
ar
X

iv
:2

00
3.

14
26

5v
3

 [
cs

.D
S]

 4
 N

ov
 2

02
1

A Framework for Adversarially Robust Streaming Algorithms

Omri Ben-Eliezer∗ Rajesh Jayaram† David P. Woodruff‡ Eylon Yogev§

Abstract

We investigate the adversarial robustness of streaming algorithms. In this context, an
algorithm is considered robust if its performance guarantees hold even if the stream is chosen
adaptively by an adversary that observes the outputs of the algorithm along the stream and
can react in an online manner. While deterministic streaming algorithms are inherently
robust, many central problems in the streaming literature do not admit sublinear-space
deterministic algorithms; on the other hand, classical space-efficient randomized algorithms
for these problems are generally not adversarially robust. This raises the natural question
of whether there exist efficient adversarially robust (randomized) streaming algorithms for
these problems.

In this work, we show that the answer is positive for various important streaming
problems in the insertion-only model, including distinct elements and more generally Fp-
estimation, Fp-heavy hitters, entropy estimation, and others. For all of these problems, we
develop adversarially robust (1+ε)-approximation algorithms whose required space matches
that of the best known non-robust algorithms up to a poly(logn, 1/ε) multiplicative factor
(and in some cases even up to a constant factor). Towards this end, we develop several
generic tools allowing one to efficiently transform a non-robust streaming algorithm into a
robust one in various scenarios.

1 Introduction

The streaming model of computation is a central and crucial tool for the analysis of massive
datasets, where the sheer size of the input imposes stringent restrictions on the memory, com-
putation time, and other resources available to the algorithms. Examples of theoretical and
practical settings where streaming algorithms are in need are easy to encounter. These include
internet routers and traffic logs, databases, sensor networks, financial transaction data, and
scientific data streams. Given this wide range of applicability, there has been significant effort
devoted to designing and analyzing extremely efficient one-pass algorithms. We recommend the
survey of [Mut05] for a comprehensive overview of streaming algorithms and their applications.

Many central problems in the streaming literature do not admit sublinear-space deterministic
algorithms, and in these cases randomized solutions are necessary. In other cases, randomized
solutions are more efficient and simpler to implement than their deterministic counterparts.
While randomized streaming algorithms are well-studied, the vast majority of them are defined
and analyzed in the static setting, where the stream is worst-case but fixed in advance, and
only then the randomness of the algorithm is chosen. However, assuming that the stream

∗Massachusetts Institute of Technology. Work partially conducted while the author was at Tel Aviv University
and later at Harvard University. Email: omrib@mit.edu

†Google Research. Work partially conducted while the author was at Carnegie Mellon University, where
he was supported by the Office of Naval Research (ONR) grant N00014-18-1-2562, and the National Science
Foundation (NSF) under Grant No. CCF-1815840. Email: rkjayaram@google.com

‡Carnegie Mellon University. Supported by the Office of Naval Research (ONR) grant N00014-18-1-2562, and
the National Science Foundation (NSF) under Grant No. CCF-1815840. Email: dwoodruf@cs.cmu.edu

§Bar-Ilan University. Work partially conducted while the author was at Tel Aviv University. Email:
eylon.yogev@biu.ac.il

1

http://arxiv.org/abs/2003.14265v3

sequence is independent of the chosen randomness, and in particular that future elements of
the stream do not depend on previous outputs of the streaming algorithm, may not be realistic
[MNS11, GHR+12, GHS+12, HW13, NY15, BY20, ABED+21], even in non-adversarial settings.
For example, suppose that a user sequentially makes updates in a database, and receives an
immediate response about the current state of the data after each update. Naturally, future
updates made by the user in such a setting may heavily depend on the responses given by the
database to previous queries. In other words, the stream updates are chosen adaptively, and
cannot be assumed to be fixed in advance.

A streaming algorithm that works even when the stream is adaptively chosen by an ad-
versary (the precise definition given next) is said to be adversarially robust. Deterministic
algorithms are inherently adversarially robust, since they are guaranteed to be correct on all
possible inputs. However, the large gap in performance between deterministic and randomized
streaming algorithms for many problems motivates the need for designing adversarially robust
randomized algorithms, if they even exist. In particular, we would like to design adversarially
robust randomized algorithms which are as space and time efficient as their static counterparts,
and yet as robust as deterministic algorithms. The study of such algorithms is the main focus
of our work.

The Adversarial Setting. There are several ways to define the adversarial setting, which
may depend on the information the adversary (who chooses the stream) can observe from the
streaming algorithm, as well as other restrictions imposed on the adversary. For the most
part, we consider a general model, where the adversary is allowed unbounded computational
power and resources, though we do discuss the case later when the adversary is computationally
bounded. At each point in time, the streaming algorithm publishes its output to a query for
the stream. The adversary observes these outputs one-by-one, and can choose the next update
to the stream adaptively, depending on the full history of the outputs and stream updates. The
goal of the adversary is to force the streaming algorithm to eventually produce an incorrect
output to the query, as defined by the specific streaming problem in question.1

Formally, a data stream of length m over a domain [n] is a sequence of updates of the
form (a1,∆1), (a2,∆2), . . . , (am,∆m) where at ∈ [n] is an index and ∆t ∈ Z is an increment
or decrement to that index. The frequency vector f ∈ R

n of the stream is the vector with ith

coordinate fi =
∑

t:at=i ∆t. We write f (t) to denote the frequency vector restricted to the first t

updates, namely f
(t)
i =

∑
j≤t:aj=i ∆j. It is assumed at all points t that the maximum coordinate

in absolute value, denoted ‖f (t)‖∞, is at most M for some M > 0, and that log(mM) = O(log n).
In the insertion-only model, the updates are assumed to be positive, meaning ∆t > 0, whereas
in the turnstile model ∆t can be positive or negative.

The general task in streaming is to respond to some query Q about the frequency vector
f (t) at each point in time t ∈ [m]. Oftentimes, this query is to approximate2 some function
g : Rn → R of f (t). For example, counting the number of distinct elements in a data stream is
among the most fundamental problems in the streaming literature; here g(f (t)) is the number of
non-zero entries in f (t). Since exact computation cannot be done in sublinear space [CK16], the
goal is to approximate the value of g(f (t)) to within a multiplicative factor of (1± ε). Another
important streaming problem (which is not directly an estimation task) is the Heavy-Hitters
problem, where the algorithm is tasked with finding all the coordinates in f (t) which are larger

1In the streaming literature, an algorithm is often required to be correct on a query made only once, at the end
of the stream. This is a one-shot guarantee, as opposed to the tracking guarantee as defined here. However, the
two settings are nearly equivalent. Indeed, for almost all streaming problems, a one-shot algorithm can be made
into a tracking algorithm with at most an O(log n) blow-up in space, by simply setting the failure probability
small enough to union bound over all points in the stream.

2Ideally, one might wish to exactly compute the function g; however, in many cases, and in particular for the
problems that we consider here, exact computation cannot be done with sublinear space.

2

than some threshold τ .
Formally, the adversarial setting is modeled by a two-player game between a (randomized)

StreamingAlgorithm and an Adversary. At the beginning, a query Q is fixed, which the
StreamingAlgorithm must continually reply to. The game proceeds in rounds, where in the
t-th round:

1. Adversary chooses an update ut = (at,∆t) for the stream, which can depend, in partic-
ular, on all previous stream updates and outputs of StreamingAlgorithm.

2. StreamingAlgorithm processes the new update ut and outputs its current response Rt

to the query Q.

3. Adversary observes Rt (stores it) and proceeds to the next round.

The goal of the Adversary is to make the StreamingAlgorithm output an incorrect re-
sponse Rt to Q at some point t in the stream. For example, in the distinct elements problem,
the adversary’s goal is that at some step t, the estimate Rt will fail to be a (1+ε)-approximation

of the true current number of distinct elements |{i ∈ [n] : f
(t)
i 6= 0}|.

Streaming algorithms in the adversarial setting. It was shown by Hardt and Woodruff
[HW13] that linear sketches are inherently non-robust in adversarial settings for a large fam-
ily of problems, thus demonstrating a major limitation of such sketches. In particular, their
results imply that no linear sketch can approximate the Euclidean norm of its input to within
a polynomial multiplicative factor in the adversarial (turnstile) setting. Here, a linear sketch
is an algorithm whose output depends only on values Af and A, for some (usually random-
ized) sketching matrix A ∈ R

k×n. This is quite unfortunate, as the vast majority of turnstile
streaming algorithms are in fact linear sketches.

On the positive side, a recent work of Ben-Eliezer and Yogev [BY20] (see also [ABED+21,
BHM+21]) showed that random sampling is quite robust in the adaptive adversarial setting,
albeit with a slightly larger sample size. While uniform sampling is a rather generic and im-
portant tool, it is not sufficient for solving many important streaming tasks, such as estimating
frequency moments (Fp-estimation), finding L2 heavy hitters, and various other central data
analysis problems. This raises the natural question of whether there exist efficient adversarially
robust randomized streaming algorithms for these problems and others, which is the main focus
of this work. Perhaps even more importantly, we ask the following.

Is there a generic technique to transform a static streaming algorithm
into an adversarially robust streaming algorithm?

This work answers the above questions affirmatively for a large class of algorithms.

1.1 Our Results

We devise adversarially robust algorithms for various fundamental insertion-only streaming
problems, including distinct element estimation, Fp moment estimation, heavy hitters, entropy
estimation, and several others. In addition, we give adversarially robust streaming algorithms
which can handle a bounded number of deletions as well. The required space of our adversarially
robust algorithms matches that of the best known non-robust ones up to a small multiplicative
factor. Our new algorithmic results are summarized in Table 1. In contrast, we demonstrate that
some classical randomized algorithms for streaming problems in the static setting, such as the
celebrated Alon-Matias-Szegedy (AMS) sketch [AMS99] for F2-estimation, are inherently non-
robust to adaptive adversarial attacks in a strong sense, even against an insertion-only adaptive
adversary. In comparison, the attack of Hardt and Woodruff on linear sketches [HW13] requires
both insertions and deletions.

3

Problem Static Rand. Deter. Adversarial Comments

Distinct elem.
Õ(ε−2 + log n) Ω(n)

Õ(ε−3 + ε
−1 logn)

(F0 est.) Õ(ε−2 + logn) crypto/rand. oracle

Fp estimation, O(ε−2 log n)
Ω̃(cpn)

Õ(ε−3 logn)

p ∈ (0, 2] \ {1} O(ε−3 log2 n) Õ(ε−3 log3
n) δ = Θ(n−

1

ε
logn)

Fp estimation, O(n1− 2

p (ε−2 logn
Ω(n)

O(n1− 2

p (ε−3 log2
n

δ = Θ(n−

1

ε
logn)

p > 2 +ε−
4

p log
2

p
+1 n)) +ε

−

6

p log
4

p
+1

n))

ℓ2 Heavy Hit. O(ε−2 log2 n) Ω(
√
n) Õ(ε−3 log2

n)

Entropy O(ε−2 log3 n)
Ω̃(n)

Õ(ε−4 log6
n)

estimation Õ(ε−2 log n) Õ(ε−4 log4
n) crypto/rand. oracle

Turnstile Fp,
O(ε−2 log2 n) Ω(n) O(ε−2

λ log2
n)

λ-bounded Fp flip

p ∈ (0, 2] num., δ = Θ(n−λ)

Fp, p ∈ [1, 2] Õ(log2 n+
Ω̃(cpn) O(αε

−(2+p) log3
n)

static only

α-bounded del. ε−2 logα log n) for p = 1

Table 1: A summary of our adversarially robust algorithms (in bold), as compared to the best
known upper bounds for randomized algorithms in the static setting and lower bounds for
deterministic algorithms. The space bounds are given in bits. Note that all stated algorithms
provide tracking. All results except for the last two (which hold in restricted versions of the
turnstile model) are for insertion-only streams. We write Õ, Ω̃ to hide log ε−1 and log log n
factors. The static randomized upper bounds are proved, respectively, in [B la18], [BDN17],
[KNW10a], [GW18], [BCI+17], [CC13], [JW19], [KNW10a], and [JW18]. All lower bounds for
Fp-estimation are proved in [CK16], except for the turnstile bound, proved in [AMS99]; the
lower bound for heavy hitters is from [KPW21]. Finally, the lower bound for deterministic
entropy estimation follows from a reduction from estimating Fp for p = 1 + Θ̃(ε/ log2 n) to
entropy estimation [HNO08].

Our adversarially robust algorithms make use of two generic robustification frameworks that
we develop, allowing one to efficiently transform a non-robust streaming algorithm into a robust
one in various settings. Both of the robustification methods rely on the fact that functions of
interest do not drastically change their value too many times along the stream. Specifically,
the transformed algorithms have space dependency on the flip-number of the stream, which is
a bound on the number of times the function g(f (t)) can change by a factor of (1 ± ε) in the
stream (see Section 3).

The first method, called sketch switching, maintains multiple instances of the non-robust
algorithm and switches between them in a way that cannot be exploited by the adversary. The
second technique bounds the number of computation paths possible in the two-player adversar-
ial game. This technique maintains only one copy of a non-robust algorithm, albeit with an
extremely small probability of error δ. We show that a carefully rounded sequence of outputs
generates only a small number of possible computation paths, which can then be used to ensure
robustness by union bounding over these paths. The framework is described in Section 3.

The two above methods are incomparable: for some streaming problems the former is more
efficient, while for others, the latter performs better, and we show examples of each. Specifically,
sketch switching can exploit efficiency gains of strong-tracking, resulting in particularly good
performance for static algorithms that can respond correctly to queries at each step without
having to union bound over all m steps. In contrast, the computation paths technique can
exploit an algorithm with good dependency on δ (the failure probability). Namely, algorithms
that have small dependency in update-time or space on δ will benefit from the computation
paths technique.

4

For each of the problems we consider, we show how to use the framework combined with
some additional techniques, to solve it. Interestingly, we also demonstrate how cryptographic
assumptions (which were not commonly used before in the streaming context) can be applied
to obtain an adversarially robust algorithm against computationally bounded adversaries for
the distinct elements problem at essentially no extra cost (compared to the space-optimal non-
robust algorithm). See Table 1 for a summary of our results in the adversarial setting compared
to the state-of-the-art in the static setting, as well as to deterministic algorithms.

Distinct elements and Fp-estimation Our first suite of results provides robust streaming
algorithms for estimating Fp, the pth frequency moment of the frequency vector, defined as
Fp = ‖f‖pp =

∑n
i=1 |fi|p, where we interpret 00 = 0. Estimating frequency moments has

a myriad of applications in databases, computer networks, data mining, and other contexts.
Efficient algorithms for estimating distinct elements (i.e., estimating F0) are important for
databases, since query optimizers can use them to find the number of unique values of an
attribute without having to perform an expensive sort on the values. Efficient algorithms for
F2 are useful for determining the output size of self-joins in databases, and for computing the
surprise index of a data sequence [Goo89]. Higher frequency moments are used to determine
data skewness, which is important in parallel database applications [DNSS92].

We remark that for any fixed p 6= 1,3 including p = 0, any deterministic insertion-only
algorithm for Fp-estimation requires Ω(n) space [AMS99, CK16]. In contrast, we will show
that randomized adversarially robust algorithms exist for all p, whose space complexity either
matches or has a small multiplicative overhead over the best static randomized algorithms.

We begin with several results on the problem of estimating distinct elements, or F0 estima-
tion. The first of them utilizes an optimized version of the sketch switching method to derive an
upper bound. The result is an adversarially robust F0 estimation algorithm whose complexity is
only a Θ(1ε log ε−1) factor larger than that of the optimal static (non-robust) algorithm [B la18].

Theorem 1.1 (Robust Distinct Elements by Sketch Switch; see Theorem 5.1). There is an algorithm
which, when run on an adversarial insertion-only stream, with probability at least 1−δ produces
in every step t ∈ [m] an estimate Rt such that Rt = (1 ± ε)‖f (t)‖0 . The space used by the
algorithm is

O

(
log(1/ε)

ε

(
log ε−1 + log δ−1 + log log n

ε2
+ log n

))
.

The second result utilizes a different approach, by applying the computation paths method.
The space complexity is slightly worse, which is a result of setting the failure probability δ <
n− 1

ε
logn for any given static algorithm. However, we introduce a new static algorithm for

F0 estimation which has very small update-time dependency on δ, and nearly optimal space
complexity. As a result, by applying our computation paths method to this new static algorithm,
we obtain an adversarially robust F0 estimation algorithm with extremely fast update time (note
that the update time of the above sketch switching algorithm would be O(ε−1 log n) to obtain
the same result, even for constant δ).

Theorem 1.2 (Fast Robust Distinct Elements; see Theorem 5.4). There exists a streaming algo-
rithm which, with probability 1−n−(C/ε) logn for any constant C ≥ 1, when run on an adversar-
ially chosen insertion-only data stream, returns a (1± ε) multiplicative estimate of the number
of distinct elements in every step of the stream. The space required is O(1

ε3
log3 n), and the

algorithm runs in O
((

log2 logn
ε

)
·
(

log log logn
ε

))
worst case time per update.

The third result takes a different approach: it shows that under certain standard cryp-
tographic assumptions, there exists an adversarially robust algorithm which asymptotically

3Note that there is a trivial O(log n)-bit insertion-only F1 estimation algorithm: keeping a counter for
∑

t ∆t.

5

matches the space complexity of the best non-robust tracking algorithm for distinct elements.
The cryptographic assumption is that an exponentially secure pseudorandom function exists (in
practice one can take, for instance, AES as such a function). While our other algorithms in this
paper hold even against an adversary which is unbounded computationally, in this particular
result we assume that the adversary runs in polynomial time. See Section 10 for more details.

Theorem 1.3 (Distinct Elements by Crypto Assumptions; see Theorem 10.1). In the random oracle
model, there is an F0-estimation (tracking) streaming algorithm in the adversarial setting, that
for an approximation parameter ε uses O(ε−2(log 1/ε + log log n) + log n) bits of memory, and
succeeds with probability 3/4.

Moreover, given an exponentially secure pseudorandom function, and assuming the adversary
has bounded running time of nc, where c is a constant, the random oracle can be replaced with
a concrete function and the total memory is O(ε−2(log 1/ε + log log n) + c log n).

Here, the random oracle model means that the algorithm is given read access to an arbitrarily
long string of random bits.

Our next set of results provides adversarially robust algorithms for Fp-estimation with p >
0. The following result concerns the case 0 < p ≤ 2. It was previously shown that for p
bounded away from one, Ω(n) space is required to deterministically estimate ‖f‖pp, even in the
insertion-only model [AMS99, CK16]. On the other hand, space-efficient non-robust randomized
algorithms for Fp-estimation exist. We leverage these, along with an optimized version of the
sketch switching technique to save a log n factor, and obtain the following.

Theorem 1.4 (Robust Fp-estimation for 0 < p ≤ 2; see Theorem 4.1). Fix 0 < ε, δ ≤ 1 and
0 < p ≤ 2. There is a streaming algorithm in the insertion-only adversarial model which
outputs in each step a value Rt such that Rt = (1± ε)‖f (t)‖p at every step t ∈ [m], and succeeds
with probability 1− δ. The algorithm uses O(ε−3 log n log ε−1(log ε−1 + log δ−1 + log log n)) bits
of space.

We remark that the space complexity of Theorem 1.4 is within a Θ(ε−1 log ε−1) factor
of the best known static (non-robust) algorithm [BDN17] . While for most values of δ, the
above theorem using sketch switching has better space complexity than the computation paths
reduction, for the regime of very small failure probability δ it is actually preferable to use the
latter, as we now state.

Theorem 1.5 (Robust Fp-estimation for small δ; see Theorem 4.3). Fix any 0 < ε < 1, 0 < p ≤ 2,

and δ < n−C 1

ε
logn for a sufficiently large constant C > 1. There is a streaming algorithm for

the insertion-only adversarial model which, with probability 1 − δ, successfully outputs in each
step t ∈ [m] a value Rt such that Rt = (1 ± ε)‖f (t)‖p. The space used by the algorithm is
O
(

1
ε2

log n log δ−1
)
bits.

In addition, we show that for turnstile streams with bounded Fp flip number (defined for-
mally in Section 3), efficient adversarially robust algorithms exist. Roughly speaking, the Fp

flip number is the number of times that the Fp moment changes by a factor of (1 + ε). Our
algorithms have extremely small failure probability of δ = n−λ, and have optimal space among
turnstile algorithms with this value of δ [JW13].

Theorem 1.6 (Robust Fp-Estimation in turnstile streams; See Theorem 4.4). Fix 0 < p ≤ 2 and let
Sλ be the set of all turnstile streams with Fp flip number at most λ. Then there is an adversarially
robust streaming algorithm for the class Sλ of streams that, with probability 1 − n−Cλ for any
constant C > 0, outputs in each step a value Rt such that Rt = (1± ε)‖f‖pp. The space used by
the algorithm is O(ε−2λ log2 n).

The next result concerns Fp-estimation for p > 2. Here again, we provide an adversarially
robust algorithm which is optimal up to a small multiplicative factor. This result applies the

6

computation paths robustification method as a black box. Notably, a classic lower bound of
[BYJKS04] shows that for p > 2, Ω(n1−2/p) space is required to estimate ‖f‖pp up to a constant
factor (improved lower bounds have been provided since, e.g., [LW13, GW18]).

Theorem 1.7 (Robust Fp-estimation for p > 2; see Theorem 4.5). Fix any ε > 0, and fix any p > 2.
There is a streaming algorithm for the insertion-only adversarial model which, with probability
1 − n−(c logn)/ε for any constant c > 1, successfully outputs, at each step t ∈ [m], a value Rt

such that Rt = (1± ε)‖f (t)‖p. The space used by the algorithm is

O
(
n1−2/p

(
ε−3 log2 n + ε−6/p

(
log2 n

)2/p
log n

))
.

Attack on AMS. On the negative side, we demonstrate that the classic Alon-Matias-Szegedy
sketch (AMS sketch) [AMS99], the first and perhaps most well-known F2 estimation algorithm
(which uses sub-polynomial space), is not adversarially robust, even in the insertion-only setting.
Specifically, we demonstrate an adversary which, when run against the AMS sketch, fools the
sketch into outputting a value which is not a (1 ± ε) estimate of the F2. The non-robustness
of standard static streaming algorithms, even under simple attacks, is a further motivation to
design adversarially robust algorithms.

In what follows, recall that the AMS sketch computes S · f throughout the stream, where
S ∈ R

t×n is a matrix of uniform {t−1/2,−t−1/2} random variables. The estimate of the F2 is
then the value ‖Sf‖22.

Theorem 1.8 (Attack on AMS sketch; see Theorem 9.1). Let S ∈ R
t×n be the AMS sketch with

1 ≤ t ≤ n/c for some constant c > 1. There is an adversary which, with probability 99/100,
succeeds in forcing the estimate ‖Sf‖22 of the AMS sketch to not be a (1± 1/2) approximation
of the true norm ‖f‖22. Moreover, the adversary needs to only make O(t) stream updates before
this occurs.

Heavy Hitters. We also show how our techniques can be used to solve the popular heavy-
hitters problem. Recall that the heavy-hitters problem tasks the streaming algorithm with
returning a set S containing all coordinates i such that |fi| ≥ τ , and containing no coordinates
j such that |fj| < τ/2, for some threshold τ . Generally, the threshold τ is set to τ = ε‖f‖p,
which is known as the Lp heavy hitters guarantee.

For L1 heavy hitters in insertion-only streams, a deterministic O(1ε log n) space algorithm
exists [MG82]. However, for p > 1, specifically for the highly popular p = 2, things become
more complicated. Note that since we can have ‖f‖2 ≪ ‖f‖1, the L2 guarantee is substantially
stronger. For sketching-based turnstile algorithms, an Ω(n) lower bound for deterministic al-
gorithms was previously known [Gan09]. Since ‖f‖1 ≤

√
n‖f‖2, by setting ε = n−1/2, one can

obtain a deterministic O(
√
n log n) space insertion-only L2 heavy hitters algorithm. Recently, a

lower bound of Ω(
√
n) for deterministic insertion-only algorithms was given, demonstrating the

near tightness of this result [KPW21]. Thus, to develop a more efficient adversarially robust L2

heavy hitters algorithm, we must employ randomness.
Indeed, by utilizing our sketch switching techniques, we demonstrate an adversarially robust

L2 heavy hitters (tracking) algorithm which uses only an O(ε−1 log ε−1) factor more space
than the best known static L2 heavy hitters tracking algorithm [BCI+17]. Note that here the
adversary sees the estimated set S in every step.

Theorem 1.9 (Robust L2 heavy hitters: see Theorem 6.5). Fix any ε > 0. There is a streaming
algorithm in the adversarial insertion-only model which solves the L2 heavy hitters problem in
every step t ∈ [m] with probability 1 − n−C (for any constant C > 1). The algorithm uses

O(log ε
−1

ε3
log2 n) bits of space.

7

Entropy Estimation. Additionally, we demonstrate how our sketch switching techniques
can be used to obtain robust algorithms for empirical Shannon Entropy estimation. Here, the

Shannon Entropy H(f) of the stream is defined via H(f) = −∑
i

|fi|
‖f‖1 log

(
|fi|
‖f‖1

)
. Our results

follow from an analysis of the exponential of α-Renyi Entropy, which closely approximates
the Shannon entropy, showing that the former cannot rapidly change too often within the
stream. Our result is an adversarially robust algorithm with space complexity only a small
polylogarithmic factor larger than the best known static algorithms [CC13, JW19].

Theorem 1.10 (Robust Entropy Estimation; see Theorem 7.4). There is an algorithm for ε-
additive approximation of the Shannon entropy in the insertion-only adversarial streaming
model using O(1

ε4
log4 n(log log n + log ε−1))-bits of space in the random oracle model, and

O(1
ε4

log6 n(log log n + log ε−1))-bits of space in the general insertion-only model.

We remark that by making the same cryptographic assumption as in Theorem 1.3, we can
remove the random oracle assumption in [JW19] for correctness of the entropy algorithm in the
static case. Then, by applying the same techniques which resulted in Theorem 1.10, we can
obtain the same stated bound for entropy with a cryptographic assumption instead of a random
oracle assumption.

Bounded Deletion Streams. Lastly, we show that our techniques for Fp moment estimation
can be extended to data streams with a bounded number of deletions (negative updates).
Specifically, we consider the bounded deletion model of [JW18]. Formally, given some α ≥ 1, the
model enforces the restriction that at all points t ∈ [m] in the stream, we have ‖f (t)‖pp ≥ 1

α‖h(t)‖
p
p,

where h is the frequency vector of the stream with updates u′i = (ai,∆
′
i) where ∆′

i = |∆i| (i.e.,
the absolute value stream). In other words, the stream does not delete off an arbitrary amount
of the Fp weight that it adds over the course of the stream.

We demonstrate that bounded deletion streams have the desirable property of having a
small flip number, which, as noted earlier, is a measurement of how often the Fp can change
substantially (see Section 3 for a formal definition). Using this property and our sketch switching
technique, we obtain the following.

Theorem 1.11 (Fp-estimation for bounded deletion; see Theorem 8.3). Fix p ∈ [1, 2], α ≥ 1,
and any constant C > 1. Then there is an adversarially robust Fp estimation algorithm for α-
bounded deletion streams which, with probability 1−n−C, returns at each step t ∈ [m] an estimate
Rt such that Rt = (1± ε)‖f (t)‖pp. The space used by the algorithm is O(αε−(2+p) log3 n).

1.2 Other Previous Work

The need for studying adversarially robust streaming and sketching algorithms has been noted
before in the literature. In particular, Gilbert et al. [GHR+12, GHS+12] motivated the adver-
sarial model by giving applications and settings where it is impossible to assume that the queries
made to a sketching algorithm are independent of the prior outputs of the algorithm, and the
randomness used by the algorithm. One particularly important setting noted in [GHS+12] is
when the privacy of the underlying data-set is a concern.

In response to this, in [HW13] the notion of adversarial robustness for linear sketching
algorithms was studied. Namely, it is shown how any function g : Rn → R, defined by g(x) =
f(Ax) for some A ∈ R

k×n and arbitrary f : R
k → R cannot approximate the F2 moment

‖x‖22 of its input to an arbitrary polynomial factor in the presence of an adversary who is
allowed to query g(xi) at polynomial many points (unless k is large). Since one can insert and
delete off each xi in a turnstile stream, this demonstrates a strong lower bound for adversarially
robust turnstile linear sketching algorithms, at least when the stream updates are allowed to be
real numbers. Moreover, under certain conditions it has been demonstrated that all turnstile

8

algorithms can be transformed into linear sketches [LNW14, AHLW16, KP20]. We point out,
however, that this equivalence holds only for classes of static streams, and therefore does not
immediately have any consequence for adversarial streams. The work of [HW13] also points out
a connection to differential privacy.

We remark that other work has observed the danger inherent in allowing adversarial queries
to a randomized sketch with only a static guarantee, see Ahn et al. [AGM12a, AGM12b]. How-
ever, the motivation of these works is slightly different, and their setting not fully adversarial.
Mironov et al. [MNS11] considered adversarial robustness of sketching in a distributed, multi-
player model, which is incomparable to the centralized streaming problem considered in this
work. Finally, Goldwasser et al. [GGMW20] asked if there are randomized streaming algorithms
whose output is independent of its randomness, making such algorithms natural candidates for
adversarial robustness; unfortunately a number of their results are negative, while their upper
bounds do not apply to the problems studied here.

1.3 Subsequent Work and Open Questions

Based on this paper, multiple very recent follow-up works have improved upon the space effi-
ciency of our robustification techniques for different settings. Hassidim et al. [HKM+20] used
techniques from differential privacy to obtain a generic robustification framework in the same
mold as ours, where the dependency on the flip number is the improved

√
λ as opposed to

linear in λ – the exact bound includes other poly((log n)/ǫ) factors. Similar to our construction,
they run multiple independent copies of the static algorithm A with independent randomness
and feed the input stream to all of the copies. Unlike our construction, when a query comes,
they aggregate the responses from the copies in a way that protects the internal randomness
of each of the copies using differential privacy. Using their framework, one may construct an

adversarially robust algorithm for Fp-moment estimation that uses Õ(log
4 n

ǫ2.5
) bits of memory for

any p ∈ [0, 2]. This improves over our Õ(logn
ǫ3

) bound for interesting parameter regimes.
Woodruff and Zhou [WZ21] obtained further improvements for a number of streaming prob-

lems (such as Fp-estimation, entropy, heavy hitters) which in some cases are nearly optimal even
for the static case. For example, they give an adversarially robust algorithm for Fp-moment

estimation that uses Õ(logn
ǫ2

) bits of memory for any p ∈ [0, 2]. This improves upon both our
work and [HKM+20]. Interestingly, the way they achieve this leads them to a new class of
(classical) streaming algorithms they call difference estimators, which turn out to be useful also
in the sliding window (classical) model. Subsequently, Attias and el. [ACSS21] combined the
differential privacy based techniques of [HKM+20] with the difference estimators of [WZ21] to
obtain a “best of both worlds” result with improved bounds for turnstile streams.

It was shown by Kaplan et al. [KMNS21] that the
√
λ-type space overhead is tight for some

streaming problems; they proved this for a streaming variant of the Adaptive Data Analysis
problem, showing also that its space complexity is polylogarithmic in the static setting and
polynomial in the adversarially robust setting. This is the first known example of such a large
separation between static and adversarially robust streaming. Another interesting work by
Menuhin and Naor [MN21] shows that card guessing performance with memory constraints
may be exponentially worse against an adaptive adversarial dealer versus a static one.

For core problems in the streaming literature like Fp-estimation in the turnstile model (al-
lowing insertions and deletions), it is not known whether such a separation exists. However,
there is a substantial gap between the space complexity of the static case and the best known
algorithms for the adversarially robust case. For static turnstile Fp-estimation, the space com-
plexity is polylogarithmic in n when p ≤ 2. In the adversarially robust setting, the best known
results are much weaker, and involve polynomial dependence in the stream length m. As the
above robustification techniques induce a

√
λ overhead in the space complexity, and λ = m for

turnstile Fp-estimation, these techniques cannot obtain space bounds better than some O(
√
m)

9

in general. Recently, Ben-Eliezer et al. [BEEO21] used a hybrid approach combining the differ-
ential privacy based framework of [HKM+20] with classical results in sparse recovery to obtain
improved space bounds for this problem; the dependence in m is for example Õ(m1/3) when
p = 0 and Õ(m2/5) when p = 2. This large gap in the best known space requirements, despite
the fact that no space complexity separations between static and robust algorithms are known,
leads to the following natural question (see [Jay21], [BEEO21]):

What is the space complexity of adversarially robust
Fp-estimation under the turnstile streaming model?

Many problems remain open, mainly for achieving optimal bounds for all known streaming
problems in the adversarial setting. It is also interesting to determine which types of existing al-
gorithms are inherently adversarially robust. Remarkably, Braverman et al. [BHM+21] showed
that popular techniques such as merge and reduce and row sampling can be robust “for free”,
implying robustness guarantees for many types of existing algorithms for streaming, regression,
low rank approximation, and various other problems. Unlike our setting, which considers algo-
rithms with a scalar output (i.e., an output which is typically a single real number), many of
these problems produce a higher-dimensional vector output. It will be interesting to investigate
what sorts of extensions of our flip number definition may be relevant in high dimensions, and
to find suitable applications for such a generalized flip number notion.

A first result in this flavor has very recently been established by Chakrabarti et al. [CGS21],
who considered the problem of coloring a graph in the semi-streaming model. They proved that
coloring with few colors requires substantially more space in the adversarial model compared to
the static one; for example, O(∆) colors require Ω(n∆) space in the robust setting but only O(n)
space in the static setting (see [ACK19]). They then provided adversarially robust algorithms
for this problem, including one algorithm based on our main technique, sketch switching.

2 Preliminaries

For p > 0, the Lp norm4 of a vector f ∈ R
n is given by ‖f‖p = (

∑n
i=1 |fi|p)1/p. The p-th

moment, denoted by Fp, is given by Fp = Lp
p, or Fp =

∑
i |fi|p. For p = 0, we define F0 to be

the number of non-zero coordinates in f , namely F0 = ‖f‖0 = |{i : fi 6= 0}|. Notice that this
coincides with defining 00 = 0 in the prior definition of Fp. The F0 moment is also known as the
number of distinct elements. For reals a, b ∈ R and ε > 0, we write a = (1± ε)b or a ∈ (1± ε)b
to denote the containment a ∈ [(1 − ε)b, (1 + ε)b]. Throughout, we will often assume that our
error parameter ε > 0 is smaller than some absolute constant ε0 which does not depend on any
of the other parameters of the problem.

A stream of length m over a domain [n] is a sequence of updates (a1,∆1), (a2,∆2) . . . , (am,∆m)
where at ∈ [n] and ∆t ∈ Z. The frequency vector f ∈ R

n of the stream is the vector with ith

coordinate fi =
∑

t:at=i ∆t. Let f (j) be the frequency vector restricted to the first j updates,

namely f
(j)
i =

∑
t≤j:at=i ∆t. It is assumed at all intermediate points t ∈ [m] in the stream that

‖f (t)‖∞ ≤ M , and log(mM) = Θ(log n). Notice in particular that this bounds |∆t| ≤ 2M for
each t.

The general model as defined above is known as the turnstile model of streaming. Another
commonly studied model of streaming is the insertion-only model, where it is assumed that ∆t >
0 for each t = 1, . . . ,m. The insertion-only model is often presented with the following equivalent
and simplified definition: an insertion-only stream is given by a sequence a1, a2, . . . , am ∈ [n],
and the frequency vector f ∈ R

n is given by fi = |{j ∈ [m] : aj = i}|. Since we will sometimes
consider data streams with deletions (negative updates), in this work, we will use the former
definition, where updates are pairs (at,∆t) ∈ [n] × Z. In this paper, the space of a streaming

4Note that this is only truly a norm for p ≥ 1.

10

algorithm is measured in bits, and the update time of a streaming algorithm is measured in
the RAM model, where arithmetic operations on O(log n)-bit integers can be done in O(1)
time. Throughout the paper we will almost always assume that the output (at any time) of
the algorithms we discuss is represented by O(log n) bits; since we are generally interested in
(1 + ε)-approximation where log(1/ε) = O(log n), any algorithm with higher bit precision can
be replaced by one that only outputs the most significant O(log n) bits at any step, without
majorly affecting any of the results. The only exception where the output requires more than
O(log n) bits is for F2-heavy hitters; here, a total of O(log n/ε2) bits are generally required to
store all heavy hitters.

The random-oracle model of streaming is the model where the streaming algorithm is allowed
random (read-only) access to an arbitrarily long string of random bits. In other words, the space
complexity of the algorithm is not charged for storing random bits. We remark that while nearly
all lower bounds for streaming algorithms hold even in the random oracle model, most of our
results (except for one of our results for entropy estimation and part of our cryptographic
results) do not require a random oracle.

Finally, given a vector x ∈ R
n, the empirical Shannon Entropy H(x) is defined via H(x) =

−∑
i |xi|/‖x‖1 log (|xi|/‖x‖1). For α > 0, the α-Renyi Entropy Hα(x) of x is given by the value

Hα(x) = log(‖x‖αα/‖x‖α1)/(1 − α).

2.1 Tracking Algorithms

The robust streaming algorithms we design in this paper satisfy the tracking guarantee. Namely,
they must output a response to a query at every step in time t ∈ [m]. For the case of estimation
queries, this tracking guarantee is known as strong tracking.

Definition 2.1 (Strong tracking). Let f (1), f (2), . . . , f (m) be the frequency vectors of a stream
(a1,∆1), . . . , (am,∆m), and let g : Rn → R be a function on frequency vectors. A randomized
algorithm A is said to provide (ε, δ)-strong g-tracking if at each step t ∈ [m] it outputs an
estimate Rt such that

|Rt − g(f (t))| ≤ ε|g(f (t))|
for all t ∈ [m] with probability at least 1− δ.

In contrast, weak tracking replaces the error term ε|g(f (t))| by maxt′∈[m] ε·|g(f (t′))|. However,
for the purposes of this paper, we will not need to consider weak tracking. We now state two
results for strong tracking of Fp moments for p ∈ [0, 2]. Both results are for the static setting,
i.e., for a stream fixed in advance (and not for the adaptive adversarial setting that we consider).

Lemma 2.2 ([BDN17]). For 0 < p ≤ 2, there is an insertion-only streaming algorithm which
provides (ε, δ)-strong Fp-tracking using O(log nε2 (log ε−1 + log δ−1 + log log n)) bits of space.

Lemma 2.3 ([B la18]). There is an insertion-only streaming algorithm which provides (ε, δ)-

strong F0-tracking using O(log logn+log δ−1

ε2
+ log n) bits of space.

2.2 Roadmap

In Section 3, we introduce our two general techniques for transforming static streaming algo-
rithms into adversarially robust algorithms. In Section 4, we give our results on estimation of
Fp moments, and in Section 5 we give our algorithms for adversarially robust distinct elements
estimation. Next, in Section 6, we introduce our robust L2 heavy hitters algorithm, and in
Section 7 we give our entropy estimation algorithm. In Section 8, we provide our algorithms
for Fp moment estimation in the bounded deletion model. In Section 9, we give our adversarial
attack on the AMS sketch. Finally, in Section 10, we give our algorithm for optimal space
distinct elements estimation under cryptographic assumptions.

11

3 Tools for Robustness

In this section, we establish two methods, sketch switching and computation paths, allowing one
to convert an approximation algorithm for any sufficiently well-behaved streaming problem to an
adversarially robust one for the same problem. The central definition of a flip number, bounds
the number of major (multiplicative) changes in the algorithm’s output along the stream. As
we shall see, a small flip number allows for efficient transformation of non-robust algorithms
into robust ones.5

3.1 Flip Number

Definition 3.1 (flip number). Let ε ≥ 0 and m ∈ N, and let ȳ = (y0, y1, . . . , ym) be any
sequence of real numbers. The ε-flip number λε(ȳ) of ȳ is the maximum k ∈ N for which there
exist 0 ≤ i1 < . . . < ik ≤ m so that yij−1

/∈ (1± ε)yij for every j = 2, 3, . . . , k.
Fix a function g : Rn → R and a class C ⊆ ([n] × Z)m of stream updates. The (ε,m)-flip

number λε,m(g) of g over C is the maximum, over all sequences ((a1,∆1), . . . , (am,∆m)) ∈ C, of
the ε-flip number of the sequence ȳ = (y0, y1, . . . , ym) defined by yi = g(f (i)) for any 0 ≤ i ≤ m,
where as usual f (i) is the frequency vector after stream updates (a1,∆1), . . . , (ai,∆i) (and f (0)

is the n-dimensional zeros vector).

The class C may represent, for instance, the subset of all insertion-only streams, or bounded-
deletion streams. For the rest of this section, we shall assume C to be fixed, and consider the
flip number of g with respect to this choice of C.6

Note that the flip number is clearly monotone in ε: namely λε′,m(g) ≥ λε,m(g) if ε′ < ε.
One useful property of the flip number is that it is nicely preserved under approximations. As
we show, this can be used to effectively construct approximating sequences whose 0-flip number
is bounded as a function of the ε-flip number of the original sequence. This is summarized in
the following lemma.

Lemma 3.2. Fix 0 < ε < 1. Suppose that ū = (u0, . . . , um), v̄ = (v0, . . . , vm), w̄ = (w0, . . . , wm)
are three sequences of real numbers, satisfying the following:

• For any 0 ≤ i ≤ m, vi = (1± ε/8)ui.

• w0 = v0, and for any i > 0, if wi−1 = (1± ε/2)vi then wi = wi−1, and otherwise wi = vi.

Then wi = (1± ε)ui for any 0 ≤ i ≤ m, and moreover, λ0(w̄) ≤ λε/8(ū).

In particular, if (in the language of Definition 3.1) u0 = g(f (0)), u1 = g(f (1)), . . . , um =
g(f (m)) for a sequence of updates ((a1,∆1), . . . , (am,∆m)) ∈ C, then λ0(w̄) ≤ λε/8,m(g).

Proof. The first statement, that wi = (1 ± ε)ui for any i, follows immediately since vi =
(1 ± ε/8)ui and wi = (1 ± ε/2)vi and since ε < 1. The third statement follows by definition
from the second one. It thus remains to prove that λ0(w̄) ≤ λε/8(ū).

Let i1 = 0 and let i2, i3, . . . , ik be the collection of all values i ∈ [m] for which wi−1 6= wi.
Note that k = λ0(w̄) and that vij−1

= wij−1
= wij−1+1 = · · · = wij−1 6= vij for any j = 2, . . . , k.

We now claim that for every j in this range, uij−1
/∈ (1 ± ε/8)uij . This would show that

k ≤ λε/8(ū) and conclude the proof.

5The notion of flip number we define here also plays a central role in subsequent works ([HKM+20], [WZ21]);
for example, the main contribution of the former is a generic robustification technique with an improved (square
root type instead of linear) dependence in the flip number. The latter improves the poly(1/ǫ) dependence on the
flip number.

6A somewhat reminiscent definition, of an unvarying algorithm, was studied by [DNPR10] (see Definition 5.2
there) in the context of differential privacy. While their definition also refers to a situation where the output
undergoes major changes only a few times, both the motivation and the precise technical details of their definition
are different from ours.

12

Indeed, fixing any such j, we either have vij−1
> (1 + ε/2)vij , or vij−1

< (1− ε/2)vij . In the
first case (assuming uij 6= 0, as the case uij = 0 is trivial),

uij−1

uij
≥ vij−1

/(1 + ε
8)

vij/(1− ε
8)
≥

(
1 +

ε

2

)
· 1− ε

8

1 + ε
8

> 1 +
ε

8
.

In the second case, an analogous computation gives uij−1
/uij < 1− ε/8. �

Note that the flip number of a function g critically depends on the model in which we
work, as the maximum is taken over all sequences of possible stream updates; for insertion-only
streams, the set of all such sequences is more limited than in the general turnstile model, and
correspondingly many streaming problems have much smaller flip number when restricted to
the insertion-only model. We now give an example of a class of functions with bounded flip
number.

Proposition 3.3. Let g : R
n → R be any monotone function, meaning that g(x) ≥ g(y) if

xi ≥ yi for each i ∈ [n]. Assume further that g(x) ≥ T−1 for all x > 0, and g(M ·~1) ≤ T , where
M is a bound on the entries of the frequency vector and ~1 is the all 1’s vector. Then the flip
number of g in the insertion-only streaming model is λε,m(g) = O(1ε log T).

Proof. To see this, note that g(f (1)) ≥ T−1, and g(f (m)) ≤ g(~1 ·M) ≤ T . Since the stream has
only positive updates, g(f (0)) ≤ g(f (1)) ≤ · · · ≤ g(f (m)). Let 1 ≤ y1 < y2 < · · · < yk ∈ [m] be
any maximal increasing sequence of time steps such that g(f (yi)) < (1 − ε)g(f (yi+1)) for each
i ∈ [k − 1]. Note that restricting to y1 ≥ 1 only excludes the 0-th step, so the flip number is at
most k + 1. Then the value of g increases by a 1

1−ε factor after each step yi. Since there are at

most O(1ε log T) powers of 1
1−ε between T−1 and T , by the pigeonhole principle if k > C

ε log(T)

for a sufficiently large constant C, then at least two values must satisfy (1
1−ε)j ≤ g(f (yi)) ≤

g(f (yi+1)) ≤ (1
1−ε)j+1 for some j, which is a contradiction. �

Note that a special case of the above are the Fp moments of a data stream. Recall here
‖x‖0 = |{i : xi 6= 0}| is the number of non-zero elements in a vector x. For what follows, recall
that the stream length is m = O(poly(n)).

Corollary 3.4. Let p ≥ 0. The (ε,m)-flip number of ‖x‖pp in the insertion-only streaming
model is λε,m(‖ · ‖pp) = O(1ε log n) for p ≤ 2, and λε,m(‖ · ‖pp) = O(pε log n) for p > 2. For p = 0,
we also have λε,m(‖ · ‖0) = O(1ε logm).

Proof. We have ‖~0‖pp = 0, ‖z‖pp ≥ 1 for any non-zero z ∈ Z, and ‖f (m)‖pp ≤ Mpn ≤ n1+cp

for some constant c, where the second to last inequality holds because ‖f‖∞ ≤ M for some
M = poly(n) is assumed at all points in the streaming model. The result then follows from
applying Proposition 3.3 with T = nc·max{p,1}. The last statement for p = 0 follows since
‖f (m)‖0 either remains unchanged or increases by one after any single insertion. �

Another special case of Proposition 3.3 concerns the cascaded norms of insertion-only data
streams [JW09]. Here, the frequency vector f is replaced with a matrix A ∈ Z

n×d, which
receives coordinate-wise updates in the same fashion, and the (p, k) cascaded norm of A is given
by ‖A‖(p,k) = (

∑
i(
∑

j |Ai,j |k)p/k)1/p. In other words, ‖A‖(p,k) is the result of first taking the Lk

norm of the rows of A, and then taking the Lp norm of the result. Proposition 3.3 similarly holds
with T = poly(n) in the insertion-only model, and therefore the black-box reduction techniques
introduced in the following sections are also applicable to these norms (using e.g., the cascaded
algorithms of [JW09]).

Having a small flip number is very useful for robustness, as our next two robustification
techniques demonstrate.

13

3.2 The Sketch Switching Technique

Our first technique is called sketch switching, and is described in Algorithm 1. The technique
maintains multiple instances of a static strong tracking algorithm, where at any given time only
one of the instances is “active”. The idea is to change the current output of the algorithm very
rarely. Specifically, as long as the current output is a good enough multiplicative approximation
of the estimate of the active instance, the estimate we give to the adversary does not change, and
the current instance remains active. As soon as this approximation guarantee is not satisfied,
we update the output given to the adversary, deactivate our current instance, and activate the
next one in line. By carefully exposing the randomness of our multiple instances, we show that
the strong tracking guarantee (which a priori holds only in the static setting) can be carried
into the robust setting. By Lemma 3.2, the required number of instances, which corresponds to
the 0-flip number of the outputs provided to the adversary, is controlled by the (Θ(ε),m)-flip
number of the problem.

Algorithm 1: Adversarially Robust g-estimation by Sketch Switching

1 λ← λε/8,m(g)

2 Initialize independent instances A1, . . . , Aλ of (ε8 ,
δ
λ)-strong g-tracking algorithm

3 ρ← 1

4 g̃ ← g(~0)
5 while new stream update (ak,∆k) do
6 Insert update (ak,∆k) into each algorithm A1, . . . , Aλ

7 y ← current output of Aρ

8 if g̃ /∈ (1± ε/2)y then
9 g̃ ← y

10 ρ← ρ + 1

11 Output estimate g̃

12 end

Lemma 3.5 (Sketch Switching). Fix any function g : R
n → R and let A be a streaming

algorithm that for any 0 < ε < 1 and δ > 0 uses space L(ε, δ), and satisfies the (ε, δ)-strong
g-tracking property on the frequency vectors f (1), . . . , f (m) of any particular fixed stream. Then
Algorithm 1 is an adversarially robust algorithm for (1 + ε)-approximating g(f (t)) at every step
t ∈ [m] with success probability 1− δ, whose space is O (L(ε/8, δ/λ) · λ), where λ = λε/8,m(g).

The proof is by induction and we start by giving its main intuition. By Yao’s minimax
principle, one may assume the adversary is deterministic (but adaptive). Consider the point in
time tρ where the output yρ of the ρ-th instance, Aρ, is first sent to the adversary. From this
point on, the output displayed to the adversary is yρ, whereas the next instance Aρ+1 continues
to run and update its output internally (without displaying it to the adversary). Let tρ+1 be the
first point in time where the (internal) output of Aρ+1 substantially differs from yρ; denote this
output by yρ+1, and set the value displayed to the adversary to yρ+1. The crucial observation is
that we only need to apply the static tracking guarantee for a single specific input sequence in
order to ensure that yρ is a good approximation of our function f at any time between tρ and
tρ+1 − 1. The said input sequence consists of all inputs provided by the adversary until time
tρ, concatenated with the sequence of inputs that the adversary would send if it were to see the
fixed output yρ for m− tρ times afterward.

Now, how many times will the active instance change during this process? Our choice of
parameters in the algorithm ensures that each such change can happen only if the value of
the function f itself has changed by some 1 ± ε/8. Thus, the number of instances required is
bounded by λε/8,m(f).

14

Proof. Note that for a fixed randomized algorithm A we can assume the adversary against A is
deterministic without loss of generality (in our case, A refers to Algorithm 1). This is because
given a randomized adversary and algorithm, if the adversary succeeds with probability greater
than δ in fooling the algorithm, then by a simple averaging argument, there must exist a fixing
of the random bits of the adversary which fools A with probability greater than δ over the coin
flips of A. Note also here that conditioned on a fixing of the randomness for both the algorithm
and adversary, the entire stream and behavior of both parties is fixed.

We thus start by fixing such a string of randomness for the adversary, which makes it
deterministic. As a result, suppose that yi is the output of the streaming algorithm in step i.
Then given y1, y2, . . . , yk and the stream updates (a1,∆1), . . . , (ak,∆k) so far, the next stream
update (ak+1,∆k+1) is deterministically fixed. We stress that the randomness of the algorithm
is not fixed at this point; we will gradually reveal it along the proof.

Let λ = λε/8,m(g) and let A1, . . . , Aλ be the λ independent instances of an (ε/8, δ/λ)-
strong tracking algorithm for g. Since δ0 = δ/λ, later on we will be able to union bound over
the assumption that for all ρ ∈ [λ], Ai satisfies strong tracking on some fixed stream (to be
revealed along the proof); the stream corresponding to Aρ will generally be different than that
corresponding to ρ′ for ρ 6= ρ′.

First, let us fix the randomness of the first instance, A1. Let u11, u
1
2, . . . , u

1
m be the updates

u1j = (aj ,∆j) that the adversary would make if A were to output y0 = g(~0) at every time

step, and let f (t),1 be the stream vector after updates u11, . . . , u
1
t . Let A1(t) be the output of

algorithm A1 at time t of the stream u11, u
1
2, . . . , u

1
t . Let t1 ∈ [m] be the first time step such

that y0 /∈ (1 ± ε/2)A1(t1), if exists (if not we can set, say, t1 = m + 1). At time t = t1,
we change our output to y1 = A1(t1). Assuming that A1 satisfies strong tracking for g with
approximation parameter ε/8 with respect to the fixed stream of updates u11, . . . , u

1
m (which

holds with probability at least 1− δ/λ), we know that A1(t) = (1± ε/8)g(f (t)) for each t < t1
and that y0 = (1 ± ε/2)A1(t). Thus, by the first part of Lemma 3.2, y0 = (1 ± ε)g(f (t)) for
any 0 ≤ t < t1. Furthermore, by the strong tracking, at time t = t1 the output we provide
y1 = A1(t1) is a (1± ε/8)-approximation of the desired value g(f (t1)).

At this point, A “switches” to the instance A2, and presents y1 as its output as long as
y1 = (1 ± ε/2)A2(t). Recall that randomness of the adversary is already fixed, and consider
the sequence of updates obtained by concatenating u11, . . . , u

1
t1 as defined above (these are the

updates already sent by the adversary) with the sequence u2t1+1, . . . , u
2
m to be sent by the

adversary if the output from time t = t1 onwards would always be y1. We condition on the ε/8-
strong g-tracking guarantee on A2 holding for this fixed sequence of updates, noting that this is
the point where the randomness of A2 is revealed. Set t = t2 as the first value of t (if exists) for
which A2(t) = (1± ε/2)y1 does not hold. We now have, similarly to above, y1 = (1± ε)g(f (t))
for any t1 ≤ t < t2, and y2 = (1± ε/8)g(f (t2)).

The same reasoning can be applied inductively for Aρ, for any ρ ∈ [λ], to get that (provided
ε/8-strong g-tracking holds for Aρ) at any given time, the current output we provide to the
adversary yρ is within a (1 ± ε)-multiplicative factor of the correct output for any of the time
steps t = tρ, tρ + 1, . . . ,min{tρ+1 − 1,m}. Taking a union bound, we get that with probability
at least 1− δ, all instances provide ε/8-tracking (each for its respective fixed sequence), yielding
the desired (1± ε)-approximation of our algorithm.

It remains to verify that this strategy succeeds in handling all m elements of the stream (and
does not exhaust its pool of algorithm instances before then). Indeed, this follows immediately
from Lemma 3.2 applied with ū = ((g(f (0)), . . . , g(f (m))), v̄ = (g(f (0)), A1(1), . . . , A1(t1), A2(t1+
1), . . . , A2(t2), . . .), and w̄ being the output that our algorithm A provides (y0 = g(f (0)) until
time t1 − 1, then y1 until time t2 − 1, and so on). Observe that indeed w̄ was generated from v
exactly as described in the statement of Lemma 3.2. �

15

3.3 The Bounded Computation Paths Technique

With our sketch switching technique, we showed that maintaining multiple instances of a non-
robust algorithm to estimate a function g, and switching between them when the rounded
output changes, is a recipe for a robust algorithm to estimate g. We next provide another
recipe, which keeps only one instance, whose success probability for any fixed stream is very
high; it relies on the fact that if the flip number is small, then the total number of fixed streams
that we should need to handle is also relatively small, and we will be able to union bound over
all of them. Specifically, we show that any non-robust algorithm for a function with bounded
flip number can be modified into an adversarially robust one by setting the failure probability
δ small enough.

Lemma 3.6 (Computation Paths). Fix g : Rn → R and suppose that the output of g uses log T
bits of precision (see Remark 3.7). Let A be a streaming algorithm that for any ε, δ > 0 satisfies
the (ε, δ)-strong g-tracking property on the frequency vectors f (1), . . . , f (m) of any particular
fixed stream. Then there is a streaming algorithm A′ satisfying the following.

1. A′ is an adversarially robust algorithm for (1+ε)-approximating g(f (t)) in all steps t ∈ [m],
with success probability 1− δ.

2. The space complexity and running time of A′ as above (with parameters ε and δ) are of
the same order as the space and time of running A in the static setting with parameters
ε/8 and δ0 = δ/

((m
λ

)
TO(λ)

)
, where λ = λε/8,m(g).

The Algorithm for Computation Paths. The algorithm A′ simply runs a single instance of
the basic algorithm A with a smaller error probability. The outputs it provides to the adversary
are rounded as in the sketch switching technique.

Specifically, A′ runs by emulating A with parameters ε/8 and δ0. Assuming that the output
sequence of the emulated A up to the current time t is v0, . . . , vt, it generates wt in exactly
the way described in Lemma 3.2: set w0 = v0, and for any i > 0, if wi−1 ∈ (1 ± ε/2)vi then
wi = wi−1, and otherwise wi = vi. The output provided to the adversary at time t would then
be wt.

Proof. As in the proof of Lemma 3.5, we may assume the adversary to be deterministic. This
means, in particular, that the output sequence we provide to the adversary fully determines its
stream of updates (a1,∆1), . . . , (am,∆m). Take λ = λε/8,m(g). Consider the collection of all
possible output sequences (with log T bits of precision) whose 0-flip number is at most λ, and
note that the number of such sequences is at most

(m
λ

)
TO(λ). Each output sequence as above

uniquely determines a corresponding stream of updates for the deterministic adversary; let S
be the collection of all such streams.

Pick δ0 = δ/|S|. Taking a union bound, we conclude that with probability 1− δ, A (instan-
tiated with parameters ε/8 and δ0) provides an ε/8-strong g-tracking guarantee for all streams
in S. The proof follows by applying Lemma 3.2 to each stream in S. �

Remark 3.7 (Bit precision of output). For the purposes of this paper, we typically think of the
bit precision as O(log n) (for example, in Fp-estimation, there are poly(n) possible outputs).
Since we also generally assume that m = poly(n), the expression for δ0 is of the form δ0 =
δ/nΘ(λ) in this case. We note that while reducing the bit precision of the output slightly
improves the bound on δ0, this improvement becomes negligible for any streaming algorithm
whose dependence in the error probability δ is logarithmic or better; this covers all situations
where we apply Lemma 3.6 in this paper.

16

4 Fp-Estimation

In this section, we introduce our adversarially robust Fp moment estimation algorithms. Recall
that Fp is given by ‖f‖pp =

∑
i |fi|p for p > 0. For p = 0, the F0 moment, or the number of

distinct elements, is the number of non-zero coordinates in f , that is, ‖f‖0 = |{i ∈ [n] : fi 6= 0}|.
Recall that in Corollary 3.4, we bounded the flip number of the Fp moment in insertion-only
streams for any fixed p > 0 by O(max{p, 1}·ε−1 log n). By using our sketch switching argument,
the strong Fp tracking guarantees of [BDN17] as stated in Lemma 2.2, we obtain our first result
for 0 < p ≤ 2.

Theorem 4.1 (Fp-estimation by sketch switching). Fix any 0 < ε, δ ≤ 1 and 0 < p ≤ 2. There
is a streaming algorithm for the insertion-only adversarial model which, with probability 1− δ,
successfully outputs at each step t ∈ [m] a value Rt such that Rt = (1 ± ε)‖f (t)‖p. The space
used by the algorithm is

O

(
1

ε3
log n log ε−1(log ε−1 + log δ−1 + log log n)

)
.

Proof. By an application of Lemma 3.5 along with the flip number bound of Corollary 3.4 and
the strong tracking algorithm of Lemma 2.2, we immediately obtain a space complexity of

O

(
1

ε3
log2 n(log ε−1 + log δ−1 + log log n)

)
.

We now describe how the factor of 1
ε log n, coming from running λε,m = Θ(1ε log n) independent

sketches in Lemma 3.5, can be improved to 1
ε log ε−1.

To see this, we change Algorithm 1 in the following way. Instead of Θ(1ε log n) independent
sketches, we use λ← Θ(1ε log ε−1) independent sketches, and change line 10 to state ρ← ρ + 1
(mod λ). Each time we change ρ to ρ+1 (mod λ) and begin using the new sketch Aρ+1 (mod λ),
we completely restart the algorithm Aρ with new randomness, and run it on the remainder of
the stream (or until it is restarted again after looping through all λ sketches). The proof of
correctness in Lemma 3.5 is completely unchanged, except for the fact that now Aρ is run only on
a sub-interval aj, aj+1, . . . , of the stream, starting from the time step j where Aρ is reinitialized
and ending at the next time that Aρ is reinitialized. Specifically, at each time step t ≥ j, Aρ will
produce a (1±ε) estimate of ‖f (t)−f (j−1)‖p instead of ‖f (t)‖p. However, since the sketch will not
be used again until a step t′ where ‖f (t′)‖p ≥ (1+ε)λ‖f (j)‖p = 100

ε ‖f (j)‖p, it follows that only an

ε fraction of the ℓp mass was missed by Aρ. In particular, ‖f (t′)−f (j−1)‖p = (1±ε/100)‖f (t′)‖p,
and thus by giving a (1± ε/10) approximation of ‖f (t′) − f (j−1)‖p, the algorithm Aρ gives the
desired (1 ± ε) approximation of the underlying ℓp norm, which is the desired result after a
constant factor rescaling of ε. Note that this argument could be used for the L0 norm, or any
Lp norm for p ≥ 0, using an Fp strong tracking algorithm for the relevant p. �

Remark 4.2 (The restart trick). The above proof improves a log n factor to a log 1/ε one by
maintaining independent copies of the sketch in a cyclic manner, where old copies are restarted
with fresh randomness (rather than scrapped entirely). This trick works because the Fp-value
cannot decrease in insertion-only streams, and turns out useful in many insertion-only streaming
problems where one wishes to estimate a non-decreasing quantity; we shall see a few examples
throughout the paper. Indeed, as long as the previous estimate (using the old randomness) of
a certain copy is only, say, a ε/10-fraction of the current estimate, the restart does not majorly
effect the output.

While for most values of δ, the above theorem has better space complexity than the compu-
tation paths reduction, for the regime of very small failure probability it is actually preferable
to use the latter, as we now state.

17

Theorem 4.3 (Fp-estimation for small δ). Fix any 0 < ε < 1, 0 < p ≤ 2, and δ < n−C 1

ε
logn

for a sufficiently large constant C > 1. There is a streaming algorithm for the insertion-only
adversarial model which, with probability 1− δ, successfully outputs at each step t ∈ [m] a value
Rt such that Rt = (1± ε)‖f (t)‖p. The required space is O

(
1
ε2

log n log δ−1
)
bits.

The proof is a direct application of Lemma 3.6, along with the flip number bound of Corollary
3.4, and the O(ε−2 log n log δ−1) static Fp estimation algorithm of [KNW10a]. Indeed, note that
the flip number is λ = O(log n/ε) and that for small enough values of δ as in the lemma, one
has log(mλ/δ) = Θ(log(1/δ)).

Next, we show that for turnstile streams with Fp flip number λ, we can estimate Fp with
error probability δ = n−λ. The space requirement of the algorithm is optimal for algorithms
with such failure probability δ, which follows by an Ω(ε−2 log n log δ−1) lower bound for turnstile
algorithms [JW13], where the hard instance in question has small Fp flip number.7

Theorem 4.4 (Fp-estimation for λ-flip number turnstile streams). Let Sλ be the set of all
turnstile streams with Fp flip number at most λ ≥ λε,m(‖ · ‖pp) for any 0 < p ≤ 2. Then there
is an adversarially robust streaming algorithm for the class Sλ of streams that, with probability
1−n−Cλ for any constant C > 0, outputs at each time step a value Rt such that Rt = (1±ε)‖f‖pp.
The space used by the algorithm is O(ε−2λ log2 n).

Proof. The proof follows by simply applying Lemma 3.6, along with the O(ε−2 log n log δ−1) bit
turnstile algorithm of [KNW10a]. �

In addition, we show that the Fp moment can also be robustly estimated for p > 2. In this
case, it is preferable to use our computation paths reduction, because the upper bounds for Fp

moment estimation for large p yield efficiency gains when setting δ to be small.

Theorem 4.5 (Fp-estimation, p > 2, by Computation Paths). Fix any ε, δ > 0, and any
constant p > 2. Then there is a streaming algorithm for the insertion-only adversarial model
which, with probability 1 − n−(c logn)/ε for any constant c > 1, successfully outputs at every
step t ∈ [m] a value Rt such that Rt = (1 ± ε)‖f (t)‖p. The space used by the algorithm is
O(n1−2/p(ε−3 log2 n + ε−6/p(log2 n)2/p log n)).

Proof. We use the insertion-only Fp estimation algorithm of [GW18], which achieves

(
n1−2/p

(
ε−2 log δ−1 + ε−4/p log2/p δ−1 log n

))

bits of space in the turnstile (and therefore insertion-only) model. We can set δ = δ/m to union
bound over all steps, making it a strong Fp tracking algorithm with

O
(
n1−2/p

(
ε−2 log(nδ−1) + ε−4/p log2/p(nδ−1) log n

))

bits of space. Then by Lemma 3.6 along with the flip number bound of Corollary 3.4, the
claimed space complexity follows. �

5 Distinct Elements Estimation

We now demonstrate how our sketch switching technique can be used to estimate the number
of distinct elements, also known as F0 estimation, in an adversarial stream. In this case, since
there exist static F0 strong tracking algorithms [B la18] which are more efficient than repeating
the sketch log δ−1 times, it will be preferable to use our sketch switching technique.

7The hard instance in [JW13] is a stream where O(n) updates are first inserted and then deleted, thus the
flip number is at most twice the Fp flip number of an insertion-only stream.

18

Theorem 5.1 (Robust Distinct Elements by Sketch Switching). There is an algorithm which,
when run on an adversarial insertion-only stream, produces at each step t ∈ [m] an estimate Rt

such that Rt = (1± ε)‖f (t)‖0 with probability at least 1− δ. The space used by the algorithm is

O(log ε
−1

ε (log ε
−1+log δ−1+log logn

ε2
+ log n)) bits.

Proof. We use the insertion-only distinct elements strong tracking algorithm of [B la18]. Specif-

ically, the algorithm of [B la18] uses space O(
log δ−1

0
+log logn
ε2 + log n), and with probability 1− δ0,

successfully returns an estimate Rt for every step t ∈ [m] such that Rt = (1 ± ε)‖f (t)‖0 in the
non-adversarial setting. Then by an application of Lemma 3.5, along with the flip number bound
of O(log n/ε) from Corollary 3.4, we obtain the space complexity with a factor of logn

ε blow-up

after setting δ0 = Θ(δ ε
logn). This gives a complexity of O(lognε (log ε

−1+log δ−1+log logn
ε2 + log n)).

To reduce the extra log n-factor to a log ε−1 factor, we just apply the same argument used
in the proof of Theorem 4.1, which shows that by restarting sketches it suffices to keep only
O(ε−1 log ε−1) copies. �

5.1 Fast Distinct Elements Estimation

As noted earlier, there are many reasons why one may prefer one of the reductions from Section
3 to the other. In this section, we will see such a motivation. Specifically, we show that
adversarially robust L0 estimation can be accomplished with extremely fast update time using
the computation paths reduction of Lemma 3.6.

First note that the standard approach to obtaining failure probability δ is to repeat the
estimation algorithm log δ−1 times independently, and take the median output. However, this
blows up the update time by a factor of log δ−1. Thus black-box applying Lemma 3.6 by setting
δ to be small can result in a larger update time. To improve upon this, we will introduce
an insertion-only distinct elements estimation algorithm, with the property that the runtime
dependency on δ−1 is very small (roughly log2 log δ−1). Thus applying Lemma 3.6 on this
algorithm results in a very fast robust streaming algorithm.

Lemma 5.2. There is a streaming algorithm which, with probability 1 − δ, returns a (1 ± ε)
multiplicative estimate of the number of distinct elements in an insertion-only data stream. The
space required is O(1

ε2
log n(log log n+ log δ−1)),8 and the worst case running time per update is

O
((

log2 log logn
δ

)
·
(

log log log logn
δ

))
.

We note that previously, the best known update time for insertion-only distinct elements
estimation is the algorithm of [KNW10b], which obtains O(1)-update time in O(ε−2 + log n)
space with constant failure probability δ. Thus, to obtain small error probability δ, one would
need to repeat the entire algorithm O(log δ−1) times, causing a blow-up of O(log δ−1) in the
update time. Before presenting our proof of Lemma 5.2, we state the following proposition
which will allow for the fast evaluation of d-wise independent hash functions.

Proposition 5.3 ([vzGG13], Ch. 10). Let R be a ring, and let p ∈ R[x] be a degree d univariate
polynomial over R. Then given distinct x1, x2, . . . , xd ∈ R, all the values p(x1), p(x2), . . . , p(xd)
can be computed using O(d log2 d log log d) operations over R.

Proof of Lemma 5.2. We describe the algorithm here, as stated in Algorithm 2.
We initialize lists L0, L1, . . . , Lℓ ← ∅, where ℓ is set so that n2 ≤ 2ℓ ≤ n3. We also choose

a hash function H : [n] → [2ℓ]. The lists Li will store a set of identities Li ⊂ [n] which have

8We remark that it is possible to optimize the log n factor to O(log δ−1 + log ε−1 + log log n) by hashing the
identities stored in the lists of the algorithm to a domain of size poly(δ−1, ε−1, log n). However, in our application
we will be setting δ ≪ 1/n, and so the resulting adversarially robust algorithm would actually be less space
efficient.

19

Algorithm 2: Fast non-adversarial distinct elements estimation.

1 Initialize Lists L0, L1, . . . , Lℓ ← ∅, for ℓ chosen such that n2 ≤ 2ℓ ≤ n3.
B ← Θ(1

ε2
(log log n + log δ−1)), d← Θ(log log n + log δ−1)

2 Initialize d-wise independent hash function H : [n]→ [2ℓ].
3 while Receive update ai ∈ [n] do
4 Let j be such that 2ℓ−j−1 ≤ H(ai) < 2ℓ−j

5 if Lj has not been deleted then
6 Add ai to the list Lj if it is not already present.
7 end
8 If |Lj| > B for any j, delete the list Lj, and never add any items to it again.

9 end
10 Let i be the largest index such that |Li| ≥ 1

5B.
11 Return 2i+1|Li| as the estimate of ‖f‖0

occurred in the stream. We also set B ← Θ(1
ε2 (log log n+ log δ−1)). For now, assume that H is

fully independent.
At each step when we see an update ai ∈ [n] (corresponding to an update which increments

the value of fi by one), we compute j such that 2ℓ−j−1 ≤ H(ai) ≤ 2ℓ−j. Note that this event
occurs with probability 2−(j+1). Then we add the O(log n)-bit identity ai to the list Lj if
|Lj | < B. Once |Lk| = B for any k ∈ [ℓ], we delete the entire list Lk, and never add an item to
Lk again. We call such a list Lk saturated. At the end of the stream, we find the largest value
i such that 1

5B ≤ |Li|, and output 2i+1|Li| as our estimate of ‖f‖0.
We now analyze the above algorithm. Let i0 be the smallest index such that E[|Li0 |] ≤

‖f‖02−(i0+1) < 1
5(1+ε)B. Note here that E[|Lk|] = 2−(k+1)‖f‖0 for any k ∈ [ℓ]. By a Cher-

noff bound, with probability 1 − exp(−Ω(−ε2B)) < 1 − δ2/ log(n) we have that |Li0 | < 1
5B.

We can then union bound over all such indices i ≥ i0. This means that we will not out-
put the estimate used from any index i ≥ i0. Similarly, by a Chernoff bound we have that
|Li0−1| = (1 ± ε)‖f‖02−i0 < 2

5B and |Li0−2| = (1 ± ε)‖f‖02−i0+1, and moreover we have
2

5(1+ε)B ≤ ‖f‖02−i0+1 ≤ 4
5B, meaning that the output of our algorithm will be either |Li0−1|2i0

or |Li0−2|2i0−1, each of which yields a (1 ± ε) estimate. Now note that we cannot store a
fully independent hash function H, but since we only needed all events to hold with proba-
bility 1 − Θ(δ2/ log(n)), it suffices to choose H to be a d-wise independent hash function for
d = O(log log n + log δ−1), which yields Chernoff-style tail inequalities with a decay rate of
exp(−Ω(d)) (see e.g. Theorem 5 of [SSS95]).

Next we analyze the space bound. Trivially, we store at most O(log n) lists Li, each of which
stores at most B identities which require O(log n) bits each to store, yielding a total complexity
of O(1

ε2
log2 n(log log n + log δ−1)). We now show however that at any given step, there are at

most O(B) many identities stored in all of the active lists. To see this, let i0 < i1 < · · · < is be
the time steps such that ‖f (ij)‖0 = 2j+1 ·B, and note that s ≤ log(n)+1. Note that before time
i0, at most B identities are stored in the union of the lists. First, on time step ij for any j ∈ [s],
the expected size of |Lj−2| is at least 2|B| (had we never deleted saturated lists), and, with
probability 1− (δ/ log n)10 after a union bound, it holds that |Lj′ | is saturated for all j′ ≤ j−2.
Moreover, note that the expected number of identities written to lists Lj′ with j′ ≥ j − 1 is
‖f (ij)‖0

∑
ν≥1 2−j+1+ν ≤ 2B, and is at most 4B with probability at least 1− (δ/ log n)10 (using

the d-wise independence of H). We conclude that on time step ij , the total space being used is
O(B log n) with probability at least 1− (δ/ log n)10, so we can union bound to obtain that this
space holds over all such steps ij for j ∈ [s].

Next, we must analyze the space usage at steps τ for ij < τ < ij+1. Note that the number
of new distinct items which occur over all such time steps τ is at most 2j+1 · B by definition.

20

Since we already conditioned on the fact that |Lj′ | is saturated for all j′ ≤ j − 2, it follows
that each new item is written into a list with probability at most 2−j . Thus the expected
number of items which are written into lists within times τ satisfying ij < τ < ij+1 is 2j+1 ·
B · 2−j = 2B in expectation, and at most 8B with probability 1− (δ/ log n)10 (again using the
d-wise independence of H). Conditioned on this, the total space used in these steps is at most
O(B log n) = O(1

ε2
log n(log log n + log δ)) in this interval, and we then can union bound over

all such O(log n) intervals, which yields the desired space.
Finally, for the update time, note that at each stream update ai ∈ [n], on the first step of the

algorithm, we compute the value of a d-wise independent hash function H. Näıvely, computing
a d-wise independent hash function requires O(d) arithmetic operations (in the standard RAM
model), because H in this case is just a polynomial of degree d over Z. On the other hand,
we can batch sequences of d = O(log log n + log δ−1) computations together, which require an
additive O(d log n) = O(log n(log log n + log δ−1)) bits of space at any given time step to store
(which is dominated by the prior space complexity). Then by Proposition 5.3, all d hash function
evaluations can be carried out in O(d log2 d log log d) = O(d log2(log logn

δ) log log log logn
δ) time.

The work can then be evenly distributed over the following d steps, giving a worst case update
time of O(log2(log logn

δ) log log log logn
δ). Note that this delays the reporting of the algorithm for

the contribution of updates by a total of d steps, causing an additive d error. However, this is
only an issue if d ≥ ε‖f‖0, which occurs only when ‖f‖0 ≥ 1

εd. Thus for the first D = O(ε−1d)
distinct items, we can store the non-zero items exactly (and deterministically), and use the
output of this deterministic algorithm. The space required for this is O(ε−1 log(n)(log log n +
log δ−1), which is dominated by the space usage of the algorithm overall. After D distinct items
have been seen, we switch over to using the output of the randomized algorithm described here.
Finally, the only other operation involves adding an identity to at most one list per update,
which is O(1) time, which completes the proof. �

We can use the prior result of Lemma 5.2, along with our argument for union bounding
over adversarial computation paths of Lemma 3.6 and the flip number bound of Corollary 3.4,
which results in an adversarially robust streaming algorithm for distinct elements estimation
with extremely fast update time.

Theorem 5.4. There is a streaming algorithm which, with probability 1 − n−(C/ε) logn for any
constant C ≥ 1, when run on an adversarially chosen insertion-only data stream, returns a
(1±ε) multiplicative estimate of the number of distinct elements at every step in the stream. The

space required is O(1
ε3

log3 n), and the worst case running time is O
((

log2 logn
ε

)
·
(

log log logn
ε

))

per update.

6 Heavy Hitters

In this section, we study the popular heavy-hitters problem in data streams. The heavy hitters
problem tasks the algorithm with recovering the most frequent items in a data-set. Stated
simply, the goal is to report a list S of items fi that appear least τ times, meaning fi ≥ τ , for
a given threshold τ . Generally, τ is parameterized in terms of the Lp norm of the frequency
vector f , so that τ = ε‖f‖p. For p > 2, this problem is known to take polynomial space
[AMS99, BYJKS04]. Thus, the strongest such guarantee that can be given in sub-polynomial
space is known as the L2 guarantee:

Definition 6.1. A streaming algorithm is said to solve the (ε, δ)-heavy hitters problem with
the L2 guarantee if the algorithm, when run on a stream with frequency vector f ∈ R

n, outputs
a set S ⊂ [n] such that with probability 1−δ the following holds: for every i ∈ [n] if |fi| ≥ ε‖f‖2
then i ∈ S, and if |fi| ≤ (ε/2)‖f‖2 then i /∈ S.

We also introduce the related task of (ε, δ)-point queries.

21

Definition 6.2. A streaming algorithm is said to solve the (ε, δ) point query problem with the
L2 guarantee if with probability 1 − δ, at every time step t ∈ [m], for each coordinate i ∈ [n]

it can output an estimate f̂ t
i such that |f̂ t

i − f
(t)
i | ≤ ε‖f (t)‖2. Equivalently, it outputs a vector

f̂ t ∈ R
n such that ‖f (t) − f̂ t‖∞ ≤ ε‖f (t)‖2.9

Notice that for any algorithm that solves the (ε, δ)-point query problem, if it also has
estimates Rt = (1± ε/10)‖f (t)‖2 at each time step t ∈ [m], then it immediately gives a solution
to the (ε, δ)-heavy hitters problem by just outputting all i ∈ [n] with f̃ t

i > (3/4)εRt. Thus
solving (ε, δ)-point queries, together with F2 tracking, is a stronger property. In the following,
we say that f̂ t is ε-correct at time t if ‖f (t) − f̂ t‖∞ ≤ ε‖f (t)‖2.

In this section, we demonstrate how this fundamental task of point query estimation can
be accomplished robustly in the adversarial setting. Note that we have already shown how F2

tracking can be accomplished in the adversarial model, so our focus will be on point queries.
Our algorithm relies on a similar sketch switching technique as used in Lemma 3.5, which
systematically hides randomness from the adversary by only publishing a new estimate f̂ t when
absolutely necessary. To define what is meant by “absolutely necessary”, we will first need the
following proposition.

Proposition 6.3. Suppose that f̂ t ∈ R
n is ε-correct at time t on an insertion-only stream, and

let t1 > t be any time step such that ‖f (t1) − f (t)‖∞ ≤ ε‖f (t)‖2. Then f̂ t is 2ε-correct at time
t1.

Proof. ‖f̂ t − f (t1)‖∞ ≤ ‖f̂ t − f (t)‖∞ + ‖f (t1) − f (t)‖∞ ≤ ε‖f (t)‖2 + ε‖f (t)‖2 ≤ 2ε‖f (t1)‖2. �

To prove the main theorem of Section 6, we will need the classic count-sketch algorithm for
finding L2 heavy hitters of Charikar et al. [CCFC04], which solves the more general point query
problem in the static setting with high probability.

Lemma 6.4 ([CCFC04]). There is a streaming algorithm in the non-adversarial insertion-only
model which solves the (ε, δ)-point query problem, using O(1

ε2 log n log n
δ) bits of space.

We are now ready to prove the main theorem of this section.

Theorem 6.5 (L2 point query and heavy hitters). Fix any ε, δ > 0. There is a streaming
algorithm in the adversarial insertion-only model which solves the (ε, n−C) point query problem,
and also the O(ε, n−C)-heavy hitters problem, for any constant C > 1. The algorithm uses

O(log ε
−1

ε3
log2 n) bits of space.

Proof. Since we already know how to obtain estimates Rt = (1 ± ε/100)‖f (t)‖2 at each time
step t ∈ [m] in the adversarial insertion-only model within the required space, it will suffice to
show that we can obtain estimates f̂ t which are ε-correct at each time step t (i.e., it will suffice
to solve the point query problem).

Let 1 = t1 < t2 < · · · < tT = m for T = Θ(ε−1 log n) be any set of time steps such
that ‖f (ti+1) − f (ti)‖2 ≤ ε‖f (ti)‖2 for each i ∈ [T − 1]. Then by Proposition 6.3, using that
‖f (ti+1) − f (ti)‖∞ ≤ ‖f (ti+1) − f (ti)‖2, we know that if we output an estimate f̂ i which is ε-
correct for time ti, then f̂ i will still be 2ε correct at time ti+1. Moreover, because the stream
is insertion-only, the frequency vectors f (t) are coordinate-wise monotonically increasing over
time. The latter implies that ‖f (t)− f (ti)‖2 ≤ ‖f (ti+1)− f (ti)‖2 for all t ∈ [ti, ti+1], and therefore
if f̂ i is ε-correct for time ti, then f̂ i will also be 2ε correct at any time t ∈ [ti, ti+1]. Thus our
approach will be to output vectors f̂1, f̂2, . . . , f̂T , such that we output the estimate f̂ i ∈ R

n at
all times τ such that ti ≤ τ < ti+1, and such that f̂ i is ε-correct for time ti.

9We note that a stronger form of error is possible, called the tail guarantee, which does not count the con-
tribution of the top 1/ε2 largest coordinates to the error ε‖f‖2. We restrict to the simpler version of the L2

guarantee.

22

First, to find the time steps ti, we run the adversarially robust F2 estimator of Theorem
4.1, which gives an estimate Rt = (1± ε/100)‖f (t)‖2 at each time step t ∈ [m] with probability
1 − n−C for any constant C > 1, and uses space O(ε−3 log2 n log ε−1). Notice that this also
gives the required estimates Rt as stated above. By rounding down the outputs Rt of this F2

estimation algorithm to the nearest power of (1 + ε/2), we obtain our desired points ti. Notice
that this also gives T = Θ(ε−1 log n) as needed, by the flip number bound of Corollary 3.4.

Next, to obtain the desired ε point query estimators at each time step ti, we run T indepen-
dent copies of the point query estimation algorithm of Lemma 6.4. At time ti, we use the output
vector of the i-th copy as our estimate f̂ i, which will also be used without any modification on
all times τ with ti ≤ τ < ti+1. Since each copy of the algorithm only reveals any of its random-
ness at time ti, at which point it is never used again, by the same argument as in Lemma 3.5
it follows that each f̂ i will be ε-correct for time ti. Namely, since the set of stream updates on
times 1, 2, . . . , ti are independent of the randomness used in the i-th copy of point-estimation
algorithm, we can deterministically fix the updates on these time steps, and condition on the
i-th copy of the non-adversarial streaming algorithm being correct on these updates. Therefore
this algorithm correctly solves the 2ε point query problem on an adversarial stream. The total
space used is

O
(
ε−3 log2 n log ε−1 + Tε−2 log2 n

)
.

We now note that we can improve the space by instead running only T ′ = O(ε−1 log ε−1)
independent copies of the algorithm of Lemma 6.4. Each time we use one of the copies to
output the desired estimate f̂ i, we completely restart that algorithm on the remaining suffix of
the stream, and we loop modularly through all T ′ copies of the algorithm, at each step using
the copy that was least recently restarted to output an estimate vector. More formally, we keep
copies A1, . . . ,AT ′ of the algorithm of Lemma 6.4. Each time we arrive at a new step ti and
must produce a new estimate f̂ i, we query the algorithm Aj that was least recently restarted,
and use the estimate obtained by that algorithm, along with the estimates Rt.

The same correctness argument will hold as given above, except now each algorithm, when
used after being restarted at least once, will only be ε-correct for the frequency vector defined
by a sub-interval of the stream. However, by the same argument used in Theorem 4.1, we can
safely disregard the prefix that was missed by this copy of the algorithm, because it contains
only an ε/100-fraction of the total Lp mass of the current frequency vector when it is applied
again. Formally, if an algorithm Aj is used again at time ti, and it was last restarted at time
τ , then by the correctness of our estimates Rt, the L2 norm must have gone up by a factor of
(1 + ε)T

′

= 100
ε , so ‖f (τ)‖2 ≤ ε/100‖f (ti)‖2. Moreover, we have that the estimate f̂ i produced

by the algorithm Aj at time ti satisfies ‖f̂ i − (f (ti) − f (τ))‖∞ ≤ ε‖f (ti) − f (τ)‖2. This follows
from the fact that (f (ti)−f (τ)) is the frequency vector of the sub-stream on which the algorithm
Aj has been run at time ti, along with the ε-correctness guarantee of the algorithm of Lemma
6.4. But then

‖f̂ i − f (ti)‖∞ ≤ ‖f̂ i − (f (ti) − f (τ))‖∞ + ‖f (τ)‖∞
≤ ε‖f (ti) − f (τ)‖2 + ‖f (τ)‖2
≤ ε

(
‖f (ti)‖2 + ‖f (τ)‖2

)
+ ε/100‖f (ti)‖2

≤ ε‖f (ti)‖2(1 + ε) + ε/100‖f (ti)‖2
≤ 2ε‖f (ti)‖2,

(1)

where in the first line we added and subtracted f (τ) and applied the triangle inequality, in
the second line we used the fact that ‖f̂ i − (f (ti) − f (τ))‖∞ ≤ ε‖f (ti) − f (τ)‖2 along with the
fact that the ℓ∞ norm is bounded by the ℓ2 norm, and in the third line we used the triangle
inequality. Thus f̂ i is still 2ε-correct at time ti for the full stream vector f (ti). So by the same
argument as above using Proposition 6.3, it follows that the output of the overall algorithm

23

is always 4ε-correct for all time steps τ ∈ [m], and we can then re-scale ε by a factor of 1/4.
Substituting the new number T ′ of copies used into the above equation, we obtain the desired
complexity. �

7 Entropy Estimation

We now show how our general techniques developed in Section 3 can be used to approximate
the empirical Shannon entropy H(f) of an adversarial stream. Recall that for a non-zero vector

f , we have that H(f) = −∑
i,fi 6=0 pi log(pi), where pi = |fi|

‖f‖1 . Also recall that for α > 0, the

α-Renyi Entropy Hα(x) of x is given by Hα(x) = log
(
‖x‖αα
‖x‖α

1

)
/(1− α).

We begin with the following observation, which will allow us to consider multiplicative
approximation of 2H(x). Then, by carefully bounding the flip number of the Renyi entropy Hα

for α close to 1, we will be able to bound the flip number of H.

Remark 7.1. Note that any algorithm that gives an ε-additive approximation of the Shannon
Entropy H(x) : R

n → R gives a (1 ± ε) multiplicative approximation of g(x) = 2H(x), and
vice-versa.

Proposition 7.2 (Theorem 3.1 of [HNO08]). Let x ∈ R
n be a probability distribution whose

smallest non-zero value is at least 1
m , where m ≥ n. Let 0 < ε < 1 be arbitrary. Define

µ = ε/(4 log m) and ν = ε/(4 log n logm), α = 1+µ/(16 log(1/µ)) and β = 1+ν/(16 log(1/ν)).
Then

1 ≤ Hα

H
≤ 1 + ε and 0 ≤ H −Hβ ≤ ε.

Proposition 7.3. Let g : R
N → R be g(x) = 2H(x), i.e., the exponential of the Shannon

entropy. Then the (ε,m)-flip number of g for the insertion-only streaming model is λε,m(g) =
O(1

ε2
log3m(log log n + log ε−1)).

The proof of the above proposition is given later in this section. We now state the main
result on adversarially robust entropy estimation. An improved result is stated for the random
oracle model in streaming, which means that the algorithm is given random (read-only) access
to an arbitrarily large string of random bits.

Theorem 7.4 (Robust Additive Entropy Estimation). There is an algorithm for ε-additive
approximation of entropy in the insertion-only adversarial streaming model which requires a
total of O(1

ε4
log4 n(log log n + log ε−1)) bits of space assuming the random oracle model, and

O(1
ε4 log6 n(log log n + log ε−1)) bits of space in the general insertion-only model.

To obtain our entropy estimation algorithm of Theorem 7.4, we will first need to state the
results for the state of the art non-adversarial streaming algorithms for additive entropy estima-
tion. The first algorithm is a O(ε−2 log2 n)-bit streaming algorithm for additive approximation
of the entropy of a turnstile stream, which in particular holds for insertion-only streams. The
second result is a Õ(1/ε2) upper bound for entropy estimation in the insertion-only model when
a random oracle is given.

Lemma 7.5 ([CC13]). There is an algorithm in the turnstile model that gives an ε-additive
approximation to the Shannon Entropy H(f) of the stream. The failure probability is δ, and the
space required is O(1

ε2
log2 n log δ−1) bits.

Lemma 7.6 ([JW19]). There is an algorithm in the insertion-only random oracle model that
gives an ε-additive approximation to the Shannon Entropy H(f) of the stream. The failure
probability is δ, and the space required is O(1

ε2 (log δ−1 + log log n + log ε−1))

24

We now give the proof of Proposition 7.3, and then the proof of Theorem 7.4.

Proof of Proposition 7.3. By Proposition 7.2, it suffices to get a bound on the flip number of Hβ

for the parameters β = 1 + ν/(16 log(1/ν)) and ν = ε/(4 log n logm). Recall g(x) = 2Hβ(x) =

(‖x‖ββ/‖x‖
β
1)1/(1−β) = (‖x‖1/‖x‖β)

β
β−1 , and define

τ = ε · β − 1

β
= Θ

(
ε2

(log2 n) · (log log n + log ε−1)

)
.

Then, to increase g(x) by a factor of (1 + ε), one must increase ‖x‖1/‖x‖β by a factor of
1 + Ω(τ). Since the stream is insertion-only, both ‖x‖1 and ‖x‖β are non-decreasing in the
stream. Therefore, for the ratio to increase by a factor of 1 + Ω(τ), it must be that ‖x‖1 itself
increases by a factor of at least 1 + Ω(τ). Similarly, for g(x) to decrease by a factor of 1 + ε,
this would requires ‖x‖β to increase by a factor of 1 + Ω(τ).

In summary, if for time steps 1 ≤ t1 < t2 ≤ m of the stream we have g(f (t2)) > (1 +
ε)g(f (t1)), then it must be the case that ‖f (t2)‖1 > (1 + Ω(τ))‖f (t1)‖1. Similarly, if we had
g(f (t2)) < (1 − ε)g(f (t1)), then it must be the case that ‖f (t2)‖β > (1 + Ω(τ))‖f (t1)‖β . Since
‖f (m)‖β ≤ ‖f (m)‖1 ≤Mn and ‖·‖1, ‖·‖β are monotone for insertion-only streams, it follows that

each of them can increase by a factor of (1+Ω(τ)) at most O(1τ log n) = O(log
3 n(log logn+log ε−1)

ε2
)

times during the stream, which completes the proof since log n = Θ(logm). �

Proof of Theorem 7.4. The proof follows directly from an application of Lemma 3.5, using the
non-adversarial algorithms of Lemmas 7.5 and 7.6, as well as the flip number bound of Lemma
7.3. Note that to turn the algorithms of Lemmas 7.5 and 7.6 into tracking algorithms, one must
set δ < 1/m, which yields the stated complexity. �

8 Bounded Deletion Streams

In this section, we show how our results can be used to obtain adversarially robust streaming
algorithms for the bounded-deletion model, introduced in [JW18]. The bounded deletion model
serves as an intermediate model between the turnstile and insertion-only model. Motivated by
common lower bounds for turnstile streams, which utilize seemingly unrealistic hard instances
that insert a large number of items before deleting nearly all of them, bounded deletion streams
are possibly a more representative model for real-world data streams. Intuitively, a bounded
deletion stream is one where the Fp moment of the stream is a 1

α fraction of what the Fp moment
would have been had all updates been replaced with their absolute values, meaning that the
stream does not delete off an arbitrary amount of the Fp weight that it adds over the course of
the stream. Formally, the model is as follows.

Definition 8.1. Fix any p ≥ 1 and α ≥ 1. A data stream u1, . . . , um, where ui = (ai,∆i) ∈
[n]×{1,−1} are the updates to the frequency vector f , is said to be an Fp α-bounded deletion
stream if at every time step t ∈ [m] we have ‖f (t)‖pp ≥ 1

α

∑n
i=1(

∑
t′≤t:at′=i |∆t′ |)p.

Specifically, the α-bounded deletion property says that the Fp moment ‖f (t)‖pp of the stream
is at least 1

α‖h(t)‖
p
p, where h is the frequency vector of the stream with updates u′i = (ai,∆

′
i)

where ∆′
i = |∆i| (i.e., the absolute value stream). Note here that the model assumes unit

updates, i.e., we have |∆i| = 1 for each i ∈ [m], which can be accomplished without loss of
generality with respect to the space complexity of algorithms, by simply duplicating integral
updates into unit updates.

In [JW18], the authors show that for α-bounded deletion streams, a factor of log n in the
space complexity of turnstile algorithms can be replaced with a factor of logα for many impor-
tant streaming problems. In this section, we show another useful property of bounded-deletion

25

streams: norms in such streams have bounded flip number. We use this fact to design adver-
sarially robust streaming algorithms for data streams with bounded deletions.

Lemma 8.2. Fix any p ≥ 1. The λε,m(‖ · ‖p) flip number of the Lp norm of a α-bounded
deletion stream is at most O(p α

εp log n).

Proof. Let h be the frequency vector of the stream with updates u′i = (ai,∆
′
i) where ∆′

i = |∆i|.
Note that h is then the frequency vector of an insertion-only stream. Now let 0 ≤ t1 < t2 <
· · · < tk ≤ m be any set of time steps such that ‖f (ti)‖p /∈ (1± ε)‖f (ti+1)‖p for each i ∈ [k − 1].
Since by definition of the α-bounded deletion property, we have ‖f (t)‖p ≥ 1

α1/p ‖h(t)‖p for each
t ∈ [m], it follows that

‖f (ti+1) − f (ti)‖p ≥
∣∣∣‖f (ti+1)‖p − ‖f (ti)‖p

∣∣∣ ≥ ε‖f (ti+1)‖p ≥
ε

α1/p
‖h(ti+1)‖p ≥

ε

α1/p
‖h(ti)‖p (2)

where in the last inequality we used the fact that h is an insertion-only stream. Now since the
updates to h are the absolute value of the updates to f , we also have that ‖h(ti+1) − h(ti)‖pp ≥
‖f (ti+1) − f (ti)‖pp ≥ εp

α ‖h(ti)‖
p
p. Thus

‖h(ti+1)‖pp = ‖h(ti) +
(
h(ti+1) − h(ti)

)
‖pp ≥ ‖h(ti)‖pp + ‖h(ti+1) − h(ti)‖pp ≥ (1 +

εp

α
)‖h(ti)‖pp (3)

where in the second inequality, we used the fact that ‖X +Y ‖pp ≥ ‖X‖pp +‖Y ‖pp for non-negative
integral vectors X,Y when p ≥ 1. Thus ‖h(ti+1)‖pp must increase by a factor of (1 + εp/α) from
‖h(ti)‖pp whenever ‖f (ti)‖p /∈ (1 ± ε)‖f (ti+1)‖p. Since ‖0‖pp = 0, and ‖h(m)‖pp ≤ Mpn ≤ ncp for
some constant c > 0, it follows that this can occur at most O(p α

εp log n) many times. Thus
k = O(p α

εp log n), which completes the proof. �

We now use our computation paths technique of Lemma 3.6, along with the space optimal
turnstile Fp estimation algorithm of [KNW10a], to obtain adversarially robust algorithms for
α-bounded deletion streams. Specifically, we show that we can estimate the Fp moment of a
bounded deletion stream robustly. We remark that once F2 moment estimation can be done, one
can similarly solve the heavy hitters problem in the robust model using a similar argument as in
Section 6, except without the optimization used within the proof of Theorem 6.5 which restarts
sketches on a suffix of the stream. The resulting space would be precisely an (αε log n)-factor
larger than the space stated in Theorem 6.5.

Theorem 8.3. Fix p ∈ [1, 2], α ≥ 1, and any constant C > 1. Then there is an adversarially
robust Fp estimation algorithm for α-bounded deletion streams which, with probability 1− n−C ,
returns at each time step t ∈ [m] an estimate Rt such that Rt = (1± ε)‖f (t)‖pp. The space used
by the algorithm is O(αε−(2+p) log3 n).

Proof. We use the turnstile algorithm of [KNW10a], which gives an estimate Rt = (1±ε)‖f (t)‖pp
at a single point t ∈ [m] with probability 1 − δ, using O(ε−2 log n log δ−1) bits of space. Then
for any δ0 ∈ (0, 1), we can run this algorithm with failure parameter δ = δ0/poly(m), and union
bound over all steps, to obtain that Rt = (1±ε)‖f (t)‖pp at all time steps t ∈ [m] with probability
1− δ0. Thus, this gives a (ε, δ0)-strong Fp tracking algorithm using O(ε−2 log n log(n/δ0)) bits
of space. The theorem then follows from applying Lemma 3.6, setting the failure probability to
be n−C , along with the flip number bound of Lemma 8.2. �

9 Adversarial Attack Against the AMS Sketch

It was shown by [HW13] that linear sketches can be vulnerable to adaptive adversarial attacks
in the turnstile model, where both insertions and deletions are allowed (see Subsection 1.2).
In this section, we demonstrate that algorithms based on linear sketching can in some cases

26

be susceptible to attacks even in the insertion-only model; Specifically, we show this for the
well known Alon-Matias-Szegedy (AMS) sketch [AMS99] for estimating the L2 norm of a data
stream. To this end, we describe an attack fooling the AMS sketch into outputting a value which
is not a good approximation of the norm ‖f‖22 of the frequency vector. Our attack provides an
even stronger guarantee: for any r ≥ 1 and an AMS sketch with r/ε2 rows, our adversary needs
to only create O(r) adaptive stream updates before it can fool the AMS sketch into outputting
an incorrect result.

We first recall the AMS sketch for estimating the L2 norm. The AMS sketch generates (im-
plicitly) a random matrix A ∈ R

t×n such that the entries Ai,j ∼ {−1, 1} are i.i.d. Rademacher.10

The algorithm stores the sketch Af (j) at each time step j, and since the sketch is linear it can
be updated throughout the stream: Af (j+1) = Af (j) + A · eij+1

∆j+1 where (ij+1,∆j+1) is the

j + 1-st update. The estimate of the sketch at time j is 1
t ‖Af (j)‖22, which is guaranteed to be

with good probability a (1± ε) estimate of ‖f (j)‖22 in non-adversarial streams if t = Θ(ε−2).
We now describe our attack. Let S be a t × n Alon-Matias-Szegedy sketch. Equivalently,

Si,j is i.i.d. uniformly distributed in {−t−1/2, t−1/2}, and the estimate of AMS is ‖Sf (j)‖22 at the
j-th step. The protocol for the adversary is as follows. In the following, we let ei ∈ R

n denote
the standard basis vector which is zero everywhere except the i-th coordinate, where it has the
value 1.

Algorithm 3: Adversary for AMS sketch

1 w ← C ·
√
t · e1

2 for i = 2, . . . ,m do
3 old ← ‖Sw‖22
4 w ← w + ei
5 new ← ‖Sw‖22
6 if new− old < 1 then
7 w← w + ei
8 end
9 else if new− old = 1 then

10 with probability 1/2, set w ← w + ei
11 end

12 end

Note that the vector w in Algorithm 3 is always equal to the current frequency vector of the
stream, namely w = f (j) after the j-th update. Note that the Algorithm 3 can be implemented
by an adversary who only is given the estimate ‖Sw‖22 = ‖Sf (j)‖22 of the AMS sketch after every
step j in the stream. To see this, note that the adversary begins by inserting the first item
(i1,∆1) = (1, C ·

√
t) for a sufficiently large constant C. Next, for i = 2, . . . , n, it inserts the item

i ∈ [n] once if doing so increases the estimate of AMS by more than 1. If the estimate of AMS
is increased by less than 1, it inserts the item i twice (i.e., it inserts an update (i, 2) ∈ [n]×Z).
Lastly, if inserting the item i ∈ [n] increases the estimate of AMS by exactly 1, the adversary
chooses to insert i ∈ [n] once with probability 1/2, otherwise it inserts i ∈ [n] twice.

We now claim that at the end of a stream of m = O(t) updates, with good probability
‖Sf (m)‖22 /∈ (1 ± ε)‖f (m)‖22 (note that, at the end of the stream, w = f (m)). In fact, we show
that regardless of the number of rows t in the AMS sketch, we force the AMS to give a solution
that is not even a 2-approximation.

Theorem 9.1. Let S ∈ R
t×n be an AMS sketch (i.i.d. Rademacher matrix scaled by t−1/2),

where 1 ≤ t < n/c for some constant c. Suppose further that the adversary performs the

10In fact, the AMS sketch works even if the entries within a row of A are only 4-wise independent. Here, we
show an attack against the AMS sketch if it is allowed to store a fully independent sketch A.

27

adaptive updates as described in Algorithm 3. Then with probability 9/10, by the m-th stream
update for some m = O(t), the AMS estimate ‖Sf (m)‖22 of the norm ‖f (m)‖22 of the frequency
vector f defined by the stream fails to be a (1 ± 1/2) approximation of the true norm ‖f (m)‖22.
Specifically, we will have ‖Sf (m)‖22 < 1

2‖f (m)‖22.

Proof. For j = 2, 3 . . . we say that the j-th step of Algorithm 3 is the step in the for loop
where the parameter i is equal to j, and we define the first step to just be the state of the
stream after line 1 of Algorithm 3. Let wi be the state of the frequency vector at the end of
the i-th step of the for loop in Algorithm 3, let yi = Swi be the AMS sketch at this step, and
let si = ‖Swi‖22 be the estimate of AMS at the same point. Note that we have w1 = C ·

√
t · e1

for a sufficiently large constant C, and thus s1 = C2t. That is, already on the first step of the
algorithm we have ‖w1‖22 = C2t, and moreover since the stream is insertion-only, we always
have ‖wi‖22 ≥ C2t. Thus, it suffices to show that with good probability, at some time step i ≥ 2
we will have si < C2t/2.

First, note that at any step i = 2, 3, . . . , if we add ei+1 to the stream once, we have
si+1 = ‖yi +Sei+1‖22 =

∑t
j=1((y

i
j)

2 + 2yijSj,i+1 + 1/t) = si + 1 + 2
∑t

j=1 y
i
jSj,i+1. If we add ei+1

twice, we have si+1 = ‖yi + 2Sei+1‖22 = si + 4 + 4
∑t

j=1 y
i
jSj,i+1. By definition of the algorithm,

we choose to insert ei+1 twice if ‖yi +Sei+1‖22−si = 1+2
∑t

j=1 y
i
jSj,i+1 < 1, or more compactly

whenever
∑t

j=1 y
i
jSj,i+1 < 0. If

∑t
j=1 y

i
jSj,i+1 > 0, we insert ei+1 only once. Finally, if

∑t
j=1

yijSj,i+1 = 0, we flip an unbiased coin, and choose to insert ei+1 either once or twice with equal

probability 1/2. Now observe that the random variable
∑t

j=1 y
i
jSj,i+1 is symmetric, since for

any fixed yi the Sj,i+1’s are symmetric and independent. Thus, we have that

E

[∣∣∣
t∑

j=1

yijSj,i+1

∣∣∣
]

= E

[t∑

j=1

yijSj,i+1 | Sei+1 inserted once
]

= −E
[t∑

j=1

yijSj,i+1 | Sei+1 inserted twice
]
.

(4)

Now recall that the vector S∗,i+1 given by the (i + 1)-st column of S is just an i.i.d.
Rademacher vector scaled by 1/

√
t. Thus, by Khintchine’s inequality [Haa81], we have that

E[|∑t
j=1 y

i
jSj,i+1|] = 1√

t
· α · ‖yi‖2 = α

√
si/
√
t for some absolute constant α > 0 (in fact,

α ≥ 1/
√

2 suffices by Theorem 1.1 of [Haa81]). Putting these pieces together, the expectation
of the estimate of AMS is then as follows:

E[si+1] =
1

2
(si + 1 + 2α

√
si√
t

) +
1

2
(si + 4− 4α

√
si√
t

)

= si + 5/2 − α
√

si/t

≤ si + 5/2 −
√

si/2t.

(5)

Where again the last line holds using the fact that α ≥ 1/
√

2. Thus E[si+1] = E[si] + 5/2 −
E[
√

si/2t]. First, suppose there exists some i ≤ C2t + 2 such that E[
√
si] < C

√
t/200. This

implies by definition that
∑

j

√
j ·Pr[si = j] < C

√
t/200, thus

√
C2t/2 ·Pr[si ≥ C2t/2] ≤

∑

j≥C2t/2

√
j ·Pr[si = j] <

√
C2t/200 (6)

Which implies that Pr[si ≥ C2t/2] ≤ 1/10. Thus, at step i, we have Pr[si < C2t/2] > 9/10,
and thus by time step i we have fooled the AMS sketch with probability at least 9/10. Thus,
we can assume that for all i = 2, 3, . . . , (C2t+ 2) we have E[

√
si] ≥ C

√
t/200. Setting C > 200,

we have that E[si+1] < E[si]−1 for all steps i = 2, 3, . . . , (C2t+2) However, since s1 = C2t, this

28

implies that E[sC2t+2] < −1, which is impossible since sj is always the value of a norm. This is
a contradiction, which implies that such an i with i ≤ C2t+ 2 and Pr[si ≥ C2t/2] ≤ 1/10 must
exist, demonstrating that we fool the AMS sketch by this step with probability 9/10, which
completes the proof. �

10 Optimal Distinct Elements via Cryptographic Assumptions

Estimating the number of distinct elements (F0-estimation) in a data stream is a fundamental
problem in databases, network traffic monitoring, query optimization, data mining, and more.
After a long line of work, [Woo04, KNW10b] settled space (and time) complexities of F0-
estimation by giving an algorithm using O(ε−2 + log n) bits of space (with constant worst-case
update time). The tracking version of this algorithm (where it outputs a correct estimate at
each time step) takes memory O(ε−2(log ε−1+log log n)+log n) bits and is also optimal [B la18].

However, these results only hold in the (standard) static setting. We show that using
cryptographic tools (pseudorandom functions), we can transform this algorithm, using the same
amount of memory to be robust in the adversarial setting as well, where the adversary is assumed
to be computationally bounded (as opposed to our other results which have no assumptions on
the adversary whatsoever).

The transformation actually works for a large class of streaming algorithms. Namely, any
algorithm such that when given an element that appeared before, does not change its state at
all (with probability 1). Since the F0 tracking algorithm of [B la18] has this property, we can
black-box apply our results to this algorithm.

First, we show how this transformation works assuming the existence of a truly random
function, where the streaming algorithm has access to the function without needing to store
it explicitly (the memory is free). This is known as the random oracle model. The model is
appealing since we have different heuristic functions (e.g., SHA-256) that behave, as far as we
can tell in practice, like random functions. Moreover, there is no memory cost when using
them in an implementation, which is very appealing from a practical perspective. Nevertheless,
we discuss how to implement such a function with cryptographic tools (e.g., pseudorandom
functions) while storing only a small secret key in the memory.

Theorem 10.1 (Distinct Elements by Cryptographic Assumptions). In the random oracle
model, there is an F0-estimation (tracking) streaming algorithm in the adversarial setting, that
for an approximation parameter ε uses O(ε−2(log 1/ε + log log n) + log n) bits of memory, and
succeeds with probability 3/4.

Moreover, given an exponentially secure pseudorandom function, and assuming the adversary
has bounded running time of nc, where c is fixed, the random oracle can be replaced with a
concrete function and the total memory is O(ε−2(log 1/ε + log log n) + c log n).

Proof. For simplicity, in the following proof, we assume that we have a random permutation.
We note that the proof with a random function is exactly the same conditioned on not having
any collisions. If the random function maps the universe to a large enough domain (say of size
at least m2) then there will be no collisions with high probability. Thus, it suffices to consider
permutations. The solution is inspired by the work of [NY15] (which had a similar adaptive
issue in the context of Bloom filters). Let Π be a truly random permutation, and let S be a
tracking steaming algorithm with parameter ε. Let L(ε, n) be the memory consumption of the
algorithm. We construct an algorithm S′ that works in the adversarial setting as follows. Upon
receiving an element x the algorithm S′ computes x′ = Π(x) and feeds it to S. The output of S′

is exactly the output of S. Notice that applying Π to the stream does not change the number
of distinct elements.

We sketch the proof. Assume towards a contradiction that there is adaptive adversary A′ for
S′. Consider the adversary A′ at some point in time t, where the stream is currently x1, . . . , xt.

29

It has two options: (i) it can choose an element xi, where i ∈ [t] that appeared before, or (ii)
it could choose a new element x∗ /∈ {x1, . . . , xi}. Since the state of S′ does not change when
receiving duplicate items, and also does not change the number of distinct elements, option (i)
has no effect on the success probability of A′. Thus, in order to gain a chance of winning, A′

must submit a new query. Thus, we can assume without loss of generality that A′ submits only
distinct elements.

For such an adversary A′ let Dt be the distribution over states of S′ at time t. Let D′
t be the

distribution over states of S′ for the fixed sequence 1, 2, . . . , t. We claim that Dt ≡ D′
t (identical

distributions) for every t ∈ [n]. We show this by induction. The first query is non-adaptive,
denote it by x1. Then, since Π is a random permutation, we get that Π(1) ≡ Π(x1) which is
what is fed to S. Thus, the two distribution are identical. Assume it holds for t− 1. Consider
the next query of the adversary (recall that we assumed that this is a new query). Then, for any
xt (that has not been previously queried by Π) the distribution of Π(xt) ≡ Π(t), and therefore
we get that Dt ≡ D′

t.
Given the claim above, we get that A′ is equivalent to a static adversary A that outputs

1, 2, . . . , k for some k ∈ [n]. However, the choice of k might be adaptive. We need to show that
S′ works for all k simultaneously. Here we use the fact that S was a tracking algorithm (and
thus also S′), which means that S′ succeeds on every time step. Thus, for the stream 1, 2, . . . ,m,
the algorithm S′ succeeds at timestamp k, which consists of k distinct elements. Thus, if there
exists an adaptive choice of k that would make S′ fail, then there would exist a point in time,
k, such that S′ fails at 1, . . . , k. Since S is tracking, such a point does not exist (w.h.p.).

For the second part of the theorem, we note that we can implement the random function
using an exponentially secure pseudorandom function (see [Gol05] for the precise definition
and discussion). For a key K of size λ, the pesudorandom function FK(·) looks random to
an adversary that has oracle access to FK(·) and runs in time at most 2γλ for some constant
γ > 0. Let A be an adversary that runs in time at most nc. Then, we set O(λ = 1/γ · c · log n)
and get that A cannot distinguish between FK(·) and the truly random function except when
a negligible probability event occurs (i.e., the effect on δ is negligible and hidden in constants).
Indeed, if A would be able to succeed against S′ when using the oracle FK(·), but, as we saw,
it does not succeed when using a truly random function, then A′ could be used to break the
security of the pseudorandom function.

To complete the proof, we note that the only property of A we needed was that when
given an element in the stream that has appeared before, A does not change its state at all.
This property holds for many F0 estimation algorithms, such as the one-shot F0 algorithm of
[KNW10b], and the F0 tracking algorithm of [B la18]. Thus we can simply use the F0 tracking
algorithm of [B la18], which results in the space complexity as stated in the theorem. �

Remark 10.2. There are many different ways to implement such a pseudorandom function
with exponential security and concrete efficiency. First, one could use heuristic (and extremely
fast) functions such as AES or SHA256 (see also [NY15] for a discussion on fast implementations
of AES in the context of hash functions). Next, one can assume that the discrete logarithm
problem (see [McC90] for the precise definition) over a group of size q is exponentially hard.
Indeed, the best-known algorithm for the problem runs in time O(

√
q). Setting q ≥ 2λ gets us

the desired property for γ = 1/2.

Acknowledgments

The authors wish to thank Arnold Filtser for invaluable feedback, and the anonymous reviewers
for many helpful suggestions. This work was done in part in the Simons Institute for the Theory
of Computing.

30

References

[ABED+21] Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon
Yogev. Adversarial laws of large numbers and optimal regret in online classifica-
tion. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, pages 447–455. ACM, 2021.

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (δ + 1)
vertex coloring. In Proceedings of the 2019 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 767–786, 2019.

[ACSS21] Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for
adversarial streaming via differential privacy and difference estimators. CoRR,
abs/2107.14527, 2021.

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure
via linear measurements. In Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms (SODA), pages 459–467. SIAM, 2012.

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsifica-
tion, spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-
SIGAI symposium on Principles of Database Systems (PODS), pages 5–14. ACM,
2012.

[AHLW16] Yuqing Ai, Wei Hu, Yi Li, and David P Woodruff. New characterizations in turn-
stile streams with applications. In 31st Conference on Computational Complexity
(CCC 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximat-
ing the frequency moments. Journal of Computer and System Sciences, 58(1):137
– 147, 1999.

[BCI+17] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu
Wang, and David P. Woodruff. Bptree: An ℓ2 heavy hitters algorithm using con-
stant memory. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (PODS), pages 361–376. ACM, 2017.

[BDN17] Jaros law B lasiok, Jian Ding, and Jelani Nelson. Continuous monitoring of lp norms
in data streams. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM, pages 32:1–32:13, 2017.

[BEEO21] Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust stream-
ing via dense–sparse trade-offs. CoRR, abs/2109.03785, 2021. To appear in SOSA
2022.

[BHM+21] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep
Silwal, and Samson Zhou. Adversarial robustness of streaming algorithms through
importance sampling. CoRR, abs/2106.14952, 2021. To appear in NeurIPS 2021.

[B la18] Jaros law B lasiok. Optimal streaming and tracking distinct elements with high
probability. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2432–2448. SIAM, 2018.

[BY20] Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In
Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems (PODS), pages 49–62, 2020.

31

[BYJKS04] Ziv Bar-Yossef, Thathachar S. Jayram, Ravi Kumar, and D. Sivakumar. An infor-
mation statistics approach to data stream and communication complexity. Journal
of Computer and System Sciences, 68(4):702–732, 2004.

[CC13] Peter Clifford and Ioana Cosma. A simple sketching algorithm for entropy estima-
tion over streaming data. In Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 196–206, 2013.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. Theoretical Computer Science, 312(1):3–15, 2004.

[CGS21] Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust col-
oring for graph streams. CoRR, abs/2109.11130, 2021. To appear in ITCS 2022.

[CK16] Amit Chakrabarti and Sagar Kale. Strong fooling sets for multi-player communi-
cation with applications to deterministic estimation of stream statistics. In IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), pages 41–
50, 2016.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential
privacy under continual observation. In Proceedings of the Forty-Second ACM
Symposium on Theory of Computing, STOC, page 715–724. ACM, 2010.

[DNSS92] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri.
Practical skew handling in parallel joins. In Proceedings of the 18th International
Conference on Very Large Data Bases (VLDB), pages 27–40, 1992.

[Gan09] Sumit Ganguly. Deterministically estimating data stream frequencies. In Inter-
national Conference on Combinatorial Optimization and Applications, COCOA,
pages 301–312. Springer, 2009.

[GGMW20] Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff.
Pseudo-deterministic streaming. In 11th Innovations in Theoretical Computer Sci-
ence Conference (ITCS), pages 79:1–79:25. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[GHR+12] Anna C Gilbert, Brett Hemenway, Atri Rudra, Martin J Strauss, and Mary Woot-
ters. Recovering simple signals. In 2012 Information Theory and Applications
Workshop, pages 382–391. IEEE, 2012.

[GHS+12] Anna C Gilbert, Brett Hemenway, Martin J Strauss, David P. Woodruff, and Mary
Wootters. Reusable low-error compressive sampling schemes through privacy. In
2012 IEEE Statistical Signal Processing Workshop (SSP), pages 536–539. IEEE,
2012.

[Gol05] Oded Goldreich. Foundations of cryptography - A primer. Foundations and Trends
in Theoretical Computer Science, 1(1), 2005.

[Goo89] I. J. Good. C332. surprise indexes and p-values. Journal of Statistical Computation
and Simulation, 32(1–2):90–92, 1989.

[GW18] Sumit Ganguly and David P. Woodruff. High probability frequency moment
sketches. In 45th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), pages 58:1–58:15, 2018.

[Haa81] Uffe Haagerup. The best constants in the khintchine inequality. Studia Mathemat-
ica, 70:231–283, 1981.

32

[HKM+20] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stem-
mer. Adversarially robust streaming algorithms via differential privacy. In Ad-
vances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020.

[HNO08] Nicholas J.A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming
entropy via approximation theory. In 49th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS, pages 489–498, 2008.

[HW13] Moritz Hardt and David P. Woodruff. How robust are linear sketches to adap-
tive inputs? In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing, STOC, pages 121–130, 2013.

[Jay21] Rajesh Jayaram. Sketching and Sampling Algorithms for High-Dimensional Data.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2021.

[JW09] Thathachar S. Jayram and David P. Woodruff. The data stream space complexity
of cascaded norms. In 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 765–774, 2009.

[JW13] Thathachar S. Jayram and David P. Woodruff. Optimal bounds for johnson-
lindenstrauss transforms and streaming problems with subconstant error. ACM
Transactions on Algorithms, 9(3):26, 2013.

[JW18] Rajesh Jayaram and David P. Woodruff. Data streams with bounded deletions. In
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS, pages 341–354. ACM, 2018.

[JW19] Rajesh Jayaram and David P. Woodruff. Towards optimal moment estimation in
streaming and distributed models. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pages
29:1–29:21, 2019.

[KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adap-
tive streaming from oblivious streaming using the bounded storage model. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, pages
94–121, Cham, 2021. Springer International Publishing.

[KNW10a] Daniel M Kane, Jelani Nelson, and David P. Woodruff. On the exact space com-
plexity of sketching and streaming small norms. In Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algorithms, pages 1161–1178. SODA,
2010.

[KNW10b] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for
the distinct elements problem. In Proceedings of the twenty-ninth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems (PODS), pages
41–52. ACM, 2010.

[KP20] John Kallaugher and Eric Price. Separations and equivalences between turnstile
streaming and linear sketching. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC, pages 1223–1236, 2020.

[KPW21] Akshay Kamath, Eric Price, and David P. Woodruff. A simple proof of a new set
disjointness with applications to data streams. In Proceedings of the 36th Compu-
tational Complexity Conference (CCC 2021). Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2021.

33

[LNW14] Yi Li, Huy L Nguyen, and David P Woodruff. Turnstile streaming algorithms
might as well be linear sketches. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 174–183, 2014.

[LW13] Yi Li and David P. Woodruff. A tight lower bound for high frequency moment
estimation with small error. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM, pages 623–638.
Springer, 2013.

[McC90] Kevin S McCurley. The discrete logarithm problem. In Proceedings of Symposia
in Applied Mathematics, volume 42, pages 49–74, 1990.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Science of Computer
Programming, 2(2):143–152, 1982.

[MN21] Boaz Menuhin and Moni Naor. Keep that card in mind: card guessing with limited
memory. CoRR, abs/2107.03885, 2021. To appear in ITCS 2022.

[MNS11] Ilya Mironov, Moni Naor, and Gil Segev. Sketching in adversarial environments.
SIAM Journal on Computing, 40(6):1845–1870, 2011.

[Mut05] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science, 1(2):117–236, 2005.

[NY15] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In Ad-
vances in Cryptology - CRYPTO - 35th Annual Cryptology Conference, pages 565–
584, 2015.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–Hoeffding
bounds for applications with limited independence. SIAM Journal on Discrete
Mathematics, 8(2):223–250, 1995.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 3 edition, 2013.

[Woo04] David Woodruff. Optimal space lower bounds for all frequency moments. In
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 167–175, 2004.

[WZ21] David P. Woodruff and Samson Zhou. Adversarially robust and sliding window
streaming algorithms without the overhead. CoRR, abs/2011.07471, 2021. To
appear in FOCS 2021.

34

	1 Introduction
	1.1 Our Results
	1.2 Other Previous Work
	1.3 Subsequent Work and Open Questions

	2 Preliminaries
	2.1 Tracking Algorithms
	2.2 Roadmap

	3 Tools for Robustness
	3.1 Flip Number
	3.2 The Sketch Switching Technique
	3.3 The Bounded Computation Paths Technique

	4 Fp-Estimation
	5 Distinct Elements Estimation
	5.1 Fast Distinct Elements Estimation

	6 Heavy Hitters
	7 Entropy Estimation
	8 Bounded Deletion Streams
	9 Adversarial Attack Against the AMS Sketch
	10 Optimal Distinct Elements via Cryptographic Assumptions

