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ABSTRACT
Autonomous collaborative networks of devices are rapidly emerg-
ing in numerous domains, such as self-driving cars, smart factories,
critical infrastructure, and Internet of Things in general. Although
autonomy and self-organization are highly desired properties, they
increase vulnerability to attacks. Hence, autonomous networks
need dependable mechanisms to detect malicious devices in order
to prevent compromise of the entire network. However, current
mechanisms to detect malicious devices either require a trusted
central entity or scale poorly.

In this paper, we present GrandDetAuto, the first scheme to iden-
tify malicious devices efficiently within large autonomous networks
of collaborating entities. GrandDetAuto functions without relying
on a central trusted entity, works reliably for very large networks
of devices, and is adaptable to a wide range of application scenarios
thanks to interchangeable components. Our scheme uses random
elections to embed integrity validation schemes in distributed con-
sensus, providing a solution supporting tens of thousands of devices.
We implemented and evaluated a concrete instance of GrandDet-
Auto on a network of embedded devices and conducted large-scale
network simulations with up to 100 000 nodes. Our results show
the effectiveness and efficiency of our scheme, revealing logarith-
mic growth in run-time and message complexity with increasing
network size. Moreover, we provide an extensive evaluation of
key parameters showing that GrandDetAuto is applicable to many
scenarios with diverse requirements.

1 INTRODUCTION
The growing trend towards the Internet of Things (IoT) and Au-
tonomous Systems allows connected devices to collaborate, en-
abling more efficient as well as new applications. This opens up
new opportunities in many domains, from self-driving cars and
smart factories to critical infrastructure. Various industries are mo-
tivated by higher efficiency and increased flexibility, which can
be achieved by connecting devices within individual factories as
well as by interconnecting facilities collaborating within a supply-
chain [68]. Other industry branches, like the automotive and as-
sociated industries, strive to increase safety through connection
and collaboration, e.g., cars sharing information about potential

hazards [41]. The extensive efforts to standardize vehicle commu-
nications by major industry leaders shows the relevance of this
trend, such as the cellular network-based C-V2X [3] and the WiFi
extension standard 802.11p [39], which, for instance, Volkswagen
announced to support in all 2020 Golf 8 [70]. However, despite
these advantages autonomous systems bear various security risks.
Hence, it is important to develop solutions for these challenging sce-
narios. In particular, in safety-related scenarios, malicious devices
can cause tremendous damage and threaten human life.

To secure such systems many proposals rely on a central author-
ity [7, 11, 16, 21, 37, 67]. However, a centralized solution constitutes
a single point of failure, implying unrealistic requirements on the
central authority: (1) The availability of the authority must be guar-
anteed at all times, i.e., the entire system must have continuous
and reliable connectivity to it. This is hard to guarantee in many
practical systems, e.g., with freely moving nodes. (2) A central au-
thority is an attractive attack target, exposing it to a wide range
of attacks. Any successful attack will corrupt its integrity and/or
availability, i.e., make the central authority fail. There are many real
world examples how centralization of authority can be detrimental,
like the compromised DigiNotar PKI (public key infrastructure)
issuing fraudulent certificates for Google, Microsoft and CIA web-
sites [75], the attack on Ukraine’s power grid by compromising
centrally operated Industrial Control Systems [80], or the DDoS
attack on DynDNS bringing down major websites (incl. PayPal,
CNN and Amazon) in parts of Europe and the US [76]. These ex-
amples show that even the most sophisticated defense mechanisms
aiming to protect central services can be circumvented. Further,
when multiple (mutually distrusting) stakeholders are involved, it
is difficult to jointly agree on a party that acts as the trusted author-
ity. For instance, different car manufacturers or cellular network
equipment providers, which in many cases do not inherently trust
each other, will not easily agree on an overarching authority with
the power to control all devices.

Problem. Strongly reducing or fully eliminating the role of the
central party in connected systems seems very appealing; yet, it
requires the connected devices to collaborate and share information
in a broadly autonomous fashion. Consequently, interdependen-
cies within the network will increase the threat that malicious
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devices could pose on the entire system. Increasingly intercon-
nected devices, including modern vehicles [18, 47, 58], industrial
facilities [15, 19, 29], critical infrastructure [27, 42, 63], and even
medical devices [64] have been the targets of attacks. In particu-
lar, a single malicious device could cause other devices to deviate
from the correct behavior; for instance, influencing the routing
of other cars by transmitting false traffic information [69]. Hence,
large autonomous networks must also be able to identify faulty or
malicious devices in order to react to attacks. It is paramount to
prevent a (partial) compromise of the network from impairing the
correct function of the overall system.

Existing defense strategies. Attack detection methods can un-
cover ongoing attacks, enabling more sophisticated reaction poli-
cies, like the recovery of a compromised device [56] to prevent
an adversary taking over the network. Outlier detection is used
in Wireless Sensor Networks to identify outliers on aggregated
sensor data, which may be caused by malicious attacks [82]; yet,
many directly rely on a central entity. Thus, they are inapplicable
to autonomous systems without central authority. Approaches that
do not rely on such a central entity [13, 53] do not scale for large
networks commonly encountered in autonomous systems. There
are collaborative intrusion detection approaches that distribute
data acquisition across the network [14]. Yet, they either assume a
central authority for decision-making [21, 67], or assume only few,
sparsely distributed malicious devices in the network [36, 43, 81].
For real-world scenarios, this is hard to guarantee as adversarial
nodes can collaborate to gain the majority in a group of nodes.
Other approaches, such as swarm attestation [7, 11, 16, 37], provide
an integrity proof for the whole network to a central verifying
entity. Thus, they are inapplicable to autonomous systems with-
out central authority. We elaborate more on these approaches in
Section 9.

Goals andChallenges.Designing an efficient scheme for detecting
and identifyingmalicious nodes/devices in a connected autonomous
system faces us with a number of challenges. The overarching chal-
lenge is scalability: A naive solution in which each node individually
performs monitoring and validation of potentially all other nodes is
inefficient, especially with resource-constrained embedded devices.
Thus, the naive solution does not scale. Instead, an appropriate
scheme needs to combine local monitoring with efficient and scal-
able decision-making. For this, we derive three key challenges.
Challenge 1: Flexible and adaptive detection of malicious
devices. To be able to identify compromised devices, a practical
mechanism is needed to validate whether a device is in a good state,
i.e., behaving as expected. There are various approaches to achieve
this, each coming with a set of advantages and disadvantages. We
discuss this in Section 4.
Challenge 2: Establishment of a network-wide shared state.
In addition to having a scheme for device state integrity validation,
a common state among the nodes is needed. However, agreeing on a
common state efficiently among all individual nodes is particularly
difficult in large-scale networks.
Challenge 3: Resiliency. In an autonomous system, the monitor-
ing as well as the decision-making is generally distributed among
the nodes. To guarantee resiliency, the final decision must not only

rely on monitoring results raised by an individual node, but on
a distributed agreement. However, a distributed decision-making
scheme must be carefully designed to avoid introducing new attack
vectors.

Contributions. In this paper, we present GrandDetAuto, a novel
distributed adversary detection scheme for large-scale networks.
The design of GrandDetAuto is generic and modular. It combines
schemes for integrity validation of devices’ states with schemes for
distributed election and consensus in a novel way, while each of
these modules can be instantiated with different primitives that fit
the requirements posed by the corresponding application. More
precisely, any device may blame another device for being malicious
by providing a proof that the state integrity of that device is violated.
This proof will then be verified by a randomly and autonomously
selected jury (a subset of devices), which in turn finds a consensus
on whether the proof is valid. Because the jury-size is fixed but con-
figurable, the consensus overhead remains constant independent
of network size (aside routing).

Our main contributions include:

• GrandDetAuto is the first efficient and dependable scheme
to allow a system of collaborating entities without a central
authority to detect its compromised parts by distributing
integrity validation schemes via random elections leading
to Byzantine fault-tolerant decisions (Section 3).

• GrandDetAuto is highly flexible since its components can
be instantiated by various schemes for integrity validation,
random elections, and consensus protocols (Section 4).

• We introduce a novel distributed election scheme, inspired
by Proof-of-Elapsed-Time [1], to randomly elect a group of
representatives in the network.

• We implemented a GrandDetAuto prototype in the con-
text of smart traffic based on the aforementioned election
scheme, Practical Byzantine Fault Tolerance (PBFT) [17]
and remote attestation (Section 5) using an ARM platform
with TrustZone.

• Being a distributed system, GrandDetAuto’s efficiency and
security relies on a suitable choice of key parameters, which
we thoroughly analyze and evaluate (Section 6). Further,
we developed a large-scale network simulation with tens
of thousands of devices and demonstrate GrandDetAuto’s
scalability through extensive evaluation (Section 7).

2 SYSTEM MODEL
We consider large distributed autonomous systems; specifically, a
network of connected devices 𝑛1, ..., 𝑛𝑖 that collaborate with each
other to perform complex tasks. We use the terms device or node
interchangeably in the following. Nodes may join and leave the
network; yet, the list of devices participating in the network is
known1 In order to collaborate by coordinating their actions, the
individual entities of the overall system need to exchange infor-
mation, such as status updates and sensor readings, which is often
critical for the correct behavior of the overall system. In a smart

1Managing membership is an orthogonal problem with existing solutions; we outline
one in Section 5.2.
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traffic scenario, for example, false position information may lead to
vehicles crashing into each other.

All devices are mutually distrusting and there is no trusted cen-
tral entity or external coordinating operator on which the network
must rely. GrandDetAuto has a generic design and does not assume
any specific security framework or security hardware. However,
depending on the instantiation in practice, it can utilize security
architectures, such as Trusted Execution Environments (TEEs) for
random election and integrity validation, as we present in Section
Section 5.

2.1 Adversary Model and Assumptions
The adversary’s goal is to influence the collaboration between hon-
est nodes by manipulating the data sent to other devices. We make
the following assumptions about the adversary’s capabilities. The
adversary A is able to compromise and coordinate a subset of
devices in the system. We denote 𝛼 as the threshold of malicious de-
vices our scheme can endure. 𝛼 depends on the system parameters,
which we discuss and extensively evaluate in Section 6.2. Compro-
mising new devices takes non-negligible time for the adversary2.
We further assume that the adversary cannot break cryptographic
primitives. Devices that participate in denial-of-service (DoS) at-
tacks are considered malicious in our system3.

We assume A can eavesdrop and manipulate messages between
devices. However, A is limited to disturbing the communication
of nodes within physical proximity, e.g., via jamming. Hence, A
can control only a subset of all network links, preventing it to
block overall communication in the network. This can be realized
through various network technologies, e.g., meshed networks with
robust routing [33, 57], or upcoming technologies like 5G [2] and
satellite-based networks [59, 71] where malicious network-clients
have very limited means to disturb the overall network commu-
nication. Finally, A isolating individual devices can be inherently
tolerated by GrandDetAuto as faults in the consensus phase.

In addition, for a concrete instantiation we inherit the security
guarantees and assumptions of the components used by Grand-
DetAuto. For instance, if we use remote attestation to validate
the software state of a device, the respective assumptions of the
remote attestation framework will apply to GrandDetAuto. This
means that we may assume the existence of some trust anchor on
the involved devices and consider physical attacks out of scope.
Similarly, GrandDetAuto inherits the protection capabilities of the
used components, e.g., different attestation schemes can detect
different types of software attacks.

2.2 Requirements
A scalable and flexible malicious device detection scheme for collab-
orative autonomous networks shall fulfill the following properties:

R.1: Detection and Identification: On the one hand, an adversary
trying to maliciously interfere with the network shall be
detected. On the other hand, if the adversary tries to manip-
ulate the overall scheme at any point, it shall be detected
as well.

2Assuming basic security like memory layout randomization, exploiting devices re-
quires many attempts [12, 20, 34, 44, 61, 62, 79].
3As a result those devices will be handled by the recovery mechanism, e.g., by expelling
them.

R.2: Efficiency: Validating the integrity of a device must be sig-
nificantly more efficient than letting all nodes validate that
device individually.

R.3: Scalability: The computational effort and communication
complexity grows sub-linear with respect to the number of
devices (scaling to large networks).

R.4: Interchangeable Components: Individual components have
clearly separated roles and objectives, making them easily
replaceable.

Jury 
Election

Jury 
Consensus

All connected
nodes

1. Broadcast 
failed validation 

resultIntegrity 
Validation

4. Jury  
performs 
integrity 
validation

2. All nodes
participate in

election

3. Resulting Jury 
(subset of nodes)
conducts consensus

5. Broadcast
Jury decision

Figure 1: Interactions between the components.

3 GRANDDETAUTO DESIGN
GrandDetAuto provides a scalable solution to detect malicious
devices in truly autonomous networks, i.e., without external super-
vision from a central entity. It consists of three main components,
as seen in Figure 1, and works as follows. A node uses Integrity
Validation on another node and if this validation fails, the node
will announce the other node as suspicious by broadcasting the
validation result (1. in the figure). This starts the second phase of
the protocol. In this phase, the Jury Election will select a group of
nodes acting on behalf of the whole network, i.e., the jury (2.). The
resulting jury will then use the Jury Consensus to reach an agree-
ment (3.) by confirming the initial integrity validation (4.). Finally,
after the jury reached a consensus, the decision will be broadcast to
the rest of the network (5.). This jury decision can enforce an action,
e.g., excluding a malicious node from the network. We discuss this
aspect in Section 8, which is not in scope of this work.

Figure 2 illustrates an exemplary run of GrandDetAuto. After 𝑛2
notices 𝑛1 suspicious behavior, we call the announcement of this
suspicion to the rest of the network blaming. Next, the network
randomly elects the jury in a distributed manner, in this case 𝑛3, 𝑛4,
𝑛5. Each juror will individually validate the claim made by 𝑛2, find
a consensus about the blamed 𝑛1 as well as the decision how the
network shall react, and broadcast the result among the network.
This example solely illustrates one round of GrandDetAuto, i.e.,
one processed suspicion.

GrandDetAuto is triggered on-demand by individual nodes, and
thus does not entail any overhead in a network of benignly acting
nodes. Instead, all nodes individually look for suspicious behavior
among local nodes that are potentially malicious. Depending on the
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rest of
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Figure 2: An exemplary setup with one adversary (red) and
three jurors (green), rest of network refers to 𝑛6, ..., 𝑛𝑖 .

scenario in which GrandDetAuto is used, suspicious behavior can
be detected in various ways. For instance, inconsistencies in sensor
readings exchanged between devices can be used to detect adver-
sarial devices, as demonstrated in industrial control systems [6, 26].
Similar approaches could be used in settings like smart traffic, where
different cars can match their sensor readings against reported data
from other cars to detect inconsistencies. Suspiciously acting nodes
are then examined thoroughly. We achieve this by giving each node
the ability to blame another node, i.e., broadcasting to the whole
network that a node acts suspiciously and may be adversarial. This
approach drastically limits the adversary’s impact on the overall
system. As soon as the adversary starts to impact other devices,
e.g., by sending false information, it will be quickly detected and
sanctioned. In Section 8 we also discuss a modification for Grand-
DetAuto to detect passive adversaries as well.

Once a node is blamed, the network has to reach a decision
whether the node is malicious. For a sustainable autonomous net-
work, it is important to have a consistent view across the network
including the order of processed blames, as concurrent ones can
conflict. Thus, a form of consensus is needed. However, consensus
protocols do not scale to large networks, due to their exponential
message complexity [17].

To overcome this fundamental limitation, GrandDetAuto ran-
domly elects a jury as the representatives to make a decision for
the whole network. Ensuring a fair election in a distributed system
is important for the security of the overall system, as the mutually
distrusting nodes need to reliably agree on a common jury. Due to
the distributed nature of GrandDetAuto, the challenge is to reliably
converge on an election result. Otherwise, the individual views
on which nodes are part of the jury may diverge and cause addi-
tional faults for the consensus or at worst, entirely prevent finding
a quorum. Therefore, the right choice of key parameters guiding
the election is critical. We examine the effect of such parameters in
Section 7.3 and demonstrate a suitable trade-off between election
reliability and the run-time of GrandDetAuto.

While executing consensus only on a subset of nodes improves
scalability, it comes at the expense of the consensus’ safety. As the
election of the jury is random, there is a chance that a sufficient
number of malicious nodes are among the elected jury so that they
can enforce an adversarial decision within the jury. However, we

can adjust the consensus so that it stalls rather than fails, as stalling
can be rectified by a re-election. In Section 6.2 we analyze how
these probabilities behave regarding GrandDetAuto’s configurable
parameters. We show that these parameters can be chosen such
that the probability of electing an adversarial jury is negligible.
Resiliency. A challenging problem to address is how the system
can defend itself against abuse. More specifically, an adversarial
node may try to blame an honest node to disrupt the system, e.g.,
blaming the blamer. Furthermore, the adversary may try this multi-
ple times to increase the chances of electing enough accomplices to
successfully seize the jury, or simply try to use the blaming mech-
anism to overload the system with requests. In case a blame was
unjustified, the jury will decide to blame the potentially dishonest
blamer, immediately starting another round to determine if the
blamer is indeed malicious. Further, a node clearly violating the ex-
pected behavior of an underlying component can result in the node
being blamed as well. For example, when the validation process is
deterministic, correct jurors can safely blame a juror that reaches a
different conclusion from the same data. These automatic blaming
approaches will prevent the adversarial nodes to turn the chances
in their favor over time, as attempts to manipulate the protocol will
in turn risk getting blamed themselves.

4 GRANDDETAUTO DESIGN DECISION
GrandDetAuto is designed to be modular; hence, individual com-
ponents for each phase (integrity validation, random jury elec-
tion and consensus) can be instantiated differently, based on the
requirements of the underlying application; thus, GrandDetAuto
fulfills R.4. This section will enumerate the options we identified
for each component and state the choices made for our instantia-
tion of GrandDetAuto we present in Section 5, which also further
elaborates on the chosen schemes.

Integrity Validation Scheme. GrandDetAuto requires a mecha-
nism for detecting the initial suspicious behavior of a potentially
malicious device as well as a mechanism for the jurors to validate
blames. More concretely, it should be possible to verify the integrity
of a node, whether its behavior or state deviates from what is ex-
pected. The integrity validation should not rely on a central trusted
entity and be able to run on devices with limited computational
resources. Further, the result of the validation (e.g., through a node)
should be verifiable by other devices.

There is a rich body of literature on proposals to determine
whether a device is behaving as expected. We identified the fol-
lowing options: Unsupervised outlier detection for sensor data
[13, 53, 82], which is the prevalent method used in Wireless Sensor
Networks; Intrusion Detection Systems (IDS) monitor for anomalies
in network traffic in order to discover intrusions; or Remote attes-
tation, which is a security primitive that enables a verifying party
to receive direct proof that the software of a remote device is in a
trustworthy state based on the verifier’s trust policy (e.g., the code
is not altered). We leverage remote attestation to instantiate the in-
tegrity validation component of GrandDetAuto, as this approach is
agnostic towards the targeted use case, opposed to the careful con-
sideration required to define outliers or anomalies, which are highly
context-specific. As the node’s program (execution) intrinsically
defines its behavior, attestation can detect maliciously acting nodes.
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In Section Appendix A.1 we will elaborate on the aforementioned
approaches as well.

Note, it is possible to use two distinct validation schemes for
different phases of GrandDetAuto. As shown in Figure 2, the initial
validation raising the suspicion can be done with a lightweight
but overestimating scheme like outlier detection, e.g., by observing
inconsistencies in communication with another party. Then the
elected jury can perform a thorough and complex scheme like
remote attestation to validate this initial suspicion.

Random Jury Election. After a node has been blamed, the network
randomly elects a jury. For GrandDetAuto, the election scheme
should work in a distributed and verifiable manner as well as en-
sure fairness, i.e., every node has the same chance of being elected.
Approaches for distributed random elections can be found in the
blockchain space. Their goal is to elect the proposer for the next
block by a fair “lottery”. Their security is usually based on mone-
tary incentives to prevent Sybil attacks [24], i.e., a node assuming
multiple identities to unfairly increase its influence. Unfortunately,
this means they are not directly applicable for our purpose.

However, we identified the following non-incentivized schemes:
Algorand [32] elects a delegation group to propose the next block
by leveraging a Verifiable Randomness Function; Byzcoin [45] also
uses a delegation for block proposal based on their success mining
blocks via a Proof-of-Work scheme; or Intel’s Proof-of-Elapsed-
Time (PoET) [1], which forces nodes to wait for a random amount
of time and the “fastest” node may propose a block. Most relevant
for our instantiation of GrandDetAuto is PoET, as it can signifi-
cantly reduce message overhead for the network (see Section 5.2).
However, as it is designed to elect a single node, we extend the
scheme to be able to elect a group of nodes, i.e. the jury, as de-
scribed in Section 5.2. Section Appendix A.2 will discuss the other
mentioned schemes as well.

Consensus. After all jurors performed their individual integrity
validation of the blamed node, they need a consensus scheme to
agree on the result and the reaction to it. Keeping a consistent order
of the jury decisions is crucial, as multiple simultaneous blame
requests may occur that depend on each other. For example, one
round may elect a juror that is expelled from the network in another
round. In GrandDetAuto, a consensus scheme should ensure that
blame requests are consistently processed, including their order.

While this can be achieved via the inherent properties of the
election (see Appendix A.3), the use of a consensus protocol, i.e.,
Byzantine Fault Tolerance (BFT), eliminates the need to do an elec-
tion on every blame, significantly reducing the overhead of the
elections over multiple rounds. This way, we can keep an elected
jury for a selectable time window. Especially if multiple nodes are
blamed in quick succession, BFT can have a significantly higher
throughput. We use Practical Byzantine Fault Tolerance (PBFT) [17]
for our instance of GrandDetAuto. There are variations of PBFT
that may also be used, e.g., to improve performance if malicious be-
havior is expected to be rare. We elaborate on these alternatives in
Appendix A.3. However, the de-facto baseline in the BFT literature
is PBFT [17] and does not introduce additional assumptions.

5 IMPLEMENTATION
Subsequently, we present our full implementation of an instance
of GrandDetAuto for a smart-traffic use-case using off-the-shelf
devices. Our prototype uses an ultrasonic sensor to perform dis-
tance measurements that are shared with other road users. This
is a common task in smart traffic scenarios [74], in which sharing
environment-sensing data is crucial for vehicles to avoid collisions.
GrandDetAuto can be used in this scenario to identify adversarial
vehicles that send altered environment-sensing data, and endanger
other vehicles. A neighboring node raises suspicion whenever the
measured distance changes abruptly (assuming the measurement
can be modeled as a continuous function), leading to an initial at-
testation by the neighbor. This starts a round of GrandDetAuto.
Figure 3 shows an overview of the communication flow.

a nb naBroadcast

σ

attest code

mb

PBFT 
Consensus

h ← Hash(code)
σ ← signTEE(h)

if ver(σ) = OK → stop

wa

wx
mb, JEL

jury decision

JEL ← list of j lowest 
   observed waiting 
   certificates w

wa ← waitTEE(tmin, tmax) 
if wa < w: ∃w ∈ JEL 
   → {wa} ∪ JEL 

if wx < w: ∃w ∈ JEL 
   → {wx} ∪ JEL

Figure 3: Overview of the protocol instance.

As the underlying platform we used ARM TrustZone [10] run-
ning Open Portable Trusted Execution Environment (OP-TEE) OS
[52], in line with previous works for automotive use cases using
TrustZone [35, 51, 55]. TrustZone divides the system into a secure
world and a normal world by loading a trusted OS separately from
the normal OS, e.g., Linux. Sensitive code is executed in the secure
world, in so-called Trusted Applications (TAs). TAs may only com-
municate with the normal world with explicitly allocated shared
memory regions. TAs are managed by the secure-world OS, in our
case OP-TEE OS. The main protocol, handling the communication
and the Byzantine agreement, as well as the distance measurement
software run as normal-world applications, while the attestation
and the random election are implemented as TAs. These small TAs
communicate with the main protocol executing in the normal world.
In the following, we describe each of the implemented components
in detail.
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5.1 Device Attestation
To validate the integrity of a device, remotely attesting its soft-
ware can provide strong security guarantees, as it enables nodes
to directly prove that their software is not altered. There are dif-
ferent attestation schemes, which can detect different classes of
software attacks [4, 5, 22, 31, 66]. Our implementation uses binary
remote attestation as the integrity validation scheme. Binary at-
testation is still a relatively simple mechanism, and hence is not
secure against software run-time attacks using techniques such as
code-reuse attacks [30] that do not require any modification to the
code leaving the hash value unchanged. However, any other (e.g.,
more sophisticated) attestation scheme can be used as well, such as
(hardware-assisted) run-time attestation schemes that can also be
used to detect run-time modifications. We instantiate the integrity
verification component with a more enhanced attestation scheme
for evaluation in Section 7.1.

Our binary attestation scheme enables GrandDetAuto to detect
any unintended modification of the code, as such modifications are
recorded and included in the attestation report 𝜎 . In GrandDetAuto,
if a verifier node’s attestation of another node is negative, it can
use the attestation report as the evidence for the jury to confirm
its blame. The attestation process is implemented using a TA in
TrustZone’s secure world based on OP-TEE. The attestation TA
computes the hash of the normal-world app, i.e., its code in memory,
and signs it with a signing key, which is kept confidential inside the
TA. The signing key needs to be issued by the device vendor and
must be part of a public key infrastructure such that other nodes
can verify signed attestation reports. This signed attestation report
𝜎 is then sent to the verifier, i.e., another device. If the verifier finds
that the state reported in 𝜎 is not trustworthy, it blames the prover
device by broadcasting the blame message𝑚𝑏 containing 𝜎 .

5.2 Random Jury Election
For the jury election, we use an approach inspired by Intel’s PoET
for the random jury election. PoET leverages TEEs and a registra-
tion process based on linkable attestation, i.e., attestation directly
bound to a specific processor, to prevent Sybil attacks. Each partici-
pant gets a publicly verifiable random number and needs to wait
for this random amount of time instead. For this feature the TEE
is used as well, which attests that the respective node has indeed
waited for its assigned amount of time, i.e., generating a waiting
certificate. Afterwards, the participant will broadcast this result
and each node will deem the earliest observed waiting certificate
as the election’s winner. This approach inherits a degree of fault-
tolerance, as a crashed election winner can easily be replaced with
the next best node. Further, the waiting approach reduces message
complexity. Honest nodes with a comparatively high number will
also wait longer and may observe lower-valued waiting certificates
in the meanwhile. In this case, the node will decide not to announce
its own wait certificate, saving overhead as only a minor part of
the network needs to announce their respective wait certificates.

However, this approach is designed to only elect a single block
proposer. Thus, we designed and implemented our own approach
to elect a group of nodes, i.e., the jury. To implement a waiting
approach analogously to PoET, we use OP-TEE functions provid-
ing a secure timer (TEE_GetSystemTime) as well as a secure wait

function (TEE_Wait). Both are used to implement the wait TA. As
the wait time is derived from publicly known data, the wait time
itself is publicly verifiable. Thus, the node simply passes the wait
time to the wait TA, which waits for the given amount of time. By
getting the trusted system time inside the TEE before and after the
wait, we simply have to sign both timestamps to get a valid waiting
certificate𝑤 . This procedure is done on every node in the network.

The interplay between the different nodes during the election of
𝑗 jurors works as follows:

(1) As soon as a node receives a blame message 𝑚𝑏 , it will
generate a random waiting time chosen from a exponential
distribution and wait for the generated amount of time. The
waiting time is in the range between a defined minimum
𝑡𝑚𝑖𝑛 and maximum 𝑡𝑚𝑎𝑥 .

(2) EachNodewill receive waiting certificates from other nodes
to compile a Jury Election Leaderboard 𝐽𝐸𝐿, a sorted list
containing waiting certificates with the lowest observed
waiting times. When a node 𝑛𝑎 receives a waiting certifi-
cate from another node𝑤𝑥 , the node will first check if the
certificate has merit, i.e., if the waiting time is lower than
the largest entry in 𝐽𝐸𝐿 or if |𝐽𝐸𝐿 | < 𝑗 . Nodes refrain from
validating and forwarding any𝑤 if they do not have merit
at that time. Otherwise, the node will check the validity of
𝑤𝑥 and add it at the corresponding position in its 𝐽𝐸𝐿. If
|𝐽𝐸𝐿 | > 𝑗 , the last entry is removed so |𝐽𝐸𝐿 | = 𝑗 .

(3) After 𝑛𝑎 is finished waiting, it will check if |𝐽𝐸𝐿 | < 𝑗 or
if its own waiting time is smaller than any of the entries
in 𝐽𝐸𝐿. If its own waiting certificate 𝑤𝑎 has merit, it will
announce it to the network and add it to its 𝐽𝐸𝐿. If not, it
will discard𝑤𝑎 .

(4) After 𝑛𝑎 additionally waited for a pre-defined time thresh-
old 𝑡𝑒𝑙𝑒 , it will assume its 𝐽𝐸𝐿 to be mostly complete. If the
node’s own 𝑤𝑎 is still in 𝐽𝐸𝐿, it will assume to be part of
the jury. If so, it will start the agreement process with the
other jurors found in 𝐽𝐸𝐿.

This way, all nodes will eventually converge towards an identical
Jury Election Leaderboard 𝐽𝐸𝐿 consisting of the 𝑗 waiting certifi-
cates with the smallest waiting time. Thus, it is essential to choose
suitable values for 𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥 , and 𝑡𝑒𝑙𝑒 to ensure a reliable election.
We extensively evaluate these parameter in Section 7.3.

5.3 Byzantine Agreement
To find a consensus among the jurors about a blamed node, we
chose to implement PBFT [17]. Using a BFT scheme eliminates
the need to do an election on every blame, significantly reducing
the overhead of the elections over multiple rounds. Especially if
multiple nodes are blamed in quick succession, BFT can have a
higher throughput.

In general, BFT is used to find a consensus among a group where
some might be faulty or adversarial, i.e., act Byzantine. In BFT at
least 3𝑓 +1 total nodes are required to endure 𝑓 Byzantine nodes [50].
Traditional BFT schemes assume all nodes participate in the agree-
ment process; thus, if the process fails due to too many Byzantine
nodes, it is impossible to succeed. However, in our case, every elec-
tion will have a diverse agreement group and may succeed where
the previous jury failed. A failed BFT agreement does not prevent
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progress in GrandDetAuto, as the failure can trigger a new election
resulting in a new jury that is likely to proceed. Furthermore, we
consequently need to consider an additional negative case that we
label the total fail case. When enough adversarial jurors are elected
to reach a quorum, they can enforce a malicious decision, i.e., violat-
ing BFT’s safety guarantee. Further, the consensus can also fail due
to not reaching a quorum at all, i.e., violating the liveness guarantee.
In Section 6.2 we examine the probabilities of both re-elections and
total fails.

In PBFT, the primary decides onwhich request is being processed
next by the consensus group. In the prepare phase, the participants
exchange this request among each other to ensure the primary
sent all participants the same request. Afterwards, the participants
execute the request and exchange their results in the commit phase.
Our scheme works as follows, using PBFT as a subprotocol:

(1) After the election, the Jury Election Leaderboard 𝐽𝐸𝐿 has
a sorted list of the 𝑗 lowest wait times for each juror. The
juror with the lowest wait time will be the primary.

(2) On conflicting blame requests and elections, the jury con-
taining the overall shortest waiting time is selected for the
next round. Thus, the initial round for a new jury can skip
the prepare phase entirely.

(3) Otherwise, PBFT will be executed among the jury about
the validity of 𝜎 included in the agreed on𝑚𝑏 .

(4) The jury decision (see Section 8) is then broadcast by all ju-
rors, containing at least two thirds of all jurors’ signatures.
The rest of the network can consider each valid and consis-
tent decision message on the same blame to be equivalent.
This avoids separately spreading up to 𝑗 inconsequentially
different decision messages.

5.4 Communication Aspects
In our implementation, two aspects with regards to communica-
tion are particularly relevant: (i) Broadcasting was implemented
by using a flooding-based protocol. Every node forwards broadcast
messages to all neighbors, except the one from which the message
was originally received. This way, a message will take the optimal
paths, and thus flooding is optimal regarding run-time. We discuss
alternatives in Section 8. (ii) To reduce communication overhead
in terms of message sizes (in bytes), we use a collective signature
scheme. In the consensus phase, all jurors have to individually
consent by providing their own signatures. As we evaluate dif-
ferent jury sizes, we decided to implement the Schnorr signature
scheme [73]. This way, increasingly adding signatures to a message
does not result in increasing BFT messages sizes.

6 SECURITY EVALUATION
In this section, we evaluate GrandDetAuto’s security and present
an analysis the probabilities of the jury consensus to fail. We will
show how different parameters affect GrandDetAuto and provide
the foundation for selecting a suitable configuration.

6.1 Security Consideration
As mentioned in the Sections 2.1 and 2.2, the adversary’s goal is
to either evade being identified (detected) by GrandDetAuto, or to
misuse GrandDetAuto to manipulate the overall system, e.g., by

having benign devices identified as malicious by the system and
sanctioned. Subsequently, we will individually explain each goal
and why it cannot be achieved by the adversary A .

Evade identification. To evade the identification of nodes con-
trolled by A , it can follow different strategies: (1) try to prevent
being detected initially, (2) prevent being blamed, (3) prevent that a
consensus is found identifying the adversary-controlled node.

Strategy 1: To avoid initial identification A can (a) stop inter-
acting with the overall system and not participate in the integrity
validation, or (b) behave correctly according to the used integrity
validation scheme used. If A isolates itself while at the same time
not answering to integrity validation request will ultimately lead
to the conclusion that a node is not behaving correctly. However,
given an appropriate integrity validation scheme A will not be able
to pass it, unless it breaks the validation scheme, which is assumed
to be secure.

Strategy 2: Once an adversary-controlled node has been recog-
nized by another node, this node will send out a blame message to
inform the network. To prevent this, the adversary (a) can compro-
mise the blamer node, (b) suppress the communication from the
blamer node, or (c) vilify the blamer node.

For (a), A would need to compromise the blamer before it is able
to send out the blame message. Although we consider this case
out of scope (cf. Section 2.1), even if A manages to compromise
the blamer node, this node will be verified eventually and reported.
For (b), A first needs to continuously control all communication
channels of the blamer node; yet, even then A will be verified and
reported eventually by any other benign node. Lastly, in (c), A
might try to discredit the blamer so other nodes will not believe the
blame, i.e., the compromised node will broadcast a blame message
accusing the blamer node. In this situation, both nodes will be
examined by the jury, which will uncover the real adversary.

Hence, A only succeeds by entirely preventing the propagation
of blame messages, i.e., GrandDetAuto is secure against the second
attack strategy, as long as the assumptions hold that A does not
have complete control over the network (cf. Section 2).

Strategy 3: Finally, A can try to prevent that the network finds
agreement regarding the compromise of a node. The adversary
can (a) try to sabotage the election/forming of a jury, (b) control a
quorum of the jury, (c) prevent interaction between jury members,
or (d) the broadcast of the jury decision. Finally, (e) A can distort
the random jury election process to cause inconsistencies within
the network that will affect the decision-making in the subsequent
consensus phase.

To sabotage the jury election and forming, A needs to block
overall communication in the network, which is assumed to not
be possible (cf. Section 2.1). The adversary could also subvert the
nodes to be part of the jury, e.g., to shut them off. However, with
high probability, a quorum of nodes will be elected that are not
compromised by A , as long as the total adversary share does not
exceed 𝛼 as we show in Section 6.2.

In order to control a quorum of jury members, A can either com-
promise the jury members on-demand once they are elected. This,
however, requires A to be able to rapidly compromise a quorum
of jurors, which contradicts our adversary model (cf. Section 2.1).
Otherwise, A has to break the random jury election scheme to
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reliably get nodes that are under its control to be elected as ju-
rors. Since the jury is randomly selected, there is a chance that the
adversary-controlled nodes get elected. As we show in Section 6.2
this probability is negligible with the right choice of parameters for
an adversary share up to 𝛼 .

To prevent the benign jurors from finding consensus, A can
disrupt their communication. First, A needs to prevent a quorum to
actually disrupt the consensus. Second, when preventing a quorum,
the jury will trigger a re-election that results in a new jury. To
continuously disrupt each newly elected jury, A is required to
disrupt any communication in the network; hence, contradicting
our adversary model (cf. Section 2.1).

Furthermore, A could try to prevent the jury from announcing
the agreed-on result to the network, which implies that A needs to
prevent all broadcasts by every juror.

Finally, A could try to manipulate the jury election process in
order to prevent devices in the network to learn the correct list
of jury members. As a consequence, these devices would not ac-
cept the decision of the jury leading to inconsistencies between
different nodes of the network. However, this would require A to
permanently prevent the wait certificates by legitimate jury mem-
bers from arriving at selected devices. Given that the random jury
election scheme does provide the guarantee that the elected jury
is known to the entire network, all devices will eventually accept
the decision made by a quorum of legitimate jurors as soon as they
learn the list of legitimate jurors. Even if some devices do not learn
the decision of the jury, i.e., have differences in 𝐽𝐸𝐿 due to waiting
certificates being withheld by A , this will have the effect of re-
ducing the fault-tolerance of the subsequent Byzantine agreement,
with ‘shortest 𝑗 ’ nodes missing from a node’s 𝐽𝐸𝐿 being replaced
by other nodes from outside this set, essentially manifesting as an
additional fault. Thus, the security of GrandDetAuto depends on
the security provided by the used schemes.

Hence, in order for A to succeed with strategy 3 it has to break
one of the used schemes (integrity validation, random jury election,
or consensus finding), has to prevent broadcast by all jurors, or
be able to quickly compromise all jury members. Each of these
attacker capabilities violate our system and adversary model.

Manipulate system. The adversary can also try to manipulate
the system by misusing GrandDetAuto. In particular, by blaming
benign nodes A can try to get them sanctioned, e.g., excluded from
the network to increase its own share of the network. However,
to achieve this A has to alter the integrity validation report of a
benign node to convince the jury that the node is compromised.
This means A has to break the authentication method used by
breaking a cryptographic primitive like signatures, which is not
possible (cf. Section 2.1). Alternatively, A can aim to gain control
over a decision-making majority of the jury to come to a malicious
agreement that will be accepted by the entire network. Here the
same arguments hold as discussed above for strategy 3b and the
probability of success is analyzed in the following (Section 6.2).

In summary, the adversary can only misuse GrandDetAuto when
breaking one of the underlying schemes or with negligible proba-
bility, and thus fulfills the requirement R.1.

6.2 Probabilistic Analysis
The adversarial share of nodes 𝛼 GrandDetAuto can tolerate de-
pends on the probabilities of electing compromised devices as jurors.
As the election is random, it may happen that enough adversarial
nodes are elected for the Byzantine agreement to fail, as described
in Section 5.3. This section discusses the probabilities for different
adversary shares 𝛼 as well as the chosen jury size 𝑗 . The joint deci-
sion is based on a Byzantine agreement, which means it fails if more
than ⌊( 𝑗 −1)/3⌋ jurors are adversarial [17]. While a larger 𝑗 reduces
the chances of a failed election, Byzantine Fault Tolerance (BFT)
also induces a message complexity of 𝑂 ( 𝑗2). In Section 7.5 we will
evaluate this effect in our simulation.

If we have 𝑛 total nodes in our system, with 𝑓 of them being
adversaries and elect 𝑗 jurors, the probability of electing at least
⌊( 𝑗 − 1)/3⌋ adversarial nodes is:

1 −

( 𝑗

𝑘+1
) ( 𝑛− 𝑗

𝑓 −𝑘−1
)(𝑛

𝑓

) 3𝐹2

[
1, 𝑘 + 1 − 𝑓 , 𝑘 + 1 − 𝑗

𝑘 + 2, 𝑛 + 𝑘 + 2 − 𝑓 − 𝑗
; 1
]

(1)

Where𝑘 = ⌊( 𝑗−1)/3⌋ and 𝑝𝐹𝑞 is the generalized hypergeometric
function. Equation (1) is the cumulative distribution function of the
hypergeometric distribution.

While this equation models the probability for the Byzantine
agreement to fail, we can rectify a liveness violation by re-election.
In some applications, it may make sense to accept reduced fault-
tolerance by increasing the quorum size required by PBFT from
⌊2( 𝑗 − 1)/3⌋ + 1 to some greater value 𝑞. Then, 𝑛 − 𝑞 ≤ ⌊( 𝑗 − 1)/3⌋
faults are sufficient to cause a liveness violation, but a safety vio-
lation requires a greater number 2𝑞 − 𝑛 of faults. If the protocol
reaches an impasse, another consensus round, including a new jury,
is started that may succeed. This can be modelled as a Markov
chain: we begin in an initial “undecided” state and transition to a
“success” state if no more than 𝑛 − 𝑞 adversarial nodes are elected—
guaranteeing agreement—and a “failure” state if at least 2𝑞 − 𝑛

adversarial nodes are elected—allowing a safety violation. The fail-
ure state will eventually be reached with probability

P[Eventual Failure] = P[𝐹 ≥ 2𝑞 − 𝑛]
P[𝐹 ≥ 2𝑞 − 𝑗] + P[𝐹 ≤ 𝑗 − 𝑞] (2)

and it will take on average 1/P[ 𝑗 − 𝑞 < 𝐹 < 2𝑞 − 𝑗] elections to
leave the “undecided” state.

Besides the threshold 𝑞, a primary factor affecting the probability
of an eventual safety violation is the jury size 𝑗 . The more jurors
are elected per round, the lower the probability for the Byzantine
agreement to fail. We illustrate the influence of the jury size 𝑗 and
BFT threshold 𝑞 in Figure 4. The choice of jury size 𝑗 and threshold
𝑞 is therefore application-dependent, depending upon the appropri-
ate trade-off between failure probability, time to reach agreement,
and performance. We evaluate the latter of these considerations in
Section 7.5.

7 PERFORMANCE EVALUATION
In this section, we measure the performance of our GrandDetAuto
instance using a small-scale network running on real hardware,
and use these results as the basis for simulating large-scale net-
works. Regarding the results of these simulation campaigns, we
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Figure 4: The probability of eventual safety violation of
Byzantine agreement with a population size of 10 000 given a
threshold of (a) 𝑞 = ⌊2( 𝑗 − 1)/3⌋ + 1 and (b) 𝑞 = ⌊4( 𝑗 − 1)/5⌋ + 1,
as well as the mean number of juries needed before agree-
ment terminates, whether in success or total failure, for
𝑞 = ⌊4( 𝑗 − 1)/5⌋ + 1 in Figure (c). The distinctly colored graphs
depict the probability development for different jury sizes 𝑗 .
Note that the case depicted in (a) will always either terminate
or suffer a safety violation with a single jury election, unlike
that in (b) and (c) where several juries may be necessary.

first analyze the effects of differently chosen wait time parameters.
These parameters need to be chosen carefully to ensure the random
election is consistent. Afterwards, we examine the scalability of
our GrandDetAuto instance for large networks regarding run-time

Table 1: The measured run-times of individual processing
steps.

wait certificate
generation

static attestation
generation

static attestation
validation

BFT process +
Schnorr-sign

42 ms 166 ms 1 ms 14 ms
DIAT GPS attestation generation DIAT GPS attestation validation

835 ms 849 ms

and messaging overhead, showing sub-linear run-time growth in
regards to network size. Finally, we show how this performance is
affected by choosing different jury sizes.

7.1 Prototype Measurements
For reference measurements to use in the large-scale simulation
(see Section 7.2) we deployed our GrandDetAuto implementation
(see Section 5) on a setup of ten nodes. We used Raspberry Pi 3
Model B+ [65] as the platform and connected a distance sensor for
attestation. This platform is comparable to ARM’s line-up of chips
specifically designed for vehicles [9] in terms of computational
power and capabilities. The Raspberries are running a Raspbian
Linux after OP-TEE is loaded. We connected all nodes to a router
via WiFi for communication between them.
Enhanced attestation. To demonstrate that GrandDetAuto can
scale with a more complex integrity validation scheme as well, we
also consider Data Integrity Attestation (DIAT) [5], which targets
trustworthy data exchange for collaborative autonomous networks,
such as cars or drones. DIAT is a remote attestation approach that
can detect even sophisticated software attacks, such as run-time
attacks [30]. Due to the increased complexity, it also needs more
processing for both the attestation generation and validation.

The top half of Table 1 shows our measurements regarding run-
time of our implementation. The BFT and Schnorr signing is fluc-
tuating depending on jury size, so for the simulation, described in
Section 7.2, we chose to use the worst-case (14 ms). The bottom
half of Table 1 shows the DIAT run-time numbers for attesting a
GPS module, as reported in the paper [5].

7.2 Simulation
To evaluate the performance of GrandDetAuto for large numbers
of devices, we used the OMNeT++ network simulator [60]. We
implemented GrandDetAuto at the application layer and used the
measurements described in Section 7.1 to set the processing times
for the individual steps taken by each node.

Our network is configured in a square mesh topology, with
roughly the same height and width. Every node has four links to its
neighbors, except the nodes at the edge of the network. To make the
simulation representative, we used dynamic communication delays
between nodes. We measured the latencies in our distributed setup
described in Section 7.1 in different scenarios, such as highly vary-
ing distances commonly encountered in vehicle-to-vehicle commu-
nication. We measured 3 ms at best and 78 ms at worst for one-way
delays. For the simulation, each communication link gets a random
delay assigned between these two measurements. Routing for dy-
namic networks is an orthogonal problem [28, 77] and does not
contribute to a meaningful evaluation of GrandDetAuto. Thus, we
use a simple on-demand routing algorithm.
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We evaluate GrandDetAuto for different network sizes, from
1 000 to 100 000 nodes. We also split measurements into the different
phases. We simulate the first round of our GrandDetAuto instance
with the following phases4:

(1) Initial Attestation: Generation of the initial attestation re-
port 𝜎 by the blamed node and the integrity validation of 𝜎
by the blamer.

(2) Blame: Broadcasting the initial blame message.
(3) Election: The election process to elect 𝑗 jurors.
(4) BFT: The consensus protocol, including the validation of 𝜎

by each juror.
(5) Decision: Broadcasting the outcome of the BFT.
Notice that this represents the worst case, i.e., the upper bound

regarding run-time and message overhead, as it includes both the
election and the complete BFT. Further, to minimize variation of
individual simulation runs, due to the random nature of our scheme,
we average every individual parameter configuration over 100 runs
with different random numbers.

7.3 Election Wait Time
We evaluate the time parameters 𝑡𝑚𝑎𝑥 and 𝑡𝑒𝑙𝑒 , as they contribute
significantly to the performance characteristics of GrandDetAuto.
𝑡𝑚𝑎𝑥 is the maximum wait time regarding the randomly chosen
wait time for each node. After a node is done waiting, it will wait
an additional time 𝑡𝑒𝑙𝑒 while collecting other waiting numbers.
Afterwards, it will assume the election to be mostly complete, i.e.,
to have a mostly matching 𝐽𝐸𝐿. If 𝑡𝑒𝑙𝑒 is chosen very small, the
election itself will be faster; however, the individual 𝐽𝐸𝐿s may also
be still inconsistent among the nodes. To measure this effect we
executed a parameter study for differently chosen time parameters
with 𝑛 = 2 000, 𝑗 = 22 and 𝑡𝑚𝑖𝑛 = 100𝑚𝑠 .

Figure 5 shows the results. In (a) we can see the effect on the
execution time of one round. It is primarily tied to 𝑡𝑒𝑙𝑒 , as can be
seen if comparing different 𝑡𝑚𝑎𝑥 that result in the same 𝑡𝑒𝑙𝑒 . The
graph (b) in turn shows how many unjustified BFT messages were
received. While a lower 𝑡𝑒𝑙𝑒 reduces the execution time, it also
increases the number of nodes falsely assuming to be jurors.

Figure 5 (c) shows the average number of messages per node for
the election phase. This shows howmany nodes actively participate
in the election, i.e., nodes assuming their wait time still has merit
after waiting for 𝑡𝑒𝑙𝑒 . However, (d) shows how many jurors get
to the point of sending out a decision. This measurement should
ideally match the chosen 𝑗 , so 22 in this case. Even though lower
numbers would suffice, matching 𝑗 allows the network to better
account for other faults in the consensus phase. Yet, it can be seen
that if the time parameters are chosen too small, not the entire jury
can reach a decision or none at all, as the nodes’ 𝐽𝐸𝐿 will diverge
to the point where no quorum can be established among the jury.

With these measurements in mind, we chose a time parameter
configuration for our further evaluation, keeping the discovered
trade-offs in mind: 𝑡𝑚𝑎𝑥 = 1 000𝑚𝑠 and 𝑡𝑒𝑙𝑒 = 1 500𝑚𝑠 for 𝑛 = 2 000.
After many experiments for different network sizes, we found a
dynamic configuration, which works for all network sizes. Based
on the average delay of 37.5 ms between nodes, we set 𝑡𝑒𝑙𝑒 =√
𝑛 · 37.5𝑚𝑠 · 0.9 and 𝑡𝑚𝑎𝑥 = 𝑡𝑒𝑙𝑒 · 23 . The square root of 𝑛 times the

4Subsequent rounds will be faster, as no election is needed.
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Figure 5: (a) The time for one round, (b) the total number of
non-juror BFT messages, (c) the average number of election
messages per node and (d) the total number of reached deci-
sions, all for differently chosen 𝑡𝑚𝑎𝑥 and 𝑡𝑒𝑙𝑒 . Simulated with
𝑛 = 2 000, 𝑗 = 22, 𝑡𝑚𝑖𝑛 = 100𝑚𝑠.

delay reflects half of the worst-case communication delay in our
topology and 0.9 means it can be 10% lower than that, while still
resulting in a reliable election.
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Figure 6: (a) The completion time of each phase, results for
static attestation and DIAT (dotted lines), and (b) the average
number of messages sent per node, all split into the individ-
ual phases for increasing 𝑛. Simulated with 𝑗 = 22.

7.4 Per-Phase Performance for Large Networks
In this section, we examine the Efficiency and Scalability of Grand-
DetAuto, two main requirements (cf. Section 2.2). Figure 6 (a) shows
the run-time measurements. Note that the measurements per phase
are denoted as the absolute simulation time at the last processed
message of the respective phase—phases overlap as progress is
made in parallel. The top purple line represents the time of the last
received decision message in the network, and thus the total time
for one entire GrandDetAuto round. We consider two attestation
schemes with differing complexity (see Section 7.1). One regarding
our static attestation and the other regarding the more complex
DIAT [5] (shown as dotted lines). A network of 𝑛 = 100 000 takes
42.83𝑠 with our static attestation approach and 45.76𝑠 with DIAT,
fulfilling requirement R.3. Note that the worst-case communication
delay between any two nodes in this scenario is 23.71𝑠 on average.

A naive and simplified solution to the problem would be to let
all devices attest every other device individually. The time this
case takes for 𝑛 nodes is the combined time of the generation and
verification of an attestation multiplied by (𝑛 − 1). This does not
consider communication delay and assumes perfect parallelization
between the nodes. This naive case would take almost 3 minutes for
𝑛 = 1 000 (∼14 minutes with DIAT) and over 4 hours for 𝑛 = 100 000
(∼23 hours with DIAT); hence, the naive approach is ∼390x slower
(∼1800x slower with DIAT) than GrandDetAuto, and thus we deem
GrandDetAuto efficient (R.2).
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Figure 7: (a) The time for one round and (b) the average num-
ber of BFT messages sent per node for different 𝑗 .

Figure 6 (a) also shows the individual measurements per phase.
The third line in green shows how long the election takes. The
time for the election overlaps with the blame broadcast, implying
that the election requires the most time of the scheme. The red
line, second from the top, shows when the BFT is finished. Fig-
ure 6 (b) show the overhead per phase in terms of message count.
Note that we consider all messages for these measurements, i.e.,
including forwarded messages by nodes in between the route. The
graph reveals that the election phase (green bars second from the
left respectively) generates the most overhead. The total message
overhead for 𝑛 = 100 000 is 333.01 messages per node. However,
assuming a subsequent round with a jury already in place, the total
message overhead without the election phase is reduced to 9.63
messages per node.

7.5 Jury Size
The following examines the effects of differently chosen jury sizes
𝑗 on our instance of GrandDetAuto. Figure 7 (a) shows the run-time
for one round. For large juries, like 𝑗 = 100, in a large network, like
𝑛 = 100 000, the difference on the run-time compared to 𝑗 = 10 is
8.3𝑠 (or 21.4%). This is due to the individual BFT steps being able to
execute in parallel.

The second graph (b) show the average message count per node
of the BFT phase. The 𝑂 (𝑛2) message complexity for two BFT
phases are apparent. Nevertheless, the closest case we could find
to compare the election overhead against the BFT overhead is 𝑛 =

1 000 and 𝑗 = 100. Here the average message overhead per node



Tigist Abera, Ferdinand Brasser, Lachlan Gunn, Patrick Jauernig, David Koisser, and Ahmad-Reza Sadeghi

for the election is 590.65 against the 387.11 for the BFT message
overhead. Thus, a BFT round is more efficient than an election in
overall terms. However, BFT also concentrates the overhead on
the jurors and the routes between them, compared to the more
uniformly distributed overhead by the election.

8 DISCUSSION
This section discusses possible extensions to GrandDetAuto.

Broadcast. To reduce communication costs in GrandDetAuto, a
gossip protocol can be used. Gossip protocols randomly send broad-
cast messages to a set number of neighbors, which in turn do the
same [49]. These protocols are probabilistic in nature, yet, perform
well on average and significantly reduce overhead compared to
flooding [49].

Monitoring. An aspect that could be changed is the on-demand
nature of the initial integrity validation. For example, one could
have all nodes regularly check all their neighbors instead. These
validations can be entirely local per node and the GrandDetAuto
process would only be triggered when a node actually notices
inconsistencies. This way, every nodewould be validated eventually,
so even a passive adversary cannot hide.

Dynamic Jury. The jury size does not have to be fixed over the
life span of a GrandDetAuto instance. It might be advantageous to
dynamically adjust the jury size when required, e.g., increase the
jury size whenmany blames occur in a short time frame. This would
dynamically adjust the security probabilities along the network’s
needs at the time.

Jury Decision. Part of a practical instantiation of GrandDetAuto
is the resulting reaction of the jury to a confirmed adversarial node.
This by itself is a vastly complex topic and highly dependent on
the use case. Straightforward expulsion of the malicious node as a
result of the jury decision is not possible in many use cases, e.g.,
cyber-physical systems like autonomous cars, where expulsion
from the network does not prevent them from affecting the system.
In these situations, some other response might be more appropriate.
Mechanisms exist for self-healing [25], in which a faulty node is
returned to a valid state. In this case, we might choose to use Grand-
DetAuto not to exclude an adversarial node, but to decide whether
a node will be added to the network.

9 RELATEDWORK
Distributed Outlier Detection. In the field of Wireless Sensor Net-

works (WSNs), outlier detection is used to identify unusual sensor
readings to detect faults, exceptional events, or malicious attacks.
There are different techniques to identify outliers, from simple sta-
tistical methods (e.g., Gaussian-based models), up to classification-
based methods, such as machine learning [82]. The outlier evalua-
tion can be done locally per node or by a central node trusted to
handle the decision making [82]. To distribute this task among the
nodes, one proposal is for each node to only consider the neighbors
for outliers and keep exchanging decisions among the network
until a global view is achieved [13]. An efficiency improvement
to this approach is to do a majority vote among a neighborhood,
which can be exchanged with other neighborhoods [53].

However, these distributed approaches require nodes to exchange
a significant amount of data and messages to converge to a global
view. This limits their applicability to large-scale networks, unlike
GrandDetAuto which easily supports 100 000 nodes.

Distributed Intrusion Detection. Similar to outlier detection, Dis-
tributed Intrusion Detection Systems find anomalies specifically for
network traffic in WSNs [40, 67] and mobile ad-hoc networks [36,
43, 72, 81]. These approaches also use similar techniques to identify
anomalies; yet, there are also approaches based on prior knowledge
of normal operations or a defined specification [14]. There are dif-
ferent ways to distribute data aggregation and anomaly processing
to reduce communication overhead. However, in the context of this
work, the key aspect is how decisions are made. One approach is for
nodes to collaborate with their neighbors for the measurements and
decide via majority vote on a suspected node [40, 81]. This assumes
compromised devices are in the minority in every neighborhood,
as colluding adversaries may easily form local majorities otherwise.
Another method is to separate the network into clusters and have
their members elect the cluster heads, which representatively make
the decisions [36, 43]. However, either the election is disregarding
that it might be malicious [43], or the assumption is a low threat
environment implying a low probability of electing a malicious
node [36].

In contrast, GrandDetAuto can tolerate many malicious devices
in any distribution. Other works in this field introduce some form of
centralization, such as a trusted base station making decisions [21,
67], or a privileged group of nodes on top of a hierarchy of clus-
ters [72].

Collective Attestation. The first step towards scalable attestation
of large groups of interconnected devices, i.e., collective attestation,
was made by SEDA [11]. SEDA, like all other schemes that followed
in the collective attestation literature [7, 8, 38, 46] assume a central
verifier; hence, they are not applicable in the autonomous scenarios
targeted by GrandDetAuto. Further, these approaches aim to ver-
ify the whole system at once on request, whereas GrandDetAuto
ensures security in a sustainable way by giving all nodes a tool to
continuously and autonomously validate each other.

10 CONCLUSION
In this work, we presented GrandDetAuto, the first scheme to effi-
ciently identify adversaries in large networks of autonomous col-
laborating devices. GrandDetAuto combines random elections, con-
sensus and integrity validation methods in a flexible scheme, where
each of these components are interchangeable. We have demon-
strated the scalability of an exemplary instance as well as provided
the basis to construct use-case specific instances of GrandDetAuto.
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A APPENDIX
This section will give a thorough discussion on the identified op-
tions mentioned in Section 4.

A.1 Integrity Validation Options

Outlier Detection. Unsupervised outlier detection for sensor data
[13, 53, 82], which is the prevalent in Wireless Sensor Networks,
enables the validation of measurements reported by individual
nodes. Hence, it allows to identify malicious nodes sending ma-
nipulated data. We outline the different types of anomalies and
detection techniques in Section 9. The detected outliers as well as
the required accompanying data (e.g., outlier reports of the blam-
ing node’s neighbors [13]) can be used as the disputed evidence in
GrandDetAuto.

Intrusion Detection. Intrusion Detection Systems (IDS) monitor
for anomalies in network traffic in order to discover intrusions. In
GrandDetAuto, detected anomalies can serve as evidence. Instead
of sending an attack report [21] or aggregated observations [67]
to a central authority, this data can be used as evidence to trigger
an investigation by a jury. Section 9 outlines several distributed
approaches for IDS proposed in the literature.

A.2 Random Election Options

Algorand. In Algorand [32] a delegation group is randomly elected
to propose new blocks. Here, each node draws a number based on
the Verifiable Randomness Function (VRF). The lowest numbers
win the election, and thus the delegation group is elected. The
VRF works as a deterministic source of randomness and as such
is publicly verifiable. Put simply, each node’s individual random
number is the hash of the concatenation of its identity, i.e., public
key, and the last block’s hash. This results in a random number
that is verifiable by all participants, as only public information is
necessary to calculate it. Algorand also needs to protect against
Sybil attacks, as nodes may freely join the network. Each node has
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stake, i.e., the amount of money they own in the system, which is
used to assign weight to their random number. Thus, the bigger
a node’s monetary stake the higher the chances to be elected and
vice versa. However, if all participants are known, the election itself
can be executed without requiring stake. It also implies a large mes-
sage overhead, as all participants broadcast their election numbers
virtually simultaneously. Further, Algrorand builds on a adapted
binary consensus algorithm adapted to transaction block selection,
and thus is specifically designed for cryptocurrencies.

Byzcoin. For selecting the consensus group Byzcoin [45] requires
to mine consensus blocks via Proof-of-Work (PoW). Then, a chosen
number of the last successful miners emerges as the group exe-
cuting Byzantine Fault Tolerance (BFT). This elected group will
then propose a new transaction block together. The key issue when
using PoW is that in a heterogeneous network some less powerful
nodes have a significant disadvantage in the election. Further, an
adversary may even use a powerful external machine to exceed the
processing power of the entire network.

Deterministic Random Jury. Another simplified approach is to
use a single verifiable source of randomness instead of many. Thus,
the drawn number elects the whole jury. This way, instead of having
all nodes announce their number individually, the whole network
would deterministically know who is part of the next jury. For
example, a counter of the GrandDetAuto round could be concate-
nated with all of the identities of the previous jury and subsequently
hashed as the source of randomness. This approach has a very low
overhead for the election phase; yet, one has to consider the possi-
bility that an elected juror crashed, which leads to additional faults
in the consensus phase.

A.3 Consensus Options

Simple Majority. If we assume to elect a new jury every round
and every juror has a random number, we can extract an inherent
order of requests. On two conflicting requests, there will be two
separate elections with two separate juries. In such a case, the
juries decide which request is executed first by comparing their
election results. With the order being ensured, a simple majority
vote among the jury suffices. While this requires little overhead for
the consensus phase, it requires a new election each round.

BFT with Enhancements. In Section 6.2 we show that with in-
creasing jury size, the probability to fail decreases significantly.
However, a larger jury also implies a larger overhead due to the
𝑂 (𝑛2) message overhead of BFT [17]. To counter this, different
enhancements of Practical Byzantine Fault Tolerance (PBFT) can be
employed to reduce complexity. For example, the speculative case
[48], skipping PBFT phases, or the optimistic case [23], halving the
consensus group. However, both reduce overhead only for the be-
nign case. Thus, if we expect Byzantine events to be rare, it may be
feasible to consider larger jury sizes with inherently better security
guarantees. Another approach is to involve a message aggregation
scheme [45] to significantly reduce message complexity. If we have
a trusted component available, we can also employ a trusted mono-
tonic counter, which removes the need for BFT’s prepare phase
entirely as well as reducing the required quorum to half plus one
nodes [54, 78].
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