
Encryption without Centralization: Distributing DNS
Queries Across Recursive Resolvers

Austin Hounsel
Paul Schmitt

Princeton University
United States

Kevin Borgolte
Ruhr-University Bochum

Germany

Nick Feamster
University of Chicago

United States

Abstract
Emerging protocols such as DNS-over-HTTPS (DoH) and

DNS-over-TLS (DoT) improve the privacy of DNS queries and
responses. While this trend towards encryption is positive,
deployment of these protocols has in some cases resulted
in further centralization of the DNS, which introduces new
challenges. In particular, centralization has consequences for
performance, privacy, and availability; a potentially greater
concern is that it has become more difficult to control the
choice of DNS recursive resolver, particularly for IoT devices.
Ultimately, the best strategy for selecting among one or more
recursive resolvers may ultimately depend on circumstance,
user, and even device. Accordingly, the DNS architecture
must permit flexibility in allowing users, devices, and appli-
cations to specify these strategies. Towards this goal of in-
creased de-centralization and improved flexibility, this paper
presents the design and implementation of a refactored DNS
resolver architecture that allows for de-centralized name
resolution, preserving the benefits of encrypted DNS while
satisfying other desirable properties, including performance
and privacy.

1 Introduction
DNS has long been insecure and vulnerable to eavesdrop-

ping, but that reality is changing, as protocols for encrypted
DNS have recently been proposed and deployed, notably
DNS-over-TLS (DoT) and DNS-over-HTTPS (DoH). DoH,
in particular, has seen rapid adoption, as browser vendors
have begun to move name resolution functionality into ap-
plications themselves, whereas in the past it was typically
done at the OS level. DoH deployment depends on coordi-
nation between the stub resolver at the client side (e.g., in
the browser) and the operator of the recursive resolver. In
some cases, that coordination is straightforward because
the same organization operates both the browser and the
resolver (e.g., Google offers both a browser and a public DNS
service). In other cases, two organizations coordinate—as is
the case where Mozilla has collaborated with Cloudflare to
deploy an encrypted DNS service in Firefox, with Cloudflare
serving as the primary recursive resolver.

DNS encryption is unquestionably a positive trend, but it
is accompanied by a troubling consequence: the increased
centralization of a critical part of the Internet infrastructure.
This organizational centralization makes the DNS infrastruc-
ture itself less resilient to disruption from misconfiguration,
attack, and outright manipulation. These threats are more
than existential: An attack on DNS infrastructure in 2016
rendered many websites unreachable [22]. DNS queries are
ripe for widespread manipulation, resulting in information
control and censorship. DNS misconfiguration is also com-
monplace [5]. Centralization also has potentially adverse
effects on competition, introducing new barriers to entry as
organizations who operate recursive resolvers have access to
DNS queries that can be used for a competitive advantage in
othermarket sectors, from content delivery to advertising [4].
The increased centralization of DNS data into a handful of en-
tities has also raised privacy concerns about tracking users’
browsing patterns through their queries.

These high stakes have resulted in heated arguments and
battles from mailing lists to standardization bodies, such as
the Internet Engineering Task Force (IETF), whereby each
of these stakeholders seeks to retain control over the DNS.
Faced with the prospect of losing visibility into DNS queries,
some ISPs have partnered with Mozilla to become trusted
recursive resolvers. Users who have privacy concerns over
their ISPs eavesdropping on their DNS traffic might be con-
cerned by this development. Similarly, users who are more
concerned with advertisers seeing their browsing patterns
would be rightfully concerned that the IoT devices that they
purchase from these same companies default to sending DNS
queries to the resolver of the same company (e.g., many of
Google’s IoT products are hard-wired to use Google Public
DNS as a resolver [23]). Left behind in all of these power
struggles is the user, who often ends up relying on a central-
ized DNS operator based on default configuration settings
and the inertia that comes with changing defaults.

Centralization trends continue: In 2017, more than 40% of
DNS traffic from Tor was resolved via Google Public DNS.
More recent statistics have shown that more than 30% of
DNS queries to ccTLDs come from five large cloud providers,
two of whom offer their own centralized DNS service [21].
A small number of organizations who operate DNS resolvers

ar
X

iv
:2

00
2.

09
05

5v
3

 [
cs

.N
I]

 2
1

Se
p

20
21

Austin Hounsel, Paul Schmitt, Kevin Borgolte, and Nick Feamster

are gaining increased market share. This centralization is
occurring in spite of the fact that anyone can operate a re-
cursive resolver, and in fact hundreds of organizations do
just that. The trends towards centralization of this critical
part of the Internet are driven not by technical limitations,
but rather by ongoing trends of Internet consolidation, cou-
pled with the bundling of critical functionality like name
resolution into applications themselves.

In this paper, we posit that encryption of the DNS need not
imply centralization of DNS queries at a resolver (or set of
resolvers) operated by a single organization and present an
architecture that permits the deployment of encrypted DNS
protocols without coupling decisions about resolvers to the
default choices made by a particular browser vendor or other
connected device (e.g., consumer IoT devices). Specifically,
we develop a public, open-source, configurable stub resolver,
based on dnscrypt-proxy, that allows users to configure
how they want their encrypted DNS queries to be distributed
across a collection of resolvers. This custom proxy allows a
user to specify both the set of resolvers that any particular
application or device should use, as well as the strategy for
how those queries should be distributed across the set of
resolvers that a user specifies. We have released this stub
resolver as an open-source fork of dnscrypt-proxy so that
others can use and extend it.

2 Background and Related Work
In this section, we provide background on the development

of encrypted DNS protocols and explain how these protocols
have led to a centralization of DNS.

2.1 Encrypted DNS Protocols
DNS queries and responses have historically been unen-

crypted, which has garnered concern in recent years, given
research that has demonstrated that DNS traffic can be used
to discover private information about users, ranging from the
websites and webpages that they visit to the “smart” devices
that they use (and how they operate them).

T-DNS[24] address security issues with DNS, such as lack
of confidentiality and amplified denial-of-service attacks.
T-DNS has not been widely adopted, but it served as the
primary inspiration for DNS-over-TLS (DoT) [16]. DNS-over-
HTTPS (DoH) [13] aims to solve the same problems as DoT,
but uses HTTP as a transport protocol. Other work inves-
tigated the adoption of secure DNS and their real-world
benefits. Hounsel et al. measured web performance when
using encrypted DNS protocols and found that in some cases
the newer protocols can outperform conventional DNS [14].
Recent proposals from Mozilla and Google involve send-
ing DoH queries directly from the browser to a recursive
resolver (sometimes simply referred to as a “resolver”) as

configured in the browser (perhaps even by default, although
as of this writing the default settings have not yet changed).
Similarly, the Android OS makes it possible to route all DNS
queries via DoT to a Google-operated resolver [18].

2.2 DNS Centralization
From a user privacy perspective, DNS encryption is largely

a positive development, but an emergent side effect is the cen-
tralization of the protocol and reduced local control. Clients
that are configured to use DoT or DoH operate using cen-
tralized architectures, whereby the client sends all DoT or
DoH queries to a single recursive resolver. Conventional
DNS would initially appear to share the same characteristics:
a client typically sends all queries to its local resolver, typi-
cally one that is configured via DHCP (i.e., configured by a
local network authority). Conversely, DoH has shifted name
resolution functionality into applications themselves, shifting
control over configuration to browser vendors, and in some
cases, IoT device vendors. These centralization trends have
occurred rapidly, over a relatively short timespan. In June
2018, Mozilla announced a partnership with Cloudflare to
deploy DoH to Firefox desktop users in the United States [20].
Mozilla implements DoH in the browser and Cloudflare op-
erates a recursive resolver that supports DoH. Initially, this
option was enabled in Firefox Nightly builds; over the course
of 18 months, Mozilla transitioned to sending all DNS queries
to Cloudflare via DoH by default. In February 2020, Mozilla
enabled DoH by default for all Firefox users in the United
States [8].

Foremski et al. find that the top 10% of DNS recursors serve
approximately 50% of DNS traffic [11]. Moura et al. [21] also
encounter centralization in their study of DNS requests to
two country code top-level domains (ccTLD), with five large
cloud providers being responsible for over 30% of all queries
for the ccTLDs of the Netherlands and New Zealand. Recent
developments suggest that these trends could be reversed; for
example, Hoang et al. [12] propose and evaluate K-resolver,
which distributes queries over multiple DoH recursors in
Firefox, so that no single resolver can build a complete profile
of the user and each recursor only learns a subset of domains
the user resolved. Arkko et al. propose several strategies for
distributing DNS queries and discuss the performance and
privacy trade-offs of each strategy [2]. Other previous work
also shows that distributing DNS queries across multiple
resolvers in various fashions can yield acceptable perfor-
mance [6, 14]. This paper extends this past work, adding ad-
ditional distribution strategies. Our work also shifts control
of name resolution decisions out of individual applications
and allows all devices passing through our proxy to benefit
from DNS query distribution strategies. This is critical as
many devices, particularly IoT devices, make DNS configu-
ration opaque and challenging. Our design also allows for

Encryption without Centralization

rule-based DNS strategy selection such as matching on client
MAC or IP addresses.

3 System Design and Implementation
Decisions about DNS resolution should occur at a

single place: a separate stub resolver that performs
resolution for all applications and devices for which
a user or users have a common set of preferences. This
has traditionally been the role of an operating system stub
resolver running on a host device or a router, but in recent
years, applications have performed DNS resolution on their
own. By returning to how DNS resolution is traditionally
performed, the stub resolver is able to provide applications,
ISPs, and users a single place to define how DNS name reso-
lution should occur. Such modularization also enables us to
experiment with new features for DNS resolution.

3.1 Overview
We propose that a stub resolver perform DNS resolution

as follows:

(1) the stub resolver discovers a collection of upstream
resolvers that support DoH, along with various char-
acteristics of those resolvers (e.g., geographic location).
This configuration can manually performed by the de-
vice owner, or automatically through negotiation with
an upstream network operator (e.g., via DHCP).

(2) a user can specify specific requirements or preferences
about preferred resolvers or goals (e.g., a preference
to avoid a specific location, geography or ISP; or a
preference of privacy over performance or vice versa);
or, alternatively, an explicit selection;

(3) the stub selects DoH resolvers by matching availability
with user preference; and

(4) the stub distributes queries across multiple DoH re-
solvers to reduce centralization based on a user-
specified strategy.

This design bears some resemblance to the behavior of an
operating system stub resolver, but bears the additional char-
acteristics of configurability, and the option to place the stub
resolver at a point in the network that is independent of
any device but common to a set of user (or users) who share
common preferences, such as a home network router.
For wide-scale deployment, we envision that operating

systems will implement the proposed stub resolver, similar to
Windows and Android adding native support for encrypted
DNS [17, 18]. We acknowledge that this solution can be cir-
cumvented: Applications and IoT devices could bypass the
proxy by directly querying resolvers of their choice, espe-
cially if DNS queries are encrypted.

3.2 Design Principles
A separate stub resolver that can resolve queries for all

users and devices who share preferences about performance,
privacy, security, and other considerations is an appropriate
location to address DNS centralization.
The stub resolver should not presume an outcome
with respect to the set of resolvers or the strategies for
distributing queries across them. As described later in
this section, we envision a stub resolver that affords many
possible configuration options, and Section 3.4 on the fol-
lowing page explores one such customization option that in-
volves decentralizing DNS queries across multiple recursive
resolvers, using one of many possible distribution strategies.
Such a level of configurability required only modest modi-
fications to existing DNS stub resolvers, as we describe in
Section 3.3.
Users should be able to choose how DNS queries are
resolved, to implement these choices for all devices
on their network. In contrast to the status quo, where
browsers perform encrypted DNS resolution on behalf of
users and where other Internet-connected devices may select
their own DNS resolution mechanism—resolving all DNS
queries in a separate stub resolver that a user can configure
and customize provides more choice to the user. (A sepa-
rate, important question concerns whether users understand
the consequences of these choices, and how to make those
choices visible. We are currently conducting a user survey
to understand this question.)
All stakeholders should be able access this point of
control, to allow for optimizations and customiza-
tions. In contrast to the current architecture, where browser
and device vendors hold control over which entities can be
recursive resolvers and which resolvers are selected by de-
fault, a separate stub resolver can potentially be controlled
by any of the stakeholders. Naturally, we expect that there
will be push and pull, and even cooperation (or collusion)
among these entities. But, modularizing the DNS resolution
process in this fashion will make those actions visible: An
anti-competitive maneuver such as restricting an API to
configure the stub, or collusion between content providers
and browser vendors would be plainly apparent in such an
architecture—and likely reversible, if not through alternate
implementations, then via regulatory mechanisms.

3.3 Prototype Implementation
We forked the open-source dnscrypt-proxy stub re-

solver [9] to support new strategies and policies to de-
centralize DNS queries (Section 3.4 on the next page). We
extended the getOne() function within serversInfo.go,
which indexes into an array of upstream resolvers for each

Austin Hounsel, Paul Schmitt, Kevin Borgolte, and Nick Feamster

query based on which distribution strategy is specified in the
configuration file [10]. The prototype is publicly available
(https://github.com/noise-lab/ddns). We include instructions
for installing and running the proxy, as well as code for
running performance measurements. The proxy supports
DoH and DNSCrypt, and it can run on both host devices
and routers. In the configuration file for the proxy, users can
specify which strategy they wish to use and which resolvers
they wish to distribute queries over.
There are several possible applications for distributing

queries between multiple resolvers for a device or local net-
work. The main use case we envision is giving users control
over the share of their DNS queries that various resolvers
collect, which may enhance their privacy. We also envision
giving network operators additional control over how en-
crypted DNS resolution is performed by devices they own
on their networks. For example, network operators in an
enterprise environment may want to map queries from cer-
tain devices to (encrypted) DNS resolvers that they operate,
while allowing all other devices to use other resolvers. This
would enable network operators to support split-horizon
DNS while also balancing concerns for DNS privacy. Home
network operators may also wish to forward queries from
certain devices to certain resolvers to limit the information
certain parties have about them. IoT devices like Google Nest
may communicate with Google servers for functionality, so
it may make sense to forward DNS queries for these devices
to resolvers not owned by Google.
Although we do not advocate for a particular query dis-

tribution strategy, we argue that the proxy should make a
default choice to achieve wide-scale deployment, as exist-
ing applications such as browsers already do. Future work
should conduct user studies to inform what the default con-
figuration should be.

3.4 Distributing DNS Queries
In this section, we describe several strategies for DNS

resolution that the prototype implements.
Hash-Based Distribution In a hash-based distribution,
second-level domain names (SLDs) are hashed to index into
a list of resolvers, meaning that queries for the same SLD will
always be sent to the same resolver. For example, all queries
issued by a client for google.com and images.google.com
will be sent to the same resolver. Furthermore, if the same
client later queries images.google.com, the query will be
forwarded to the same resolver as before. This strategy en-
sures that no two resolvers receive queries for the same
domain name, but some resolvers may receive a larger share
of queries. Furthermore, this strategy may be less robust to

0 100 101 102 103

Latency to resolved web server (TCP + SSL) (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Resolver - CDN Host
Google - Cloudflare
Cloudflare - Cloudflare
Google - Google
Cloudflare - Google

Figure 1: TCP and SSL setup times to CDN servers operated by Cloud-
flare and Google. Each line shows setup times when a particular DNS
resolver is used for either Cloudflare or Google hosted content.

failure: If a resolver fails, users may not be able to perform
DNS resolution for certain domain names.
Random Distribution In the random distribution strategy,
queries are randomly sent to a set of defined resolvers R,
resulting in each resolver handling 1

𝑅
of the client’s queries.

This is a simple strategy, and recovery from failure is simple:
If a resolver is down, users can send their queries to another
random resolver. We re-use the random distribution code
that was originally implemented by dnscrypt-proxy.
Round-RobinDistributionUsing this strategy, queries are
sequentially striped across a set of resolvers R. The round-
robin strategy results in each resolver would be assigned
1
𝑅
of the client’s queries. This strategy ensures that queries

are evenly distributed over multiple resolvers, but it enables
multiple resolvers to receive queries for the same domain
name over time. As with random distribution, round-robin
distribution may provide users with more resilience to fail-
ure.

4 Prototype Evaluation
We explore how the architecture can enable de-

centralization of queries, and evaluate its effect on CDN
localization, performance, and privacy.

4.1 Performance Effects

How Does Query Distribution Affect CDN Localiza-
tion?We seek to understand whether distributing queries
across multiple recursive resolvers could negatively affect
CDN localization. We fetch each HTTP request from the
requests_desktop table in the HTTP Archive for October
2020 [15]. We also use information provided by the HTTP
Archive to determine which CDN each domain name hosts
its content on, if applicable. For comparison purposes, we
study content that is hosted by Cloudflare or Google, as these
providers also both operate DNS resolvers. We resolve the

https://github.com/noise-lab/ddns

Encryption without Centralization

domain names twice, once using Cloudflare’s DNS and once
using Google’s, for each request that was hosted by either
Cloudflare or Google’s CDN networks, and measure the la-
tency for TCP and SSL connection setup to the resolved IPs
from a 500 Mbps residential fiber connection.

Figure 1 shows the cumulative distribution function (CDF)
for combined TCP and TLS setup times for a given resolver
and CDN. For example, the line that corresponds to "Google -
Cloudflare" shows combined TCP and TLS setup times when
Google’s resolver is used to resolve the domain names of
content hosted on Cloudflare’s CDN. We find that concerns
over whether distributing queries overmultiple resolvers will
affect CDN localization are not significant in our experiment.
When either Google’s resolver or Cloudflare’s resolver is
used to resolver Google-hosted content, TCP and TLS setup
times follow the same distribution. The distributions for
each resolver are slightly different when Cloudflare content
is resolved, but for the most part, the distributions are very
similar. We note that Google and Cloudflare host two of the
most popular resolvers, but we expect similar results with
any resolver that is widely distributed.
What is the Effect of Query Distribution on Page Load
Times? We performed page loads from several vantage
points for 20 days. We created an Amazon EC2 instance
at four vantage points–Ohio, North Virginia, California, and
Oregon–that each ran Debian Linux. To perform our mea-
surements, we extended a Docker image created by Houn-
sel et al. that performs page loads using a headless ver-
sion of Mozilla Firefox 84.0.1 controlled by Selenium [14].
Each page load is performed within a separate Docker con-
tainer. Once we launch a container, we first run our fork of
dnscrypt-proxy within the container with a configuration
file that corresponds to the strategy that we intend to mea-
sure. We then modify /etc/resolv.conf to use our stub
resolver, and we initiate a page load. Once the page load
completes, an HTTP Archive Object (HAR) corresponding to
the page load is extracted from the container, and we close
the container. We read the timing for the onLoad event in
each HAR to measure page load times. 1 We used the top
1,000 websites on the Tranco top-list for December 12th, 2020
to perform measurements [19].

For our query distribution strategies, we used the DoH re-
solvers provided by Cloudflare, Google, Quad9, and NextDNS.
We chose these resolvers due to their popularity and their
support in major browsers. For example, as of January 13th,
2021, Cloudflare and NextDNS are the two default DoH
providers that are listed in Mozilla Firefox 84.0.1. Similarly,

1We disabled the DNS cache for dnscrypt-proxy. Firefox maintains its
own in-memory DNS cache, but because each page load was performed
within a separate Docker container and because Firefox clears its cache
upon exit each page load uses clean DNS and HTTP caches .

California Ohio Oregon N. Virginia
Vantage Point

0

2

4

6

8

10

12

P
ag

e
Lo

ad
 T

im
e

(s
ec

on
ds

)

Hash
Random
Round-Robin

(a) Query distribution strategies.

California Ohio Oregon N. Virginia
Vantage Point

0

2

4

6

8

10

12

P
ag

e
Lo

ad
 T

im
e

(s
ec

on
ds

)

Cloudflare
NextDNS
Google
Quad9

(b) Individual resolvers.

Figure 2: Page load times from each vantage point using query dis-
tribution models and individual resolvers.

Location Hash Random Round-robin

California 2.57 2.55 2.52
Ohio 2.30 2.30 2.31
Oregon 2.85 2.75 2.70
N. Virginia 1.97 2.06 2.08

Table 1:Median page load times (in seconds) from each vantage point
using each query distribution strategy.

Google Chrome automatically upgrades users of Cloudflare,
NextDNS, Google, and Quad9’s resolvers to DoH [3, 7]. In
addition to performing pageloads with the query distribution
strategies using these resolvers, we also measure page load
times when using each of these resolvers on their own for
all DNS queries.
Figure 2a shows page load times for each query distribu-

tion strategy, and Figure 2b shows page load times for each
resolver. Table 1 and Table 2 show median page load times

Austin Hounsel, Paul Schmitt, Kevin Borgolte, and Nick Feamster

Location Cloudflare NextDNS Google Quad9

California 2.51 2.53 2.50 2.63
Ohio 2.28 2.43 2.27 2.32
Oregon 2.77 2.78 2.85 2.96
N. Virginia 2.05 2.18 2.03 2.12

Table 2:Median page load times (in seconds) from each vantage point
using a single resolver for all DNS queries.

for each strategy and resolver. First, for most vantage points,
each strategy performs similarly in terms of median page
load times, although the largest gap in performance was in
Oregon between the hash strategy and round-robin strategy,
with the hash model performing 150 ms slower. The largest
difference between two strategies was lower in other vantage
points, with 50 ms in California, 10 ms in Ohio, and 110 ms
in N. Virginia. Page load times are similar with each resolver,
although Quad9 does perform slower in Oregon.

4.2 Privacy

How Does Query Distribution Affect Domain Names
Seen By Resolvers?We next study how many unique do-
main names are seen by each DNS resolver over time if
different query distribution strategies are used. To do so,
we use a real-world dataset of anonymized DNS queries for
approximately 100 homes connected to a fiber-to-the-home
(FTTH) network in a residential neighborhood in Cleveland,
OH [1]. Each home is connected by a gateway device that
proves a single public IP address for each home through
NAT. This dataset consists of queries issued over a seven-day
period each month during 2018 (i.e., 12 weeks). Full details
about the dataset and collection methodology can be found
in Allman et al [1]. We first group the queries that each
source IP address (i.e., each home) issued together. We then
extract the timestamp for each query, ordering each address’
queries by the time in which they were issued. Finally, we
simulate each of our query distribution strategies "after the
fact" on each address’ ordered list of queries.

Previous work has observed the random and round-robin
distribution strategies may decrease user privacy in the long
term, as all resolvers learn more domain names [2]. Our work
(and system) provides a way to quantify the effects of both
these strategies and other alternatives that may be designed
in the future. For example, other strategies may be more
beneficial for privacy (e.g., hash-based strategies); we believe
it is useful to provide points of comparison.

When the hash strategy is used, each resolver sees fewer
unique domain names for each address than when the other
strategies are used.When four resolvers are used for the hash
strategy, the strategy stabilizes with an average of ≈25% of
unique domain names for each address seen by each resolver.
On the other hand, when four resolvers are used for the
random strategy and the round-robin strategy, the strate-
gies stabilize with an average of ≈50% of queries seen by
each resolver. Interestingly, after just one week, the random
and round-robin strategies stabilize with a mean of ≈45%
of unique domain names seen by all four resolvers, com-
pared to ≈50% after 12 weeks of data. We note that with the
round-robin and random distributions, every resolver will
quickly see popular domain names (e.g., google.com and
facebook.com), but they won’t each see the domain names
that were queried a small number of times. Over time, each
resolver may see the same domain names, but they may not
see this data quickly.

5 Conclusion
This paper has argued for a re-decentralization of the DNS.

Users may prefer one distribution strategy over another. In
this vein, we believe that this paper lays the groundwork
for much future work in both research and industry, as we
explore various alternative strategies for resolving and dis-
tributing encrypted DNS queries. This paper provides one
such starting point as a proof-of-concept.
Acknowledgments. This work was funded in part by NSF
Award CNS-1953513.

Encryption without Centralization

References
[1] Mark Allman. 2020. Putting DNS in Context. In Proceedings of the 2020

Internet Measurement Conference (IMC) (Virtual Event, 2020-10), Fabián
Bustamante and Nick Feamster (Eds.). Associatian for Computing
Machinery (ACM). https://dl.acm.org/doi/10.1145/3419394.3423659

[2] Jari Arkko, Martin Thomson, and Ted Hardie. 2019. Selecting Re-
solvers from a Set of Distributed DNS Resolvers. Internet-Draft draft-
arkko-abcd-distributed-resolver-selection-00. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-arkko-abcd-
distributed-resolver-selection-00 Work in Progress.

[3] Kenji Baheux. 2020. A safer and more private browsing experience with
Secure DNS. https://blog.chromium.org/2020/05/a-safer-and-more-
private-browsing-DoH.html

[4] Kevin Borgolte, Tithi Chattopadhyay, Nick Feamster, Mihir Kshirsagar,
Jordan Holland, Austin Hounsel, and Paul Schmitt. 2019. How DNS
over HTTPS is Reshaping Privacy, Performance, and Policy in the
Internet Ecosystem. In Proceedings of the Research Conference on Com-
munications, Information and Internet Policy (48 ed.) (2019-09). SSRN,
Washington DC, USA, 1–9. https://doi.org/10.2139/ssrn.3427563

[5] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. 2018. Cloud Strife: Mitigating the Security Risks of
Domain-Validated Certificates. In Proceedings of the 25th Network and
Distributed System Security Symposium (NDSS) (25 ed.) (San Diego,
CA, USA, 2018-02), Patrick Traynor and Alina Oprea (Eds.). Internet
Society (ISOC). https://doi.org/10.14722/ndss.2018.23327

[6] Timm Böttger, Felix Cuadrado, Gianni Antichi, Eder Leao Fernandes,
Gareth Tyson, Ignacio Castro, and Steve Uhlig. 2019. An Empirical
Study of the Cost of DNS-over-HTTPS. In Proceedings of the 19th Inter-
net Measurement Conference (IMC) (19 ed.) (2019-10), Phillipa Gill and
Robert Beverly (Eds.). Association for Computing Machinery (ACM),
Amsterdam, Netherlands, 15–21. https://doi.org/10.1145/3355369.
3355575

[7] Chromium. 2021. doh_provider_entry.cc: Chromium Code Search.
https://source.chromium.org/chromium/chromium/src/+/master:
net/dns/public/doh_provider_entry.cc

[8] Selena Deckelmann. 2020. Firefox continues push to bring DNS over
HTTPS by default for US users . https://blog.mozilla.org/blog/2020/02/
25/firefox-continues-push-to-bring-dns-over-https-by-default-for-
us-users/

[9] DNSCrypt. 2021. dnscrypt-proxy 2: A flexible DNS proxy, with support
for encrypted DNS protocols. https://github.com/DNSCrypt/dnscrypt-
proxy

[10] DNSCrypt. 2021. dnscrypt-proxy/serversInfo.go. https:
//github.com/DNSCrypt/dnscrypt-proxy/blob/master/dnscrypt-
proxy/serversInfo.go

[11] Pawel Foremski, Oliver Gasser, and Giovane C. M. Moura. 2019. DNS
Observatory: The Big Picture of the DNS. In Proceedings of the 19th
Internet Measurement Conference (IMC) (Amsterdam, The Netherlands,
2019-10), Phillipa Gill and Robert Beverly (Eds.). Association for Com-
puting Machinery (ACM). https://doi.org/10.1145/3355369.3355566

[12] Nguyen PhongHoang, Ivan Lin, SeyedhamedGhavamnia, andMichalis
Polychronakis. 2020. K-resolver: Towards Decentralizing Encrypted
DNS Resolution. In Proceedings of The NDSS Workshop on Measure-
ments, Attacks, and Defenses for the Web 2020 (San Diego, CA, USA)
(MADWeb ’20). Internet Society, 7 pages. https://doi.org/10.14722/
madweb.2020.23009

[13] Paul Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS
(DoH). RFC 8484. RFC Editor. https://www.ietf.org/rfc/rfc8484.txt
(Proposed Standard).

[14] Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and
Nick Feamster. 2020. Comparing the Effects of DNS, DoT, and DoH on
Web Performance. In Proceedings of The Web Conference 2020. 562–572.

[15] HTTP Archive. 2021. HTTP Archive. https://httparchive.org/
[16] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessel,

and Paul Hoffman. 2016. Specification for DNS over Transport Layer
Security (TLS). RFC 7858. RFC Editor. https://www.ietf.org/rfc/rfc7858.
txt (Proposed Standard).

[17] Tommy Jensen, Ivan Pashov, and Gabriel Montenegro. 2019.
Windows will improve user privacy with DNS over HTTPS.
https://techcommunity.microsoft.com/t5/networking-blog/windows-
will-improve-user-privacy-with-dns-over-https/ba-p/1014229

[18] Erik Kline and Ben Schwartz. 2018. DNS-over-TLS Support in Android
P. https://android-developers.googleblog.com/2018/04/dns-over-tls-
support-in-android-p.html

[19] Victor L. Pochat, Tom V. Goethem, Samaneh Tajalizadehkhoob, Maciej
Korczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented
Top Sites Ranking Hardened Against Manipulation. In Proceedings of
the 26th Network and Distributed System Security Symposium (NDSS) (26
ed.) (SanDiego, CA, USA, 2019-02), Alina Oprea andDongyanXu (Eds.).
Internet Society (ISOC). https://doi.org/10.14722/ndss.2019.23386

[20] Patrick McManus. 2018. Improving DNS Privacy in Firefox. https://blog.
nightly.mozilla.org/2018/06/01/improving-dns-privacy-in-firefox/

[21] Giovane CMMoura, Sebastian Castro,Wes Hardaker, MaartenWullink,
and Cristian Hesselman. 2020. Clouding up the Internet: how cen-
tralized is DNS traffic becoming?. In Proceedings of the 2020 Internet
Measurement Conference (IMC) (Virtual Event, 2020-10), Fabián Busta-
mante and Nick Feamster (Eds.). Association for ComputingMachinery
(ACM). https://doi.org/10.1145/3419394.3423625

[22] Nicole Perlroth. 2016. Hackers Used New Weapons to Disrupt Major
Websites Across U.S. https://www.nytimes.com/2016/10/22/business/
internet-problems-attack.html

[23] Paul Vixie. 2019. My Chromecast Ultra Would Not Start Until I Be-
gan Answering 8.8.8.8. https://mailarchive.ietf.org/arch/msg/dnsop/
WCVv57IizUSjNb2RQNP84fBclI0/

[24] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin,
and Nikita Somaiya. 2015. Connection-oriented DNS to Improve Pri-
vacy and Security. In Proceedings of the 36th IEEE Symposium on Se-
curity & Privacy (S&P) (36 ed.) (San Jose, CA, USA, 2015-05), Vitaly
Shmatikov and Lujo Bauer (Eds.). Institute of Electrical and Electronics
Engineers (IEEE). https://doi.org/10.1109/sp.2015.18

https://dl.acm.org/doi/10.1145/3419394.3423659
https://datatracker.ietf.org/doc/html/draft-arkko-abcd-distributed-resolver-selection-00
https://datatracker.ietf.org/doc/html/draft-arkko-abcd-distributed-resolver-selection-00
https://blog.chromium.org/2020/05/a-safer-and-more-private-browsing-DoH.html
https://blog.chromium.org/2020/05/a-safer-and-more-private-browsing-DoH.html
https://doi.org/10.2139/ssrn.3427563
https://doi.org/10.14722/ndss.2018.23327
https://doi.org/10.1145/3355369.3355575
https://doi.org/10.1145/3355369.3355575
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/public/doh_provider_entry.cc
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/public/doh_provider_entry.cc
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://github.com/DNSCrypt/dnscrypt-proxy
https://github.com/DNSCrypt/dnscrypt-proxy
https://github.com/DNSCrypt/dnscrypt-proxy/blob/master/dnscrypt-proxy/serversInfo.go
https://github.com/DNSCrypt/dnscrypt-proxy/blob/master/dnscrypt-proxy/serversInfo.go
https://github.com/DNSCrypt/dnscrypt-proxy/blob/master/dnscrypt-proxy/serversInfo.go
https://doi.org/10.1145/3355369.3355566
https://doi.org/10.14722/madweb.2020.23009
https://doi.org/10.14722/madweb.2020.23009
https://www.ietf.org/rfc/rfc8484.txt
https://httparchive.org/
https://www.ietf.org/rfc/rfc7858.txt
https://www.ietf.org/rfc/rfc7858.txt
https://techcommunity.microsoft.com/t5/networking-blog/windows-will-improve-user-privacy-with-dns-over-https/ba-p/1014229
https://techcommunity.microsoft.com/t5/networking-blog/windows-will-improve-user-privacy-with-dns-over-https/ba-p/1014229
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://doi.org/10.14722/ndss.2019.23386
https://blog.nightly.mozilla.org/2018/06/01/improving-dns-privacy-in-firefox/
https://blog.nightly.mozilla.org/2018/06/01/improving-dns-privacy-in-firefox/
https://doi.org/10.1145/3419394.3423625
https://www.nytimes.com/2016/10/22/business/internet-problems-attack.html
https://www.nytimes.com/2016/10/22/business/internet-problems-attack.html
https://mailarchive.ietf.org/arch/msg/dnsop/WCVv57IizUSjNb2RQNP84fBclI0/
https://mailarchive.ietf.org/arch/msg/dnsop/WCVv57IizUSjNb2RQNP84fBclI0/
https://doi.org/10.1109/sp.2015.18

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Encrypted DNS Protocols
	2.2 DNS Centralization

	3 System Design and Implementation
	3.1 Overview
	3.2 Design Principles
	3.3 Prototype Implementation
	3.4 Distributing DNS Queries

	4 Prototype Evaluation
	4.1 Performance Effects
	4.2 Privacy

	5 Conclusion
	References

