
The equation LIE and its relatives are sufficiently compli- 
cated tha t  a custom Problem Solving Environment tailored 
to these equations is required. Our PSE, called Soliton Ex- 
plorer, is an interaction between analytic tools developed 
within Maple, a Fort ran l ibrary which produces da ta  files 
for surface visualization and analysis, and a Java3D Visual- 
ization tool for rendering. 

The part icular  roles of Maple include 
(i) generation of explicit solutions to related curvature 
equations; 
(ii) integration of curvature equations exactly to obtain 
desired curves and surfaces (the Sym differentiation trick); 
(iii) when possible, further structural  analysis of the 
explicitly described surface (geometry of parameter  curves, 
for example); 
(iv) automatic  code generation for numerical evaluation of 
geometric da ta  formulas. 

The purpose of the visualization tool includes the in- 
vestigation of topological and global questions not readily 
accessible thru algebraic calculations (connectivity, inter- 
section properties, symmetries,  etc.) 

Our poster  for Soliton Explorer illustrates some of the 
features available within our visualization tool for analysis of 
surfaces, including colorization options, culling options, and 
simultaneous rendering styles, which highlight the structure 
of the given surfaces. We discuss role of Maple as a code 
generating software component in this system, as well as 
some of the mathematical  discoveries tha t  have been made 
with the help of this tool. 

We conclude with a discussion of current and planned 
extensions of Soliton Explorer. 
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We present a classification of both known and newly dis- 
covered integrable cases of Abel ODEs, 

y' = f3(x)y3 + f2(x)y2 + f l ( x ) y +  fo(x) (1) 

where y _-- y(x).  It  is well known tha t  Abel ODEs can 
be organized into equivalence classes under the structure 
preserving transformation 

{x = F(t) ,  y(x)  = P(t )  u(t) + Q(t)} (2) 

The s tandard theory of Abel ODEs is based on certain in- 
variants of the transformation (2) which can be expressed 
in terms of the coefficients {fa, f2, f l ,  fo} and their deriva- 
tives. The nontrivial and therefore interesting case occurs 
when the invariants are not constant. Liouville [1] showed 
that  by comparing their respective invariants, it can be de- 
termined when a given ODE is equivalent to any one of a set 
of representative ODEs, each of different class, via a trans- 
formation (2). This determinat ion would fix the class of 
the given equation, so that  the transformation itself, along 
with the solution to the canonical representative of the class, 
would be enough to build the solution to the given equation. 

I t  is clear then that  the value of an integration strategy 
for nonconstant invariant Abel ODEs relies upon the num- 
ber of distinct integrable Abel ODE classes for which a rep- 
resentative and its solution are known. However, there are 
relatively few integrable cases with nonconstant invariant 
found in the literature, scattered widely among the various 
sources. Many of them have ended up in Kamke [2], but  the 
presentation there lacks a classification; for example some 
of the equations listed actually belong to the same equiv- 
alence class. Furthermore, we believe tha t  it has recently 
become possible, with the aid of computer  algebra tools, to 
conduct a more systematic and exhaustive search for new 
integrable cases than has been a t t empted  previously. Our 
goal was to collect the known integrable Abel ODE classes 
and search for new ones, building as complete as possible 
a set, including the corresponding canonical representatives 
and solutions. Inserting this da ta  into the ODEtools package 
of Maple would enable the computer  to solve automatical ly 
any Abel equations which we know how to solve by hand. 

One of the interesting aspects of this search has been 
the discovery of some new parameterized equivalence classes. 
For each different value of the parameter  there exists a dif- 
ferent class of Abel ODEs. 

Our results can be summarized as follows. By analyzing 
the Abel classes discussed in the pioneering works by Abel, 
Liouville and Appell  [3, 1, 4] we collected four 1-parameter 
classes - two of which were actually not presented in those 
works - plus three classes without parameters,  two of them 
by Liouville, and one by Halphen. 

Then we analyzed the collection of Abel equations pre- 
sented in Kamke (69 ODEs) noticing tha t  42 have constant 
invariant - hence presenting no interest - and from the re- 
maining set only one of them, number 235 is a new inte- 
grable class - without parameters.  All the other examples 
from Kamke are shown to be members of the classes just  
mentioned, or their solution is not shown in the book and 
we were not able to obtain it by other means. 

By following different approaches we then succeeded in 
obtaining three more classes without parameters  and one 
more integrable class depending on four parameters,  not pre- 
viously presented in the l i terature to the best  of our knowl- 
edge. By split t ing this 4-parameter  class into different cases, 
it is possible to show that  the class actually consists of a var- 
ied set of two, one and zero parameter  classes. 

The idea used to obtain this new 4-parameter  integrable 
class also leads to a wider 6-parameter  nonconstant invari- 
ant Abel class all of whose members can be systematically 
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mapped  into Riccati ODEs, as well as a recipe to generate 
new integrable Abel classes from previous ones when they 
satisfy certain conditions. 
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This poster  presents a design for a module system far the 
computer  algebra system Maple [6], and describes a proto- 
type implementat ion of it. The term "module" is used here 
in the computer  science sense, not the mathematical  sense. 

The module system design is similar to those found in 
implementat ions of most modern functional programming 
languages, such as Scheme [2] or ML [1]. Modules are first 
class expressions in Maple tha t  represent the lexical c][osure 
of a part icular  protected scope of computat ion that  exists 
transiently during the module 's  instantiation. It is possible 
to view a module as the result of invoking a thunk that  
returns some subset of its local environment for use by client 
code. 

A trivial, but  impor tant  use of modules is the construc- 
tion of "packages": collections of related procedures that  
are to be bundled together. Maple currently uses tables to 
aggregate routines into coherent packages. The abili ty to 
aggregate routines into packages is an important  part  of the 
management  of system namespaces. Thus, modules; con- 
t r ibute  to bet ter  software engineering in Maple. 

One source of difficulty with the extant  package system 
tha t  is addressed by modules is the inability to protect  the 
implementat ion of an API. There was no way to p:rotect 
da ta  used by a package from tampering.  The module system 
provides access control to module members. I t  is possible 
for the programmer to declare tha t  some da ta  or procedures 
are "private" to the module, and they are inaccessible from 
outside the modules definition. Only the da ta  or routines 
that  are supposed to be exposed to the user need be. 

A new b ind ( )  command supports  the interactive use of 
modules as packages. It improves on the with() command 
in tha t  it allows the effects of global rebinding of names to 
be reversed. 

We discuss some of the results of experiments that  use 
the prototype module system to create packages. 

For the programmer,  a distinct, but  complementary fea- 
ture of the design is a new use statement.  This s ta tement  
allows one to establish block local bindings for names. Al- 
though syntactically similar to the l e t  forms found in most 
functional languages, it is actually much closer to a macro 
facility as found in Common Lisp [3], in that  bindings are 
resolved at compile t ime ("simplification time" in Maple). 
If you say u s e (  MyModule ) then the bindings exported by 
the module MyModule are visible within the scope delimited 
by the use statement.  This facility is specifically designed 
to support  rebinding of operators.  Thus, within the body 
of a use statement,  the symbol '+' can be rebound to mean, 
for instance, matr ix  addition. 

Modules allow a programmer to implement "objects" 
tha t  have mutable local state,  and tha t  control access to 
that  state. This allows the programmer to construct  clean 
and robust  systems of interacting objects. On the other 
hand, our design avoids t rying to implement a full system 
for object orientation such as one finds in Common Lisp [3]. 
I t  is expected tha t  future revisions of the design will add 
subtyping via ML-style signatures [5]. 

Some simple examples of programming objects using 
modules are given. 

An interesting problem tha t  arose early in the design 
was the abili ty to save a module once instantiated.  Since 
module instantiat ion can involve arbi t rar i ly  large amount  of 
computation,  it is desirable to be able to generate a module 
and then save it in a "library". The existing facilities for 
saving Maple expressions were unable to cope with the new 
structures which essentially amount  to collections of escaped 
local variables (closures). Enhancements in the direction of 
a persistent store were effected to deal with this problem. 

Apar t  from the direct and obvious benefits to software 
engineering with Maple, one of the most exciting prospects 
for the use of modules is in programming domains of com- 
putation,  as found in Axiom [4] and the Maple package 
Domains [7]. This application is still being studied, but  we 
give some simple examples of how this might eventually be 
done. 
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Within  mathematical  physics, R matrices are of interest 
in the s tudy of exactly solvable models (i.e. quantum sta- 
tistical mechanics), and also in knot theory, in that  they are 
solutions of the Yang-Baxter  equation. In principle, to each 
member of a large class of representations of a large class 
of algebraic structures, there corresponds a unique (up to 
uni tary transformations) R matrix.  However, the explicit 
construction of tha t  R matr ix  typically presents both the- 
oretical and practical difficulties, thus there are few known 
explicit examples of them. 

Here (fixing m), we describe the automation of the con- 
struction of an R matr ix  corresponding to the 2 m dimen- 
sional (0m IS) highest weight representation of the quan- 
tum superalgebra Uq[gl(mll)]. This algebra contains a free 
complex variable q, whilst the vector space (i.e. module) 
V _---- V(0 m I ~) corresponding to the representation contains a 
free complex variable a .  In this case, there are no theoretical 
difficulties in the construction. The 'R  matr ix '  is actually a 
rank 4 tensor with 24m (mostly zero) components, each of 
which is an algebraic expression in the two complex variables 
q and (~. 

2 m 
Where V has an orthonormal (weight) basis (vl}i=l ,  the 

tensor product  V ® V  (also a Uq[gl(mll)] module) has a nat- 
ural 22m dimensional (weight) basis (v~ 2m ® Vj}i,j=l. TO build 
the corresponding R, we require a different, very specific (or- 
thonormal) basis B = U~__+l 1 Bk for V @ V corresponding to 
the (orthogonal) decomposition V ® V = ~:l:~k=l k of V ® V 
into orthogonal Uq[gl(mll)] submodules Vk. The basis vec- 
tors within each Bk are expressed as linear combinations of 
the vectors vi @ vj, where the coefficients involved are non- 
trivial algebraic functions of q and a.  From the Bk, we may 
immediately construct projectors P~ onto the modules Vk. 
R itself is then obtained as the sum ~ = + l  1 )~kPk, where Ak 
is the eigenvalue tha t  the second-order Uq [gl(mll)] Casimir 
invariant takes on Vk. Both the weights of the Vk and the 
eigenvalues Ak are well-known. 

Although the dimensions are quite small, manual calcu- 
lation is demanding (for the case m = 2, see [2]). To improve 
on this situation, we have writ ten a suite of MATHEMATICA 
functions to automate  the entire process for general m. The 
automation involves the prior writing of the Uq [gl(m I 1)] gen- 
erators and relations in a form that  facilitates the normal 
ordering of strings of generators [4]. This code is currently 
feasible for the cases m = 1, 2, 3 and 4. 

From a symbolic programming perspective, the interest- 
ing part  of the process is the construction of the Bk. 

• Initially, we declare a weight basis for V. Knowledge of 
the intended action of the algebra generators on these 
basis elements allows us to deduce the matr ix  elements 
of the representation, and this information facilitates 
the construction of the B~. 

• For each module Vk, we must  first construct a highest 
weight vector v~-; and this involves the establishment 
and solution of a system of algebraic equations (known 
to have a unique solution). The weights of the Vk are 
included as da ta  within the MATHEMATICA functions, 
although in principle this could be automatical ly de- 
duced. From this v~-, we construct a spanning set for 
Vk by the repeated action of (the coproduct  of) the 
Uq[gl(mll)] lowering generators. Applying a G r a m -  
Schmidt process to this spanning set yields the basis 
Bk, which typically contains huge expressions. 

• In contrast  with the vectors in the Bk, the components 
of R are quite wholesome, although we must typically 
apply some simplification efforts to see this. 

The R matrices obtained may be used in the evaluation 
of (new, two-variable) polynomial link invariants. A link in- 
variant associated with the m -- 2 case was introduced in [3], 
and first evaluated in [2]. The la t ter  work constructed the 
R matr ix  manually, and this construction has been used to 
confirm the correctness of our current algori thm and code. 
This evaluation also involves automat ic  symbolic computa-  
tion, but  the code is comparatively pedestrian. The results 
are exciting for knot theory in that  these invariants (for 
m/>  2) are more powerful than their confederates, the well- 
known HOMFLY and Kauffman polynomials [1]. 
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When unexpected results appear  as output  from your 
computation,  there may be bugs in the program, the input  
data, or your expectation. In grappling with difficult di- 
agnostic tasks one direction is to seek tools to analyze the 
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symbolic mapping from the input to the output .  We are 
generally ahead in this game if we can understand complex 
system behavior without necessarily studying detailed pro- 
gram source code. This is true especially if the source is in 
an unfamiliar language, difficult to understand, or simply 
unavailable. We explain two tools: t ime-honored "symbolic 
execution" which requires some kind of computer  ~dgebra 
system, and a novel modification, NaN-tracking. This is a 
simplified version of symbolic execution that  is too:re eas- 
ily implemented in a conventional language like Fortran or 
C. The principal requirement of this second approach is a 
competent  implementat ion of a compiler and run-t ime sys- 
tem. In particular,  the language system must provide access 
to features of the IEEE-754 binary floating-point arit]hmetic 
s tandard  [1]. While our own experiments are based in part  
on an implementat ion in Lisp, the mechanisms we use should 
be accessible from languages in nearly every C-based UNIX 
workstation used for scientific computing. 
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Communication, storage, transmission, and searching of 
complex mater ial  has become increasingly important .  Math- 
ematical  computing in a dis t r ibuted environment is also be- 
coming more plausible as libraries and computing facilities 
are connected with each other and with user facilities. TEX 
is a well-known mathemat ica l  typeset t ing language, and 
from the display perspective it might seem that  it could 
be used for communication between computer  systems as 
well as an intermediate form for the results of OCR (optical 
character recognition) of mathematical  expressions. There 
are flaws in this reasoning, since exchanging mathematical  
information requires a system to parse and semantically "un- 
derstand" the TEX, even if it is "ambiguous" notationally. 
A program we developed can handle 43% of 10,740 TEX for- 
mules in a well-known table of integrals. We expect tha t  a 
higher success rate  can be achieved easily. 
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It is known that  gaussian quadrature  is one the best  nu- 
merical methods for computing definite integrals of analytic 
functions. For example, consider using 101 evaluation points 
to find ~ from f014 (1 + x 2)-1 d x  . If we use a closed type  
Newton-Cotes formula, which just  integrates the interpolat-  
ing polynomial which agrees with the integrand at  the 101 
equally spaced nodes [0.00, 0.01, 0.02, ..., 1.00] then we can 
compute the integral to 54 significant digits. If we use the 
101 point gaussian quadrature  formula, then we can com- 
pute the integral to 134 significant digits. The evaluation 
points for an n point Gauss-Legendre quadrature  formula 
are the n roots of the n ~h Legendre polynomial.  One of the 
drawbacks to using gaussian quadrature,  is the problem of 
computing these roots. We will compare several methods 
for computing the nodes and weights for an n point Gauss- 
Legendre quadrature formula at various precisions. As an 
appl icat ion,  consider the problem of numerically computing 
a t runcated fourier series of a non-periodic analytic function. 
In this case gaussian quadrature  can be faster than the fast 
fourier transform based algorithm, if we only want a few 
trigonometric coefficients to high precision. If we compute 
the fourier series for e x p ( - x )  on the interval [0, 1] up to 
the terms cos(2~r21°x) and sin(21r21°x) then the 2048 point 
gaussian quadrature formula gives the coefficients to 32 dig- 
its to the right of the decimal point. Now compare this with 
an F F T  based algorithm. The error in a 2 m point  F F T  
algorithm is 0 (2  -2m) , so we would need about  227 eval- 
uation points for only double precision (16 digit) accuracy 
and about 254 evaluation points for quadruple precision (32 
digit) accuracy. 
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Abstract  

In control theory the problem of computing greatest com- 
mon divisors of polynomial  matrices arises when trying to 
compute coprime matr ix  factorizations of a given transfer 
function (see Kailath [2]). Much work has been done on 
this topic in the numerical case, where the coefficients of 
the polynomials are floating point  numbers. We are inves- 
t igating the extension of these algorithms to the symbolic 
case. 

26 



1 M a t r i x  G r e a t e s t  C o m m o n  Div i so r s  

A matrix R(s)  is a Greatest Common Right Divisor (GCRD) 
of two matrices {N(s), M(s)} if it satisfies the following 
properties: 

1. there exist polynomial matrices N1 (s) and Ml(S) such 
that  

N(s)  = N1 (s)R(s) and M(s)  = M1 (s)R(s) 

2. If Rl(s )  is any other right divisor of N(s)  and M(s),  
then there exists a polynomial matrix W ( s )  such that 

R(s) = W ( s ) R l ( s )  

Matrices N(s)  and M(s)  are right coprime if all their 
GCRD's are unimodular, having determinants that are not 
a function of s. 

2 C o m p u t i n g  G C R D s  us ing  G a u s s i a n  E l i m i n a t i o n  

Bitmead et. al. [1] provide a method for computing Ma- 
trix GCDs which obtains the GCD by performing Gaussian 
Elimination on an associated generalized Sylvester matrix. 

Consider two matrices N(s)  and M(s)  with polynomial 
entries, each containing p columns. 

We can write N(s)  and M(s)  as polynomials with matrix 
coefficients 

N(s)  = Nos m + NlS ~-1  + . . .  + N m - l S  + N ~  

M(s)  = Mos m + M l s  m-I  + . . .  + M m - l S  + Mm 

where m is the highest degree of all the polynomial en- 
tries of N(s)  and M(s) .  

The generalized Sylvester matrix of N(s)  and M(s)  of 
order k is defined as 

S• 

0 
0 

Let k* 

N o  N~ . . .  Nm 0 . . .  0 
Mo M1 . . .  Mm 0 . . .  0 
0 No N~ . . .  Nm 0 
0 Mo M1 . . .  Mm 0 

0 No N1 
0 Mo Mi  

• .. Nm 
• .. Mm 

2k block rows 

be the smallest integer satisfying rank Sk. - 
rank Sk*- 1 = p. 

Then the coefficient matrices of a GCRD of N and M 
can be extracted from certain rows of Ek*, the row-echelon 
form of Sk.. 

However, since k* is not known in advance, we start with 
$1 and add and eliminate 2 block rows at a time until the 
desired number of zero rows is achieved. 

Bitmead et. al. [1] speed up the computation by at each 
step copying the results from the previous 2 block rows as 
the rows to be added. 

This procedure provides a goood routine for computing 
matrix GCDs in the case where the coefficient matrices con- 
tain floating point numbers; however, numerical stability 
cannot be guaranteed, since complete pivoting cannot be 
used. More elaborate methods rely on singular value de- 
composition. 

3 Fract ion-Free  M e t h o d s  

When working in an exact arithmetic or symbolic environ- 
ment, we desire to use fraction-free Gaussian elimination in 
order to avoid coefficient growth. 

When trying to extend the numerical GCD algorithm 
described in the previous section, we run into the following 
difficulties: 

1. At each step, when we add 2 block rows to the 
Sylvester matrix, careful bookkeeping is required to keep 
track of row divisors. 

2. The first problem is compounded when trying to take 
advantage of the structure of the Sylvester matrix, as was 
done by Bitmead et. al. [1] in the numerical case. The 
problem here arises from the fact that at some columns of 
the Sylvester matrix, two pivot elements have been used in 
the elimination. 

3. Even with careful bookkeeping, this method will not 
remove the entire content of the rows of the Sylvester matrix. 

In this poster, we will demonstrate these difficulties with 
specific examples, and then provide a fraction-free matrix 
GCD algorithm. We also compare an implementation of this 
method with an implementation of the fraction-free matrix 
GCD algorithm described by Beckermann and Labahn [3]. 
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