
0

Let k*

N o N~ . . . Nm 0 . . . 0
Mo M1 . . . Mm 0 . . . 0
0 No N~ . . . Nm 0
0 Mo M1 . . . Mm 0

0 No N1
0 Mo Mi

• .. Nm
• .. Mm

2k block rows

be the smallest integer satisfying rank Sk. -
rank Sk*- 1 = p.

Then the coefficient matrices of a GCRD of N and M
can be extracted from certain rows of Ek*, the row-echelon
form of Sk..

However, since k* is not known in advance, we start with
$1 and add and eliminate 2 block rows at a time until the
desired number of zero rows is achieved.

Bitmead et. al. [1] speed up the computation by at each
step copying the results from the previous 2 block rows as
the rows to be added.

This procedure provides a goood routine for computing
matrix GCDs in the case where the coefficient matrices con-
tain floating point numbers; however, numerical stability
cannot be guaranteed, since complete pivoting cannot be
used. More elaborate methods rely on singular value de-
composition.

3 Fract ion-Free M e t h o d s

When working in an exact arithmetic or symbolic environ-
ment, we desire to use fraction-free Gaussian elimination in
order to avoid coefficient growth.

When trying to extend the numerical GCD algorithm
described in the previous section, we run into the following
difficulties:

1. At each step, when we add 2 block rows to the
Sylvester matrix, careful bookkeeping is required to keep
track of row divisors.

2. The first problem is compounded when trying to take
advantage of the structure of the Sylvester matrix, as was
done by Bitmead et. al. [1] in the numerical case. The
problem here arises from the fact that at some columns of
the Sylvester matrix, two pivot elements have been used in
the elimination.

3. Even with careful bookkeeping, this method will not
remove the entire content of the rows of the Sylvester matrix.

In this poster, we will demonstrate these difficulties with
specific examples, and then provide a fraction-free matrix
GCD algorithm. We also compare an implementation of this
method with an implementation of the fraction-free matrix
GCD algorithm described by Beckermann and Labahn [3].

R e f e r e n c e s

[1] R. R. Bitmead, S.-Y. Kung, B. D. O. Anderson and
T. Kailath. Greatest common divisors via generalized
sylvester and bezout matrices. IEEE Transactions
on Automatic Control, AC-23(6):1043-1047, Decem-
ber 1978.

[2] Thomas Kailath. Linear Systems. Prentice-Hall In-
formation and System Sciences Series. Prentice-Hall,
Inc., Englewood Cliffs, N.J. 07632, 1980.

[3] B. Beckermann & G. Labahn Fraction-free Computa-
tion of Matrix GCD's and Rational Interpolants. CS
Tech Report, University of Waterloo Submitted to
S I A M J. Matrix Anal. Appl. (1997).

27

