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Abstract

Verification of AI is a challenge that has engineering,
algorithmic and programming language components. For
example, AI planners are deployed to model actions of
autonomous agents. They comprise a number of searching
algorithms that, given a set of specified properties, find a
sequence of actions that satisfy these properties. Although
AI planners are mature tools from the algorithmic and
engineering points of view, they have limitations as pro-
gramming languages. Decidable and efficient automated
search entails restrictions on the syntax of the language,
prohibiting use of higher-order properties or recursion.
This paper proposes a methodology for embedding plans
produced by AI planners into the dependently-typed
language Agda, which enables users to reason about and
verify more general and abstract properties of plans, and
also provides a more holistic programming language
infrastructure for modelling plan execution.
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1 Introduction

Planning is a research area within AI that studies the
automated generation of plans from symbolic domain and
problem specifications. AI planners came into existence
in the 1970s as an intersection between general prob-
lem solvers [Ernst and Newell 1969], situation calculus
[McCarthy and Hayes 1981] and theorem proving [Green
1969].

Typically, the domain is represented by an abstract de-
scription of the world and a set of actions that can be used
to alter the world states (see Figure 1). Planning problems
in the domain consist of the initial state of the world and a
goal state (see Figure 2). The planner then produces a plan,
i.e. a sequence of actions, moving the world from the initial
state to the goal state (see Figure 3). In most domains, the
plan produced must not only reach the goal state, but also
satisfy other properties such as safety. These properties are
encoded via the preconditions of actions. For example, a “ro-
tate” action for a robotic arm might have the precondition
that there are no obstacles in the way. The preconditions are
taken into account by the planner when creating the plan,
and therefore we shall refer to these as intrinsic properties.
Our previous work [Hill et al. 2020; Schwaab et al. 2019]

has shown that the operational and declarative semantics of
AI planning can be abstractly specified by a simple calculus
resembling Hoare Logic [Hoare 1969]. Formalisation of
this calculus in Agda [Bove et al. 2009] allowed us to
prove soundness of the operational semantics. Moreover,
in [Hill et al. 2020] we showed how the formalisation al-
lowed us to semi-automatically verify that individual plans
produced by AI planners are sound with respect to their
formal semantics, and therefore that plans produced by the
planner really do satisfy the desired intrinsic properties
encoded in the action preconditions.

1.1 Verifying extrinsic properties

In this paper, we extend this work to show that our Agda
framework can be used to reason about plan properties that
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the planner itself either cannot or should not reason about.
We will refer to these as extrinsic properties.

There are three main classes of extrinsic properties that
we have identified:

1. Inexpressible properties - these are properties that
cannot be expressed in the declarative specification
language of the planner, for example because they
involve high-order functions or unbounded state. A
good example of such a property is that the plan pro-
duced is fair. Fairness typically involves universally
quantifying over all the agents in the problem and
keeping track of and comparing state. As discussed
in Section 2.2, such global properties are typically
impossible to express as pre-conditions of individual
actions in the baseline versions of planning languages
such as PDDL [McDermott et al. 1998]. In contrast, it
is easy to express to express and reason about them
in a dependently-typed language like Agda.

2. Unavailable properties - these are properties whose
evaluation requires world states that are not available
at planning time. A good example of such a property is
the fuel consumption of a robotic agent. Although the
fuel used per action can be estimated at planning time,
in practice the amount of the fuel required to carry
out an action in the real-world may depend on real-
time conditions such as weather, temperature or other
local conditions. Therefore, even though it cannot be
checked at planning time, it is still desirable to verify
that during execution the robotic agent never starts
an action that it has insufficient fuel to complete.

3. Probable properties - finally these are properties
which plans produced by the planner have a high
probability of satisfying. As an example of such a
property, we once again consider fairness. Suppose
our planner is assigning jobs to workers and we want
to verify that the set of assignments does not exhibit
gender bias. By default, if the planner does not have
access to gender information you would expect the
vast majority of plans to be fair. Nonetheless, it is
possible that in certain circumstances some other
part of the domain may act as a proxy for gender
and result in plans that are biased. Such problems
are widely known in data science and machine
learning [O’neil 2016]. Even if such a property can be
added to the planning domain, the time complexity
of planning algorithms is typically super-linear in
the size of the domain. Therefore we argue that one
should avoid encoding it in the problem domain and
only verify the property holds of any produced plans.
As the property failure rate is low, one can achieve
significant speed-ups at planning time.

We view the distinction between intrinsic and extrinsic
properties as mirroring the separation between the search

and control components of AI modelling. The intrinsic
properties are incorporated into PDDL domains and inform
the PDDL search algorithms. In contrast, the extrinsic
properties are imposed on the controller and our frame-
work provides a methodology for guaranteeing that the
controller does not violate them during the execution of
the plan. We envisage this guarantee being used in one
of two ways: firstly, prior to execution, the plan can be
run in a simulated environment to check for extrinsic
property violations. Secondly, during the live execution of
the plan it can be used as a form of run-time checking that
provides a formally verified guarantee that the controller
will never perform an action that violates the extrinsic
properties. Note that in this paper we do not address
what the controller should do in response to an imminent
violation of an extrinsic properties. We discuss work on
how one might provide feedback about the violation to the
planner in Section 5.

1.2 The technical approach

The work presented in this paper builds upon the earlier
work of [Schwaab et al. 2019], in which the Agda fomali-
sation of PDDL was first given. However, we substantially
clarify and simplify that initial formalisation here.
Our novel technical contribution is the use of action han-

dlers as a means of integrating rich extrinsic properties ex-
pressed in the proof and programming environment of Agda
with our previous PDDL formalisation. An action handler is
a function that, given a state and an action, executes the ac-
tion by applying the action (seen as a function) to the state.
The handlers were introduced in [Schwaab et al. 2019] as an
auxiliary means of establishing a correspondence between
the declarative and the operational semantics of AI plan-
ning.
In this paper, action handlers become the central tool for

building richer program and proof infrastructure around
the plans produced by AI planners. In particular we use
dependent-types to enrich the handlers with additional
constraints representing extrinsic properties that should
hold during plan execution. As a result, we obtain enriched

action handlers in which we can incorporate additional
safety, security, fairness or other checks of arbitrary com-
plexity which are then formally verified by Agda. Crucially,
these extrinsic properties can be expressed and verified
without altering either the native PDDL problem domain or
its formal semantics. Notably, the richer properties we seek
to define and prove are specified at the type level. From this
point of view, this paper presents a non-trivial exercise in
dependently-typed programming.
With regards to future applications, this paper can be

seen as a prototype for embedding existing automated
reasoning tools within dependently-typed modelling
environments. For example, we can perform higher-order
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reasoning (in Agda’s interactive style) on top of the first-
order proof search already performed by the AI planner.
This substantially extends the modelling power of the AI
planners, as in Agda we can encode many properties that
PDDL cannot. This includes function definitions, universal
and existential quantification, action dependencies and
higher-order quantification. We argue that this approach
promises to play an important role in verification of
complex AI applications.

1.3 Road map

We proceed as follows. Section 2 contains a brief summary
of the PDDL language that is used for planners, illustrated
by using a classic taxi planning problem. We then recap the
Agda formalisation of plans first developed in [Hill et al.
2020; Schwaab et al. 2019], including the notion of the
canonical action handler as motivated by the running
example. Section 3 introduces the novel method of enriched
handlers by illustrating how to model and incorporate
rich extrinsic verification properties into the type level of
handlers. Section 5 discusses future work, including on the
handling of failure of the extrinsic properties and how this
work relates to Explainable AI.

2 PPDL, Plans, Action Handlers & Agda

In this section, we provide an introduction to the PDDL
planning language and the essential parts of the Agda for-
malisation accompanying [Hill et al. 2020], thereby provid-
ing some clarification and simplification of that formalisa-
tion. This will then pave the way to Section 3 in which we
explain how to extend the formalisation to allow the em-
bedding of extrinsic properties. We refer the reader directly
to [Hill et al. 2020] for more theoretical aspects of the previ-
ous work.

2.1 PDDL Syntax

Many versions of planning languages were proposed,
and the Planning Domain and Definition Language

(PDDL) [McDermott et al. 1998] aimed to standardise them.
One notable design decision of PDDL is the splitting of the
planning problem into domain and problem descriptions.
The domain describes the predicates and admissible actions
(as shown in Figure 1), while the problem description
defines specific initial and goal states (Figure 2).
We begin by explaining how each part of a planning do-

main and a planning problem are translated from PDDL into
our dependently typed framework. In general, we maintain
two kinds of Agda files. The first are the files which hold
general definitions of the PDDL syntax, contexts and infer-
ence rules and are parametrised by an abstract domain. The
second are example files which contain concrete encodings
of the planning example in question, which then instanti-
ate the generic modules with the corresponding parts of the

\\ 1. The notion of domain

(define (domain taxi)

(:requirements :strips :typing)

\\ 2. Types

(:types taxi location person)

\\ 3. Predicates

(:predicates

(taxiIn ?obj1 - taxi ?l1 - location)

(personIn ?obj1 - person ?l1 - location))

\\ 4. Actions

(:action drive_passenger

:parameters

(?t1 - taxi ?p1 - person

?l1 - location ?l2 - location)

\\ 5. Action preconditions and effects

:precondition

(and

(taxiIn ?t1 ?l1)

(personIn ?p1 ?l1))

:effect

(and

(not (taxiIn ?t1 ?l1))

(not (personIn ?p1 ?l1))

(taxiIn ?t1 ?l2)

(personIn ?p1 ?l2)))

(:action drive

:parameters

(?t1 - taxi ?l1 - location ?l2 - location)

:precondition

(taxiIn ?t1 ?l1)

:effect

(and

(not (taxiIn ?t1 ?l1))

(taxiIn ?t1 ?l2))))

Figure 1. The PDDL Taxi Domain, with main logical blocks out-

lined in boxes.

encoding. The user only has to interact with the latter to
specify the properties over their PDDL domain, whilst for-
mer can be hidden from their view.

An abstract planning domain. Types, predicates and
actions (blocks 2, 3 & 4 in Figure 1) are the basic compo-
nents of any PDDL domain definition, and abstractly these
are represented as three Agda sets Type, Predicate and Ac-

tion.
To indicate whether a predicate is true or false we map it

to a Polarity, a set that contains two elements, + and −. We
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(define (problem taxi)

(:domain taxi)

(:objects

taxi1 taxi2 taxi3 - taxi

person1 person2 person3 - person

loc1 loc2 loc3 - location)

(:init (taxiIn taxi1 loc1)

(taxiIn taxi2 loc2)

(taxiIn taxi3 loc3)

(personIn person1 loc1)

(personIn person2 loc2)

(personIn person3 loc3))

(:goal (and (taxiIn taxi1 loc2)

(personIn person1 loc3)

(personIn person3 loc1))))

Figure 2. A Taxi planning problem expressed in PDDL. Initial state:

There are three taxis with taxi1 being in loc1, taxi2 in loc2 and taxi3

in loc3. There are also three peoplewith person1 being in loc1, person2

in loc2 and person3 in loc3. Goal state: taxi1 is in loc2, person1 is in

loc3 and person3 is in loc1.

plan =

(drive_passenger taxi3 person3 loc3 loc1);

(drive taxi1 loc1 loc2);

(drive_passenger taxi3 person1 loc1 loc3)

Figure 3. One possible solution to the Taxi planning prob-
lem in Figure 2

then have a notion of state that is a list of polarities mapped
to predicates. The State type is used to represent precon-
ditions and effects of actions in a domain as well as the
goal state in the problem specification. We will refer to spe-
cific instances of the State type using the typesPrecondition,
Effect and GoalState.

State : Set

State = List (Polarity × Predicate)

The notion of actions’ preconditions and effects (block 5
in Figure 1) are defined generically as the ActionDescription
record:

record ActionDescription : Set where

field

preconditions : Preconditions

effects : Effects

and a context maps every Action to an ActionDescription:

Context : Set

Context = Action � ActionDescription

This then allows us to represent an abstract planning do-
main (block 1 in Figure 1) as the following record:

record Domain : Set1 where

field

Type : Set

Action : Set

Predicate : Set

Γ : Context

_
?
=?_ : DecidableEquality Predicate

The taxi planning domain. We can then instantiate the
taxi domain as follows. To describe PDDL types one simply
needs to create a data type in Agda with the required types
as constructors.

data Type : Set where

taxi location person : Type

In PDDL, objects are first introduced implicitly as typed vari-
ables within the block that defines predicates, and only later
does the planning problem give an explicit set of objects that
can be used to instantiate these variables. For convenience,
in our formalisation we combine these two separate notions
of objects and variables into a singleObject data type whose
constructors are indexed by Types. The number of objects
for each constructor are given by a finite number indicated
by Fin. For example if numberOfTaxis was equal to 3 then
we can construct taxis: taxi 0, taxi 1, taxi 2. Thus, the second
block of Figure 1 boils down to the following data declara-
tions:

data Object : Type -> Set where

taxi : Fin numberOfTaxis � Object taxi

location : Fin numberOfLocations� Object location

person : Fin numberOfPeople � Object person

In practice, developing this prototype system further
may require one to properly distinguish between ob-
jects and variables, but we leave this for future work.
In [Schwaab et al. 2019] objects were defined simply by
naming them as constructors. However, in this paper we
need to add additional information about the number of
available taxis in order to reason about extrinsic properties
of plans, such as fairness.
We can now define predicates over typed objects, closely

mimicking the PDDL syntax in block 3 of Figure 1.

data Predicate : Set where

taxiIn : Object taxi � Object location � Predicate

personIn : Object person � Object location � Predicate

Actions (see block 3, 4 and 5 in Figure 1) are defined as an-
other data type.

data Action : Set where

drive : Object taxi � Object location

� Object location

� Action

drivePassenger : ...
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The context that details each action’s preconditions and ef-
fects can be easily instantiated in a manner that is close to
the PDDL syntax:

Γ : Context

Γ (drive t1 l1 l2) =

record {

preconditions =

(+ , taxiIn t1 l1) :: [] ;

effects =

(- , taxiIn t1 l1) ::

(+ , taxiIn t1 l2) :: [] }

...

The planning problem. The specific planning problem
(see Figure 2) needs to be defined concretely, by providing
an initial World and a GoalState. Intuitively, a World is a
logical description of the predicates that are true. We oper-
ate under the same closed world assumption as PDDL where
all predicates that are not contained in a world are assumed
to be false.

World : Set

World = List Predicate

Whereas we use a World to represent the initial state, we
need to be able to talk about specific negative predicates in
the GoalState so it is a simple alias for State.

initialWorld : World

initialWorld =

taxiIn (taxi 0) (location 0) ::

taxiIn (taxi 1) (location 1) ::

taxiIn (taxi 2) (location 2) ::

personIn (person 0) (location 0) ::

personIn (person 1) (location 1) ::

personIn (person 2) (location 2) ::

[]

goalState : GoalState

goalState =

(+ , taxiIn (taxi 0) (location 1)) ::

(+ , personIn (person 0) (location 2)) ::

(+ , personIn (person 2) (location 0)) ::

[]

Plans. One of the most popular early planners
was the Stanford Research Institute Problem Solver
(STRIPS) [Fikes and Nilsson 1971] which was created to
address the problems faced by a robot in rearranging
objects and in navigating. The STRIPS planner will perform
an automatic search for a plan that moves from the initial
world to the goal state defined in the domain. One such

plan that it might find for the problem outlined so far is
shown in Figure 3.
We define a Plan as a list of actions, (renaming the empty

list to halt to improve readability).

Plan : Set

Plan = List Action

The plan shown in Figure 3 can then be defined as:

plan : Plan

plan = (drive taxi1 loc1 loc2) ::

(drivePassenger taxi3 person3 loc3 loc1) ::

(drivePassenger taxi3 person1 loc1 loc3) ::

halt

These are the main building blocks that we expect to re-
ceive from the given AI planner.

2.2 Expressivity of PDDL

PDDL is a very expressive language with many extensions.
PDDL 1.2 usually operates under a closed world assump-
tion and expresses domains using the STRIPS assumption
where actions effects are applied by adding and deleting
predicates to a given world. The closed world requirement
implies the use of first-order logic without function symbols
(which guarantees finite domains when defining the mod-
els). The problem with functions, especially with recursive
functions, is that they can make domains infinite. For ex-
ample, it only takes one nullary and one unary function to
generate the set of natural numbers.
PDDL 1.2 also allows for the expression of types with

type hierarchy, equalities over objects, existential and uni-
versal quantification over preconditions and conditional ef-
fects. Conditional effects are effects that will only be applied
when a list of preconditions hold true. In PDDL 2.1 there is
also a definition of numeric fluents that allow for the rea-
soning about numbers such as comparing and adding num-
bers. PDDL 2.1 also introduces negative preconditions and
durative actions. Durative actions add the concept of time
to actions. Finally PDDL 3 adds strong and soft constraints
that can be applied across a planning problem. Strong con-
straints can allow for the statement of certain implications
to hold across every state during the execution of a plan.
Soft constraints, also known as preferences, introduce soft
goals that a user would prefer a planner to satisfy but are
not necessary to satisfy for a valid plan. In this paper we
will mainly focus on a subset of PDDL 1.2 under the closed
world assumption.

Two of the above restrictions in particular are the subject
of the syntactic (type-driven) extensions we propose in this
paper: we do rely on arbitrary functions in our development,
and we open ways to surpass the closed world assumption,
by embedding the plans in a wider programming and mod-
elling environment. We also use higher-order functions and
predicates to express some more sophisticated properties,
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for example calculating the number of taxi’s that satisfy a
certain property as discussed in Section 3.2.

2.3 Validating intrinsic properties of a plan

We now briefly overview the calculus in which Agda vali-
dates the plans given by AI planners. The calculus is very
simple, consisting of just two rules: action sequencing and
halting. The main intuition behind the rules is that the goal
state as well as the actions defined in Γ describe minimal

preconditions and effects, whereas plans are executed on po-
tentially larger states.
We define a satisfaction relation between a worldF and a

state ( , denotedF∈〈(〉, where a world satisfies a state when
all positively mapped predicates in a state are in the world
and all negatively mapped predicates are not in the world.

_∈〈_〉 : World � State � Set

w ∈〈 S 〉 = (∀ a � (+ , a) ∈ S � a ∈ w) ×

(∀ a � (- , a) ∈ S � a ∉ w)

The rules of our calculus then say that it is safe to halt
a plan if our current world satisfies the goal state, and it is
safe to sequence (seq) another action to a plan if the current
world satisfies the action’s precondition. As expected, the
rules of inference are then defined as an inductive relation
Γ ⊢ plan : initialWorld{ goalState:

data _⊢_:_{_ : Context � Plan � World � GoalState � Set

where

halt : ∀ {Γ world goal}

� world ∈〈 goal 〉

� Γ ⊢ halt : world{ goal

seq : ∀ { U world goal Γ f}

� world ∈〈 preconditions (Γ U) 〉

� Γ ⊢ f : updateWorld (effects (Γ U)) world{ goal

� Γ ⊢ (U :: f) : world{ goal

The actual sequencing is performed by the updateWorld
function, that applies the effects of an action by adding all
the positively mapped predicates to theworld and removing
all the negatively mapped predicates. It should be noted that
we do not need check the preconditions of an action in the
updateWorld function as we only apply actions on a world
after ensuring that the world satisfies the preconditions of
the action in the typing relation.

updateWorld : Effects � World � World

updateWorld [] w = w

updateWorld ((+ , p) :: S) w = p :: updateWorld S w

updateWorld ((- , p) :: S) w = remove p (updateWorld S w)

In [Schwaab et al. 2019], these rules were proven sound
and complete relative to the possible world semantics of
PDDL. Compared to [Schwaab et al. 2019] we have simpli-
fied the rules so that we use a World rather than a State to

represent the initial state of the problem. Technically speak-
ing, this is all we need to validate the intrinsic properties of
a PDDL plan. Since the rules are so simple, it is possible
to generate Agda proofs automatically from PDDL plans,
which we implemented as a function solver in [Hill et al.
2020]. Since the rules are defined generically, a user who
works on a specific plan validation does not have to do any-
thing, except for supplying a generic validation command
(in which they insert the given plan as well as initial world
and goal state):

derivation : Γ ⊢ plan : initialWorld{ goalState

derivation = from-just (solver Γ plan initialWorld goalState)

The initial motivation behind this work was in giving
Curry-Howard, or computational interpretation to AI plans,
with a view of opening theway to a certified code extraction.
With that in mind, the inference rules defining

Γ ⊢ plan : initialWorld { goalState

model plans as functions that inhabit the type

initialWorld{ goalState

In Section 5 we also discuss how this approach differs from
modelling PPDP plans within linear logic.

2.4 Plan Execution: Action Handlers

In [Schwaab et al. 2019] we introduced the notion of a
canonical action handler, that can take a plan validated as
in previous section, and turn it into an executable function
over the possible worlds, as defined in PDDL semantics.
In order to discuss our approach of verifying extrinsic

properties, only the notion of the possible World is rele-
vant. We refer interested readers to [Schwaab et al. 2019]
for a complete definition of the possible world semantics.
A handler executes Actions onWorlds:

ActionHandler : Set

ActionHandler = Action→ World → World

We now define a canonical handler which applies the
effects of an action according to the context by using the
updateWorld function.

canonical-f : Context � ActionHandler

canonical-f Γ U = updateWorld (effects (Γ U))

To be able to evaluate an entire plan we define an execute
function that takes in a plan, action handler and initial world
as its arguments and recursively applies all actions in the
plan using the given action handler to the world until the
end of the plan.

execute : Plan � ActionHandler � World � World

execute halt f w = w

execute (U :: f) f w = execute f f (f U w)

Note that in this case execute could simply be defined as a
fold over the list of actions. We have left it in this explicit
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form, as in the next section we will alter the definition of
ActionHandler to use dependent types in order to encode
rich extrinsic properties, which means that expressing this
as a fold is no longer possible.
We can now evaluate the taxi example by applying the

execute function to the canonical handler and initial world.

evaluationResult : World

evaluationResult = execute plan (canonical-f Γ) initialWorld

Aswe execute the already validated plan on the initialWorld,
we expect to see, as an output, a world that corresponds to
the goal state goalState. In fact, we get:

Output:

taxiIn taxi3 location3 ::

personIn person1 location3 ::

personIn person3 location1 ::

taxiIn taxi1 location2 ::

taxiIn taxi2 location2 ::

personIn person2 location2 :: []

That is, the world that the function evaluationResult returns
is larger than the world the goalState directly entails, but
this is expected, as long as the information contained in
goalState is preserved.
Note that generally, given a state, there may be many

worlds that satisfy it. For example, the following world also
satisfies our goalState.

taxiIn taxi3 location3 ::

personIn person1 location3 ::

personIn person3 location1 :: []

The central soundness result of [Schwaab et al. 2019]
states that, whenever we can prove that Γ ⊢ plan :
initialWorld { goalState then executing the plan on
initialWorld will result in a world F ′ that satisfies condi-
tions in the goalState.
We rely on our proof of plan soundness to establish that

the plan, and therefore each action in it, is valid. As a con-
sequence we do not require action handlers to check the
validity of each action with respect to the current world be-
fore applying it. This allows us to simplify the definition of
the enriched handlers, described in the next section.
This finishes the recap of canonical handlers from

[Schwaab et al. 2019], we are now ready to tackle extrinsic
properties in the next section.

3 Verifying extrinsic properties

So far we have introduced two out of three components of
our proposed framework:

(I) Plan generation via a PDDL planner which
takes a PDDL domain and problem definition as in
Figures 1 & 2, and performs an automated search for

plan that takes the system from the initial to the goal
state.

(II) Validation of the resulting plan via Agda which
compiles the planning domain, planning problem and
plan received from the planner into a compact DSL.
The plan is then validated relative to the formalised
operational and possible world semantics of PDDL.
We have shown in [Hill et al. 2020] that this validation
stage is capable of eliminating state inconsistencies
that are otherwise admitted by the STRIPS planner.

We are now ready to introduce a third, and perhaps themost
intriguing component of the framework:

(III) Dependently-typed verification of extrinsic

properties of the execution of the plan via Agda,
in which we formally verify that during execution
of the plan the controller will never execute an
action that violates extrinsic properties. As discussed
previously, extrinsic properties are those which are
either undesirable or impossible to encode in PDDL
at planning time.

To achieve this, we augment the ActionHandler type with
the desired property and then ensure that the execute func-
tion has the correct type. Note that this third stage lacks
the generality of the stage (II), as these higher level proper-
ties are necessarily specific to the particular domain being
modelled. Nonetheless we argue it is a powerful and flexible
technique for verifying properties that cannot be checked
at planning time. A notable advantage of our approach is
that we can verify a property holds without altering the se-
mantics of PDDL specification or the shape of the plans pro-
duced by the planner.
As discussed in the introduction, the verified controller

could be used directly during execution. Alternatively, it
could be run in a simulated environment prior to the exe-
cution of the plan by a non-verified controller. If the plan
satisfies the extrinsic properties during simulation, then the
environment can bemonitored during execution and as long
as it doesn’t deviate from the simulation then the actual ex-
ecution of the plan will not violate the extrinsic properties
either.

3.1 Example 1: Fuel Consumption

One very simple property that we might be interested in
verifying is that the agent never runs out of fuel while ex-
ecuting a plan. Although fuel is often used in an abstract
sense in functional programming to limit the number iter-
ations a function may perform before termination, in plan-
ning fuel often has a very real interpretation as it represents
a resource (e.g. electrical energy) that an agent uses to per-
form actions. Typically, before an agent runs out of fuel it
must return to its base and recharge.
Inmany domains, fuel levels cannot be taken into account

by the planner in stage (I) because it is unknown what the
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exact fuel level will be at a given point in the plan. For ex-
ample while the plan of driving from location1 to location2
and then from location2 to location3 may be valid at plan-
ning time, it can subsequently be invalidated by unexpect-
edly high fuel consumption during the first leg of the trip
(e.g. due to a diversion caused by road-works) that leaves
the taxi unable to complete the second leg.
We will now show how such a constraint can be incorpo-

rated into our framework. For simplicity and pedagogical
purposes we will assume that all taxis share a single fuel
source and that applying any action uses 1 unit of fuel. To
add this property to an action handler we first model the
property using types in Agda and then add that property to
the type level of the action handler. To allow us to reason
about natural numbers at the type level we create a Fuel
data type that is indexed by a natural number:

data Fuel : Nat � Set where

fuel : (n : Nat) � Fuel n

We can now enrich the definition of an action handler, by
encoding the fact that applying an action reduces the fuel
level from suc = to = where suc = is the successor of the
natural number =.

FuelAwareActionHandler = ∀ {n} � Action

� World × Fuel (suc n)

� World × Fuel n

This encodes at the type level that the agent cannot begin
to execute an action without having sufficient energy and
that each action uses one unit of fuel.
Now we can define an enriched handler, by changing the

canonical handler’s return type to FuelAwareActionHandler:

enriched-f : Context � FuelAwareActionHandler

enriched-f Γ U = updateWorld’ (effects (Γ U ))

The auxiliary function updateWorld’ above is an enriched
version of updateWorld we used in the Section 2.4. It takes
care of checking the additional fuel constraint on the type
of the action handler is satisfied during the execution:

updateWorld’ : Effect � World × Fuel (suc n)

� World × Fuel n

updateWorld’ s (w , fuel (suc n)) = updateWorld S w , fuel n

One advantage of defining at the type level that the fuel goes
from suc = to = is that we are forced to supply an energy of
exactly = in the return type of this function.
To execute plans with the FuelAwareActionHandler and

check the constraints during execution, we need to further
enrich the evaluation function. The evaluation function
must check the fuel level and if it is suc = we handle the
action and if it is zero whilst there are still actions to
apply then the plan fails in which case we return an error
message with the failure. One simple way to implement
this is to introduce a disjunction ⊎ in the return type where

the function can either return a world or an error if the
execution fails. To do this we define a OutOfFuelError data
type that is constructed by passing in the current world
and the failed action.

data OutOfFuelError : Set where

error : Action � World � OutOfFuelError

executeWithFuel : Plan � FuelAwareActionHandler

� World × Fuel n

� World ⊎ OutOfFuelError

executeWithFuel halt f (w , _) = inj1 w

executeWithFuel (U :: f) f (w , fuel 0) = inj2 (error U w)

executeWithFuel (U :: f) f (w , fuel (suc n)) =

executeWithFuel f f (f U (w , fuel (suc n)))

We can now execute the same plan that we validated in the
previous section, only this timewe have the enriched (rather
than canonical) handler and evaluation function:

evaluationResult : World ⊎ OutOfFuelError

evaluationResult = executeWithFuel plan (enriched-f Γ)

(initialWorld , (fuel 3))

This section used a simple fuel consumption example
to explain the general approach of reasoning about meta-
properties of already validated plans and demonstrated
how enriched handlers allow us to introduce arbitrary
additional constraints at execution time without interfering
with either the native (sound) semantics of PDDL, or
the shape of the native plans produced by STRIPS. In a
realistic system, fuel levels might be better implemented
as a monadic evaluation function that performs real-time
measurement of the current fuel level.

3.2 Example 2: Fairness

We will now look at a more complex constraint, in partic-
ular that the assignment of taxi drivers to trips exhibits no
significant gender bias. Unlike the fuel consumption exam-
ple, the gender information could be made available to the
planner at Stage (I). However it is infeasible and undesir-
able to do so for the following two reasons. Firstly, any non-
trivial fairness property is unlikely to be expressible in stan-
dard PDDL syntax. Secondly and perhaps more subtly, sta-
tistically speaking we would expect there to be no gender
bias in the output of the planner in the first place. The time
complexity of planning algorithms are normally non-linear
in the size of the domain description, so we why compli-
cate the planning stage to enforce something that should be
normally true most of the time? Verifying that the property
holds only at execution time significantly reduces the cost.
To encode this property in Agda we first need to define a

model of gender in Agda.

data Gender : Set where

male female other : Gender
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We then define a TripCount type which is used to store the
number of trips each gender has taken so far.

TripCount : Set

TripCount = Gender � N

Wewill define the code associatedwith the enriched handler
in a separate Agda module. The advantage of this choice is
that we can pass in static functions representing data that
we do not intend to change during the evaluation of a given
domain.

driverGender : Object taxi � Gender

margin : Nat

In particular we pass in two functions driverGender and one
natural number called margin. The driverGender function
maps all taxi drivers to a Gender. The margin is used to al-
low for some leeway for statistical fluctuations when enforc-
ing our fairness constraint.
We simply calculate the total trips taken by adding the

trips taken for all genders.

totalTripsTaken : TripCount � N

totalTripsTaken f = _+_ (_+_ (fmale) (f female)) (f other)

The percentage of trips assigned to a given gender is then
calculated via the following function:

calculateGenderAssignment : Gender � TripCount � N

calculateGenderAssignment g tripCount =

(tripCount g * 100) /0 totalTripsTaken tripCount

To calculate a fair percentage of assignments we first need
to calculate the number of drivers of each gender. Note that
this uses a higher order function filter which, as discussed
in Section 2.2, are not supported by the PDDL language. Nei-
ther are we aware of any alternative way of expressing this
calculation in PDDL short of providing the taxis of each gen-
der manually, an approach which scale extremely poorly as
the domain grew in size.

noGender : Gender � N

noGender g =

length (filter (_ t � decGender g (driverGender t)) allTaxis)

Using this we can then calculate the percentage of drivers
of a given gender:

percentage : Gender � N

percentage g = (noGender g * 100) /0 totalDrivers

The lowest acceptable threshold that is deemed to be fair,
which is controlled by a margin parameter, is then calcu-
lated as follows:

calculateLowerbound : Gender � N

calculateLowerbound g =

percentage g − (percentage g /0 margin)

We can now express the property that a trip count is unbi-
ased for a particular gender as follows:

IsFair : Gender � TripCount � Set

IsFair g f =

calculateGenderAssignment g f ≥ calculateLowerbound g

We have defined a fairness property for a single gender we
want to enrich an action handler so that applying an action
is fair for all genders not just one. This is modelled by adding
a IsFairForAll type that is the product of the �B�08A type for
all genders.

IsFairForAll : TripCount � Set

IsFairForAll f = ∀ (g : Gender) � IsFair g f

There are still two problems with implementing the action
handler just using the �B�08A �>A�;; type. The first problem
is that it is unreasonable to assume that after the assignment
of one or just a few trips that the trips will be fairly assigned.
To model this we add the following predicate:

UnderMinimumTripThreshold : TripCount � Set

UnderMinimumTripThreshold tripCount =

totalTripsTaken tripCount < totalDrivers * 10

The second problem is that there are two actions drive and
drivePassenger and only the latter should count as a paying
trip for the purpose of fairness. Again this is represented by
another predicate:

TripAgnostic : Action � Set

TripAgnostic (drivePassenger t p1 l1 l2) = ⊥

TripAgnostic (drive t l1 l2) = ⊤

We now have sufficient definitions to describe the fairness
property in detail, in which an action is fair if it satisfies any
of the three predicates defined above:

data ActionPreservesFairness

(U : Action) (tripCount : TripCount) : Set where

underThreshold : UnderMinimumTripThreshold tripCount

� ActionPreservesFairness U tripCount

fairForAll : IsFairForAll tripCount

� ActionPreservesFairness U tripCount

agnostic : TripAgnostic U

� ActionPreservesFairness U tripCount

The type of enriched action handlers that enforce this prop-
erty can then be defined as follows:

GenderAwareActionHandler : Set

GenderAwareActionHandler =

(U : Action)

� {tripCount : TripCount}

� {fair : ActionPreservesFairness U tripCount}

� World � World

One thing to note is that the formof this definition is slightly
different from that of the FuelAwareActionHandler defined
in the previous section. Instead of adding TripCount as a
part of a product with the World, we add it as an implicit
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argument. This is because, unlike fuel, we’ve chosen not to
enforce any type-level relationships between the trip count
before an after applying the action. Instead we will rely on
our enriched execute function to update the trip count cor-
rectly. The disadvantage of this approach is that one cannot
enforce relationships between actions and the additional en-
riched state at the type-level, however the advantage of this
is that it allows us to use exactly the same form for the en-
riched handler and canonical handler instances:

enriched-f : Γ � GenderAwareActionHandler

enriched-f Γ U = updateWorld (effects (Γ U))

Another advantage of working in a rich dependently-type
language such as Agda is that our execution function can
return error messages containing proofs in them explaining
exactly why the execution of the function failed. Currently
a failed execution just returns a precise error for why an
execution has failed however we envision that we could use
these precise errors for plan repair in future work. In this
case our error contains a proof of why the action is not fair:

data GenderBiasError : Set where

notProportional : (a : Action) (f : TripCount)

� ¬ (ActionPreservesFairness a f) � GenderBiasError

The enriched execute function can be then be defined to
check for fairness and can only execute in action if it can
generate a proof that the action will not result in any gen-
der bias:

execute’ : Plan �

GenderAwareActionHandler �

TripCount �

World �

World ⊎ GenderBiasError

execute’ halt f tripCount w = inj1 w

execute’ (a :: f) f tripCount w with updateTripCount a tripCount

... | updatedTrips with ActionPreservesFairness? a updatedTrips

... | yes fair = execute’ f f updatedTrips (f a {fair = fair} w)

... | no ¬fair = inj2 (notProportional a updatedTrips ¬fair)

4 Implementation, Code Extraction,
Further Applications

The accompanying Agda library [Hill et al. 2021] is ar-
ranged in a way that is friendly to users from the AI
planning community. This is the summary of the general
methodology to set up, verify and execute a PDDL problem
using an enriched handler in our Agda library:

1. Import the Semantics and Plan files from the Plan
folder.

2. Create and import a Domain file for your problem.
3. Define an initial world, goal state and a plan.
4. Use the typing derivation to check that the plan is

valid for the initial world and goal state provided.

5. Create an enriched handler and evaluation function:
a. Model the additional properties as types.
b. Show that the additional properties are decidable if

necessary.
c. Create the relevant error types.
d. Define an action handler that includes the addi-

tional properties.
e. Define an evaluation function for the action han-

dler.
f. Define an enriched canonical handler.

6. Import the enriched handler that you want to use.
7. Use the relevant evaluation function to execute your

handler on the initial world.

Although the primary purpose of the presented work is
to test the limits of type-driven code development in AI, we
have put some thought into future extensions and applica-
tions of this work.
In this paperwe havemanually performed steps 2, 3 and 4,

however in previous work [Hill et al. 2020] these steps were
fully automated to relieve the burden on the user. The au-
tomation is not immediately transferable to the paper due
to changes in theAgda formalisationmentioned in Section 2,
however it would be relatively easy to update it.
As for applications to AI planning, we envisage several.

Firstly, one can use our implementation of the plan valida-
tor to verify plans using the typing relation. In [Hill et al.
2020] we showed a few examples of when this exercise can
reveal surprising (and often undesirable) properties of plans
produced by STRIPS.
A second use for this methodology is suggested byAgda’s

infrastructure for code extraction. It is easy enough to ex-
tract the examples that we implemented either to Haskell
or to binaries, with the repository [Hill et al. 2021] contains
some detailed description of the extracted files we obtain as
a result (accompanying previous papers on this topic). Thus,
one can imagine future deployment of such verified code di-
rectly on to robots.
Finally, and as discussed, there may be use cases when

software and hardware requirements, or indeed legal reg-
ulations, do not permit the direct deployment of code ex-
tracted from Agda. For example in the autonomous car in-
dustry, the set of usable languages is strictly regulated. In
such cases, the methodology we proposed can be used as
part of a broader modelling and simulation environment. In
fact, we believe this to be the most promising avenue for ap-
plications of these ideas. The enriched handlers proposed in
this paper enhance exactly this modelling aspect, by open-
ing a way for lightweight and flexible modelling of arbitrary
properties of plans separately from (and in addition to) the
automated plan search performed by an AI planner such as
STRIPS.
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5 Conclusions, Related and Future Work

We have presented a novel methodology of using enriched
handlers for embedding AI plans into a richer programming
and modelling environment in Agda. Our main focuswas to
show that the idea of a verification framework combining
automated solvers and planners on the one hand and richer
type-driven programming environments on the other hand
has its merits, and can be implemented in an interesting,
natural and even user-friendly way. We hope that this line
of work inspires more applications in AI verification in the
future.
Apart from our own work [Hill et al. 2020; Schwaab et al.

2019], we are not aware of any other approaches to (depen-
dent) type driven methodology for AI plans. However, more
broadly the logic and programming language communities
have paid attention to AI planning in the past.
AI Planning and Linear Logic. There is a long history

of modelling AI planning in Linear logic, that dates back to
the 90s [Jacopin 1993], and was investigated in detail in the
2000s, see e.g. [Chrpa et al. 2007; Steedman 2002]. In fact,
AI planning is used as one of the iconic use-cases of Linear
logic [Polakow and Pfenning 2001]. The main idea behind
using Linear logic for AI planning is treating action descrip-
tions as linear implications:

U : ∀G.% ⊸ &,

where % and & are given by tensor products of atoms:
'1(C1) ⊗ . . . ⊗ '= (C=). We could incorporate informa-
tion about polarities inside the predicates, as follows:
'1(C1, I1) ⊗ . . . ⊗ '= (C=, I=). Then, the linear implication and
the tensor products model the resource semantics of PDDL
rather elegantly.
The computational (Curry-Howard) interpretation of AI

plans was not the focus of study in the above mentioned
approaches, yet it plays a crucial role in this paper, from
design all the way to implementation, verification and proof
extraction.
AI Planning and (Linear) Logic Programming. The

above syntax also resembles linear logic programming Lolli,
introduced byMiller et al [Hodas and Miller 1994]. Lolli was
applied in speech planning in [Dixon et al. 2009].
Our previous work [Schwaab et al. 2019] in fact takes

inspiration from Curry-Howard interpretation of Pro-
log [Fu and Komendantskaya 2017; Fu et al. 2016]. In our
previous work and in general, logic programming does
not work well with PDDL negation. In PDDL, we have
to work with essentially three-valued logic: a predicate
may be declared to be absent or present in a world. But if
neither is declared, we assume a “not known” or “either”
situation. Logic programming usually uses the approach of
“negation-as-failure” that does not agree with this three-
valued semantics. A solution is to introduce polarities as
terms, as shown in the example above. This merits further
investigation.

Curry-Howard view on Linear Logic. Curry-Howard
semantics of Linear logic also attracted attention of lo-
gicians first in the 90s [Albrecht et al. 1997], and then
in the 2000s in connection with research into Linear
Logical Frameworks [Cervesato and Pfenning 2002;
Schack-Nielsen and Schürmann 2008].
The work that we do relates to that line of work, and

can be seen as a DSL for AI planning. It is simpler and less
expressive than Linear logic generally but makes up for it
in simplicity and close correspondence to PDDL syntax.
Transformations between PDDL domain and problem
descriptions to Agda syntax are straightforward by design
of the DSL. This enables us to automate the generation of
Agda proofs from PDDL plans.

Origins of the Frame Rule. The “frame problem” that
inspired the frame rule of Separation logic actually has ori-
gins in AI [Dennett 2006; Hayes 1981]. Initially, the problem
referred to the difficulty in local reasoning about problems
in a complex world. In AI planning specifically, this prob-
lem consisted of keeping track of the consequences of ap-
plying an action on a world. Intuitively, one understands
that driving one passenger in one taxi would have no effect
on a journey time of another passenger in another taxi. The
frame problem deals with theway to represent this intuition
formally.
One way to deal with the frame problem is to declare

“frame axioms” for every action explicitly. This is an
inefficient way to deal with this problem as defining these
frame axioms becomes infeasible the larger the system
gets [Dennett 2006]. Since most actions in AI planning
only make small local changes to the world, a more general
representation would be more suitable. STRIPS deals with
this problem by introducing an assumption that every
formula in a world that is not mentioned in the effect list
of an action remains the same after execution of the action.
This is known as the “STRIPS assumption” and it is an
assumption that PDDL also uses.
The logic of Bunched Implications [Ishtiaq and O’Hearn

2001; O’Hearn et al. 2001] and Separation Logic [O’hearn
2007] took inspiration from this older notion of the frame
problem, and introduced more abstract formalism, which
is now known as a “frame rule”, into the resource log-
ics [Pym 2019]. This family of logics has brought many
theoretical and practical advances to modelling of com-
plex systems, and is behind many lightweight verification

projects [Calcagno et al. 2015].
Outside of logic and semantics communities, AI planning

researchers recently started to invest more effort into ex-
plaing and validating plans, as well as in modelling extrinsic
properties. We highlight two approaches in particular.
Formalisation of planning in other theorem

provers. Much of the work we proposed here could be
replicated in another dependently-typed prover, such as
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Coq, Idris or Lean. In addition, there has been an impres-
sive line of work by Abdulaziz and co-authors on formal
verification of plan validators in Isabelle/HOL, see e.g.
[Abdulaziz and Berger 2021; Abdulaziz and Lammich 2018,
2020]. One advantage of using Isabelle/HOL for PDDL
formalisations is availability of extensive mathematical
libraries that can support proof development. On the other
hand, dependently-typed provers are particularly attractive
for “lightweight verification” via type-driven program
development. This is exactly the feature we wanted to
show-case in this paper.
Explainable AI. Extrinsic tools that introduce meta

properties over PDDL are already being used in the field of
Explainable AI. In [Cashmore et al. 2019] a wrapper over
PDDL was created so that users can express “contrastive
questions” to better understand and explore why a planner
has chosen certain actions over others. An example con-
trastive question could be "Why did you choose action A

rather than B?". To accomplish this, users give questions
in natural language which are then converted into formal
constraints that are then compiled down into PDDL.
These additional constraints force the planner to choose
different actions which the wrapper will use to generate
a contrastive explanation by comparing the original plan
to the new plan generated from the additional constraints.
The user can then add additional constraints by asking
further contrastive questions. This ability to ask further
questions is particularly useful as it allows a user to build
complex constraints to gain a deeper understanding of a
plan.
Plan-property Dependencies. There is also work

[Eifler et al. 2020a,b] that introduces plan-property depen-
dencies which impose boolean functions over plans which
allows a user to query why a plan satisfies certain properties
over others. These properties are equivalent to soft goals
in PDDL [Gerevini and Long 2005]. This work explains
plans by showing the cost of satisfying certain properties
over others by computing the minimal unsolvable goal
subsets of a planning problem. An example question in this
work could be "Why does the plan not satisfy the property

X?" and a potential reply could be "because then we would

have to forgo property Y and property Z". To be able to do
this, they compile plan properties into goal facts and then
compute the minimal unsolvable goal subsets to produce
plan explanations. This work can also reason about plan
properties in linear temporal logic.
In comparison to our work, both of the previous

approaches define extrinsic properties in a domain-
independent manner. Whilst the verification and execution
of plans in our system is domain-independent, the
enriched handlers are not necessarily domain inde-
pendent. For example, the more generic properties of
FuelAwareActionHandler could be used in any domain,

however the GenderAwareActionHandler is defined specif-
ically for the taxi domain. The benefit of our approach
is that we can define complex properties that would be
undefinable in either of the previous systems. However,
at the current moment we have no way to compile our
properties into PDDL when a plan fails.
One area of future work that we would like to focus on is

plan repair. In our current system we can verify additional
properties of plans using our enriched handlers but we have
no obvious course of action for what to do once a plan fails.
In this paper we have tried to address this by choosing ad-
ditional constraints that will most likely be satisfied by a
planner without any additional replanning. We believe that
we could address this issue by compiling down additional
constraints to PDDL based on the extrinsic properties of the
enriched handler. Since the extrinsic properties can not be
easily expressed in PDDL we can create compilation strate-
gies based on the errors produced by failed evaluations to
force the planner to pick different actions. For example, if we
have a plan that fails in our taxi domain because it has dis-
proportionately picked men over women in a plan we could
fix this by removing a certain number of male taxi drivers
from the planning problem so that the planner no longer has
the option to choose them. This could be further enhanced
by modelling partial plans where a new PDDL problem can
be created at a failure point in a plan. This would potentially
reduce the amount of replanning needed.
In previous work [Hill et al. 2020] we fully automated

our system so that verification and execution of plans can
be generated from PDDL domain and problem descriptions.
This should ensure that there is a low barrier for entry for
new users in terms of Agda and programming language
knowledge. Because the extrinsic properties (modelled by
the enriched handlers) are not part of the PDDL domain or
problem, we cannot provide the same level of automation
for generating these. In future work we intend to address
this by creating a more user-friendly infrastructure for
defining the extrinsic properties. For example, a DSL for
enriched handlers is an option worth considering. This
would mean that a user would only have to learn how to
use the DSL. Implementing such a DSL may even open
opportunities for automating the feedback loop from Agda
to PDDL. A drawback of this approach would be that we
will have to restrict the expressibility of enriched handlers.
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